Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Temperature switch of electrochemical Seebeck coefficient of Fe²⁺/Fe³⁺ via formation of [FeCl₄]²⁻/[FeCl₄]⁻ complex Yunika Nomura^a, Dai Inoue^a, and Yutaka Moritomo^{a,b,c}

^aGraduate School of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan

^bFaculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba 305-8571, Japan ^cTsukuba Research Center for Energy Materials Science (TREMS), University of Tsukuba, Tsukuba 305-8571, Japan

Contact information:

Yutaka Moritomo

Graduate School of Pure and Applied Sciences

Faculty of Pure and Applied Sciences, and

Tsukuba Research Center for Energy Materials Science (TREMS)

Univ. of Tsukuba, Tennodai 1-1-1, Tsukuba 305-8571, Japan

Tel & Fax +81-29-853-4337

e-mail: moritomo.yutaka.gf@u.tsukuba.ac.jp

T [°C]	n _{Fe3+} (reference)	n _{Fe3+} (sample)	V [mV]										
			1	2	3	4	5	6	7	8	9	m	σ
25	0.1	0.2	11.3	10.8	10.2	9.8	9.9	10.0	10.6	11.2	10.9	10.5	0.5
		0.3	25.6	25.1	24.8	24.4	24.1	23.9	24.0	24.0	23.9	24.4	0.6
		0.4	41.4	41.3	40.9	41.2	41.3	41.3	41.5	41.2	41.4	41.3	0.2
		0.5	48.6	47.7	46.8	45.6	45.6	45.7	45.6	45.6	45.8	46.3	1.1
		0.6	60.0	60.0	59.9	60.0	60.1	60.3	60.3	60.2	60.4	60.1	0.2
		0.7	80.3	79.7	79.6	79.8	79.9	80.0	80.0	79.9	79.8	79.9	0.2
		0.8	96.1	96.5	96.8	96.7	96.6	97.3	97.1	97.5	97.7	96.9	0.5
		0.9	118.4	118.1	118	118.3	118.7	119.1	119.4	119.6	119.9	118.8	0.6
50	0.1	0.2	23.6	24.8	24.6	23.7	23.3	23.4	23.6	22.8	23.0	23.6	0.6
		0.3	31.6	33.5	33.0	31.6	31.1	30.5	30.5	30.3	30.1	31.4	1.1
		0.4	47.1	45.7	45.7	45.9	46.3	47.6	47.7	47.2	47.5	46.7	0.8
		0.5	60.4	60.4	59.1	59.5	59.5	59.3	59.7	59.3	60.3	59.7	0.5
		0.6	59.8	61.1	61.9	62.2	61.9	62.8	64.0	63.3	63.4	62.3	1.2
		0.7	76.8	77.4	78.2	78.3	78.6	79.9	79.5	80.3	80.9	78.9	1.3
		0.8	93.3	94.4	94.7	95.4	95.4	95.3	96.1	98.3	101.2	96.0	2.2
		0.9	115.7	115.2	115	116.3	117.2	116.8	116.2	116.6	116.3	116.2	0.7

Table S1. Relative potential (V) between the reference and sample DSMO solution containing 0.3vol% 19 M LiCl aqueous solution at T °C. The solutions contain 0.5 (1 – $n_{\text{Fe3+}}$) mM FeCl₂ and 0.5 $n_{\text{Fe3+}}$ mM FeCl₃, where $n_{\text{Fe3+}}$ [= [Fe³⁺]/([Fe²⁺]+[Fe³⁺])] is the molar ratio of Fe³⁺. The V values were measured every five miniutes. m and σ represent the mean value and standard deviation, respectively.

Fig. S1: Calculation of n_{FeCl4} against temperature (*T*) based on the equilibrium equation, $[\text{Fe}L_6]^{3+} + 4\text{Cl}^- \iff [\text{FeCl}_4]^- + 6L$. Open circles are the experimental data at $n_{\text{Fe3}} = 0.375$. $n_{\text{Fe3+}}$ is the molar ratio of Fe³⁺ among Fe ions.

We calculated n_{FeCl4} against T based on the equilibrium equation, $[\text{Fe}L_6]^{3+} + 4\text{Cl}^- \leftarrow \rightarrow$ $[\text{FeCl4}]^- + 6L$. The equilibrium constant K is represented as $K = \exp(-\Delta G/RT) = a_{\text{FeCl4}}a_L^6/a_{\text{Fe}L6}a_{\text{Cl}}^4$, where ΔG , R, and a_i is, the standard reaction Gibbs energy, the gas constant, and activity of i, respectively. a_{FeCl4} , a_L , and $a_{\text{Fe}L6}$, are $0.0005n_{\text{Fe}3+}n_{\text{Fe}Cl4}$, 1, and $0.0005n_{\text{Fe}3+}(1-n_{\text{Fe}Cl4})$, respectively. After simple calculation, we obtain $n_{\text{Fe}Cl4} = a_{\text{Cl}}^4 \exp(-\Delta G/RT) / [1 + a_{\text{Cl}}^4 \exp(-\Delta G/RT)]$. We set a_{Cl} to 0.057 since the average Cl⁻ concentration ([Cl⁻]) in solution is 57 mM. As exemplified by broken curve, the calculation fails to reproduce the experimental data. This is because $a_{\text{Cl}}^4 \exp(-\Delta G/RT) << 1$ at any ΔG (> 0).