Supplementary Information

## Substituent Directed Cellular Imaging in the 800-850 nm range with BF<sub>2</sub>-Azadipyrromethene Fluorophores

Cathal Caulfield, Dan Wu, Massimiliano Garre and Donal F. O'Shea\*

Department of Chemistry, RCSI, 123 St. Stephen's Green, Dublin 2, Ireland.

| Fig. S1. Absorbance and fluorescence spectra of 11                                                                                          |
|---------------------------------------------------------------------------------------------------------------------------------------------|
| Fig. S2. Photophysical characteristics of 6 in aqueous CTAB and H <sub>2</sub> O3                                                           |
| <b>Fig. 3.</b> HCl titration of <b>7</b> in water (Fluorescence)                                                                            |
| <b>Table S1</b> . Photophysical characteristics of 7, $7-H^+$ and $7-2H^+$ in aqueous HC14                                                  |
| Fig. S4. Absorbance of 5, 6 and 7 in target microenvironments4                                                                              |
| MDA-MB 231 Cell Imaging                                                                                                                     |
| Fig. S5, S6. Repeat MDA-MB 231 CLSM images following incubation with 55                                                                     |
| <b>Fig. S7.</b> Repeat plasma membrane CLSM images following incubation with <b>6</b> 6                                                     |
| <b>Fig. S8, S9</b> . CLSM images following 1 and 4 h incubation with <b>6</b> 7                                                             |
| Fig. S10. Repeat MDA-MB 231 CLSM images following incubation with 78                                                                        |
| <b>Fig. S11</b> . CLSM images following incubation with <b>11</b> 8                                                                         |
| NMR and mass spectra for compounds <b>8</b> , <b>9</b> , <b>10</b> , <b>11</b> , <b>5</b> , <b>6</b> , <b>12</b> , <b>13</b> and <b>7</b> 9 |
| HPLC Traces for compounds <b>11</b> , <b>5</b> , <b>6</b> and <b>7</b> 22                                                                   |



**Fig. S1.** Normalized absorbance and fluorescence spectra of **11** (4  $\mu$ M) in *c*-hexane (solid traces CHCl<sub>3</sub> (dotted traces) and EtOH (dashed traces).



Fig. S2. Representative absorbance and emission spectra of 6. (A) Absorbance and (B) fluorescence in aqueous CTAB (1% w/v; red) and H<sub>2</sub>O (bottom) (4  $\mu$ M; 10 nm slit width). (C) Absorbance and (D) fluorescence spectra recorded in aqueous fetal-calf serum.



**Fig. S3.** HCl titration of **7** in water (4  $\mu$ M). Fluorescence spectra showing *N*-protonations of **7** below the pH scale. 10 nm slit widths used for red and black profiles (**7** and **7**-H<sup>+</sup> respectively); 5nm slit widths for green (**7**-2H<sup>+</sup>).

Table S1. Photophysical characteristics of 7 and N-protonated species of 7 in aqueous HCl.

| Entry | Comp.    | HCl conc. (M)      | $\lambda_{max}$ abs (nm) | λ <sub>max</sub> flu<br>(nm) | Excitation (nm) |
|-------|----------|--------------------|--------------------------|------------------------------|-----------------|
| 1     | 7        | 1x10 <sup>-7</sup> | 806                      | 826                          | 780             |
| 2     | $7-H^+$  | 2.8                | 744                      | 784                          | 740             |
| 3     | $7-2H^+$ | 10                 | 654                      | 675                          | 630             |



**Fig. S4**. Normalized absorbance spectra of lipophilic **5** in triolein (red), amphiphilic **6** in aq. CTAB (1% w/v; grey) and hydrophilic **7** in H<sub>2</sub>O (pH 7; black) with excitation wavelength used for cell imaging highlighted.

## MDA-MB 231 Cell Imaging SI



Fig. S5. CLSM imaging of MDA MB-231 live cells following 60 min incubation with 5 (5  $\mu$ M). (A) CLSM image (fluorescence in red) with bright field overlay. (B) Fluorescence shown in black and white for clarity. Scale bars 5  $\mu$ m.



Fig. S6. CLSM imaging of MDA MB-231 live cells co-incubated with (i) 1b and (ii) 5 for 1 h with (iii) showing overlaid images with co-localisation (yellow) of both fluorophores in LDs. Scale bars  $5 \,\mu$ m.



Fig. S7. Two representative examples of CLSM imaging of MDA MB-231 live cells over 10 min following incubation with 6 (5  $\mu$ M). Fluorescence shown in black and white for clarity with time points 1, 3, 5, 7, 9 and 10 min showing increasing visualisation of plasma membranes. Scale bars 5  $\mu$ m.



**Fig. S8.** CLSM imaging of MDA MB-231 live cells at 60 min following incubation with **6** (5  $\mu$ M). (A) CLSM image (fluorescence in red) with bright field overlay taken 60 min following the addition of **6**. (B) Fluorescence shown in black and white for clarity. (C) Expansion of image A (fluorescence in red) with bright field overlay. (D) Fluorescence shown in black and white for clarity. Scale bars 5  $\mu$ m.



**Fig S9**. Two representative examples of CLSM imaging of MDA MB-231 live cells at 4 h following incubation with **6** (5  $\mu$ M). (A and C) CLSM image (fluorescence in red) with bright field overlay taken 60 min following the addition of **6**. (B and D) Fluorescence shown in black and white for clarity. Scale bars 5  $\mu$ m.



Fig. S10. CLSM imaging of MDA MB-231 live cells following 24 h incubation with 7 (5  $\mu$ M). CLSM images from 5 min time lapse showing motion of vesicles with fluorescence shown in black and white for clarity. (A) CLSM image at 0 min. (B) CLSM image at 2.5 min. (C) CLSM image at 5 min. Scale bars 5  $\mu$ m.



Fig. S11. Three representative examples of CLSM imaging of MDA MB-231 live cells following 60 min incubation with 11 (5  $\mu$ M). (A) Brightfield images (B) CLSM images shown in black and white for clarity. (C) CLSM images, fluorescence in red, with bright field overlay. Scale bars 5  $\mu$ m.



NMR and Mass Spec Data for Compounds 8, 9, 10, 11, 5, 6, 12, 13 and 7.

Fig. S12. <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum for (8).



Fig. S13. <sup>13</sup>C NMR (CDCl<sub>3</sub>) spectrum for (8).



**Fig. S14.** HRMS ESI<sup>-</sup> of (8).



Fig. S15. <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum for (9).



Fig. S16. <sup>13</sup>C NMR (CDCl<sub>3</sub>) spectrum for (9).



**Fig. S17.** HRMS ESI<sup>-</sup> of (9).



**Fig. S18.** <sup>1</sup>H NMR (DMSO- $d^6$ ) spectrum for (10).



Fig. S19.  $^{13}$ C NMR (DMSO- $d^6$ ) spectrum for (10).



**Fig. S20.** HRMS ESI<sup>-</sup> of (10).



**Fig. S21.** <sup>1</sup>H NMR (DMSO- $d^6$ ) spectrum for (11).



**Fig. S22.** <sup>13</sup>C NMR (DMSO-*d*<sup>6</sup>) spectrum for (**11**).



**Fig. S23.** HRMS ESI<sup>-</sup> of (11).



Fig. S24. <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum for (5).



**Fig. S25.** <sup>13</sup>C NMR (CDCl<sub>3</sub>) spectrum for (**5**).



**Fig. S26.** HRMS ESI<sup>+</sup> of (**5**).



**Fig. S27.** <sup>1</sup>H NMR (DMSO- $d^6$ ) spectrum for (6).



**Fig. S28.**  $^{13}$ C NMR (DMSO- $d^6$ ) spectrum for (6).



Fig. S29. HRMS ESI<sup>2–</sup> of (6).



**Fig. S30.** <sup>1</sup>H NMR (DMSO- $d^6$ ) spectrum for (12).



**Fig. S31.**  $^{13}$ C NMR (DMSO- $d^6$ ) spectrum for (12).



**Fig. S32.** HRMS ESI<sup>+</sup> of (**12**).



**Fig. S33.** <sup>1</sup>H NMR (DMSO- $d^6$ ) spectrum for (13).



Fig. S34. HRMS ESI<sup>+</sup> of (13).



Fig. S35. <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum for (7).



Fig. S36. <sup>1</sup>H NMR (CDCl<sub>3</sub>) spectrum for (7).



Fig. S37. MS MALDI-TOF of (7).

## HPLC traces of 11, 5, 6 and 7.



Fig. S38. HPLC Trace of 11.

Conditions: Reverse phase-HPLC with YMC triart phenyl column and size:  $150 \times 4.6$  mm I.D., particle size: S-5µm, 12 nm hole, detection method: UV-Vis and wavelength for detection: 780 nm. Eluent MeCN:H<sub>2</sub>O 70:30 with a flow rate at 1 mL/min.



**Fig. S39.** HPLC Trace of **5**. Conditions: As for **11** above. Eluent MeCN:H<sub>2</sub>O 70:30 with a flow rate at 1 mL/min.



Fig. S40. HPLC Trace of 6. Conditions: Eluent MeCN:H<sub>2</sub>O 45:55 with a flow rate at 1 mL/min.



**Fig. S41.** HPLC Trace of **7**. Conditions: Eluent gradient of MeCN:H<sub>2</sub>O 40:60 going to CH<sub>3</sub>CN :H<sub>2</sub>O =70:30 with a flow rate at 1 mL/min.