Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

Supplementary Information:

Rupali S. Mane^a, Sayli Pradhan^a, Vaishnavi Somkuwar^b, Rama Bhattacharyya^c, Prakash C

Ghosh^d, Neetu Jha^{a*}

^aDepartment of Physics, Institute of Chemical Technology Mumbai, Nathalal Parekh Marg, Mumbai-400019 India.

^bCenter for Green Technology, Institute of Chemical Technology Mumbai, Nathalal Parekh Marg, Mumbai-400019 India.

^cCentre for Research in Nano Technology and Science, Indian Institute of Technology Bombay, Mumbai-400076 India.

^dDepartment of Energy Science and Engineering, Indian Institute of Technology Bombay, Mumbai-400076 India.

*Corresponding Author Email: <u>nr.jha@ictmumbai.edu.in</u>

Abbreviations:

- d- interplanar distance
- a-lattice parameter
- (*hkl*)- miller indices
- D- crystal size
- k- lattice constant with value 0.9
- λ (nm)- wavelength of the X-ray source
- β full width at half maxima (FWHM) in radians
- θ (degree)- is the angle of X-ray diffraction
- L_a- in plane distance

- C_{λ} -proportionality constant (4.4 nm)
- ECSA- electroactive surface area
- C_{dl}- double layer capacitance
- C_s- specific capacitance
- A- area of electrode (0.19625 cm²)
- m- mass loading (0.151 mg)
- n- number of electrons
- F- faraday constant 96845 (C/mol)
- N_A- Avogadro number $(6.03 \times 10^{23} \text{ mol}^{-1})$
- Cp specific capacitance (F/g)
- I discharge current (A)
- Δt discharge time (s)
- m mass of the active material loaded on the electrode (mg/cm²)
- E energy density (Wh/Kg)
- P power density (W/Kg)
- CR- capacity retention
- η coulombic efficiency
- $C_{Dch(n)}$ measured discharge capacity of cycle n+1
- $C_{Dch(n+1)}$ measured discharge capacity of previous cycle *n*

1

- *tD* time of discharge (s)
- *tC*-time of charge (s)

Formulas used:

Formulas:

1.
$$d(A) = \frac{a}{\sqrt{h^2 + k^2 + l^2}}$$

2.
$$D(mm) = \frac{K\lambda}{\beta COS\theta}$$
1
3.
$$La = \frac{4.4}{\sqrt{\frac{lp}{lq}}}$$
2
4. Distance of adjacent Co NPs
3

$$d_{Co} = 2(S(BET)/n\pi)^{1/2}$$
5.
$$j_{k} = \frac{j \times jd}{(jd-j)}$$
4

$$j_{d} = 0.62nFD^{2/3}\omega^{1/2}v^{-1/6}Co_{2}$$
6.
$$Cdi = Slope[\frac{\Delta J}{SR}]$$
5
where $\Delta J = j_{a} - j_{c}$
7.
$$ECSA = \frac{Cdl}{Cs}$$
5
8.
$$Specific Capacitance = \frac{A}{scan rate \times m \times \Delta v}$$
6
9.
$$Roughness factor (RF) = \frac{ECSA}{Area of electrode}$$
7
10.
$$Mass activity = \frac{jK}{(mass loading)catalyst}$$
8
11.
$$Active site g^{-1} (SDm) = \frac{\int CV area \times N_{A}}{n \times scan rate \times F \times m}$$
6
12.
$$C_{p} = \frac{I \times At}{AV \times m}$$
9
13.
$$E = \frac{1}{2}Cp(V)^{2}$$
10
14.
$$P = \frac{E \times 3600}{At}$$
10
15.
$$CR = \frac{C_{Dch(n+1)}}{C_{Dch(n)}} \times 100$$
11
16.
$$\eta = \frac{tD}{tC} \times 100$$

Table S1. Total yield of the catalyst

Name	Initial	After pyrolysis	After acid	Total yield (%)
	(WI)	(WF1)	leaching (WF2)	(W _I -W _{FI})/W _I *100
ZIF 67	0.9301	-	-	-
AL-Co/NGC-600	0.9301	0.6854	0.543	41%
AL-Co/NGC-700	0.9301	0.6809	0.539	42%
AL-Co/NGC-800	0.9301	0.6712	0.526	43%
AL-Co/NGC-900	0.9301	0.6689	0.510	45.1%

Electrochemical measurements and electrode preparation:

The complete electrochemical experiment including CV, LSV, chronoamperometry test for stability, and methanol tolerance (MT) test were carried out at room temperature. A three-electrode set up connected to a potentiostat (PGSTAT 204) along with a rotor was used to carry out testing. The setup consists of a modified rotating disk electrode (RDE, 5 mm diameter and 0.19625 cm² area) as a working electrode, Ag/ AgCl electrode (with saturated 3 M KCl) was used as a reference electrode and platinum rod was used as a counter electrode. The measurement taken against Ag/AgCl, and converted to standard potential versus reversible hydrogen electrode (RHE) by using the following equation,

$$E_{RHE} = E_{Ag/AgCl} + 0.059*pH + E^{0}_{Ag/AgCl} (0.199)$$

Where, E_{RHE} –potential against RHE, $E_{Ag/AgCl}$ – potential against Ag/AgCl, and $E^{0}_{Ag/AgCl}$ standard electrode potential of Ag/AgCl. All the measurements were recorded after 20 cycles ¹².

Electrode preparation for ORR study:

Originally, 3 mg of catalyst was dispersed in 1 ml of solvent which contains 960 μ l of DMF and 40 μ l of Nafion as a binder, the sample was then ultrasonicated for 30 min. Then electrode was polished before every measurement by using aluminium powder (1, 0.3, 0.05 mm)

followed by sonication for few minutes to remove all other content presents on the electrode surface and dried at room temperature. The working electrode was prepared by drop-casting 6 μ l (0.151 mg / cm²) of prepared ink on the working electrode followed by drying at room temperature. All the electrochemical measurements were carried out in both acidic (0.5 M H₂SO₄) and alkaline medium (0.1 M KOH). The obtained results were then compared with the commercial Pt/C (Pt on Vulcan XC-72, 20%) material with ink preparation same as above just instead of synthesized material Pt/C was used.

Membrane electrode assembly (MEA) fabrication:

A 0.37 µm thick Teflon coated microporous carbon paper (AvCarb MGL 370) (MPL) was used as a starting material to prepare gas diffusion layer (GDL). The suspension for GDL was prepared as follow, Vulcan XC-72R powder along with 7 wt % Nafion solution and 40 wt % of platinum supported on Vulcan XC-72R carbon was added in isopropyl alcohol (IPA) and agitated in an PCi Analytics ultrasonic water bath for 30 minutes to make a uniform slurry. When the homogenous ink solution was ready it was evenly coated on the afore mentioned carbon backing layer by Prism ultracoat 300 (Ultrasonic Systems Inc.) instrument to get evenly distributed Pt loading on anode side (0.5 mg /cm²). For the cathode side, same backing layer was used with modified ink. For ink preparation, AL-Co/NGC-800 catalyst powder was suspended in isopropyl alcohol (IPA) with 7wt % Nafion solution ultra-sonicated for 30 minutes. When the slurry was homogenous, it was brush-coated manually on the MPL and dried at 60 °C for 5 minutes in each interval to get 15 mg /cm2 evenly distributed AL-Co/NGC-800 catalyst loading for cathode side.

MEA comprising membranes were obtained by sandwiching the membrane between the two electrodes. MEAs were evaluated using a Scribner fuel cell fixture (active area = 4 cm 2) with parallel serpentine flow field machined on graphite plates. The cell was tested at room temperature with humidified H2-O2 flow on each anode and cathode side. Measurements of

cell potentials with different current densities were recorded for drawing the polarization curve using electrochemical work station (BioLogic SP 150).

Fabrication of ZIHSC electrode:

The binder free electrode was fabricated by making catalyst ink, contains 10 mg of catalyst in 0.6 ml of DMF followed by 1 hr sonication. The resultant ink then drop casted on prior weighed carbon paper and dried at room temperature for 12 hr. The loading on carbon paper was maintained around 1.5 mg/cm². The electrochemical testing was done by two electrode sweglock cell assembly, where Zn foil was used as anode, filter paper was used as separator and 3 M ZnSO₄ was used as electrolyte. The entire study was done in range of 0.2 to 1.8 V of potential window.

Catalytic ORR measurements:

First, the electrolyte was purged with O_2 or N_2 for 30 min before the testing and measurement in a fresh electrolyte. All the potential was calibrated to the RHE (reversible hydrogen electrode). CV was performed with a potential window 0 to 1.2 V Vs RHE with a scan rate of 50 mV/ sec in series with N_2 and then O_2 saturated electrolyte. Before recording the final CV, the entire working electrode was stabilized by sweeping for 20 cycles former to each measurement. LSV was performed at 10 mV/sec within the 0 to 1.2 V Vs RHE in N_2 and O2 saturated (30 min) electrolyte with different rotation speeds (400, 625,900,1225, and1600 rpm). The entire polarization curve was obtained without current resistance (iR) compensation. The current densities were normalized by electrode area.

The K-L plot corresponding to the LSV curve at the different potential in diffusion limiting current was used to calculate electron pathway that is electron transfer number per oxygen molecule. The n value was calculated from the Koutechy-Levich equation. The linear fit between 1/j (mA⁻¹ / Cm²) Vs $\omega^{-1/2}$ (rad/ sec)^{-1/2} and slope value of this line were used to calculate n value. The K-L equation used is as follows:

$$\frac{1}{j} = \frac{1}{j_k} + \frac{1}{B * \omega^{1/2}}$$

Where j is measured current, j_k is diffusion limiting current, ω is rotation speed rate, B is reciprocal of the slope with the value calculated by using the equation:

$$B = 0.62 n F C_{02} D_{02}^{2/3} v^{-1/6}$$

Where, n number electron transfer, F faradays constant (96485 C/ mol), C_{02} the solubility of oxygen concentration in 0.1 M KOH (1.2× 10⁻⁶ mol cm⁻³), $D_{02}^{2/3}$ is oxygen diffusion coefficient in 0.1 M KOH (1.90×10⁻⁵ cm²S⁻¹) and v is kinematic viscosity in 0.1 M KOH (0.01 cm²S⁻¹).

Materials	BET Surface Area	Average Pore size
	(m ² /g)	(nm)
ZIF 67	1402	1.6
AL-Co/NGC-600	290	1.26
AL-Co/NGC-700	410	1.28
AL-Co/NGC-800	470	1.49
AL-Co/NGC-900	530	1.29

Table S2 Obtained value of BET surface area and pore size distribution

Name	d(hkl)	d(hkl) DCo In plane Å distance (La) 5.26 - - 2.04 6.7 4.78 2.38 8.07 4.63 2.54 8.65 4.44				
	Å		distance			
			(La)			
ZIF 67	5.26	-	-			
AL-Co/NGC-600	2.04	6.7	4.78			
AL-Co/NGC-700	2.38	8.07	4.63			
AL-Co/NGC-800	2.54	8.65	4.44			
AL-Co/NGC-900	2.62	9.1	4.19			

Table S3 Structural study obtained from XRD and Raman

Fig. S1 Raman spectra of AL-Co/NGC-T (T= 600 to 900 °C) catalysts, increase in I_D/I_G ratio reveal high degree of graphitization. Inset show 2D overtone peak of sample.

Fig. S2 FTIR study of as synthesized electrocatalyst

Fig. S3 Weight loss study obtained by TGA for ZIF 67 and acid treated pyrolyzed ZIF (AL-Co/NGC-T)

Fig. S4 XPS survey spectra of the catalysts

Fig. S5 LSV curve obtained at different rpm in acidic medium (0.5 M H₂SO₄) at 10 mV/sec for a) Pt/C, b)-f) AL-Co/NGC-600, AL-Co/NGC-700, AL-Co/NGC-800 and AL-Co/NGC-900

Fig.S6 K-L plot and electron transfer number (n) at different potential value in 0.5 M H_2SO_4 for AL-Co/NGC-T (T= 600 to 900 °C).

Fig. S7 CV obtained for AL-Co/NGC-T (T= 600 to 900 °C) in non-faradic potential region in 0.5 M H₂SO₄ electrolyte at set of scan rate from 20 to 100 mV/sec with difference of 20 mV/sec.

Fig. S8 LSV curve obtained at different rpm in alkaline medium (0.1 M KOH) at 10 mV/sec for a) Pt/C, b)-f) AL-Co/NGC-600, AL-Co/NGC-700, AL-Co/NGC-800 and AL-Co/NGC-900

Fig.S9 K-L plot and electron transfer number (n) at different potential value in 0.1 M KOH for AL-Co/NGC-T (T= 600 to 900 °C).

Fig. S10 CV obtained for AL-Co/NGC-T (T= 600 to 900 °C) in non-faradic potential region in 0.1 M KOH electrolyte at set of scan rate from 20 to 100 mV/sec with difference of 20 mV/sec.

Fig.S11 Nyquist plot of as synthesized catalyst a) in 0.5 M H_2SO_4 b) 0.1 M KOH

Fig.S12 a) Half-cell assembly of the fuel cell b) MEA after single cell testing

Name	Co 2p			Nmetal: NCN	Work			
					Function			
	At % of	N _{pyri}	Npyro	Ngra	Noxide	Metal-N		
	Со					(Co-N)		
AL-Co/NGC-600	29.03	11.89	41.98	16.83	7.37	21.93	1.30	4.8
AL-Co/NGC-700	30.30	13.54	36.45	19.33	5.28	25.41	1.29	4.72
AL-Co/NGC-800	34.21	23.41	14.39	30.56	4.19	27.44	1.96	4.61
AL-Co/NGC-900	37.53	9.49	25.02	30.02	10.43	25.05	1.37	4.53

Table No. S4 Total contribution of active N species

Table S5 comparative study obtained for pyrolyzed ZIF 67 with its effective parameters

Name	Strategy/		Medium	Yield	BET	Application	n Results					
	concept	Synthesis			Surface							
		procedure			area				-			-
							Onset potential	No. of electron (n)	Tafel	Double layer capacitance (C _{dl})	Active surface area (ECSA)	Ref
ZIF-67-900	Co-Nx site	Pyrolysis (600- 900 °C), acid leaching (10 M HCL, hydrothermally)	Acid, Alkaline	-	501	ORR	0.93	~4 ~3.7	-	-	_	4
CoNC-900	Surface area, CoNx site	Pyrolysis (600-900 °C)	50 mM PBS	-	237.8	ORR	-	3.92	-	-	-	12
Zn _x Co _{1-x}	Surface area	Pyrolysis (600°C)	-	-	377	Potassium ion battery	-	-	-	-	-	13
CoNC3-1	ECSA, CoN _x	Pyrolysis (950°C), acid leaching	Acid	41%	-	ORR	0.76	3.91	-	-	570	5
Co/Co-N _x - PCNSs	Co-Nx active site, graphitic shell	Triple pyrolysis 900 °C	Alkaline	-	1155	ORR, OER, Zn air battery	0.98	3.9	59	-	-	14

Co@N-	3D	Evaporation-	Alkaline	-	618	ORR, OER	0.97	3.85		18.2	227	15
HCCs@NG	structure,	pyrolysis 900										
	surface	°C										
	area, work											
	function											
Co-MOF	High	Solvothermal	Alkaline	-		ORR, OER	0.85	4	57	39		16
	surface											
	area, active											
	sites											
N, Co-CNSs-	Active site	Pyrolysis	Alkaline	-	-	ORR	0.96	3.99	59.7			17
800		(600-900 °C)										
Co-N-C	Effect of	Pyrolysis,	Acid,	34%	1213	ORR, Zn air	0.89	4	68	82	-	18
	precursor	leaching	Alkaline			battery						
C-N/Co (1/2)	Synthesis,	Pyrolysis	Alkaline	-	224.5	ORR, OER,	0.89	3.96	66	22.9	-	19
	Active site	(920 °C)				Zn air						
		. ,				battery						
A-CoNC	High	Pyrolysis,	Alkaline	-	337.45	ORR, Zn air	0.91	3.84	55.8	13.28	-	20
	surface	leaching				battery						
	area, active	C				2						
	sites											
ZIF-67-6	Synthesis	Pyrolysis	Alkaline	-	388	ORR	0.91	3.59	-	-	-	21
	strategy,	5 5										
	$Co-N_x$ site											
CoFe@NC-	Surface	Pyrolysis	Alkaline,	-	659	ORR, Zinc	0.93	3.8	62	22.5	562.5	22
SE	area		acidic			air battery						
ACTP ₅ @Co-	Co-N _x site,	pyrolysis	Alkaline	-	705	ORR, OER	1.0	4.03	74	31.44	786	23
N-800	Diffusion											
	layer											
Co/Co-N-C	Duel N	Duel pyrolysis	Alkaline	-	701	ORR, Zinc	0.99	~4	52.2	88.63	-	24
	doping	1.7.7				air battery						
	strategy					-						

Co-HQ/C- 800	Different N precursors	Pyrolysis	Alkaline	-	-	ORR	0.97	3.84	61	-	-	25
Co- N _x /Co@NMC	Synthesis strategy 2 D MOF, Co- N _x site	Pyrolysis	Acidic, Alkaline	-	319	ORR, Zinc air battery, OER	0.86	3.92	-	-	-	26
Co-Co ₃ O ₄	Different N precursors	Hydrothermal, solvothermal, pyrolysis	Acidic, Alkaline	-	87.24	ORR, OER, HER	0.82	-	100.4	-	-	27
CoNC (1:4)	Mesopores, structure	Hydrothermal, polymerization, pyrolysis	Alkaline	-	310	ORR, Zinc air battery, OER	0.87	4.0	55	8.12	213	28
20Co-NC- 1100	Synthesis strategy, Co-N _x site	Pyrolysis (600-1100 °C)	Acidic, Alkaline	-	565	ORR	0.98	4	-	-	-	29
CoNC-900	Synthesis strategy, Co-N _x site	Pyrolysis	Alkaline	-	281	ORR	0.044 Vs Ag/AgCl	3.98	-		-	30
Purified Co ₁₅ -N-C- 800	High temperature Co-N _x site	Pyrolysis (700-1000 °C)	Alkaline	-	470	ORR	0.97	3.96	62	-	-	31
Co@C-800		Pyrolysis (600-2000 °C)	Alkaline	-	369	ORR, OER	0.92	4	-	-	-	32
AL- Co/NGC-800	Work function- based electron transfer, Co-N _x site	Pyrolysis (600-900 °C)	Alkaline, acidic	45.1%	470	ORR, ZIHSC	0.951 0.85	3.91 3.89	69.4 82.5	22.65 33.44	647.14 811	This work

Name	Onset	Half-	Limiting	Number of	Tafel	Double	Active	Rough	Active site	Mass
	Potential	wave	current	electrons	slop	layer	area	ness	density	activity
	(Eonset) V	potential	density	n	mV/d	capacit	(ECSA)	factor	(ASD) g ⁻¹	(mA/m
	(Vs RHE)	(E1/2) V	(j L)		ec	ance	cm ²			g _{catalyst})
		(Vs	mA/cm ²			(C _{dI})				
		RHE)				mF/cm				
						2				
				Acidic						
ZIF 67	0.75									
AL-Co/NGC-600	0.803	0.65	3.3	3.48	101.2	1.05	26.25	133.7	1.63×10^{23}	11.52
AL-Co/NGC-700	0.833	0.71	4.2	3.63	83	7.02	175.5	894.2	7.75×10^{23}	27.08
AL-Co/NGC-800	0.85	0.72	4.8	3.89	82.8	32.44	811	4132.4	7.84×10^{23}	30.59
AL-Co/NGC-900	0.828	0.75	5.3	3.71	96.3	27.34	683.5	3482.8	2.5×10^{23}	21.3
				Alkaline	•					
ZIF 67	0.63		4.05							
AL-Co/NGC-600	0.883	0.812	4.56	3.45	83.7	16.01	457.42	2330.8	8.45×10 ²³	18.21
AL-Co/NGC-700	0.901		4.68	3.78	78	22.48	642.28	3272.7	1.09×10^{24}	16.55
AL-Co/NGC-800	0.951	0.847	4.81	3.91	69.4	22.65	647.14	3297.5	1.51×10 ²⁴	21.32
AL-Co/NGC-900	0.887	0.829	5.37	3.6	76	19.87	567.71	2892.8	1.02×10^{24}	18.67

Table S6 Overall review of obtained value for all parameters in this study

Sr.	Materials	Precursors	Material Synthesis	Electrolyte	Specific Capacitanc	Energy	Power donsity	Cycling Stability	Potentia	Reference
•			Method		e	(Whkg ⁻ 1)	(Wkg ⁻ 1)	Stability	window	
1	Activated carbon	Coconut shell	Carbonization	1M Zn (CF ₃ SO ₃) ₂	170 Fg ⁻¹ at 0.1 Ag ⁻¹	52.7	1725	91%	0-1.8 V	33
2	Dense 3-D Graphene (DGH)	Graphene powder	Modified Hummers method	1M ZnSO ₄	222.03 Fg ⁻¹ At 0.5 Ag ⁻¹	118.42	600	80%	0.2-1.8V	34
3	Porous carbon Nano- sheets	Carbon	Salt template- assisted synthesis	3M ZnCl ₂	78.6 mAhg ⁻¹ at 0.5 Ag ⁻¹	52.8	384.8	100%	0.2-1.6V	35
4	PPy/EGO composite	Pyrrole monomer, graphene oxide	One step electrochemical co-deposition method	1M ZnCl ₂	444.2 Fg ⁻¹ at 0.35 Ag ⁻¹	117.7	12400	81%	0.5 - 1.5V	36
5	OPCNF-20	PAN, zinc acetate dihydrate	Electrospinning	1M ZnSO4	136.4 mAhg ⁻¹ at 0.1 Ag ⁻¹	97.74	9900	81%	0.2 -1.8 V	37
6	Activated carbon	Coconut shell	Steam activation method	3M Zn (ClO ₄) ₂	423.5 Fg ⁻¹	190.3	89.8	80%	0-1.8V	38
7	MXene	Methanal, Melamine	Electrostatic self- assembly followed by pyrolysis	2M ZnSO ₄	132 Fg ⁻¹ at 0.5 Ag ⁻¹	54.9	3314.4	96.4%	0.2 - 1.8 V	39
8	HCN/SCN	Polyaniline-co- polypyrrole	Emulsion method	1M ZnSO ₄	86.8 mAhg ⁻¹ at 1.0 Ag ⁻¹	59.7	447.8	98%	0.15– 1.95 V	40

Table S7 Literature study obtained for materials synthesized so far for ZIHSC study along with their effective parameters

9	Nitrogen and	Thiourea, Citric	Evaporation	1M Zn	116.4	95.9	206.3	102.7%	0-1.6V	41
	sulphur co-	acid		$(CF_3SO_3)_2$	mAhg ⁻¹					
	doped carbon				At 0.25 Ag ⁻¹					
	nanosheets									
	(ACNS)									10
10	BC-CNa	Bamboo powder,	Combustion	2M ZnSO ₄	51.4 mAhg^{-1}	48.3	-	96%	0.2 -1.8V	42
		2-methyl-			at 0.2 Ag ⁻¹					
		imidazole			1					12
11	PZC-A750	2-	Pyrolysis	1M Zn	124 mAhg^{-1}	107.3	16647.	65.9%	0-1.8V	43
		methylimidazole,		$(CF_3SO_3)_2$	at 0.25 Ag ⁻¹		7			
		PVP, PPy								
12	N, O co-	Zinc nitrate	Annealing	1 M ZnSO ₄	111.0	109.5	225	92.7%	0.2 -	44
	doped two-	hexahydrate, Urea	process		mAhg ⁻¹				1.8V	
	dimensional				at 0.1 Ag ⁻¹					
	(2D) carbon									
	nanosheet									15
13	S-doped 3D	Carbon source,	Pyrolysis	2M ZnSO ₄	203.3	162.6	160	96.8%	0.2-1.8V	45
	porous	pine needles			mAhg ⁻¹					
	carbon				at 0.2Ag ⁻¹					1.5
14	Activated	-	-	2M ZnSO ₄	121 mAhg ⁻¹	84	14900	91%	0.2-1.8V	46
	Carbon				at 0.1Ag ⁻¹					
15	Biowaste-	Wood based	Pyrolysis	1M Zn	183.7	147	136.1	92.2%	0.2-1.8V	47
	derived	pencil shavings		$(CF_3SO_3)_2$	mAhg ⁻¹					
	porous				at 0.2Ag ⁻¹					
	carbon (PSC-									
	A600)									
16	Porous	Potassium nitrate,	Pyrolysis	1M ZnSO ₄	149 mAhg ⁻¹	60	15976	91%	0.1–1.7	48
	Carbon	Starch powder			at 0.2Ag ⁻¹				V	
	nanosheets									
	(PCNs)									
17	BN-CMTs	Polypyrrole,	Annealing	1M ZnSO ₄	416.6	472.6	1600	99.1%	0.2-1.8V	49
		Boric acid			mAhg ⁻¹					

					at 1Ag ⁻¹					
18	O-doped	Orange peels	Carbonization	1M ZnSO ₄	125.7	69.4	7570	92%	0.01-	50
	porous	based activated			mAhg ⁻¹				1.8V	
	carbon	carbon			at 1Ag ⁻¹					
19	N-doped	Chitosan,	Simultaneous	2M ZnSO ₄	136.8	191	3633.4	90.9%	0.2-1.8V	51
	porous	KHCO _{3,}	carbonization and		mAhg ⁻¹					
	carbon	Fe(NO) ₃ .9H ₂ O	activation		at 0.1Ag ⁻¹					
20	Hierarchical	Bagasse, coconut	Hydrothermal	2M ZnSO ₄ +	305 mAhg ⁻¹	118	-	94.9%	0.01-	52
	porous	shell	carbonization	1M Na ₂ SO ₄	at 0.1Ag ⁻¹				1.8V	
	carbon									
21	AL-	ZIF67	Pyrolysis, acid	3 M ZnSO4	190 F g ⁻¹	20.71	3600	97.04 %	0.2-1.8V	This work
	Co/NGC-800		leaching		$0.2 \mathrm{A g^{-1}}$	Wh kg ⁻¹	kWh			
							kg-1			

Reference:

- 1 P. Ch. Dey and R. Das, Journal of Luminescence, 2017, 183, 368–376.
- 2 B. N. Sahoo and B. Kandasubramanian, RSC Adv., 2014, 4, 11331.
- 3 T. Chen, Y. Xu, S. Guo, D. Wei, L. Peng, X. Guo, N. Xue, Y. Zhu, Z. Chen, B. Zhao and W. Ding, *iScience*, 2019, **11**, 388–397.
- 4 X. Wang, J. Zhou, H. Fu, W. Li, X. Fan, G. Xin, J. Zheng and X. Li, J. Mater. Chem. A, 2014, 2, 14064–14070.
- 5 A. Bharti and R. Natarajan, ChemistrySelect, 2021, 6, 2298–2305.
- M. F. Sanad, A. R. Puente Santiago, S. A. Tolba, M. A. Ahsan, O. Fernandez-Delgado, M. Shawky Adly, E. M. Hashem, M. Mahrous Abodouh, M. S. El-Shall, S. T. Sreenivasan, N. K. Allam and L. Echegoyen, *J. Am. Chem. Soc.*, 2021, 143, 4064–4073.
- 7 M. A. Ahsan, T. He, K. Eid, A. M. Abdullah, M. L. Curry, A. Du, A. R. Puente Santiago, L. Echegoyen and J. C. Noveron, J. Am. Chem. Soc., 2021, 143, 1203–1215.
- 8 DST HySA Infrastructure Centre of Competence, Faculty of Engineering, North-West University, Potchefstroom, 2520, South Africa and I. Vincent, *Int. J. Electrochem. Sci.*, 2016, 8002–8015.
- 9 K. Mohanapriya and N. Jha, *Electrochimica Acta*, 2019, 324, 134870.
- 10D. J. Ahirrao, K. Mohanapriya and N. Jha, Materials Research Bulletin, 2018, 108, 73-82.
- 11 A. Tornheim and D. C. O'Hanlon, J. Electrochem. Soc., 2020, 167, 110520.
- 12S. You, X. Gong, W. Wang, D. Qi, X. Wang, X. Chen and N. Ren, Adv. Energy Mater., 2016, 6, 1501497.

- 13 Spontaneous Weaving of Graphitic Carbon Networks Synthesized by Pyrolysis of ZIF-67 Crystals Zhang 2017 Angewandte Chemie
 - International Edition Wiley Online Library, https://onlinelibrary.wiley.com/doi/full/10.1002/anie.201701252, (accessed December 15, 2021).
- 14W. Wu, L. Zong, X. Chen, W. Zhang, L. Cui, Y. Yang, X. Wang, S. Li and L. Wang, Applied Surface Science, 2021, 541, 148262.
- 15 Y. Zhang, P. Wang, J. Yang, S. Lu, K. Li, G. Liu, Y. Duan and J. Qiu, Carbon, 2021, 177, 344–356.
- 16R. K. Tripathy, A. K. Samantara and J. N. Behera, Dalton Trans., 2019, 48, 10557–10564.
- 17 Y.-N. Hou, Z. Zhao, Z. Yu, Y. Tang, X. Wang and J. Qiu, Chem. Commun., 2017, 53, 7840–7843.
- 18J. Gao, Y. Hu, Y. Wang, X. Lin, K. Hu, X. Lin, G. Xie, X. Liu, K. M. Reddy, Q. Yuan and H.-J. Qiu, Small, 2021, 17, 2104684.
- 19X. Liu, Y. Ma, Y. Cai, S. Hu, J. Chen, Z. Liu and Z. Wang, RSC Advances, 2021, 11, 15722–15728.
- 20L. Zhong, Q. Huang, J. Ding, Y. Guo, X. Wang, L. Chai, T.-T. Li, Y. Hu, J. Qian and S. Huang, Journal of Power Sources, 2021, 492, 229632.
- 21 J.-P. Xuan, N.-B. Huang, J.-J. Zhang, W.-J. Dong, L. Yang and B. Wang, Journal of Solid State Chemistry, 2021, 294, 121788.
- 22 A. Samanta and C. R. Raj, Journal of Power Sources, 2020, 455, 227975.
- 23J. Zhang, T. Zhang, J. Ma, Z. Wang, J. Liu and X. Gong, Carbon, 2021, 172, 556–568.
- 24D. Wang, P. Yang, H. Xu, J. Ma, L. Du, G. Zhang, R. Li, Z. Jiang, Y. Li, J. Zhang and M. An, Journal of Power Sources, 2021, 485, 229339.
- 25 S. Chao, Q. Cui, Z. Bai, H. Yan, K. Wang and L. Yang, International Journal of Hydrogen Energy, 2014, 39, 14768–14776.
- 26H. Su, K.-X. Zhang, B. Zhang, H.-H. Wang, Q.-Y. Yu, X.-H. Li, M. Antonietti and J.-S. Chen, J. Am. Chem. Soc., 2017, 139, 811-818.
- 27 Q. Zhang, X. Zhao, X. Miao, W. Yang, C. Wang and Q. Pan, International Journal of Hydrogen Energy, 2020, 45, 33028–33036.

- 28L. Yang, N. Huang, C. Luo, H. Yu, P. Sun, X. Lv and X. Sun, Chemical Engineering Journal, 2021, 404, 127112.
- 29X. X. Wang, D. A. Cullen, Y. Pan, S. Hwang, M. Wang, Z. Feng, J. Wang, M. H. Engelhard, H. Zhang, Y. He, Y. Shao, D. Su, K. L. More, J.
 - S. Spendelow and G. Wu, Adv. Mater., 2018, 30, 1706758.
- 30S. Xie, S. Huang, W. Wei, X. Yang, Y. Liu, X. Lu and Y. Tong, ChemElectroChem, 2015, 2, 1806–1812.
- 31 Y. Qian, Z. Liu, H. Zhang, P. Wu and C. Cai, ACS Appl. Mater. Interfaces, 2016, 8, 32875–32886.
- 32B. Chen, G. Ma, Y. Zhu and Y. Xia, Sci Rep, 2017, 7, 5266.
- 33 H. Wang, M. Wang and Y. Tang, Energy Storage Materials, 2018, 13, 1–7.
- 34L. Zhang, D. Wu, G. Wang, Y. Xu, H. Li and X. Yan, Chinese Chemical Letters, 2021, 32, 926–931.
- 35 H. Tian, R. Cheng, L. Zhang, Q. Fang, P. Ma, Y. Lv and F. Wei, *Materials Letters*, 2021, 301, 130237.
- 36J. Yang, J. Cao, Y. Peng, M. Bissett, I. A. Kinloch and R. A. W. Dryfe, Journal of Power Sources, 2021, 516, 230663.
- 37 H. He, J. Lian, C. Chen, Q. Xiong and M. Zhang, Chemical Engineering Journal, 2021, 421, 129786.
- 38G. Yang, J. Huang, X. Wan, Y. Zhu, B. Liu, J. Wang, P. Hiralal, O. Fontaine, Y. Guo and H. Zhou, Nano Energy, 2021, 90, 106500.
- 39H. Cui, H. Mi, C. Ji, F. Guo, Y. Chen, D. Wu, J. Qiu and H. Xie, J. Mater. Chem. A, 2021, 9, 23941–23954.
- 40S. Chen, L. Ma, K. Zhang, M. Kamruzzaman, C. Zhi and J. A. Zapien, J. Mater. Chem. A, 2019, 7, 7784–7790.
- 41 D. Wu, C. Ji, H. Mi, F. Guo, H. Cui, P. Qiu and N. Yang, Nanoscale, 2021, 13, 15869–15881.
- 42H. Chen, Y. Zheng, X. Zhu, W. Hong, Y. Tong, Y. Lu, G. Pei, Y. Pang, Z. Shen and C. Guan, Materials Research Bulletin, 2021, 139, 111281.

- 43X. Zhu, F. Guo, Q. Yang, H. Mi, C. Yang and J. Qiu, Journal of Power Sources, 2021, 506, 230224.
- 44G. Lou, G. Pei, Y. Wu, Y. Lu, Y. Wu, X. Zhu, Y. Pang, Z. Shen, Q. Wu, S. Fu and H. Chen, Chemical Engineering Journal, 2021, 413, 127502.
- 45 D. Wang, S. Wang and Z. Lu, Int J Energy Res, 2021, 45, 2498–2510.
- 46L. Dong, X. Ma, Y. Li, L. Zhao, W. Liu, J. Cheng, C. Xu, B. Li, Q.-H. Yang and F. Kang, Energy Storage Materials, 2018, 13, 96–102.
- 47Z. Li, D. Chen, Y. An, C. Chen, L. Wu, Z. Chen, Y. Sun and X. Zhang, Energy Storage Materials, 2020, 28, 307-314.
- 48D. Wang, Z. Pan and Z. Lu, Microporous and Mesoporous Materials, 2020, 306, 110445.
- 49L. Han, H. Huang, J. Li, Z. Yang, X. Zhang, D. Zhang, X. Liu, M. Xu and L. Pan, J. Mater. Chem. A, 2019, 7, 24400–24407.
- 50J. Yu, L. Wang, J. Peng, X. Jia, L. Zhou, N. Yang and L. Li, *Ionics*, 2021, 27, 4495–4505.
- 51 P. Liu, Y. Gao, Y. Tan, W. Liu, Y. Huang, J. Yan and K. Liu, Nano Res., 2019, 12, 2835–2841.
- 52P. Yu, Y. Zeng, Y. Zeng, H. Dong, H. Hu, Y. Liu, M. Zheng, Y. Xiao, X. Lu and Y. Liang, *Electrochimica Acta*, 2019, 327, 134999.