Highly Efficient Metal Oxide Incorporated Metal Organic Framework [Nd₂O₃-MIL(Fe)-88A] for Electrochemical Detection of Dichlorvos

Mariyammal Narayanan¹, Narendra Pal Singh Chauhan² and Panneerselvam Perumal^{1*}

¹ - Department of Chemistry, SRM Institute of Science and Technology, Kattankulathur,

603 203, Tamil Nadu, India

² - Department of Chemistry, Faculty of science, Bhupal Nobles University, Udaipur, 313002,

Rajasthan, India.

*Corresponding author email: panneerp1@srmist.edu.in; panneerchem82@gmail.com; ORCID: https://orcid.org/0000-0003-2647-6835.

Figure S1. (a) DPV and (b) Current response of (1) dichlorvos in the presence of different Coexisting molecules (2) amitrole (chemical herbicide), (3) triazolone (triazole fungicide), (4) deltamethrin (pyrethroid), and (5) parathion.

Figure S2. (a) Repeatability and Current response bar diagram of dichlorvos 1st Cycle (1), 2nd Cycle (2), 3rd Cycle (3) and (c) storage stability of the Nd₂O₃@MIL(Fe)-88A electrode toward dichlorvos detection.

Modified sensor	Method	Linear range	LOD (nM)	Ref.
Polymerizable luminescence probe	Fluorescence spectra	0.5–7 (µM)	300	[1]
Polymerizable luminescence probe	Spectrophotometry	50 – 200 (µM)	320	[2]
Carbon dots – Cu (II)	Fluorescence quenching effect	0.006-0.06(µM)	38	[3]
Choline oxidase/ Poly(brilliant cresyl blue)/CNTs modified electrode	Amperometry	2.5 – 60 (µM)	1.6	[4]
Acetylcholinesterase/rGO @ Nafion /GCE	Amperometry	$\begin{array}{l} 0.0226 \ - \ 0.453 \\ (\mu M) \end{array}$	9.05	[5]
Acetylcholinesterase/chitosan @TiO ₂ / rGO/ GCE	DPV	0.036–22.6 (µM)	29	[6]
Au@MWCNTs/GCE	DPV	1-120 (µM)	5	[7]
ChOx/PBCBethaline-HNO ₃ PTD	Amperometry	2.5-60 (nM)	1.6	[8]
Nd ₂ O ₃ @MIL(Fe)-88A/GCE	DPV	1-250(nM)	0.92	This work

Table S1. Comparison table for previously reported DPV studies.

Samples	Spiked	Found	Recovery	RSD
	(nM)	(nM)	(%)	(%, n=3)
	0	N. F	-	-
Cabbage extract	10	9.7 ± 0.02	97	2.16
	20	19.2 ± 0.06	96	3.39
	30	29.1 ± 0.04	97	1.40
Orange extract	0	N. F	-	-
	10	10.24 ± 0.02	102.4	2.26
	20	19.90 ± 0.04	99.5	2.11
	30	31.03 ± 0.02	103.4	0.64

Table S2. The determination of Dichlorvos in the presence of purple cabbage and orange extracts.

Note: N.F = Not Found

References

- [1] Ibrahim, A. M. Abbas and H. M. Darwish, Luminescence, 2017, 32, 1541–1546.
- [2] H. A. Azab, A. S. Orabi and A. M. Abbas, J. Lumin, 2015, 167, 360-370.
- [3] J. Hou, G. Dong, Z. Tian, J. Lu, Q. Wang, S. Ai and M. Wang, *Food Chem.*, 2016, 202, 81–87.
- [4] W. Da Silva, M. E. Ghica and C. M. A. Brett, Sens. Actuators B. Chem, 2019, 298, 126862.
- [5] S. Wu, F. Huang, X. Lan, X. Wang, J. Wang and C. Meng, Sens. Actuators B. Chem, 2013, 177, 724–729.
- [6] H. F. Cui, W. W. Wu, M. M. Li, X. Song, Y. Lv and T. T. Zhang, *Biosens. Bioelectron.*, 2018, 99, 223–229.
- [7] Y. Chen, Int. J. Electrochem. Sci., 2021, 210321.

[8] O. Tutunaru, C. M. Mihailescu, M. Savin, B. C. Tincu, M. C. Stoian, G. S. Muscalu, B. Firtat, S. Dinulescu, G. Craciun, C. A. Moldovan, A. Ficai and A. C. Ion, *Microchem. J.*, 2021, 169, 106573.