Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

1	Supporting Information
2	
3	Heterofunctional epoxy support development for immobilization of fructosyltransferase
4	from Pectinex [®] Ultra SP-L: batch and continuous production of fructo-oligosaccharides
5	Milica Veljković ^a , Milica Simović ^{b, 1} , Katarina Banjanac ^a , Marija Ćorović ^b , Ana Milivojević ^a
6	Milan Milivojević ^c , Dejan Bezbradica ^b
7	
8	^a Innovation center of Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4
9	11000 Belgrade, Serbia
10	^b Department of Biochemical Engineering and Biotechnology, Faculty of Technology and Metallurgy
11	University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia
12	^c Department of Chemical Engineering, Faculty of Technology and Metallurgy, University of Belgrade

13 Karnegijeva 4, 11000 Belgrade, Serbia

¹ Corresponding author: Milica Simović, Faculty of Technology and Metallurgy, University of Belgrade, Karnegijeva 4, 11000 Belgrade, Serbia. E-mail address: <u>mcarevic@tmf.bg.ac.rs</u>. Tel.: (+38111)3303727. Fax: (+38111)3370387.

Fig. S1 Thermal stability of immobilized FTase on Purolite® A109 at 55 °C

Fig. S2 Determination of inactivation rate of: (a) soluble, (b) immobilized FTase on epoxy-Purolite and (c) immobilized FTase on Purolite[®] A109 at different temperatures.

Fig. S3 Determination of Ed for soluble and immobilized FTase

Fig. S4 SDS-PAGE electrophoresis: **Line 1** Protein ladder, **Line 2** Commercial enzyme preparation Pectinex® Ultra SP-L (2 subunits each 65kDa – FTase¹, predominant pectinase - endo-PG 38 kDa²), **Line 3** Immobilized enzyme preparation on Purolite® A109 (non-modified support), **Line 4** Immobilized enzyme preparation on epoxy-Purolite (modified support), **Line 5** Supernatant after adsorption step in case of epoxy-Purolite, **Line 6** Supernatant after adsorption in case of Purolite® A109, **Line 7** Supernatant after desorption of proteins from epoxy-Purolite, **Line 8** Supernatant after desorption of proteins from Purolite® A109.

