supplementary information

Visible-light driven p-n heterojunction formed between α -Bi₂O₃ and Bi₂O₂CO₃ for efficient photocatalytic degradation of tetracycline

Baikang Zhu^{abd†}, Qinbing Dong^{a†}, Jianghua Huang^{a†}, Debin Song^a, Lihui Chen^a, Qingguo

Chen^a, Chunyang Zhai^c, Bohong Wang ^{a*}, Jiří Jaromír Klemeš^{e*}, Hengcong Tao^{adf*}

a School of Petrochemical Engineering & Environment, Zhejiang Ocean University, Zhoushan, 316022,

China.

b United National-Local Engineering Laboratory of Oil & Gas Storage and Transportation Technology, Zhoushan, Zhejiang, 316022, China.

c School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China. d Zhejiang Provincial Key Laboratory of Petrochemical Environmental Pollution Control, Zhoushan, Zhejiang, 316022, China.

e Sustainable Process Integration Laboratory – SPIL, NETME Centre, Faculty of Mechanical Engineering, Brno University of Technology - VUT Brno, Technická 2896/2, 616 69, Brno, Czech Republic.

f College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310058, China.

Figure S1. Polymer-modified Bi₂O₂CO₃ with various molar ratios (polymer/Bi₂O₂CO₃) calcined at 400 °C.

Figure S2. Thermogravimetric analysis curve of the precures

Figure S3. O 1s high resolution XPS spectrum of BO-400 and BOC@PAN-140

Figure S4. C 1s high resolution XPS spectrum of BO-400

Figure S5. C 1s high resolution XPS spectrum of BOC@PAN-140

Figure S6. SEM images of (a) BO-300, (b) BO-300@PAN-140, (c) BO-400@PAN-100, (d) BO-400@PAN-180

Figure S7. Kinetic fitting curves of Bi₂O₂CO₃, BO-400, BO-400@PAN-10, BO-400@PAN-100, BO-400@PAN-140 and BO-400@PAN-180 degradation TC.

Figure S8. Kinetic fitting curves of Bi₂O₂CO₃, BO-250, BO-350, BO-400, BO-250@PAN-

140, BO-350@PAN-140 and BO-350@PAN-140 degradation TC.

Figure S9. TOC measurement of TC solution degraded by BO-400@PAN-140 at fixed time

intervals.

Figure S10. VB-XPS spectra of $Bi_2O_2CO_3$ (a) and α -Bi₂O₃ (b).

Samples	Calculated VB position E _{VB} (eV)	Calculated CB position E_{CB} (eV)	Band gap Eg (eV)
Bi ₂ O ₂ CO ₃	3.22	0.26	2.96
α-Bi ₂ O ₃	3.03	0.38	2.65

Table S1. Band positions and band gaps of $Bi_2O_2CO_3$ and α - Bi_2O_3

Figure S11. Effect of different quench agents on photocatalytic degradation of TC by photocatalytic composites.

Figure S12. ESI-MS signals of the intermediates with BO-400@PAN-140 composite as photocatalyst.