Supplementary information for "Combined Experimental and DFT Approach to BiNbO₄ Polymorphs"

Md. Zarif Hossain,¹ Sadiq Shahriyar Nishat,² Shahran Ahmed,¹ Quazi Shafayat Hossain,¹ M. N. I. Khan,³ Tarique Hasan,⁴ Muhammad Shahriar Bashar,⁵
A. K. M. Sarwar Hossain Faysal,¹ Ishtiaque M. Syed,^{6,7,8} Khandker Saadat Hossain,⁹ Sakhawat Hussain,¹ Md. Mosaddek Khan,¹⁰ and Imtiaz Ahmed^{1,*}

¹Materials Science Research Laboratory, Department of Electrical and Electronic Engineering, University of Dhaka, Dhaka-1000, Bangladesh

²Department of Materials Science and Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA

³Materials Science Division, Atomic Energy Centre, Dhaka-1000, Bangladesh

⁴Department of Physics, University of Jyväskylä, Jyväskylä, 40500, Finland

⁵Institute of Fuel Research and Development,

Bangladesh Council of Scientific and Industrial Research, Dhaka-1205, Bangladesh

⁶Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

⁷Semiconductor Technology Research Centre, University of Dhaka, Dhaka-1000, Bangladesh

⁸Centre for Advanced Research in Sciences, University of Dhaka, Dhaka-1000, Bangladesh

⁹Nanophysics and Soft Matter Laboratory, Department of Physics, University of Dhaka, Dhaka-1000, Bangladesh

> ¹⁰Department of Computer Science and Engineering, University of Dhaka, Dhaka-1000, Bangladesh

EDX ANALYSIS

To perform chemical species identification of our samples Energy-dispersive X-ray spectroscopy (EDX) spectra of α -BNO and β -BNO samples have been obtained as shown in Fig. S1. The weight percent wt. (%) and atomic percent at. (%) of chemical species Bi, Nb and O are displayed in Table S1.

EDX Analysis						
Sample	Element	at. (%)	wt. (%)			
α -BNO	Bi	16.47	51.65			
	Nb	24.52	34.19			
	Ο	59.01	14.16			
β -BNO	Bi	15.74	51.66			
	Nb	22.49	32.81			
	Ο	61.78	15.52			

TABLE S1. Chemical species identification and atomic percentage at. (%) and weight percentage wt. (%) concentration analysis using EDX of α -BNO and β -BNO respectively.

FIG. S1. EDX spectra of (a) α -BNO, (b) β -BNO

FOURIER TRANSFORM INFRARED SPECTROSCOPY (FTIR)

The FTIR absorption spectra of α -BNO and β -BNO were characterized according to the relevant chemical bond vibrations in Table S2. The peaks in the GGA-PBE based phonon density of states were used to identify the FTIR peaks. The GGA-PBE provided good match for the FTIR absorption with the experimentally observed ones for both polymorphs.

FTIR Peak Analysis						
α -BNO		β -BNO				
Exp.	DFT	Exp.	$\overline{\mathrm{D}}\mathrm{FT}$			
(cm^{-1})	$({\rm cm}^{-1})$	(cm^{-1})	$({\rm cm}^{-1})$	Peak Assign.		
400	395	-	-	Bi-O Stretching		
-	-	454	448	Bi-O Stretching		
480	480	-	-	Bi-O Stretching		
540	538	542	546	NbO ₆ Octahedral Stretching		
-		598	601	NbO ₆ Octahedral Stretching		
-		846	841	Bi-O-Bi Stretching		
888	840	-	-	Bi-O-Bi Stretching		
1014	-	-	-	BiO ₆ Octahedral Stretching		
1036	-	-	-	BiO ₆ Octahedral Stretching		
1056	-	-	-	BiO ₆ Octahedral Stretching		
1250	-	-	-	Nb-O Stretching		
1394	-	-	-	-OH Bending		

TABLE S2. RT experimental (Exp.) and DFT based FTIR peaks of both α -BNO and β -BNO.

ELECTRONIC PROPERTIES SIMULATION

The HSE06 spin-polarized total density of states (TDOS) and its projection onto the different constituent atomic orbitals as a function of energy E within a range of 14 eV window containing the Fermi level ($E_{\rm F}$) in the middle for both α -BNO and β -BNO are shown in Fig. S2. Here Hartree-Fock exchange $\alpha_{\rm HF} = 25\%$ and the gap between the highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) is 4 and 3.65 eV for α -BNO and β -BNO respectively. By changing the $\alpha_{\rm HF}$, we can tune the energy band gap of both polymorphs as can be shown from band structure simulation in Fig. S3. The indirect band gap $E_{\rm g}$ can be shrunk to 3.84 and 3.41 eV by reducing the $\alpha_{\rm HF}$ to 15% and 10% from 25% in the case of the α -BNO, see Fig. S3(a)&(B). Similarly, the direct $E_{\rm g}$ can be reduced to 3.65 eV with the use of $\alpha_{\rm HF} = 15\%$ as shown in Fig. S3(c).

FIG. S2. Spin polarized total density of states (TDOS) and its projection onto different orbitals of Bi, Nb and O in (a) α -BNO and (b) β -BNO using HSE06 with $\alpha_{\rm HF} = 25\%$.

FIG. S3. Electronic band structure along high symmetry k-points Γ , Y, Z, S, X, Z, U, R, T and V for (a) α -BNO with $\alpha_{\rm HF} = 15\%$, (b) α -BNO with $\alpha_{\rm HF} = 10\%$ and (c) β -BNO with $\alpha_{\rm HF} = 10\%$ using HSE06 functional.

OPTICAL PROPERTIES SIMULATION

The optical Loss Function L, Extinction Coefficient K, Reflectance R and Optical Conductivity σ are simulated using GGA-PBE and HSE06 functional for both α -BNO and β -BNO as can be seen from Fig. S4.

FIG. S4. Optical properties (a) Loss Function L, (b) Extinction Coefficient K, (c) Reflectance R, (d) Optical Conductivity σ as a function photon energy E calculated from GGA-PBE and HSE06 functional averaged over three different polarization E_x , E_y and E_z in case of α -BNO ($\alpha_{\rm HF} = 2\%$) and β -BNO ($\alpha_{\rm HF} = 20\%$).

PHOTOCATALYTIC MEASUREMENTS

The MB dye degradation fraction C/C_0 is plotted for both α -BNO and β -BNO in Fig. S5(a), where C_0 marks the initial MB dye concentration and C represents the same at some specific irradiation exposure time t. The photocatalytic degradation efficiency (%) of the MB is defined as $(C_0 - C)/C_0 \times 100$. By assuming linear reaction kinematics, the MB dye degradation reaction can be modeled as $\ln(C/C_0) = kt$, where k defines the reaction rate. By linear fitting the $\ln(C/C_0)$ vs. t, as shown in Fig. S5(b), one can estimate the value of k. The estimated values of k for both α -BNO and β -BNO are presented in Fig. S5(c).

FIG. S5. (a) Time-dependent photocatalytic degradation fraction C/C_0 , (b) Linear fitted timedependent photocatalytic degradation fraction of MB and (c) Comparison among reaction rate constant k of both α -BNO and β -BNO.

* imtiaz@du.ac.bd