Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2022

Aminophosphine-based continuous liquid-phase synthesis of InP and InP/ZnS quantum dots in customized tubular flow reactor

Zhuang Wang a, Doris Segets a, b *

^a Chair for Particle Science and Technology, Insitute for Combustion and Gas Dynamics (IVG-PST), University of Duisburg-Essen (UDE), Duisburg, Germany

^b Center for Nanointegration Duisburg-Essen (CENIDE), Duisburg, Germany

*Corresponding Authors

Prof. Doris Segets, E-mail address: doris.segets@uni-due.de

Keywords:

Quantum dots; Indium phosphide; Continuous flow synthesis; Aminophosphine

Fig. S1: TEM images of InP QDs synthesized at 180 °C and 0.1 mL/min.

Fig. S2: UV-Vis spectra of InP QDs synthesized at 180 °C and 200 °C from different syntheses (#1 and #2 were synthesized using the same stock solution at different days; #2 and #3 were synthesized using different stock solution).

Table S1: Chemical yield and estimated production rate at different temperatures (Flow rate: 0.1 mL/min).

Temperature (°C)	180	200	220
Chemical yield (%)	30.8	73.6	70.0
Estimated production rate (mg/h)	45	107	101

Table S2: Chemical yield and estimated production rate at different flow rates (T: $200 \, ^{\circ}\text{C}$).

Flow rate (mL/min)	0.3	0.1	0.05
Chemical yield (%)	32.1	73.6	68.6
Estimated Production rate (mg/h)	47	107	100