Supporting Information

2	Silver-functionalized Bismuth oxide nanoparticles (AgBi ₂ O ₃) for superior
3	electrochemical detection of Glucose, NO ₂ - and H ₂ O ₂
4	
5	M. Ramesh ^a , C. Sankar ^b , S. Umamatheswari ^{a*} , R. Ganapathi Raman ^c , R. Jayavel ^d and
6	Dongjin Choi ^{e*} and A.G. Ramu ^e
7	
8	^a Department of Chemistry, Government Arts College (Affiliated to Bharathidasan University),
9	Tiruchirappalli, 620 022, Tamil Nadu, India.
10	^b Department of Chemistry, SRM TRP Engineering College, Tiruchirappalli, 621 105, Tamil Nadu, India.
11	^c Department of Physics, Saveetha Engineering College, Thandalam, Chennai - 602 105
12	^d Centre for Nanoscience and Technology, Anna University, Chennai, 600025, Tamil Nadu, India.
13	^e Department of Materials Science and Engineering, Hongik University, 2639-Sejong- ro, Jochiwon-eup,
14	Sejong-city, 30016, South Korea.
15	
16	
17	
10	
18	

^{*} Corresponding author, Tel.; +91-8438288510 E. mail: drsumamatheswari@gmail.com (Dr. S. Umamatheswari) * Corresponding author, Tel.; +82-01094126765

E. mail: djchoi@honigk.ac.kr (Dr. Dongjin Choi)

- 2 Fig. S1. a) HR-SEM image of SBO NPs, b) EDS spectrum of SBO NPs, c) Mapping analysis
- 3 of gray spectrum, d) Mapping of Bi, e) Mapping of Ag, and f) Mapping of O.

Fig. S2. HR-TEM image of SBO NPs a) 20nm, b) 50 nm, c) IFFT image.

Fig. S3. a) CVs recorded at the SBO-GC electrode with different concentration of glucose. b)
Amperometric i-t curve for different potential in addition of 0.5 and 1 mM of glucose in
NaOH solution. c) Reproducibility study for SBO-GCE for five different electrodes. d) CV
plot of stability study recorded before and after 15 days with 1 mM of glucose.

Fig. S4. a) CVs recorded at the SBO-GC electrode with different concentration of NO₂⁻. b)
Amperometric i-t curve for different potential in addition of 0.5 mM of NO₂⁻ in 0.1 M NaOH
solution. c) Reproducibility study for SBO-GCE for five different electrodes. d) CV plot of

5 stability study recorded before and after 15 days with 1 mM of NO_2^- .

Fig. S5. a) CVs recorded at the SBO-GC electrode with different concentration of glucose. b)
Amperometric i-t curve for different potential in addition of 0.5 and 1 mM of H₂O₂ in 0.1 M
NaOH solution. c) Reproducibility study for SBO-GCE for five different electrodes. d) CV
plot of stability study recorded before and after 15 days with 1 mM of H₂O₂.

²

3 Fig. S6. The proposed mechanism for the reduction of H_2O_2 on the SBO-GC electrode

4 Effect of temperature

The amperometric response was recorded in optimum working environments (in 0.1 5 M NaOH), at various temperatures (20 to 40 °C), which are shown in Fig. S7. The steady 6 state current increases from 20 to 30 °C, after 30 °C it was decreased in the amperometric 7 response. This drop was an effect of the loss of activity initiated by the higher temperatures. 8 Conversely, the amperometric response of the biosensor at 25 and 30 °C was very similar to 9 each other (Fig. S7). Therefore, in order to keep the fabricated electroe more stable, 25 °C, 10 which is very close to the growth temperature of the bacterium (28 °C), was employed in 11 further studies. 12

2 Fig. S7. The thermal effect on the fabricated AgBi₂O₃-GCE sensing response to addition of

3 glucose in electrolyte solution

1 Table S1. Comparison of the Analytical Performance for Different Nanomaterial-Based on Electrochemical Sensing of Glucose

Sensor Materials	Detection potential	Sensitivity	LOD	Linear range	Refs.
	(V)	(µA mM ⁻¹ cm ⁻²)			
Ag/CNT/Ch/ITO	-0.51	135.9	0.1 µM	$0.5-50\ \mu M$	1
Ag-PANI/rGO	0.5	2.7664	0.79 μΜ	$0.1~\mu M-50~\mu M$	2
PmAPNFs/AgNPs/GCE	0.34	17.45	0.062 μΜ	0.1–8.0	3
GOD/nano-BiOx	0.5	51	0.4 µM	$1 \ \mu M - 1.5 \ mM$	4
SPCE/GNR/Bi2O3	0.6	64.81	0.07 mM	0.28 - 1.70 mM	5
BiOCl-G NHS	0.5	1.878	0.22 mM	0.5 - 2 mM	6
FTO nanoCuBi ₂ O ₄ CuO	0.55	330	0.7 μΜ	Upto 8 mM	7
HO-BiONO ₃ - GCE	0.3	8.2	0.12 µM	$5 \ \mu M - 2.1 \ mM$	8
SBO-GCE	0.55	2.153	0.87 μM	1 μM – 5.848 mM	Present work

1 Table S2. Comparison of the Analytical Performance for Different Nanomaterial-Based on Electrochemical Sensing of NO₂-

Sensor Materials	Detection potential (V)	Sensitivity (µA mM ⁻¹ cm ⁻²)	LOD	Linear range	Refs.
Ag-GCE	1.0	1642.27	0.046	$1 \ \mu M \ - 6 \ mM$	9
Ag-SO ₃ -NU-902	1.1	-	9.1	Upto 2 mM	10
AgNPs/MWCNTs/GCE	0.85	0.19	0.095	1 μM - 100 μM	11
rGO/AgNPs/poly(PyY)	0.86	13.5	0.012	1 μM - 1000 μM	12
Ag–P(MMA-co-AMPS)- GCE	0.9	104.6	0.2	1 μM - 100 mM	13
Bi ₂ Se ₃ @MWNTs- COOH/CE	0.8	223	0.002	0.01 µM - 7 mM	14
SBO-GCE	0.85	22	1.8	$1\ \mu M - 5.848\ mM$	Present work

Table S3. Comparison of the Analytical Performance for Different Nanomaterial-Based on Electrochemical Sensing of H₂O₂

Sensor Materials	Detection potential	Sensitivity	LOD	Linear range	Refs.
	(V)	(µA mM ⁻¹ cm ⁻²)			
CµF/Ag NPs-Naf	-0.35	21.93	0.485 µM	0.10 - 80 mM	15
AgNPs/Ox-pTTBA/MWCNT	-0.6	-	0.24 µM	$10-260\;\mu M$	16
PpyNFs-AgNPs-rGO/GCE	-0.75	-	1.099 μM	0.1-5 mM	17
NF/HRP/Bi ₂ O ₃ -	-0.3	26.54	-	8.34 - 28.88	18
MWCNT/GCE					
BiNDs/GaN	-0.7	60	5 μΜ	$0.01 - 1 \ mM$	19
CuBi ₂ O ₄	-0.6	280	0.38 mM	-	20
CPE/BiFeO ₃	-0.8	0.142	0.080 µM	0.0002-0.05	21
SBO-GCE	-0.5	1.72	1.15 μM	$2\ \mu M-6.847\ mM$	Present work

Reference

2	1. J. Lin, C. He, Y. Zhao, S. Zhang, Sens. Actuat. B., 2009, 137, 768-773,
3	DOI:10.1016/j.snb.2009.01.033
4	2. M. A. Deshmukh, B. C. Kang, T. J. Ha, J. Mater. Chem. C., 2020, 8, 5112-5123
5	DOI:10.1039/C9TC06836H
6	3. M. W. Ahmad, S. Varma, D-J. Yang, M. V. Islam, A. Choudhry, J. Macromole. Sci
7	Part A., 2021, 58, 461-471, DOI:10.1080/10601325.2021.1886585
8	4. SN. Ding, D. Shan, HG. Xue, and S. Cosnier, Bioelectrochemistry., 2010, 79, 218-
9	222, DOI:10.1016/j.bioelechem.2010.05.002
10	5. S. Durdic, V. Vukojevic, F. Vlahovic, M. Ognjanovic, L. Svorc, K. Kalcher, J. Mutic
11	D. M. Stankovic, J. Electroanal, Chem., 2019, 850, 113400
12	DOI:10.1016/j.jelechem.2019.113400
13	6. AI. Gopalan, N. Muthuchamy, KP. Lee, Biosens. Bioelectron., 2017, 89, 352-360
14	DOI:10.1016/j.bios.2016.07.017
15	7. C H. Wu, E. Onno, C Y. Lin, Electrochim. Acta., 2017, 229, 129-140
16	DOI:10.1016/j.electacta.2017.01.130
17	8. G. Q. Liu, H. Zhong, X. R. Lia, K. Yang, F. f. Jia, Z. P. Cheng, L. L. Zhang, J. Z
18	Yin, L. P. Guo, H. Y. Qian, Sens. Actuators B Chem., 2017, 242, 484-49
19	DOI:10.1016/j.snb.2016.11.019
20	9. K. Ramachandran, D. Kalpana, Y. Sathishkumar, Y. S. Lee, K. Ravichandran, G
21	Gnanakumar, J. Ind. Eng. Chem., 2016, 35, 29-35, DOI:10.1016/j.jiec.2015.10.033
22	10. Y. C. Wang, Y. C. Chen, W. S. Chuang, J. H. Li, Y. S. Wang, C. H. Chuang, C. Y
23	Chen, C. W. Kung, ACS Appl. Nano. Mater., 2020, 3, 9440-9448
24	DOI:10.1021/acsanm.0c02052

- 1 11. Y. Wan, Y. F. Zheng, H. T. Wan, H. Y. Yin, X. C. Song, *Food Cont.*, 2017, **73**, 1507-
- 3 12. K. Dagci, M. Alanyalioglu, ACS Appl. Mater. Interfaces., 2016, 8, 2713-2722,

1513, DOI:10.1016/j.foodcont.2016.11.014.

4 DOI:10.1021/acsami.5b10973

2

- 5 13. P. K. Rastogi, V. Ganesan, S. Krishnamoorthi, J. Mater. Chem. A., 2014, 2, 933-943.
 6 DOI:.1039/C3TA13794E
- 7 14. F. Zhu, H. Shi, C. Wang, X. Zhou, X. Zhang, F. Yang, Sens. Actuators B Chem.,
 8 2021, 332, 129454, DOI:10.1016/j.snb.2021.129454
- 9 15. M. Gholami, B. Koivisto, *Appl. Surf. Sci.*, 2018, 467-468, 112-118,
 10 DOI:10.1016/j.apsusc.2018.10.113
- 11 16. A. A. Abdelwahab, Y.-B. Shim, Sens. Actuators B Chem., 2014, 201, 51-58,
 12 DOI:10.1016/j.snb.2014.05.004
- 17. P. M. Nia, F. Lorestani, W. P. Meng, Y. Alias, *Appl. Surf. Scie.*, 2015, 332, 648-656,
 DOI:doi:10.1016/j.apsusc.2015.01.189
- 15 18. A. P. Periasamy, S. Yang, S.-M. Chen, *Talanta.*, 2011, **87**, 15–23,
 16 DOI:10.1016/j.talanta.2011.09.021
- 17 19. Q.-M. Jiang, M.-R. Zhang, L.-Q. Luo, and G.-B. Pan, *Talanta.*, 2017, 171, 250-254,
 18 DOI:10.1016/j.talanta.2017.04.075
- 20. G. N. Sinha, P. Subramanyam, V. Sivaramakrishna, C. Subrahmanyam, *Inorg. Chem. Commun.*, 2021, **129**, 108627, DOI:10.1016/j.inoche.2021.108627
- 21 21. B. Caglar, F. ⁺ Icer, K. V. Ozdokur, S. Caglar, A. O. Ozdemir, E. K. Guner, B. M.
- 22 Beser, A. Altay, C. Cırak, B. Dogan, A. Tabak, Mater. Chem. Phys., 2021, 262,
- 23 124287, DOI: 10.1016/j.matchemphys.2021.124287