Electronic Supplementary Material (ESI) for RSC Advances. This journal is © The Royal Society of Chemistry 2023

Supporting information

Stabilization of Pd NPs over the surface of a β -cyclodextrin incorporated UiO-66-NH₂ for

the C-C coupling reaction

Leila Mohammadi, ^a Reza Taghavi, ^c Mojtaba Hosseinifard, ^{b,} * Mohammad Reza Vaezi, ^{a,} *

Sadegh Rostamnia c, *

^a Department of Nano Technology and Advanced Materials, Materials and Energy Research Center, Karaj, Iran. E-mail: <u>l.mohammadi3790@gmail.com, m_r_vaezi@merc.ac.ir.</u>

^b Department of Energy, Materials and Energy Research Center, Karaj, Iran. E-mail: <u>m.hosseini@merc.ac.ir</u>

^c Organic and Nano Group (ONG), Department of Chemistry, Iran University of Science and Technology (IUST), PO BOX 16846-13114, Tehran, Iran. E-mail: <u>rostamnia@iust.ac.ir;srostamnia@gmail.com</u>

\bigcirc	+	UiO-66-NH ₂ @	Dβ-CD/Pd _{NPs} →	-		
Entry	Catalyst	Solvent	T (°C)	Base	Time (min)	Yield
	(mg)					(%)
1	5	H ₂ O	25	K ₂ CO ₃	240	-
2	10	H_2O	25	K ₂ CO ₃	240	10
3	20	H_2O	30	K ₂ CO ₃	240	25
4	25	H_2O	45	K ₂ CO ₃	240	35
5	30	H_2O	55	K ₂ CO ₃	200	60
6	30	H_2O	80	K ₂ CO ₃	100	98
7	30	H_2O	90	K ₂ CO ₃	100	94
8	30	H_2O	100	K ₂ CO ₃	100	90
9	30	H_2O	80	K ₂ CO ₃	240	-
10	30	H_2O	90	КОН	240	76
11	30	DMSO	80	K ₂ CO ₃	100	90
12	30	DMAc	80	K ₂ CO ₃	100	90
13	30	NMP	80	K ₂ CO ₃	100	90
14	30	DMF	80	K ₂ CO ₃	100	87
15	30	H_2O	80	Et ₃ N	100	87
16	30	H_2O	80	Na ₂ CO ₃	100	88
17	30	H_2O	80	NaOH	100	88
18	30	H_2O	80	NaOAc	100	80
19	30	CH ₃ CN	80	K ₂ CO ₃	100	60
20	30	C ₆ H ₅ CH ₃	80	K ₂ CO ₃	100	65

Table S1. The results of the optimization studies on the Heck reaction.

Reaction condition: iodobenzene (1 mmol), styrene (1.1 mmol), base (2 mmol), solvent (3 ml)

Table S2. The results of the optimization studies on the Sonogashira reaction.

H- <u></u> -	Ph +	UiO-66-NI - K ₂ C	H ₂ @β-CD/Pd _{NPs} H ₂ O CO ₃ / 50 °C	→ <	Ph	
Entry	Catalyst (mg)	Solvent	T (°C)	Base	Time (h)	Yiel d (%)
1	10	H ₂ O	50	K ₂ CO ₃	15	70
2	20	H_2O	50	K ₂ CO ₃	15	95
3	30	H_2O	50	K_2CO_3	15	98
4	20	H_2O	25	K_2CO_3	15	35
5	20	H_2O	100	K_2CO_3	15	80
6	20	EtOH	50	K ₂ CO ₃	15	83
7	20	H_2O	50	NaCO ₃	15	15
8	20	H_2O	50	CsCO ₃	15	85
9	20	H_2O	50	NaOH	15	70
10	20	H_2O	50	КОН	15	25

Reaction condition: Aryl halide (1 mmol), terminal alkynes (1.2 mmol), base (2 mmol), solvent (3 mL)

Table S3. Preparation of various organic compounds by Heck reaction under optimum conditions.

S4

Reaction conditions: 1 mmol of aryl halide, 1 mmol of terminal alkyne, 2 mmol of base, 3 mL of solvent.

Table S4. Preparation of various organic compounds by Sonogashira reaction under optimum conditions.

Reaction conditions: 1 mmol of arylhalide, 1 mmol of terminal alkyne, 2 mmol of base, 3 mL of solvent.

Fig. S1. Reusability of catalyst for a) Heck and b) Sonogashira reaction.

	······································				
	+ Cata	lyst, condition			
Entry	Catalyst	Reaction condition	Time	Yield	Reference
			(h)	%	
1	GA-FSNP@Pd (0.47)	DMF: H ₂ O (2: 1),	0.5	95	[1]
		Cs ₂ CO ₃ , 110°C			
2	Pd-biomagnetic (5)	DMF, TEA, 120°C	3	100	[2]
3	Pd/N-MCNPs	DMAN, TEA,	3	97.6	[3]
		120°C			
4	SBA-TMG ^a -Pd (0.05)	Solvent-free, 140°C	4	90	[4]
5	Fe_3O_4 @PUNPb-Pd (0.1)	H ₂ O, K ₂ CO ₃ , reflux	12	trace	[5]
6	Pd/graphene oxide (0.54)	toluene, NEt ₃ , reflux	5	62	[6]
7	Pd/MCPPY	DMA, TBA, 120°C	3	97	[7]
8	Pd/HCN (0.255)	DMF, K ₂ CO ₃ ,	1	100	[8]
		120°C			
9	Pd/Fe ₃ O ₄ @C (0.308)	DMF, K ₂ CO ₃ ,	2	66	[9]
		120°C			
10	PdNs-PAMAM-g-MWCNTs (0.3)	NMP, K ₂ CO ₃ ,	2.5	95	[10]
		100°C			
11	Pd-MNPSS (0.36)	K ₂ CO ₃ , H ₂ O, 100°C	4	90	[11]
12	PdCl ₂ (1.5), TDTAT (3 W%)	K ₂ CO ₃ , H ₂ O, 80°C	6	96	[12]
13	hydrogel@Pd NPs	K ₂ CO ₃ , H ₂ O, 85°C	0/5	98	[13]
14	h-BN@Sal@Pd(OAc) ₂ (0.05 mol)	H ₂ O, 90°C	3.5	92	[14]
15	$PdL_n@\beta-CD(3)$	K ₂ CO ₃ , H ₂ O, reflux	4	94	[15]
16	Pd-MPTA-1 (10 mg)	K ₂ CO ₃ , H ₂ O, 100°C	6	92	[16]

Table S5: Comparison of the catalytic performance of the proposed catalyst for Heck reaction

 with some related reports in the *literature*

17	Pd@CSP (0.5), TBAB	NEt ₃ , H ₂ O, reflux	7	90	[17]
18	Hall/TMSPMA@PGMA@5Amin	K ₂ CO ₃ , H ₂ O, 80°C,	2	95	This
	otetrazole	2h			research
	@Pd NPs				

Suzuki derivatives 4-amine-[1,1'-biphenyl]

m.p. = 67-68 °C.

¹HNMR (400 MHz, DMSO): δ = 5.23 (2H, NH₂), 6.67 (2H, d, J = 8.3), 7.20 (1H, t, J = 7.2), 7.34-7.38 (4H, m), 7.53 (2H, d, J = 7.6). ¹³CNMR (100 MHz, DMSO): δ = 114.3, 125.4, 125.7, 127.2 (4 × CH Ar), 127.5 (Ar), 128.8 (CH, Ar), 140.7, 148.4 (Ar). m/z: 170.1

4-Methoxy-1,1'-biphenyl

White waxy solid, yield 90%, ¹HNMR (500 MHz, CDCl₃): 7.57-7.52 (m, 4H), 7.41 (t, J = 8.0 Hz, 2H), 7.30 (t, J = 8.0 Hz, 1H), 6.98 (d, J = 8.5 Hz, 2H), and 3.86 (s, 3H).

4-methyl-1,1'-bipheny

white yellow solid in 92% yield, MP: 46-48 °C; ¹HNMR (500 MHz, CDCl₃): δ 7.61 (s, 1H), 7.51 (t, J = 7.8 Hz, 1H), 7.39 (m, 3H), 7.34 (m, 1H), 7.24 (t, J = 7.2 Hz, 1H), 7.16 (t, J = 8.1 Hz, 2H), 2.31 (s, 3H); ¹³CNMR (126 MHz, CDCl₃): δ 141.19, 139.80, 138.34, 137.05, 136.72, 129.48, 129.01, 128.74, 128.21, 127.38, 127.01, 126.83, 125.73, 21.11; FTIR (cm ⁻¹): 2918, 2318, 1743, 1521, 1325, 1114, 802; GC-MS m/z: 168.

Biphenyl

white solid in 94% yield, MP: 69-71 °C

¹HNMR (500 MHz, CDCl₃): δ 7.59 (d, J =7.7 Hz, 4H), 7.44 (t, J = 7.7 Hz, 4H), 7.34 (t, J = 7.4 Hz, 2H); ¹³CNMR (126 MHz, CDCl₃): δ 141.29, 128.82, 127.27; FTIR (cm⁻¹): 2358, 1510, 1029, 580; GC-MS (EI, 70ev) m/z: found: 154 (C₁₂H₁₀).

Cyclohexylbenzene

Colorless oil in 73% yield ¹HNMR (400 MHz, chloroform-d) δ = 7.31 – 7.25 (m, 2H), 7.23 – 7.13 (m, 3H), 2.49 (m, 1H), 1.92 – 1.82 (m, 4H), 1.74 (m, 1H), 1.51 – 1.34 (m, 4H), 1.25 (m, 1H); ¹³CNMR (100 MHz, chloroform-d) δ = 148.2, 128.4, 127.0, 125.9, 44.8, 34.6, 27.1, 26.3.

4-hydroxyl-[1,1'-biphenyl]

m.p. = 161-162 °C.

¹HNMR (400 MHz, DMSO): $\delta = 6.85$ (2H, d, J = 8.5), 7.27 (1H, t, J = 7.4), 7.40 (2H, t, J = 7.4), 7.48

(2H, d, J = 8.5), 7.57 (2H, d, J = 8.5), 9.58 (1H, br s, OH). 13 C NMR (100 MHz, DMSO): $\delta = 115.8, 126.0, 126.4, 127.8, 128.8 (5 \times CH, Ar), 131.0, 140.3, 157.2 (Ar). m/z: 169.1.$

3-carboxylic acid-[1,1'-biphenyl]

ноос

m.p. = 160-161 °C. ¹HNMR (400 MHz, DMSO): δ = 7.42 (1H, tt, J = 7.3, 1.1), 7.50 (2H, t, J = 7.3), 7.58 (1H, t, J = 7.7), 7.66 (2H, m), 7.87 (1H, dq, J = 7.7, 1.4), 8.14 (1H, dt, J = 7.7, 1.4), 8.40 (1H, t, J = 1.4). ¹³CNMR (100 MHz, DMSO): δ = 127.2, 127.8, 128.85, 128.93, 128.96, 128.99 (CH, Ar), 129.8 (Ar), 132.4 (CH Ar), 139.9, 141.6 (2 × CH Ar), 172.3 (C=O). m/z: 197.0

Heck derivatives

Trans-1, 2-diphenylethene (E-Stilbene)

White solid, Mp. 123-124°C (lit. 123.9-124.6°C)

GC–MS (m/z): 180; ¹HNMR (400 MHz, CDCl₃) δ 7.07-7.08 (s, 2H), 7.21-7.23 (m, 2H), 7.32-7.34 (m, 4H,) 7.46-7.48 (m, 21H) ppm. ¹³CNMR (100 MHz, CDCl₃) δ 122.1, 123.2, 124.3, 132.9.

(E)-4-styrylbenzaldehyde

OHC

White solid, Mp. 116°C (lit. 116.0-116.8°C)

GC–MS (m/z): 208; ¹HNMR (400 MHz, CDCl₃): δ = 9.97 (s, 1H), 7.84 (d, J=8.0 Hz, 2H), 7.62 (d, J = 8.0 Hz, 2H), 7.52 (d, J= 7.6 Hz, 2H), 7.36 (t, J = 7.6 Hz, 2H), 7.28 (t, J= 7.6 Hz, 1H), 7.22 (d, J = 5.2 Hz, 1H), 7.11 (d, J=16.4 Hz, 1H).

¹³CNMR (100 MHz, CDCl₃): δ = 191.5, 143.4, 136.5, 135.3, 132.2, 130.2, 128.8, 128.4, 127.3, 126.9. MS (EI) m/z: 208, 179, 165, 152, 102, 89, 76, 63, 51.

(E)-4-Nitrostilbene

Yellow solid, Mp. 154-155°C (lit. 154.2-155.0°C)

GC–MS (m/z): 225; ¹HNMR (400 MHz, CDCl₃) δ : 8.22 (d. *J* = 8.6 Hz, 2H, Ar-H), 7.63 (d, *J* = 8.7 Hz, 2H, Ar-H), 7.55 (d, *J* = 7.7 Hz, 2H, Ar-H), 7.40 (t, *J* = 7.6 Hz, 2H, Ar-H), 7.36-7.31 (m, 1H, Ar-H), 7.27 (d, *J* = 16.3 Hz, 1H, CH=), 7.14 (d, *J* = 16.3, 1H, Hz, CH=). ¹³CNMR (100 MHz, CDCl₃), δ = 125.2, 127.4, 128.0, 128.2, 130.0, 134.4, 137.3, 145.0, 147.8 ppm.

(E)-4-Styrylbenzonitrile

White solid, Mp. 114-115°C (lit. 114.9-115.2°C)

GC–MS (m/z): 205; ¹HNMR (400 MHz, CDCl₃): δ 7.09 (d, 1H, *J* = 16.0 Hz), 7.22 (d, 1H, *J* = 16.0 Hz), 7.31-7.34 (t, 1H, *J* = 4.0 Hz), 7.38-7.41 (t, 2H, *J* = 4.0 Hz), 7.54 (d, 2H, *J* = 7.2 Hz), 7.58 (d, 2H, *J* = 8.4 Hz), 7.64 (d, 2H, *J* = 8.4 Hz) ppm; ¹³CNMR (100 MHz, CDCl₃), δ 111.7, 120.2, 127.8, 128.0, 128.1, 129.8, 130.0, 133.5, 133.6, 137.4, 142.9 ppm.

(E)-1-methoxy-4-styrylbenzene

White solid, Mp. 135-136°C (lit. 135.3-135.9°C)

GC–MS (m/z): 210; ¹H-NMR (400 MHz, CDC1₃) δ (ppm): 3.70 (3H, s), 6.78 (1H, d, *J* = 8.75 Hz), 6.90 (1H, d, *J* = 10.75 Hz), 7.00-7.38 (9H, m). ¹³C-NMR (100 MHz, CDCl₃) δ (ppm): 55.3, 114.2, 126.3, 126.6, 127.25, 127.8, 128.2, 128.7, 130.2, 137.7, 159.3.

(E)-1-(4-styrylphenyl) ethanone

White solid, Mp. 141-142°C (lit. 141.3-142°C)

GC–MS (m/z): 222; ¹HNMR (400 MHz, CDCl₃): δ 7.97-7.95 (d, 2H), 7.58-7.57 (d, 2H), 7.53-7.52 (d, 2H), 7.40-7.36 (t, 2H), 7.29-7.25 (t, 1H), 7.22-7.20 (d, 1H), 7.12 (d, 1H), 2.64 (s, 3H), ¹³CNMR (100 MHz, CDCl₃): δ 197.6, 142.1, 136.7, 136.1, 131.5, 128.9, 128.8, 128.4, 127.6, 126.8, 126.5, 26.8.

(E)-Ethyl-3-styrylbenzoate

Oily liquid

GC–MS (m/z): 252; ¹HNMR (CDCl₃, 400 MHz): δ (ppm) 8.22 (s, 1H), 7.95 (d, *J* = 7.7 Hz, 1H), 7.70 (d, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 7.4 Hz, 2H), 7.46–7.27 (m, 4H), 7.21 (d, *J* = 16.0 Hz, 1H), 7.15 (d, *J* = 16.0 Hz, 1H), 4.43 (q, *J* = 7.1 Hz3H), 1.44 (t, *J* = 7.1 Hz); ¹³CNMR (CDCl₃, 100 MHz): δ (ppm) 166.6, 137.7, 137.0, 131.0, 130.7, 129.9, 128.8, 128.7, 128.5, 128.0, 127.6, 127.5, 126.7.

(E)-2-styrylthiophene

white solid, MP. 111-112°C (lit. 112°C)

GC–MS (m/z): 186; ¹H NMR (CDCl₃, 400 MHz): δ (ppm) 7.49 (d, J=7.5 Hz, 2H), 7.37 (t, J=7.5 Hz, 2H), 7.28 (d, J=5.1 Hz, 1H), 7.24 (d, J=16 Hz, 1H), 7.21 (d, J=4.9 Hz, 1H), 7.09 (d, J=3.4 Hz, 1H), 7.03 (t, J=4 Hz, 1H), 6.95 (d, J=16.2 Hz, 1H); ¹³CNMR (CDCl₃, 100 MHz): δ (ppm) 142.9, 137.0, 128.7, 128.4, 127.6, 126.3, 126.1, 124.3, 121.8.

References

- [1] M. Tanhaei, A. Mahjoub & R. Nejat, *Catal. Lett.* **2018**, *148*, 1549-1561.
- [2] V. S. Coker, J. A. Bennett, N. D. Telling, T. Henkel & J. M. Charnock, *Acs Nano.* 2010, 4, 2577-2584.

- [3] H. Yoon, S. Ko & J. Jang, Chem. Commun. 2007, 14, 1468-1470.
- [4] X, Ma, Y. Zhou, J. Zhang, A. Zhu, T.Jiang & B. Han, *Green Chem.* 2008, 10, 59-66.
- [5] J. Yang, D. Wang, W. Liu, X. Zhang, F.Bian & W. Yu, Green Chem. 2013, 15, 3429-3437.
- Y. V. Ioni, S. E. Lyubimov, V. A. Davankov & S. P. Gubin, *Russ. J. Inorg. Chem.* 2013, 58, 392-394.
- [7] S. Ko & J. Jang, Angew. Chem. Int. Ed. 2006. 45, 7564-7567.
- [8] M. Zhu, Y. Wang, C. Wang, W. Li & G. Diao, *Catal. Sci. Technol.* 2013, *3*, 952-961.
- [9] M. Zhu & G. Diao, J. Phys. Chem. C. 2011, 115, 24743-24749.
- [10] M. R. Nabid, Y. Bide & S. J. T. Rezaei, Appl. Catal. A: Gen. 2011. 406, 124-132.
- [11] M. Tukhani, F. Panahi & A. Khalafi-Nezhad, ACS Sustain. Chem. Eng. 2018. 6, 1456-1467.
- [12] N. Iranpoor, S. Rahimi & F. Panahi, RSC Adv. 2015, 5, 49559-49567.
- [13] S. Ashiri & E. Mehdipour, *RSC Adv.* 2018, *8*, 32877-32885.
- [14] X. Cheng, W. Li, R. Nie, X. Ma, R. Sang, L. Guo & Y. Wu, Adv. Synth. Catal. 2017, 359, 454-466.
- [15] S. D. Dindulkar, D. Jeong, H. Kim & S. Jung, *Carbohydr. Res.* 2016, 430, 85-94.
- [16] J. Mondal, A. Modak & A. Bhaumik, J. Mol. Catal. A. Chem. 2011, 350, 40-48.
- [17] A. Kamal, V. Srinivasulu, B. N. Seshadri & N. Shankaraiah, *Green Chem.* 2012, 14, 2513-2522.