

Supplementary data

SI figure 1: Effect of pH controlling solution on the fluorescence quenching effect of the association complex formation between LTS and FLN.

SI figure 2: The FLN dye volume and time impacts on the formed complex.

SI figure 3: Job's plot for association complex formation between LTS and FLN using an equimolar concentration of master solutions.

SI figure 4: LTS-induced FLN quenching depicted in the Stern–Volmer graph at three temperature levels.

SI figure 5: The Modified Stern–Volmer charting for the LTS and FLN dye binding.

SI figure 6: The graphing of log $(f_0 - f) / f$ to log [M] at operating temperature to determine the binding site(s).

SI figure 7: Van't Hoff charting for the thermodynamic criteria

SI figure 8: FTIR confirmation and characterization of the complex.

Solvent	Polarity index	Dielectric constant
Water	9.0	80.2
Methanol	6.6	32
Acetone	5.4	20.7
Ethanol	5.2	24.8
Dioxane	4.8	2.2
2-propanol	4.2	19.9

SI Table 1: Polarity and dielectric constant scores of the solvents used.

SI Table 2: A comparison of the current method with other reported mrthods and techniques.

Item Technique	Range*	LOD*	LOQ*	Solvent (If present)	Detection λ (nm.)	Reagent danger	Ref.
HPLC	2-10	0.121	0.369	MoH/ACN	225	++	[1]
Electrophoresis	5-200	0.017	0.054	MoH/ACN	210	++	[2]
Electroanalysis	0.02-1.2	2.04×10 ⁻⁴	6.0×10 ⁻⁴	H ₂ SO ₄ /Eoth	-	++	[3]
Spectrophotometr	ry 6-24	0.145	0.484	DCM	422	+++	[4]
Fluorimetry	0.1-1.7	0.02	0.062	water	554	-	This work

*Concentration (µ g/mL)

MeoH: methanol; Eoth: ethanol; CAN: Acetonitrile; DCM: dichloromethane

SI Table 3: Robustness evaluation of the proposed system

Parameter	Value	Recovery* % ± SD
pH	- 0.2	98.92 ± 0.36
	+ 0.2	100.22 ± 0.45
Buffer volume (mL)	- 0.2	98.54 ± 1.93
	+ 0.2	101.13 ± 1.21
FLN reagent volume (mL)	- 0.2	97.34 ± 2.05
	+ 0.2	99.25 ± 0.74
Time (min)	- 1.0	97.68 ± 2.27
	+ 1.0	101.57 ± 1.69

* The value is the mean of three measurements.

Additive	Recovery ^a % ± SD ^b
Lactose monohydrate	98.28 ± 1.93
Polyethylene glycol	98.87 ± 1.65
Disodium Edetate	99.76 ± 1.45
Citric Acid Monohydrate	96.76 ± 2.17
Sodium Citrate	99.54 ± 0.62
Maize starch	100.54 ± 1.21
Lactose monohydrate	99.17 ± 1.64

SI Table 4: Effect of common additives on the determination of LTS.

^aAverage of three determinations, ^bSD Standard deviation.

Tested item	Element	Recovery* %	SD
Ion	K^+	98.35	1.87
	Na ⁺	99.14	1.29
	Ca^{2+}	99.76	1.54
	Zn^2	98.23	2.05
	Mg^{2+}	99.48	2.12
	Ni ²⁺	100.16	0.96
	K^+	100.35	1.67
	CO_{3}^{2-}	98.68	1.71
	SO4 ²⁻	99.12	1.57
	NO ₃ -	98.34	1.51
	HCO ₃	97.56	2.51
	I-	99.45	1.79
	Cl-	97.68	2.43
Small molecules	Galactose	98.34	1.93
	Glucose	99.32	1.26
	Sucrose	99.37	1.82
	Glucose	100.54	1.28
	Lactose	100.48	1.65

SI Table 5: Selectivity and interference testing

* Average of three determinations

Spiked human plasma		Spiked human urine		
Amount (µg mL ⁻¹)	%Recovery* ± SD	Amount (µg mL ⁻¹)	%Recovery* ± SD	
0.2	98.21±1.32	0.2	$97.81{\pm}0.55$	
0.5	98.76±0.92	0.5	96.12 ± 1.18	
1.0	98.08±1.88	1.0	98.07±1.13	

SI Table 6: Application of the proposed system to quantify LTS in vitro

* Each result is the average of three separate determinations.

SI Table 7: Application of the proposed method for Determination of LTS in

Real Human Plasma after a dose of (Katrex, 40 mg/tat	Real	Human	Plasma	after a	a dose	of (Katrex,	40	mg/tab)
--	------	-------	--------	---------	--------	------	---------	----	--------	---

Parameter ^a		Value		
t _{max} (hr.)		1.5		
$C_{max}(ng mL^{-1})$		1600 (1483)		
$t_{1/2}$ (hr.)		3.3-5.1		
Rec [*] %		92.74 %		
SD		1.36		
Parameters: t time of	neak	concentration: C peak plasma		

^aParameters: t_{max} , time of peak concentration; C_{max} , peak plasma concentration; $t_{1/2}$, terminal elimination half live; Rec%, recovery percent; SD, and RSD%, standard deviation and relative standard deviation respectively. * mean of three replicates

SI	Table 8: The greenness	evaluation of	f the proposed	fluorimetric system	m through
the	penalty points score.				

Item	Parameter	PP score
Technique	Fluorimetry	0
Reagent	FLN	1
Amount of reagent	< 10 mL	1
Solvent(s)	Water	0
Heating	-	0
Temperature	25 °C	0
Cooling	-	0
pH	3.7	0
Energy (kWh per sample)	1.0 >	0
Waste	1–10 (mL)	3
Occupational hazards		0
(TPPs)	-	5
Eco-scale total score	= 100 - TPP	95

TPPs is the total penalty points.

References

[1] P. Ravisankar, G.D. Rao, Development and validation of RP-HPLC method for determination of levamisole in bulk and dosage form, Asian J Pharm Clin Res, 6 (2013) 169-173.

[2] L. Xu, F. Luan, F. Hu, H. Liu, Y. Gao, Development and validation of a non-aqueous capillary electrophoresis method for simultaneous estimation of mebendazole and levamisole hydrochloride in compound mebendazole tablets, Analytical Methods, 5 (2013) 762-766.

[3] B.C. Lourencao, R.A. Medeiros, S.S. Thomasi, A.G. Ferreira, R.C. Rocha-Filho, O. Fatibello-Filho, Amperometric flow-injection determination of the anthelmintic drugs ivermectin and levamisole using electrochemically pretreated boron-doped diamond electrodes, Sensors and Actuators B: Chemical, 222 (2016) 181-189.

[4] A.M. El-Didamony, Spectrophotometric determination of benzydamine HCl, levamisole HCl and mebeverine HCl through ion-pair complex formation with methyl orange, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 69 (2008) 770-775.