Electronic Supplementary Information

An ionic Fe-based metal-organic-framework with 4'-pyridyl-2,2';6',2''terpyridine for catalytic hydroboration of alkynes

Guoqi Zhang,^{a*} Shengping Zheng^b and Michelle C. Neary^b

^a Department of Sciences, John Jay College and PhD Program in Chemistry, The Graduate Center, The City

University of New York, New York, NY 10019, USA. E-mail: guzhang@jjay.cuny.edu.

^b Department of Chemistry, Hunter College, the City University of New York, New York, 10065 NY, USA.

Figure S1. The measured PXRD pattern of sample 1 after being dried in the air (green line) and the calculated PXRD pattern of 1 from the single-crystal X-ray diffraction data (violet line).

Figure S2. The XPS surveys of sample 1 before and after being used in catalysis.

Figure S3. The XPS profiles of Fe2p in 1 before and after being used in catalysis. The presence of both Fe^{2+} and Fe^{3+} is in good agreement with known mixed-valent iron compounds in the literature.¹

Figure S4. The N₂ absorption/desorption isotherms of 1 before and after being used in catalysis.

Fig. S5. The 3-D packing structure in 1 driven by $\pi \cdots \pi$ stacking showing large pores that are partially occupied by the counterions Cl₃FeOFeCl₃ and co-crystallised solvent molecules.

	1	2
lattice	Monoclinic	Triclinic
formula	$C_{86}H_{92}Cl_{14}Fe_7N_{16}O_{14}$	$C_{43}H_{31.5}Cl_{9.5}Fe_4N_8O_{1.5}$
formula weight	2461.00	1244.44
space group	$P2_l/n$	<i>P-1</i>
a/Å	15.759(2)	11.4061(12)
<i>b</i> /Å	44.011(6)	14.7072(15)
c/Å	17.302(3)	16.0129(17)
a/°	90	101.764(2)
β/°	108.840(8)	110.162(2)
γ/°	90	92.028(2)
V/Å ³	11357(3)	2452.3(4)
Ζ	4	2
temperature (K)	130(2)	130(2)
radiation (λ , Å)	0.71073	0.71073
ρ (calcd.) g cm ⁻³	1.439	1.685
μ (Mo K α), mm ⁻¹	1.259	1.723
θ max, deg.	25.027	30.247
no. of data collected	201893	69494
no. of data	20069	14450
no. of parameters	1245	619
$R_{I}[I > 2\sigma(I)]$	0.1335	0.0706
$wR_2 [I > 2\sigma(I)]$	0.3060	0.1662
R_1 [all data]	0.1533	0.1451
wR_2 [all data]	0.3157	0.2045
GOF	1.152	1.026
R _{int}	0.1261	0.1221

 Table S1. Crystal, intensity collection, and refinement data.

Spectroscopic data for selective products

3a:² Colorless oil. Yield: 161 mg (70%). ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, *J* = 7.7 Hz, 2H), 7.43 (d, *J* = 18.5 Hz, 1H), 7.36 (t, *J* = 7.5 Hz, 2H), 7.31 (t, *J* = 7.3 Hz, 1H), 6.20 (d, *J* = 18.5 Hz, 1H), 1.34 (s, 12H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 149.7, 137.7, 129.0, 128.7, 127.2, 83.5, 25.0 ppm. GC-MS (m/z): 230 (calc. 230).

3c:² Yellowish oil. Yield: 164 mg (66%). ¹H NMR (600 MHz, CDCl₃) δ 7.52 (d, J = 7.7 Hz, 2H), 7.43 (d, J = 18.5 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 7.31 (t, J = 7.3 Hz, 1H), 6.20 (d, J = 18.5 Hz, 1H), 1.34 (s, 12H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 163.3 (d, J = 248.7 Hz), 148.3, 133.9, 128.8 (d, J = 8.2 Hz), 115.7 (d, J = 21.6 Hz), 83.5, 24.9 ppm. GC-MS (m/z): 248 (calc. 248).

3h:² Colorless oil. Yield: 155 mg (80%). ¹H NMR (600 MHz, CDCl₃) δ 6.07 (dd, J = 17.8, 9.3 Hz, 1H), 5.48 (d, J = 17.8 Hz, 1H), 1.51 (dq, J = 8.7, 4.1 Hz, 1H), 1.29 – 1.17 (m, 12H), 0.79 (dd, J = 8.1, 2.4 Hz, 2H), 0.58 – 0.45 (m, 2H) ppm; ¹³C NMR (126 MHz, CDCl₃) δ 158.7, 83.1, 24.9, 17.1, 8.0 ppm. GC-MS (m/z): 194 (calc. 194).

3k:² Colorless oil. Yield: 160 mg (77%). ¹H NMR (600 MHz, CDCl₃) δ 6.63 (dtd, J = 18.3, 9.4, 8.1, 5.1 Hz, 1H), 5.82 (dddd, J = 17.0, 10.2, 6.1, 3.0 Hz, 1H), 5.48 – 5.42 (m, 1H), 5.05 – 4.99 (m, 1H), 4.99 – 4.94 (m, 1H), 2.25 (dd, J = 10.0, 4.4 Hz, 2H), 2.17 (dd, J = 8.7, 5.1 Hz, 2H), 1.28 – 1.24 (m, 12H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 153.5, 138.0, 114.8, 83.0, 35.1, 32.3, 29.7, 24.8 ppm. GC-MS (m/z): 208 (calc. 208).

31:² Colorless oil. Yield: 159 mg (71%). ¹H NMR (600 MHz, CDCl₃) δ 6.64 (dt, J = 18.1, 4.7 Hz, 1H), 5.90 (dq, J = 16.2, 5.3 Hz, 1H), 5.71 (dt, J = 18.2, 1.9 Hz, 1H), 5.37 – 5.22 (m, 1H), 5.22 – 5.06 (m, 1H), 4.06 (dd, J = 4.7, 1.8 Hz, 2H), 3.99 (d, J = 5.8 Hz, 2H), 1.26 (s, 12H) ppm; ¹³C NMR (151 MHz, CDCl₃) δ 149.2, 134.7, 116.9, 83.3, 71.7, 71.3, 24.8 ppm. GC-MS (m/z): 224 (calc. 224).

Copies of ¹H and ¹³C NMR spectra for isolated products.

¹H NMR spectrum:

¹H NMR spectrum:

¹H NMR spectrum:

¹H NMR spectrum:

¹³C NMR spectrum:

References:

- M. Mullet, V. Khare and C. Ruby, *Surf. Interface Anal.* 2008, 40, 323–328.
 G. Zhang, H. Zeng; S. Zheng, M.C. Neary and P.A. Dub, *ACS Catal.* 2022, 12, 5425-5429.