SUPPLEMENTARY MATERIALS

Cellulose-based hydrogel for adsorptive removal of cationic dyes from aqueous solution: Isotherms and Kinetics

Chidamparam Poornachandhra^a, Rajamani M Jayabalakrishnan^{*a}, M Prasanthrajan^a, Govindaraj Balasubramanian^a, Arunachalam Lakshmanan^b, S Selvakumar^c and Joseph Ezra John^a

^a Department of Environmental Sciences, Tamil Nadu Agricultural University, India

^b Department of Nano Science and Technology, Tamil Nadu Agricultural University, India

^c Water Technology Centre, Tamil Nadu Agricultural University, India

*Corresponding author e-mail: jayabalphd@gmail.com

Source	Sum of Squares	df	Mean Square	F-value	<i>p</i> -value	Significant/ Non-significant
Model	89.18	14	6.37	85.19	< 0.0001	S
A	43.19	1	43.19	577.57	< 0.0001	S
В	6.14	1	6.14	82.12	< 0.0001	S
С	7.16	1	7.16	95.80	< 0.0001	S
D	0.48	1	0.48	6.40	0.0299	S
AB	0.34	1	0.34	4.56	0.0585	NS
AC	0.99	1	0.99	13.30	0.0045	S
AD	0.00	1	0.00	0.01	0.9411	NS
BC	1.08	1	1.08	14.41	0.0035	S
BD	0.80	1	0.80	10.69	0.0084	S
CD	0.04	1	0.04	0.53	0.4826	NS
A ²	2.67	1	2.67	35.75	0.0001	S
B ²	0.03	1	0.03	0.36	0.5642	NS
C ²	1.42	1	1.42	18.96	0.0014	S
D ²	1.09	1	1.09	14.62	0.0034	S
Residual	0.75	10	0.07			
Lack of Fit	0.24	4	0.06	0.70	0.6204	NS
Pure Error	0.51	6	0.09			
Cor Total	89.93	24				
CV = 0.30 %	R ² = 0.99	Adj R ² = 0.98		Pred R ² = 0.8	37 Ade	q. Precicion = 33.82

Supplementary Table 1. ANOVA and coefficients model for the CV removal process

*S-Significant; NS-Non-significant

Supplementary Table 2. ANOVA and coefficients model for the MB removal process

Source	Sum of Squares	df	Mean Square	F-value	<i>p</i> -value	Significant/ Non- significant
Model	534.03	14	38.14	30.55	< 0.0001	S
A	60.60	1	60.60	48.53	< 0.0001	S
В	28.27	1	28.27	22.64	0.0008	S
С	2.79	1	2.79	2.24	0.1655	NS
D	14.61	1	14.61	11.70	0.0065	S
AB	64.30	1	64.30	51.50	< 0.0001	S
AC	29.92	1	29.92	23.96	0.0006	S
AD	8.00	1	8.00	6.40	0.0298	S
BC	63.52	1	63.52	50.87	< 0.0001	S
BD	0.33	1	0.33	0.26	0.6206	NS
CD	0.01	1	0.01	0.01	0.9233	NS
A ²	4.24	1	4.24	3.39	0.0952	NS
B ²	24.66	1	24.66	19.75	0.0012	S
C ²	7.75	1	7.75	6.20	0.032	S
D ²	0.00	1	0.00	0.00	0.9818	NS
Residual	12.49	10	1.25			
Lack of Fit	11.90	8	1.49	5.05	0.1759	NS
Pure Error	0.59	2	0.29			
Cor Total	546.51	24				
CV = 1.26 %	R ² = 0.98		Adj R ² = 0.94	Pred R ² = 0.81		deq. Precicion = 23.06

*S-Significant; NS-Non-significant

Supplementary Figure 1. (a) BET nitrogen adsorption isotherm plot (b) Pore size distribution plot

Supplementary Figure 2. (a) TEM micrograph of NCC and SEM micrographs of NCC-CH hydrogel bead (b) before adsorption (c and d) after adsorption.

Supplementary Figure 3. (a) Point of zero charge and (b) Swelling ratio of NCC-CH hydrogel bead.

Supplementary Figure 4. Predicted vs Experimental plots (a) CV removal and (b) MB removal

Supplementary Figure 5. Normal plot of residuals (a) CV removal and (b) MB removal

Supplementary Figure 6. Perturbation plot (a) CV removal and (b) MB removal

Supplementary Figure 7. Adsorption isotherm models for CV (a) and MB (b) removal

Supplementary Figure 8. Adsorption kinetic models for CV (a) and MB (b) removal

Supplementary Figure 9. Adsorption capacity of NCC-CH in adsorption/desorption cycles (a) CV adsorption and (b) MB adsorption