Supporting Information

A Selective and Stable Tetraphosphite for Rh-catalyzed Linear Hydroaminomethylation of Aliphatic and Aromatic Olefins

Xin Yan,^{a‡} Runtong Zhang,^{a‡} Jiang Wang,^a Hongyi Yu,^c Jialin Wen^b, Shao-Tao Bai*^b and Xumu Zhang*^a

[a] Guangdong Provincial Key Laboratory of Catalysis, Department of Chemistry, Southern University of Science and Technology, Shenzhen, 518055, China.

[b] Academy for Advanced Interdisciplinary Studies, Southern University of Science and Technology, Shenzhen, 518055, China.

[c] Homerton College, University of Cambridge, Cambridgeshire, CB2 8PH, United Kingdom.

Table of Contents

1. General information	2
2. Synthesis of TBTP ligand and substrates	5
2.1 Synthesis of TBTP (L6):	5
2.1.1 Synthesis of compound $S2^7$	5
2.1.2 Synthesis of compound S3:	5
2.1.3 Synthesis of compound S4 :	6
2.1.4 Synthesis of compound S6 ⁶ :	6
2.1.5 Synthesis of ligand L6:	6
2.2 Asymmetric synthesis of (<i>R</i>)-1-(naphthalen-1-yl)ethan-1-amine ⁸	7
3. Optimization of reaction conditions	8
3.1 Table S2 Solvent screening for HAM of 1-hexene with TBTP ligand	8
3.2 Table S3 Optimization for the HAM of 1-hexene with morpholine. ^{<i>a</i>}	9
18	9
3.3 Table S4 Evaluation of various ligands for the HAM of 1-hexene with morpholine. ^{<i>a</i>}	10
3.4 Table S5 Time courses of 1-hexene HAM with TBTP ligand at $S/C = 10000$	11
4. General procedures for Rh-catalyzed HAM with amines	12
5. Characterization data for the synthesized amines	13
6. Correction factors for olefins and decane (internal standard)	19
7. NMR Spectra of synthesized ligands and amines	23
8. Representative GC traces	45
9. HPLC spectra	52
10. HRMS spectra for TBTP ligand	56

1. General information

Unless otherwise mentioned, all the experiments were carried out using standard Schlenk techniques or under inert atmosphere in a glovebox. Anhydrous solvents and amines were purchased from commercial sources (Sigma-Aldrich or TCI) and used without further purification except for toluene, which was dried over CaH₂, distilled and stored under inert atmosphere. PE refers to petroleum ether.

Reagents: Commercially available reagents and solvents were purchased at the highest commercial quality from Sigma-Aldrich or TCI and were used as received, without further purification, unless otherwise stated.

Analytical methods: NMR spectra were recorded on a Bruker DPX 400 spectrometer at 400 MHz for ¹H NMR, 101 MHz for ¹³C NMR and 162 MHz for ³¹P NMR or a Bruker DPX 500 spectrometer at 500 MHz for ¹H NMR, 126 MHz for ¹³C NMR and 202 MHz for ³¹P NMR in CDCl₃ with tetramethylsilane (TMS) as internal standard. Chemical shifts were reported in ppm and coupling constants were given in Hz. Chemical shifts were reported relative to TMS (0.00 ppm) or CDCl₃ (7.26 ppm) for ¹H NMR and relative to CDCl₃ (77.0 ppm) for ¹³C NMR. The following abbreviations were used to indicate the multiplicity: s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; bs, broad signal.

High-resolution mass spectra (HRMS) were recorded on a Thermo Fisher Q Exactive focus using APCI-TOF (electrospray ionization-time of flight). Samples were introduced to the mass spectrometer ion source by direct injection using a syringe pump and were externally calibrated using sodium formate. The instrument was operating in the positive ion mode.

Reactions were monitored by TLC carried out on 0.25 mm silica gel or neutra-alumina glass plates. Flash column chromatography was carried out using forced flow of the indicated solvent on silica gel (300-400 mesh).

GC analysis was conducted on an Agilent 7890B gas chromatograph using HP-5 column (30 m \times 0.32 mm \times 0.25 µm) using 2-methoxyethyl ether as internal standard. Ar (99.99%), N₂ (99.99%), CO (99.9%) and H₂ (99.999%) were purchased from Air Products. All isolated compounds were estimated to be >98% pure as determined by GC and/or NMR.

GS-MS spectroscopy was carried out on a Agilent 7890B-5799A GC/MSD system, with a HP-5ms column (30 m \times 0.25 mm \times 0.25 µm), injector *T* = 250 °C, helium flowrate 15 ml/min.

HPLC analysis was carried out on an Agilent HPLC 1260 Infinity II with CHIRALPAK® IB N-3 column, 285 nm, 30 °C, n-hexane: EtOH: Ethanolamine = 95: 5: 0.1; flow rate 1.0 mL/min.

Qualitative analysis for hydroaminomethylation experiments

Qualitative analysis of the reaction mixtures was carried out on an Agilent 7890B-5799A GC/MSD system coupled with EI source and EM detector. For all olefins, a HP-5ms column ($30 \text{ m} \times 0.25 \text{ mm} \times 0.25 \text{ µm}$) was used. Helium was used as carrier gas with a flow of 15 mL/min and a split ratio of 20/1. Table S1 shows the temperature profile for the GC/MSD.

	Rate [°C/min]	Temperature [°C]	Hold time [min]
start	-	35	5
ramp 1	5	150	2
ramp 2	10	250	5
ramp 3	50	320	2

Table S1.	Oven	parameters	for	GC	analy	ysis
-----------	------	------------	-----	----	-------	------

Quantitative analysis for hydroaminomethylation experiments

Quantitative analysis of the reaction mixtures was carried out on an Agilent 7890B gas chromatograph coupled with a Flame Ionization Detector (FID). For all olefins, a HP-5 column ($30 \text{ m} \times 0.32 \text{ mm} \times 0.25 \text{ }\mu\text{m}$) was used. Nitrogen was used as carrier gas with a flow of 20 mL/min and a split ratio of 20/1. The temperature profile for the GC is the same as GC/MSD.

Catalysis: Ligands (L4, L5, L6, L7, L2 and (*R*)-DTBM-C3-TunePhos) used in this protocol were synthesized according to the procedures reported by our group,^{1-5,8} L3 was synthesized according to a literature method,⁶ L1 was purchased from Sigma-Aldrich (Shanghai) (Figure S1). Rhodium (Rh(acac)(CO)₂, Rh(COD)BF₄, Rh(nbd)₂BF₄, [Rh(nbd)Cl]₂, [Rh(OAc)₂]₂) and ruthenium (Ru(OAc)₂) metal precursors were purchased from J&K Scientific.

L4

L1

L6

(R)-DTBM-C₃-TunePhos

Figure S1 Structures of tested ligands

2. Synthesis of TBTP ligand and substrates

- 2.1 Synthesis of TBTP (L6):
- 2.1.1 Synthesis of compound $S2^7$

To a 500 mL flask was added 3-methoxyphenol **S1** (6.2 g, 50 mmol) and 50 mL dry IPE. *t*-BuOH (8.16 g, 110 mmol) was then added dropwise followed by the addition of concentrated H₂SO₄ (2.5 mmol). The reaction mixture was allowed to stir at rt for 10 h till completion (TLC). The reaction was diluted by water at 0 °C. The organic layer was extracted with 100 mL EtOAc (x2). The combined organic phase was concentrated under reduced pressure to provide crude product **S2** as light-yellow solid (94% yield, 11.1 g). ¹H NMR (400 MHz, CDCl₃) δ 7.16 (s, 1H), 6.27 (s, 1H), 4.69 (s, 1H), 3.78 (s, 3H), 1.40 (s, 9H), 1.35 (s, 9H); ¹³C NMR (101 MHz, CDCl₃): δ 157.2, 152.7, 129.8, 126.6, 125.4, 101.5, 55.3, 34.6, 34.2, 30.2, 30.2.

2.1.2 Synthesis of compound S3:

To a solution of MeOH (100 mL) in a 500 mL flask of **S2** (6.0 g, 25.4 mmol) was added an aqueous solution of K₃Fe(CN)₆ (8.36 g, 25.4 mmol) and KOH (4.58 g, 90.4 mmol), the reaction mixture was allowed to stir at rt for 4 h. The reaction mixture reacted at 100 °C for 2h, and the crude product was crystallized from petroleum ether to afford pure **S3** as white solid (3.1 g, 52%). ¹H NMR (400 MHz, CDCl₃) δ 7.33 (s, 2H), 5.76 (s, 2H), 3.31 (s, 6H), 1.40 (d, *J* = 9.8 Hz, 36H), ¹³C NMR (101 MHz, CDCl₃): δ = 155.4, 151.4, 134.1, 131.9, 126, 115.0, 59.7, 35.1, 35.0, 31.1, 29.9.

2.1.3 Synthesis of compound S4:

To a 100 mL flask containing a DCM (50 mL) solution of crude product **S3** (3.0 g, 6.4 mmol) was added BBr₃ (3.51 g, 14.0 mmol). The reaction mixture was allowed to stir at -40 °C for 2 h. The crude product was purified by column chromatography (PE/EA = 50/1) to afford pure **S4** as white solid (2.6 g, 91%). ¹H NMR (600 MHz, CDCl₃): δ = 7.35 (s, 2H), 4.89 (s, 4H), 1.40 (s, 36H), ¹³C NMR (101 MHz, CDCl₃): δ = 151.2, 128.0, 127.9, 102.4, 34.8, 29.9.

2.1.4 Synthesis of compound S6⁶:

A solution of 2,2'-biphenol **S5** (28.1 g, 0.15 mol) in 49 mL phosphorus trichloride was heated at reflux for 2 h. The excess PCl₃ was removed by distillation. The residue was purified by vacuum distillation (140-143 °C at 0.5mm Hg) to give 1,1'-biphenyl-2,2'-diyl phosphorochloridite **S6** (30.70 g, 81% yield) (as a clear viscous oil which solidified to give a white solid upon standing at RT in an inert atmosphere for an extended period of time).

2.1.5 Synthesis of ligand L6:

n-BuLi (2.82 g, 44 mmol) was added to a solution of **S4** (4.4 g, 10 mmol) in THF (50 ml) at -40 °C. The reaction mixture warmed up to rt for 2 h, and the reaction mixture was added to a solution of **S6** (15.0 g, 60 mmol) in THF (50 ml) dropwise followed by stirring at rt for 10 h till completion (detected by TLC). The reaction mixture was filtered in an inert atmosphere. The filtrate was evaporated under reduced pressure to produce crude solid **L6**. The solid was recrystallized from acetonitrile to give white powder (6.0 g, 46 % yield). ¹H NMR (600 MHz, CDCl₃): δ = 7.43-7.35 (m, 12H), 7.32 (d, *J* = 8.1Hz, 2H), 7.22 (tdd, *J* = 6.7, 4.9, 1.6Hz, 15H), 6.88 (dt, *J* = 7.2, 1.5Hz, 5H), 1.84–0.95 (m, 36H); ¹³C NMR (101 MHz, CDCl₃) δ = 152.3, 149.6, 134.9, 131.5, 129.5, 128.7, 124.9, 123.4, 35.4, 30.3. ³¹P NMR (243 MHz, CDCl₃): δ = 144.35; APCI-TOF/HRMS: Calculated for C₇₆H₇₁O₁₂P4 [M+H]⁺: 1299.3896; Found: 1299.3891.

2.2 Asymmetric synthesis of (R)-1-(naphthalen-1-yl)ethan-1-amine⁸

In a glovebox, required amount of the catalyst, 2-acetonaphthone (0.2 mmol), ammonium salt and solvent were successively added to a 5 mL vial equipped with a magnetic stirring bar. The mixture was then transferred to a stain-less autoclave and purged by three cycles of pressurization/venting with H₂. The required H₂ pressure was then installed and the autoclave was placed in an oil bath preheated to the indicated temperature. The autoclave was cooled down in an ice bath after the indicated reaction time and the pressure was slowly released. Hydrochloric acid (1 mL, 1M) was added to the reaction mixture and the aqueous phase was washed with diethyl ether for three times and basified with sodium hydroxide (0.5 mL, 5 M), followed by extraction with ethyl ether (1 mL x 3). The combined organic phase was dried over sodium sulfate, filtered and evaporated under reduced pressure. The resulting amine product was pure enough and directly subjected to NMR analysis (87%, 0.74 g). The enantiomeric excess was determined by HPLC 1260 II on CHIRALPAK® IB N-3 column, 285 nm, 30 °C, n-hexane : EtOH : Ethanolamine = 95: 5: 0.1; flow rate 1.0 mL/min; t_R (minor) = 11.5 min, t_R (major) = 11.9 min. ¹H NMR (400 MHz, Chloroform-*d*) δ = 8.14 (d, *J* = 8.4 Hz, 1H), 7.88 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.75 (d, *J* = 8.2 Hz, 1H), 7.66 (d, J = 7.1 Hz, 1H), 7.58 – 7.43 (m, 3H), 4.97 (q, J = 6.6 Hz, 1H), 1.77 (s, 2H), 1.56 (d, J = 6.6 Hz, 3H); ¹³C NMR (101 MHz, Chloroform-*d*) $\delta = 143.4, 134.0, 130.9, 129.1, 127.4, 126.1, 125.8, 129.1, 127.4, 126.1, 125.8, 129.1,$ 125.6, 123.0, 121.5, 46.6, 24.9.

3. Optimization of reaction conditions

3.1 Table S2 Solvent screening for HAM of 1-hexene with TBTP ligand

Entry	Solvent	Conversion [%]	amine select. [%] ^b	linear amine yield [%] ^c	linear select. [%] ^d
1	<i>i</i> -PrOH	99	96	95	97
2	Toluene	100	95	95	>99
3	PhMe/MeOH=1:1	80	98	78	97
4	MeOH	58	99	57	98
5	THF	100	96	96	99
6	EtOAc	99	97	96	99
7	EtOH	99	97	96	79
8	Butanol	95	97	92	99
9	PhMe/THF	99	97	96	99
10	Dioxane	98	98	96	99
11	2-butanol	98	97	95	99

Reaction conditions: olefin (1 mmol), amine (1 mmol), Rh(acac)(CO)₂ (1 μ mol), TBTP (4 μ mol), toluene (3 mL). *P*(CO/H₂= 10:30 bar), time= 2 h, T= 100 °C. Amine selectivity and yield were determined by GC analysis. 2-methoxyethyl ether (0.1 mL) was used as internal standard, no hydrogenation products were detected. [b] Amine selectivity: percentage of linear and branched amines from the reaction products including isomerized alkenes, aldehydes and hydrogenation productions, determined by GC; [c] Isolated yield of linear-amine; [d] Percentage of linear amine in all amines.

3.2 Table S3 Optimization for the HAM of 1-hexene with morpholine.^a

L6: Tetraphosphite-t-Bu (TBTP)

Entry	P _{CO/H2} [bar]	temp. [°C]	<i>t</i> [h]	L/Rh	conv. [%]	amine select. [%] ^b	linear amine yield [%] ^c	linear select. [%] ^d
1	20:10	100	6	4	99.9	85.2	33.0	93.7
2	10:10	100	6	4	99.7	93.7	47.0	96.7
3	10:20	100	6	4	99.6	95.8	85.5	99.4
4	10:30	100	6	4	99.7	97.0	92.6	99.2
5	5:20	100	6	4	99.7	96.2	63.2	97.6
6	5:25	100	6	4	99.2	94.8	91.8	95.8
7	5:30	100	6	4	99.3	93.3	84.0	96.8
8 ^e	10:30	100	2	4	99.6	97.3	91.1	99.9
9	10:30	100	2	3	99.6	96.7	93.0	99.2
10	10:30	100	2	2	99.8	96.9	92.3	99.1
11	10:30	100	0.5	4	97.6	65.4	53.4	99.9
12	10:30	100	1	4	99.0	97.5	89.8	99.9
13	10:30	100	4	4	99.0	96.0	91.7	99.3
14	10:30	100	8	4	99.8	90.3	82.3	98.9
15	10:30	80	2	4	85.5	94.7	75.1	99.9
16	10:30	90	2	4	99.5	97.4	91.1	99.9
17	10:30	110	2	4	99.8	97.2	92.8	98.4
18	10:30	120	2	4	99.8	97.7	96.9	98.2

[a] Reaction conditions: 1-hexene (2 mmol), amine (2 mmol), Rh(acac)(CO)₂ (1 μ mol), TBTP (4 μ mol), toluene (3 mL). Amine selectivity and yield were determined by GC analysis. 2-methoxyethyl ether (0.1 mL) was used as internal standard; [b] Amine selectivity: percentage of linear and branched amines from the reaction products including isomerized alkenes, aldehydes and hydrogenation productions, determined by GC; [c] Isolated yield of linear-amine; [d] Percentage of linear amine in all amines; [e] entries 11-18: S/C=1000.

3.3 Table S4 Evaluation of various ligands for the HAM of 1-hexene with morpholine.^a

[a] Reaction conditions: CO/H₂ = 10 : 30 bar, 1-hexene (1 mmol), morpholine (1 mmol), Rh(acac)(CO)₂ (1 μ mol), ligand (0.4 μ mol),toluene (3 mL), *T* = 100 °C, t = 1 h. [b] Amine selectivity: percentage of linear and branched amines from the reaction products including isomerized alkenes, aldehydes and hydrogenation productions, determined by GC; [c] Isolated yield of linear-amine; [d] Percentage of linear amine in all amines.

3.4	Table S5	Time courses	of 1-hexene	HAM with	TBTP ligan	d at $S/C =$	10000
					<i>(</i> 7		

Entry	Time [h]	Conversion [%]	Amine Selectivity [%]	Linear Selectivity [%]
1	0	0	0	0
2	0.5	60.3	92.7	99.9
3	1	88.4	93.2	99.9
4	2	96.8	99.9	99.9
5	4	99.8	97.3	99.7
6	6	99.9	96.8	99.7

Reaction conditions: olefin (10 mmol), amine (10 mmol), Rh(acac)(CO)₂ (1 μ mol), TBTP (4 μ mol), toluene (3 mL), *P*(CO/H₂= 10:30 bar), T= 100 °C. Amine selectivity and yield were determined by GC analysis. 2-methoxyethyl ether (0.1 mL) was used as internal standard, no hydrogenation products were detected.

4. General procedures for Rh-catalyzed HAM with amines

General procedure A : rhodium-catalyzed HAM of monosubstituted terminal olefins with amines.

A 5 mL glass vial with a magnetic stirring bar was charged with $Rh(acac)(CO)_2 (0.001 \text{ mmol})$ with tetraphosphite ligand L6 (0.004 mmol) in 0.1 mL toluene. The mixture was stirred for 15 min. Olefins (1 mmol) and morpholine (1 mmol) was then added, followed by the addition of 2-methoxyethyl ether (1mmol) as internal standard. Additional toluene was added to bring the total reaction volume to 3 mL. The reaction mixture was transferred to an autoclave. The autoclave was purged with hydrogen three times and subsequently charged with H₂ (30 bar) and CO (10 bar). The autoclave was then immersed in a preheated oil bath (100 °C) and left stirring at 1000 rpm. After desired time, the autoclave was cooled in an ice-water bath, and the pressure was carefully released in a well-ventilated hood. The reaction mixture was immediately analyzed by GC to determine conversion and regioselectivity prior to the further purification on column chromatography.

General procedure B : rhodium-catalyzed HAM of disubstituted terminal olefins with amines.

A 5mL glass vial with a magnetic stirring bar was charged with $Rh(acac)(CO)_2$ (0.001 mmol) with tetraphosphite ligand L6 (0.004 mmol) in 0.1 mL toluene. The mixture was stirred for 15 min. Olefins (1 mmol) and morpholine (1 mmol) was then added, followed by the addition of 2-methoxyethyl ether (1 mmol) as internal standard. Aditional toluene was added to bring the total reaction volume to 3 mL. The reaction mixture was transferred to an autoclave. The autoclave was purged with hydrogen three times and subsequently charged with H₂ (30 bar) and CO (10 bar). The autoclave was then immersed in a preheated oil bath (130 °C) and left stirring at 1000 rpm. After desired time, the autoclave was cooled in an ice-water bath, and the pressure was carefully released in a well-ventilated hood. The reaction mixture was immediately analyzed by GC to determine conversion and regioselectivity prior to the further purification on column chromatography.

5. Characterization data for the synthesized amines

Exact Mass: 185.18 Molecular Weight: 185.31 m/z: 185.18 (100.0%), 186.18 (12.2%)

4-heptylmorpholine (5-1⁹), clear viscous oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.⁹ ESI-MS, Calcd for[M+H]⁺: 186.18, found: 186.24.

N,*N*-dipropylheptan-1-amine (5-2), off-white solid, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). ¹H NMR (CDCl₃, 400 MHz): δ = 2.69 (ddt, *J* = 12.2, 9.3, 4.7 Hz, 6H), 1.63 – 1.55 (m, 3H), 1.11 – 0.94 (m, 11H), 0.74 (t, *J* = 7.3 Hz, 6H), 0.64 – 0.59 (m, 3H); ¹³C NMR (CDCl₃, 100 MHz) δ : = 54.1, 52.5, 31.7, 28.8, 27.0, 23.2, 22.6, 17.0, 14.1, 11.4. ESI-MS, Calcd for [M+H]⁺: 200.38, found: 200.34.

N-hexylheptan-1-amine (5-3), clear viscous oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). ¹H NMR (CDCl₃, 400 MHz) δ : 2.82 – 2.57 (m, 4H), 1.33 – 1.20 (m, 19H), 0.88 – 0.85 (m, 6H).; ¹³C NMR (CDCl₃, 100 MHz) δ : 49.2, 31.8, 31.7, 29.1, 28.4, 28.3, 27.3, 27.0, 22.7, 22.7, 14.1, 14.1. ESI-MS, Calcd for [M+H]⁺: 200.38, found: 200.23.

1-heptylpiperidine (5-4¹⁰), clear viscous oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.¹⁰ ESI-MS, Calcd for $[M+H]^+$: 184.20, found: 185.26.

4-octylmorpholine (5-5¹¹), clear viscous oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.¹¹ ESI-MS, Calcd for[M+H]⁺: 200.38, found: 200.24.

4-nonylmorpholine (5-6¹²), clear viscous oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.¹² ESI-MS, Calcd for[M+H]⁺: 214.37, found: 214.25.

Exact Mass: 241.24 Molecular Weight: 241.42 m/z: 241.24 (100.0%), 242.24 (16.6%), 243.25 (1.3%)

4-undecylmorpholine (5-7¹³), clear viscous oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature ¹³. ESI-MS, Calcd for[M+H]⁺: 242.42, found: 242.35.

4-(6-(prop-1-en-2-yloxy)hexyl)morpholine (5-8), light yellow oil, purified on chromatography by gradient elution (PE/Ethyl acetate= 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). ¹H NMR (CDCl₃, 400 MHz) δ : 4.03 (t, *J* = 6.7 Hz, 2H), 3.80 – 3.73 (m, 4H), 2.54 – 2.45 (m, 4H), 2.42 – 2.33 (m, 2H), 2.02 (s, 3H), 1.67 – 1.48 (m, 4H), 1.41 – 1.28 (m, 4H); ¹³C NMR (CDCl₃, 100 MHz) δ : = 171.4, 66.6, 64.6, 59.0, 53.6, 28.6, 27.1, 26.1, 25.9, 21.1. ESI-MS, Calcd for[M+H]⁺: 230.32, found: 230.20.

7-morpholinoheptyl acetate (5-9), light yellow oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). ¹H NMR (CDCl₃, 400 MHz) δ : 4.04 (t, *J* = 6.7 Hz, 2H), 3.76 (t, *J* = 4.4 Hz, 4H), 2.52 (t, *J* = 4.6 Hz, 4H), 2.43 (t, *J* = 7.4 Hz, 2H), 2.04 (s, 3H), 1.66 – 1.55 (m, 4H), 1.42 – 1.27 (m, 6H); ¹³C NMR (CDCl₃, 100 MHz) δ : 172.3, 66.8, 64.6, 53.8, 40.5, 28.9, 28.6, 25.9, 23.69, 21.1. ESI-MS, Calcd for[M+H]⁺: 244.35, found: 244.23.

Exact Mass: 213.21 Molecular Weight: 213.37 m/z: 213.21 (100.0%), 214.21 (14.5%), 215.22 (1.0%)

4-(3,5,5-trimethylhexyl)morpholine (5-10), light yellow oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). ¹H NMR (CDCl₃, 400 MHz) δ : 3.80 – 3.68 (m, 4H), 2.50 (t, *J* = 4.7 Hz, 4H), 2.43 – 2.33 (m, 2H), 1.57 – 1.44 (m, 2H), 1.37 (tdd, *J* = 9.7, 6.9, 3.9 Hz, 1H), 1.25 – 1.15 (m, 2H), 1.05 (dd, *J* = 14.0, 6.1 Hz, 1H), 0.91 (d, *J* = 6.5 Hz, 3H), 0.86 (s, 9H); ¹³C NMR (CDCl₃, 100 MHz) δ : 66.7, 57.3, 53.7, 51.4, 35.6, 31.2, 30.1, 27.8, 22.9. ESI-MS, Calcd for[M+H]⁺: 214.37, found: 214.25.

4-(3-phenylpropyl)morpholine (5-11¹⁴), light yellow oil, purified on chromatography by gradient elution (PE/ Ethyl acetate= 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.¹⁴ ESI-MS, Calcd for[M+H]⁺: 206.30, found: 206.15.

4-(3-phenylbutyl)morpholine (5-12¹⁵), light yellow oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.¹⁵ ESI-MS, Calcd for[M+H]⁺: 220.36, found: 220.20.

4-(3,3-diphenylpropyl)morpholine (5-13¹⁶), light yellow oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et_3N). The ¹H NMR and ¹³C NMR data obtained corresponded to the literature.¹⁶ ESI-MS, Calcd for[M+H]⁺: 282.40, found: 282.18.

4-(3-(3-(trifluoromethyl)phenyl)propyl)morpholine (5-14), light yellow oil, purified on chromatography by gradient elution (PE/Ethyl acetate = 1:1, Ethyl acetate, then 1% MeOH in Ethyl acetate with 0.1% Et₃N). ¹H NMR (CDCl₃, 400 MHz) δ : 7.19 (dd, *J* = 4.7, 2.0 Hz, 2H), 7.14 – 7.10 (m, 2H), 3.56 (s, 4H), 2.47 (t, *J* = 7.7 Hz, 2H), 2.37 (s, 2H), 2.28 (s, 2H), 1.70 (s, 4H); ¹³C NMR (151 MHz, CDCl₃) δ 132.0, 129.0, 125.3, 123.1, 66.1, 57.9, 53.3, 32.1, 29.9. ESI-MS, Calcd for[M+H]⁺: 274.14, found: 274.18.

(*R*)-*N*-(1-(naphthalen-1-yl)ethyl)-3-(3-(trifluoromethyl)phenyl)propan-1-amine (Cinacalcet), light yellow oil, purified on chromatography by gradient elution (2.55 g, 71.1% yield, >99% ee). The enantiomeric excess was determined by HPLC 1260 on CHIRALPAK[®] IA column, 280 nm, 35 °C, *n*-hexane : EtOH : trifluoroacetic = 96: 4: 0.1; flow rate 1.0 mL/min; t_R (minor) = 8.0 min, t_R (major) = 9.9 min. ¹H NMR (400 MHz, CDCl₃) δ 8.22 – 8.13 (m, 1H), 7.92 – 7.84 (m, 1H), 7.76 (d, *J* = 8.1 Hz, 1H), 7.70 (d, *J* = 7.2 Hz, 1H), 7.55 – 7.45 (m, 3H), 7.40 (d, *J* = 9.3 Hz, 2H), 7.31 (q, *J* = 7.6 Hz, 2H), 4.85 – 4.60 (m, 1H), 2.76 – 2.55 (m, 4H), 1.88 (dd, *J* = 10.0, 5.0 Hz, 2H), 1.55 (d, *J* = 6.6 Hz, 3H).¹³C NMR (151 MHz, CDCl₃) δ 143.0, 134.1, 131.9, 131.4 130.8, 130.6, 129.2, 128.8, 127.6, 126.1, 125.9, 125.6,

125.2, 125.2, 123.1, 122.8, 122.8, 53.7, 47.2, 33.5, 29.9, 23.4. ESI-MS, Calcd for[M+H]⁺: 358.17, found: 358.17.

6. Correction factors for olefins and decane (internal standard)

$$\frac{n_s}{n_p} = \frac{M_p}{M_s} \frac{f_s}{f_p} \frac{A_s}{A_p}$$
$$\frac{n_s}{n_p} = K \frac{A_s}{A_p}$$

- n_s molar amount of decane
- n_p -molar amount of olefin
- M_s -molecular weight of decane
- M_p molecular weight of olefin
- A_s peak area of decane
- A_p peak area of olefin
- K correction factor

Figure S2. Correction factor (*K*) for 1-hexene & 2-Methoxyethyl ether

Figure S3. Correction factor (K) for 1-heptene & 2-Methoxyethyl ether

Figure S4. Correction factor (K) for 1-octene & 2-Methoxyethyl ether

Figure S5. Correction factor (K) for 1-decene & 2-Methoxyethyl ether

Figure S6. Correction factor (K) for ethene-1,1-diyldibenzene & 2-Methoxyethyl ether

Figure S7. Correction factor (K) for 1-(trifluoromethyl-3-vinybenzene & 2-Methoxyethyl ether

7. NMR Spectra of synthesized ligands and amines

^{31}P NMR (243 MHz, CDCl₃) of L3

20 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 Chemical Shifts (ppm) ^{13}C NMR (101 MHz, Acetone-d_6) of L4

¹³C NMR (101 MHz, CDCl₃) of **L8**

1-amine (Cinacalcet)

8. Representative GC traces

GC traces of the probable products in the optimization of hydroaminomethylation

1-hexene with morpholine

1-hexene with n-hexylamine

Peak	RetTime	Туре	Width	Area	Height	Area	
#	[min]	1	[mın]	[pA*s]	[pA]	ус б	
1	2.626	BB	0.0245	1.96342	1.26308	0.54868	
2	15.886	BB	0.0631	127.45654	28.65000	35.61760	
3	25.739	BB	0.0675	17.94028	3.93898	5.01339	
4	27.379	BB	0.0707	210.48685	44.89297	58.82033	
Total	s:			357.84709	78.74503		

1-heptene with morpholine

*** End of Report ***

1-octene with morpholine

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[pA*s]	[pA]	010
1	8.476	BB	0.0482	26.13537	8.19186	1.66597
2	14.489	BB	0.0500	702.04449	215.74413	44.75092
3	17.442	MM R	0.0553	8.55441	3.15797e-2	0.54529
4	17.860	VV	0.0574	11.11761	2.79810	0.70868
5	18.143	VB	0.0570	32.20775	8.53433	2.05304
6	19.436	BB	0.0861	138.22537	22.38093	8.81100
7	31.018	BB	0.0630	10.66749	2.53752	0.67999
8	31.822	MM R	0.0938	47.20641	1.04015e-1	3.00911
9	33.255	BB	0.0683	592.62335	125.02903	37.77601

Totals :

1568.78225 385.35150

1-decene with morpholine

ethene-1,1-diyldibenzene with morpholine

1-(trifluoromethyl)-3-vinylbenzene with Naphthylethylamine

9. HPLC spectra

(rac)-1-(naphthalen-1-yl)ethan-1-amine:

Acq. Operator	: SYSTEM Seq. Line : 4
Sample Operator	: SYSTEM
Acq. Instrument	: LC-1260 Location : P2-D-03
Injection Date	: 10/12/2021 7:11:51 PM Inj : 1
	Inj Volume : 5.000 µl
Acq. Method	: D:\data\YX\YX20211012 2021-10-12 17-33-21\R&D-nya-IBN-3-0.1%AE-5-95-
	alcohol-20210317.M
Last changed	: 3/17/2021 3:47:01 PM by SYSTEM
Analysis Method	: D:\data\YX\YX20211012 2021-10-12 17-33-21\R&D-nva-IBN-3-0.1%AE-5-95-
	alcohol-20210317.M (Sequence Method)
Last changed	: 10/13/2021 9:36:24 AM by SYSTEM
	(modified after loading)
Additional Info	: Peak(s) manually integrated
DAD1 C, Sk	=285.4 Ref=off (D:\data\YX)YX-20211012 2021-10-12 17-33-21\004-P2-D3-YX-RAC.D)
m AU -l	
	2
	24
800	
000	
	H ₂ N,
1	
1	
600 -	
1	
1	
400 -	rac
200 -	
6	<u>8 10 12 14 16 18 mi</u>
	Area Percent Report
Sorted By	Area Percent Report : Signal : 1.0000
Sorted By Multiplier	Area Percent Report : Signal : 1.0000 . 1.0000
Sorted By Multiplier Dilution	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDS
Sorted By Multiplier Dilution Use Multiplier &	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs
Sorted By Multiplier Dilution Use Multiplier &	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs
Sorted By Multiplier Dilution Use Multiplier &	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Sig=285,4 Ref=off
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Sig=285,4 Ref=off
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DADL C Peak RetTime Typ	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs , Sig=285,4 Ref=off e Width Area Height Area
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C Peak RetTime Typ # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs ; Sig=285,4 Ref=off e Width Area Height Area [min] [mAU*s] [mAU] %
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C Peak RetTime Typ # [min]	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs : Sig=285,4 Ref=off e Width Area [min] [mAU*s] [mAU]
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C Peak RetTime Typ # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs ', Sig=285,4 Ref=off e Width Imax Height Area [min] [mAU] ', 0.1856 1.11364e4 917.56555 49.9876
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C Peak RetTime Typ # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDs ;, Sig=285,4 Ref=off we Width Area Height Area [min] [mAU*s] [mAU] % -
Sorted By Multiplier Dilution Use Multiplier & Signal 1: DAD1 C Peak RetTime Typ # [min] 	Area Percent Report : Signal : 1.0000 : 1.0000 Dilution Factor with ISTDS ;, Sig=285,4 Ref=off e Width Area Height Area [min] [mAV*s] [mAU] % -

(R)-1-(naphthalen-1-yl)ethan-1-amine:

Acq. Operator	: SYSTEM Seq. Line : 3
Sample Operator	r : SYSTEM
Acq. Instrument	: : LC-1260 Location : P2-D-02
Injection Date	: 10/12/2021 6:41:00 PM Inj: 1
	Inj Volume : 5.000 µl
Acq. Method	: D:\data\YX\YX-20211012 2021-10-12 17-33-21\R&D-nya-IBN-3-0.1*AE-5-95-
Last changed	alconol-2021031/.M • 3/17/2021 3•47•01 RM by SYSTEM
Analysis Method	d : D:\data\YX\YX20211012 2021-10-12 17-33-21\R&D-nva-IBN-3-0.1%AE-5-95-
	alcohol-20210317.M (Sequence Method)
Last changed	: 10/13/2021 9:36:24 AM by SYSTEM
	(modified after loading)
Additional Info	Peak(s) manually integrated
DAD1 C, S	Sig=285,4 Ref=off (D\DATA\YX\YX20211012 2021-10-12 17-33-21\003-P2-D2-YX-21-10-12.D)
mAU _	
1750 -	
1500 -	
1	
1250 -	
	H_2N_{\sim}
1000	
1000	
1	
750 -	
]	
500 -	
1	
250 -	
0	
1 1	
6	8 10 12 14 16 18 m
	Area Percent Report
Sorted By	: Signal
Multiplier	: 1.0000
Dilution	: 1.0000
Use Multiplier	& Dilution Factor with ISTDs
Signal 1: DAD1	C, Sig=285,4 Ref=off
Peak RetTime To	whe Width Area Height Area
# [min]	(min) (mAU*s) (mAU) %
1 11.540 BB	3 0.1551 43.46658 4.40544 0.1361
2 11.979 MM	4 R 0.2711 3.18957e4 4.44938e-3 99.8639
Totals :	3.19392e4 4.40988

(rac)-N-(1-(naphthalen-1-yl)ethyl)-3-(3-(trifluoromethyl)phenyl)propan-1-amine (Cinacalcet):

Sample Name: RAC _____ _____ Acq. Operator : SYSTEM Seq. Line : 2 Sample Operator : SYSTEM Acq. Instrument : LC-1260 Location : P1-D-03 Injection Date : 10/9/2021 11:13:45 AM Inj: 2 Inj Volume : 5.000 µl Acq. Method : D:\data\YX\YX--20211009-1 2021-10-09 10-36-55\R&D-YX-IA-alcohol-0.1 TFA-20211009-96-4.M Last changed : 10/9/2021 10:23:59 AM by SYSTEM Analysis Method : D:\data\YX\YX--20211009-1 2021-10-09 10-36-55\R&D-YX-IA-alcohol-0.1 TFA-20211009-96-4.M (Sequence Method) Last changed : 10/9/2021 1:47:20 PM by SYSTEM DAD1 E, Sig=280.4 Ref=off (D:\data\YX\YX-20211009-1 2021-10-09 10-36-55\002-P1-D3-RAC.D) m AU † 5 120 898 100 · HN ℃H₃ 80 -∠CF₃ 60 · rac 40 20 0 11 11.5 10 10.5 8.5 9.5 min Area Percent Report Sorted By Signal 1 Multiplier 1 1.0000 1,0000 Dilution . Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 E, Sig=280,4 Ref=off Peak RetTime Type Width Area Height Area [min] [mAU*s] # [min] [mAU] 8 _____ 1 8.101 BB 0.2293 1943.05212 125.00645 49.9643 2 9.898 BB 0.3044 1945.82800 96.03473 50.0357 3888.88013 221.04118 Totals :

(*R*)-N-(1-(naphthalen-1-yl)ethyl)-3-(3-(trifluoromethyl)phenyl)propan-1-amine (Cinacalcet):

Data File D:\DATA\YX\YX--20211009- 1 2021-10-09 12-23-25\002-P1-D4-YX-21-09-26.D Sample Name: YX-21-09-26 _____ _____ Acq. Operator : SYSTEM Seq. Line : 2 Sample Operator : SYSTEM Acq. Instrument : LC-1260 Location : P1-D-04 Injection Date : 10/9/2021 1:00:13 PM Inj : 1 Inj Volume : 5.000 µl : D:\data\YX\YX--20211009- 1 2021-10-09 12-23-25\R&D-YX-IA-alcohol-0.1 TFA-Acq. Method 20211009-96-4.M Last changed : 10/9/2021 10:23:59 AM by SYSTEM Analysis Method : D:\data\YX\YX--20211009- 1 2021-10-09 12-23-25\R&D-YX-IA-alcohol-0.1 TFA-20211009-96-4.M (Sequence Method) Last changed : 10/9/2021 1:48:06 PM by SYSTEM (modified after loading) Additional Info : Peak(s) manually integrated DAD1 E, Sig=280.4 Ref=off(D:DATAIYXYX-20211009-12021-10-0912-23-250002-P1-D4-YX-21-09-26.D) mAU 1 350 -300 -HN CH₃ 250 CF₃ 200 -150 -100 501211 50 411 0 10.5 11.5 9.5 10 11 8.5 min Area Percent Report Sorted By Signal 1 Multiplier : 1.0000 Dilution 1.0000 Use Multiplier & Dilution Factor with ISTDs Signal 1: DAD1 E, Sig=280,4 Ref=off Peak RetTime Type Width Area Height Area [min] [mAU*s] # [min] [mAU] <u>چ</u> 1 8.411 MM 0.1551 5.01271 5.38579e-1 0.0550 2 9.920 BB 0.3620 9113.21582 364.11194 99.9450 9118.22853 364.65052 Totals :

10. HRMS spectra for TBTP ligand

D:\Raw Data\...\20200501Rec-pjh-3-48-2

06/19/20 13:15:34

20200501Rec-pjh-3-48-2 #8 RT: 0.03 AV: 1 NL: 1.26E9 T: FTMS + p APCI corona Full lock ms [150.0000-2000.0000]

D:\Raw Data\...\20200501Rec-pjh-3-48-2

06/19/20 13:15:34

11. References

- 1. C. Chen, Y. Qiao, H. Geng and X. Zhang, Organic Letters, 2013, 15, 1048-1051.
- 2. Z. Zhang, C. Chen, Q. Wang, Z. Han, X.-Q. Dong and X. Zhang, *RSC Advances*, 2016, **6**, 14559-14562.
- 3. Y. Yan, X. Zhang and X. Zhang, Journal of the American Chemical Society, 2006, 128, 16058-16061.
- 4. C. Chen, P. Li, Z. Hu, H. Wang, H. Zhu, X. Hu, Y. Wang, H. Lv and X. Zhang, *Organic Chemistry Frontiers*, 2014, **1**, 947-951.

5. S. Yu, X. Zhang, Y. Yan, C. Cai, L. Dai and X. Zhang, *Chemistry – A European Journal*, 2010, **16**, 4938-4943.

- 6. G. D. Cuny and S. L. Buchwald, Journal of the American Chemical Society, 1993, 115, 2066-2068.
- 7. S. Akagi, Y. Yasukawa, K. Kobayashi and H. Konishi, *Tetrahedron*, 2009, 65, 9983-9988.
- 8. X. Tan, S. Gao, W. Zeng, S. Xin, Q. Yin and X. Zhang, JAm Chem Soc, 2018, 140, 2024-2027.
- 9. W.-X. Chen, C.-Y. Zhang and L.-X. Shao, *Tetrahedron*, 2014, **70**, 880-885.
- 10. S. Gülak, L. Wu, Q. Liu, R. Franke, R. Jackstell and M. Beller, *Angewandte Chemie International Edition*, 2014, **53**, 7320-7323.
- 11. Y. Fukumoto, H. Asai, M. Shimizu and N. Chatani, *Journal of the American Chemical Society*, 2007, **129**, 13792-13793.
- 12. A. Serrano-Maldonado, T. Dang-Bao, I. Favier, I. Guerrero-Ríos, D. Pla and M. Gómez, *Chemistry A European Journal*, 2020, **26**, 12553-12559.
- 13. Y. Y. Wang, M. M. Luo, Q. Lin, H. Chen and X. J. Li, Green Chemistry, 2006, 8, 545-548.
- 14. B. Zhang, H. Li, Y. Ding, Y. Yan and J. An, *The Journal of Organic Chemistry*, 2018, **83**, 6006-6014.
- 15. T. Rische and P. Eilbracht, Synthesis, 1997, 1997, 1331-1337.
- 16. S. Li, K. Huang, J. Zhang, W. Wu and X. Zhang, Organic Letters, 2013, 15, 1036-1039.