Electronic Supplementary Material (ESI) for Reaction Chemistry & Engineering. This journal is © The Royal Society of Chemistry 2023

Electronic Supplementary Information

Synergistic catalysis in Ni/ZrO_x for hydrogen production from hydrolysis of ammonia borane

Yong Li,^{a,b} Shijie Zhou,^a Xingyue Yang,^a Enze Xu,^a Zhen Ren,^a Lei Wang,^a and Yusen Yang^{*a}

^a State Key Laboratory of Chemical Resource Engineering, Beijing Advanced Innovation Center for

Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing 100029,

P. R. China

^b Grease Branch, Sinopec Lubricant CO., LTD, Tianjin 300480, P. R. China

Author Information

* Corresponding author. Tel: +86-10-64412131; Fax: +86-10-64425385.

E-mail address: <u>yangyusen@mail.buct.edu.cn</u> (Y. Yang).

Fig. S1. SEM images of the as-synthesized ZrO_x -T samples: (a1–a3) ZrO_x -300, (b1–b3) ZrO_x -400, (c1–c3) ZrO_x -500 and (d1–d3) ZrO_x -600, respectively.

Fig. S2. SEM images of the as-synthesized Ni/ZrO_x-T samples: (a1–a3) Ni/ZrO_x-300, (b1–b3) Ni/ZrO_x-400, (c1–c3) Ni/ZrO_x-500 and (d1–d3) Ni/ZrO_x-600, respectively.

Fig. S3. XRD patterns of the as-synthesized ZrO_x -T samples: (a) ZrO_x -300, (b) ZrO_x -400, (c) ZrO_x -500 and (d) ZrO_x -600. XRD standard card for ZrO_2 is shown in the lower part of panel: ZrO_2 -PDF#37-1484.

Fig. S4. XRD patterns of the as-synthesized Ni/ZrO_x-T samples: (a) Ni/ZrO_x-300, (b) Ni/ZrO_x-400, (c) Ni/ZrO_x-500 and (d) Ni/ZrO_x-600. XRD standard cards for Ni, NiO and ZrO₂ are shown in the lower part of the panel: Ni-PDF#45-1027, NiO-PDF#47-1049 and ZrO₂-PDF#37-1484.

Fig. S5. In situ FT-IR spectra of CO chemisorption on (a) Ni/ZrO_x-300, (b) Ni/ZrO_x-400, (c) Ni/ZrO_x-500 and (d) Ni/ZrO_x-600 by flowing He as a purge gas after 0, 120, 240 and 360 s, respectively.

Fig. S6. XPS spectra of (a) Ni/ZrO_x-300, (b) Ni/ZrO_x-400, (c) Ni/ZrO_x-500 and (d) Ni/ZrO_x-600, respectively.

Fig. S7. (a) Plot of volume of H_2 *vs.* reaction time without NaOH for Ni/ZrO_x-T samples, and (b) the corresponding reaction rate values. Reaction conditions: (a) AB: 3.0 mmol, NaOH: 0 mmol, H₂O: 10 mL, catalyst: 40.0 mg, temperature: 25 °C.

Fig. S8. (a) Plot of volume of H_2 *vs.* reaction time for Ni/ZrO_x-500 with different NaOH concentrations (0–4 M). (b) Effect of NaOH concentration on the reaction rate for Ni/ZrO_x-500. Reaction conditions: (a) AB: 3.0 mmol, NaOH: 0–40 mmol, H_2O : 10 mL, catalyst: 40.0 mg, temperature: 25 °C.

Fig. S9. Reaction rate of AB hydrolysis vs. recycling times over Ni/ZrO_x -500.

Fig. S10. XRD pattern of the used Ni/ZrO_x -500 sample.

Fig. S11. (a–b) SEM images and (c–d) HR-TEM images of the used Ni/ZrO_x-500 sample with corresponding HR-TEM lattice fringe images.

Fig. S12. Plot of volume of H_2 *vs.* reaction time for Ni/ZrO_x-300 under different reaction temperature (25–55 °C).

Fig. S13. Plot of volume of $H_2 vs.$ reaction time for Ni/ZrO_x-400 under different reaction temperature (25–55 °C).

Fig. S14. Plot of volume of H₂ *vs.* reaction time for Ni/ZrO_x-500 under different reaction temperature (25–55 °C).

Fig. S15. Plot of volume of $H_2 vs.$ reaction time for Ni/ZrO_x-600 under different reaction temperature (25–55 °C).

Fig. S16. In situ FT-IR spectra of AB hydrolysis reaction on ZrO_x -500 sample recorded in 3800–1000 cm⁻¹ by flowing AB solution as a reaction gas and He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S17. *In situ* FT-IR spectra of AB hydrolysis reaction on KBr sample recorded in (a) 3800-1000 cm⁻¹, (b) 3800-2900 cm⁻¹ and (c) 2500-1000 cm⁻¹ by flowing AB solution as a reaction gas and He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S18. In situ FT-IR spectra of AB hydrolysis reaction on Ni/ZrO_x-300 sample recorded in (a) $3800-1000 \text{ cm}^{-1}$, (b) $3800-2900 \text{ cm}^{-1}$ and (c) $2500-1000 \text{ cm}^{-1}$ by flowing AB solution as a reaction gas and He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S19. In situ FT-IR spectra of AB hydrolysis reaction on Ni/ZrO_x-400 sample recorded in (a) $3800-1000 \text{ cm}^{-1}$, (b) $3800-2900 \text{ cm}^{-1}$ and (c) $2500-1000 \text{ cm}^{-1}$ by flowing AB solution as a reaction gas and He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S20. In situ FT-IR spectra of AB hydrolysis reaction on Ni/ZrO_x-600 sample recorded in (a) $3800-1000 \text{ cm}^{-1}$, (b) $3800-2900 \text{ cm}^{-1}$ and (c) $2500-1000 \text{ cm}^{-1}$ by flowing AB solution as a reaction gas and He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S21. In situ FT-IR spectra of AB hydrolysis reaction on Ni/ZrO_x-500 sample recorded in $3800-1000 \text{ cm}^{-1}$ by flowing AB solution as a reaction gas and He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S22. In situ FT-IR spectra of ZrO_x -500 sample recorded in 3800–1000 cm⁻¹ by flowing pure H₂O with He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Fig. S23. *In situ* FT-IR spectra of Ni/ZrO_x-500 sample recorded in 3800–1000 cm⁻¹ by flowing pure H_2O with He as a purge gas after 0, 1, 5, 7 and 10 min, respectively.

Entry	Catalyst	Ni content (wt.%) ^a	Ni content in the filtration liquid (<i>wt</i> .%) ^a	Zr content in the filtration liquid (<i>wt</i> .%) ^a	Mean particle size of Ni (nm) ^b	Theoretical dispersion degree of Ni ^c
1	Ni/ZrO_x -300	4.579	/	/	22.27	2.28%
2	Ni/ZrO _x -400	4.667	/	/	22.35	2.27%
3	Ni/ZrO_x -500	4.453	/	/	23.20	2.19%
4	Ni/ZrO_x -600	4.516	/	/	28.33	1.79%

Table S1. Physicochemical properties of Ni/ZrO_x-T samples

^{*a*} Content of Ni and Zr species was determined by inductively coupled plasma-atomic emission spectroscopy (ICP-AES).

^b Mean particle size of Ni was determined by HR-TEM analysis over 100 particles for each sample.

^c Theoretical dispersion of Ni was calculated based on the result of HR-TEM.

Entry	Catalyst	Ni ²⁺ /(Ni ⁰ +Ni ²⁺) ratio ^a	$Zr^{3+}/(Zr^{3+}+Zr^{4+})$ ratio ^b	$O_v/(O_v+O_l+O_s)$ ratio ^c
1	Ni/ZrO_x -300	42.10%	32.96%	19.88%
2	Ni/ZrO _x -400	47.28%	60.42%	26.91%
3	Ni/ZrO_x -500	58.13%	84.64%	38.01%
4	Ni/ZrO_x -600	50.41%	75.55%	34.89%

Table S2. Compositional properties of Ni/ZrO_x-T samples

a Ni²⁺/(Ni⁰+Ni²⁺) ratio was calculated from Ni 2*p* XPS spectra.

 b Zr³⁺/(Zr³⁺+Zr⁴⁺) ratio was calculated from Zr 3*d* XPS spectra.

 $^{c}\,O_{v}/\!(O_{v}\!+\!O_{l}\!+\!O_{s})$ ratio was calculated from O 1s XPS spectra.

Entry	Sample ^a	Reaction condition	Reaction rate (mol _{H2} mol _{Ni} ⁻¹ min ⁻¹)
1	Ni/ZrO _x -300	0 M NaOH	17.99±0.60
2	Ni/ZrO _x -400	0 M NaOH	19.53±0.73
3	Ni/ZrO_x -500	0 M NaOH	23.13±0.83
4	Ni/ZrO_x -600	0 M NaOH	21.26±0.58
5	Ni/ZrO_x -500	0.1 M NaOH	54.38±3.41
6	Ni/ZrO_x -500	0.2 M NaOH	114.41±2.58
7	Ni/ZrO_x -500	0.3 M NaOH	60.93±2.77
8	Ni/ZrO_x -500	0.4 M NaOH	31.90±2.70
9	/	0.2 M NaOH	0±0
10	Ni/ZrO_x -300	0.2 M NaOH	38.68±3.64
11	Ni/ZrO_x -400	0.2 M NaOH	71.42±2.15
12	Ni/ZrO _x -600	0.2 M NaOH	85.89±3.92
13	ZrO _x -300	0.2 M NaOH	0±0
14	ZrO _x -400	0.2 M NaOH	0±0
15	ZrO _x -500	0.2 M NaOH	0±0
16	ZrO _x -600	0.2 M NaOH	0±0

Table S3.	Reaction ra	tes for AE	hvdrolv	vsis over	$Ni/ZrO_{r}-T$	and ZrO _x -T	catalysts

^{*a*} Reaction conditions: AB: 3.0 mmol, H₂O: 10 mL, catalyst: 40.0 mg, temperature: 25 °C.

Entry	Catalyst	Temperature (K)	NaOH Concentration (M)	TOF (min ⁻¹)	E _a (kJ mol ⁻¹)	Ref.
1	Ni/ZrO _x -300	298	0.2	38.68±3.64 ^{<i>a</i>} 91.86±2.68 ^{<i>b</i>}	38.24	This work
2	Ni/ZrO _x -400	298	0.2	71.42±2.15 ^{<i>a</i>} 151.03±3.41 ^{<i>b</i>}	31.97	This work
3	Ni/ZrO _x -500	298	0.2	$114.41{\pm}2.58^a$ 196.82 ${\pm}2.58^b$	21.26	This work
4	Ni/ZrO _x -600	298	0.2	85.89±3.92 ^a 170.39±2.77 ^b	26.80	This work
5	CoNi/a-MoC	298	0.5	321.1 ^b	/	1
6	10Ni30Mo _x C/γ-Al ₂ O ₃	298	1	75.1 ^{<i>a</i>}	33.12	2
7	hcp-CuNi/C	300	1	22.64 ^{<i>a</i>}	29.92	3
8	Ni/KB	298	0	7.47 ^a	/	4
9	Ni/CeO ₂	298	0	1.7^{a}	25	5
10	Ni/CNTs	298	0	26.2 ^{<i>a</i>}	32.3	6
11	NiNPs/ZIF-8	298	0.3	85.7 ^{<i>a</i>}	42.70	7
12	Ni/Ti ₃ C ₂ Tx-4	298	0	161.0 ^{<i>a</i>}	59.3	8
13	rGO/CoNi-N	298	0	126 ^a	32.8	9
14	Ni-CeOx/Graphene	298	0	68.2 ^{<i>a</i>}	28.9	10
15	Ni NPs@3D-(N)GFs	303	0	41.7 ^{<i>a</i>}	/	11
16	Ni/SiO ₂	303	0	13.2 ^{<i>a</i>}	34.0	12

Table S4. Catalytic performance for AB hydrolysis over previously reported heterogeneous catalysts and this work

^{*a*} the initial TOF value was calculated based on the following equation: TOF $(h^{-1}) = (\text{converted substrate (mmol)})/(\text{total metal amount (mmol)})(\text{reaction time (h)}).$

^{*b*} the initial TOF value was calculated based on the following equation: TOF $(h^{-1}) = (\text{converted substrate (mmol)})/(\text{surface atoms of active metal (mmol)})(\text{reaction time (h)}).$

References

- Y. Ge, X. Qin, A. Li, Y. Deng, L. Lin, M. Zhang, Q. Yu, S. Li, M. Peng, Y. Xu, X. Zhao, M. Xu,
 W. Zhou, S. Yao and D. Ma, *J. Am. Chem. Soc.*, 2021, 143, 628–33.
- 2 Y. Ren, J. Duan, X. Liu, L. Bian, Y. Fan and B. Liu, Energ. Fuel., 2021, 35, 16222-16231.
- 3 P. Li, R. Chen, Y. Huang, W. Li, S. Zhao and S. Tian, Appl. Catal. B: Environ., 2022, 300, 120725.
- 4 K. Guo, H. Li and Z. Yu, ACS Appl. Mater. Interfaces, 2018, 10, 517–525.
- 5 S. Akbayrak, O. Taneroğlu and S. Özkar, New J. Chem., 2017, 41, 6546–6552.
- 6 J. Zhang, C. Chen, W. Yan, F. Duan, B. Zhang, Z. Gao and Y. Qin, *Catal. Sci. Technol.*, 2016, 6, 2112–2119.
- 7 P. Li, K. Aranishi and Q. Xu, Chem. Commun., 2012, 48, 3173-3175.
- 8 B. Mo, S. Li, H. Wen, H. Zhang, H. Zhang, J. Wu, B. Li and H. Hou, ACS Appl. Mater. Interfaces, 2022, 14, 16320–16329.
- 9 P. Li, R. Chen, S. Zhao, W. Li, Y. Lin and Y. Yu, Appl. Catal. B: Environ., 2021, 298, 120523.
- 10 Q. Yao, Z. Lu, Y. Yang, Y. Chen, X. Chen and H. Jiang, Nano Res., 2018, 11, 4412–4422.
- 11 M. Mahyari and A. Shaabani, J. Mater. Chem. A, 2014, 2, 16652–16659.
- 12 Ö. Metin, S. Özkar and S. Sun, Nano Res., 2020, 3, 676–684.