A novel type of donor-acceptor cyclopropanes with fluorine as donor: (3+2)-cycloadditions with carbonyls

Haidong Liu,^a Lifang Tian,^a Hui Wang,^a Zhi-Qiang Li,^a Chi Zhang,^a Fei Xue,^b and Chao Feng*^a

^aTechnical Institute of Fluorochemistry (TIF), Institute of Advanced Synthesis (IAS), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China.

^bInstitute of Material Physics & Chemistry, College of Science, Nanjing Forestry University, Nanjing 210037, China

iamcfeng@njtech.edu.cn

Table of Contents

1. General Information	S1
2. Preparation of Substrates	S2
3. Reaction Optimization	S11
4. General Procedures	S18
5. DFT Study	S20
6. Compound Data of Products	
7. References:	

1. General Information

Unless otherwise noted, all reactions were carried out under dry nitrogen atmosphere. AlCl₃ (Energy Chemical), In(OTf)₃ (Bidepharm), FSO₂CF₂CO₂SiMe₃ (Shang Fluoro). All commercial reagents were used directly without further purification. All solvent dried by passage through a column of neutral alumina under nitrogen prior to use. Organic solutions were concentrated under reduced pressure on an IKA RV 10 rotary evaporator. Flash chromatography was performed using Huanghai flash silica gel (200–300 mesh). Thin-layer chromatography (TLC) was performed on Silicycle 250 µm silica gel plates visualized under UV light (254 nm).

HRMS spectra were recorded on a Xevo G2-XS QTof (Waters Corporation). The NMR spectra were recorded using JEOL 400 MHz Fourier-transform NMR spectrometer. Chemical shifts were reported as δ in units of parts per million (ppm) downfield from SiMe₄ (δ 0.0). Multiplicities were given as: s (singlet); d (doublet); t (triplet); q (quartet); dd (doublet of doublets); dt (doublet of triplets); m (multiplet) and etc. Coupling constants are reported as a J value in Hz. IR spectra were recorded on a NICOLET IS10 (Thermo Fisher Scientific).

2. Preparation of Substrates

Scheme S1. Structure of Trifluoromethyl Alkenes

General Procedure A: Preparation of gem-Difluorocyclopropanes (1a-1c).

Dibenzyl 2-methylenemalonate (S1) was prepared by a modified reported procedure.¹ To a 250 mL round bottom flask equipped with a stir bar were added dibenzyl malonate (1.0 equiv, 10 mmol, 2.84 g), paraformaldehyde (2.0 equiv, 20 mmol, 0.6 g), Diisopropylamine (10 mmol, 1.0 equiv, 1.4 mL), trifluoroacetic acid (11 mmol, 1.1 equiv, 0.82 mL) and dry THF (100 mL). The reaction mixture was stirred, open to the atmosphere, at reflux for 2 h. The mixture would become clear, then the reaction mixture was cooled down to room temperature and a second addition of paraformaldehyde (2.0 equiv, 20 mmol, 0.6 g) was performed. Next, the reaction mixture was stirred at reflux for an additional 6 h open to the atmosphere. The reaction mixture was cooled down and the solvent was removed under reduced pressure, dissolved in Et₂O and washed with brine. The solution mixture was dried (Na₂SO₄) and concentrated under vacuum to get the **S1** as a clear liquid (90% yield) which was carried on directly to the next step. (*Note: purification of this compound led to extensive loss of material on silica*).

Dibenzyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1a) was prepared by a modified reported procedure.² Under N₂ atmosphere, to a 50 mL two neck round bottom flask equipped with a stir bar were added NaF (20 mol%, 1.8 mmol, 76 mg), dibenzyl 2-methylenemalonate (S1, 9 mmol, 1.0 equiv, 2.67 g) and m-xylene (0.5 mL). The mixture was heated to 110 °C and stirred for 5 min. TFDA (FSO₂CF₂CO₂SiMe₃, 18 mmol) was added dropwise in 15 min. Then the mixture was stirred for further 30 min at 110°C. When the substrate was completely conversed detected by TLC, the mixture was cooled to room temperature. After removal of the solvent under reduced pressure, the residue was subjected to column chromatography (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.20, CAM solution, UV) to afford the pure product **1a** (2.31 g, 6.7 mmol, 74% yield) as a colorless oil.

¹H NMR (401 MHz, CDCl₃) δ 7.27 – 7.23 (m, 6H), 7.23 – 7.19 (m, 4H), 5.13 (s, 4H), 2.27 (t, *J* = 9.3 Hz, 2H)

ppm.

¹³C NMR (101 MHz, CDCl₃) δ 163.4 , 134.7 , 128.5 , 128.4 , 128.1 , 109.2 (t, *J* = 291.6 Hz), 68.1 , 39.0 (t, *J* = 11.6 Hz), 21.5 (t, *J* = 9.9 Hz) ppm.

¹⁹F NMR (377 MHz, CDCl₃) δ -131.74 (t, *J* = 9.3 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for C₁₉H₁₆F₂NaO₄⁺ [M+Na]⁺: 369.0914, found: 369.0910.

IR (film) v_{max} 3035, 1743, 1499, 1447, 1380, 1274, 1116, 977, 913, 750, 697 cm⁻¹.

dimethyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1b) was prepared from dimethyl malonate (1.0 equiv, 10 mmol, 1.3 g) according to the *general procedure A*. **1b** was obtained as a colorless oil (47% yield over two steps) after flash chromatography (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.20, 10% phosphomolybdic acid hydrate in EtOH solution);

¹H NMR (401 MHz, CDCl₃) δ 3.81 (s, 6H), 2.32 (t, *J* = 9.3 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.0, 109.1 (t, *J* = 291.3 Hz), 53.4, 38.8 (t, *J* = 11.7 Hz), 21.5 (t, *J* = 9.9 Hz) ppm;

¹⁹F NMR (377 MHz, CDCl₃) δ -132.12 (t, *J* = 9.3 Hz, 3F) ppm;

HRMS (ESI, m/z): calculated for C₇H₈F₂NaO₄⁺ [M+Na]⁺: 217.0288, found: 217.0279.

IR (film) v_{max} 2957, 1743, 1438, 1276, 1163 cm⁻¹.

diethyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1c): was prepared from diethyl malonate (1.0 equiv, 10 mmol, 1.6 g) according to the *general procedure A*. 1c was obtained as a colorless oil (50% yield over two steps) after flash chromatography (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.20, 10% phosphomolybdic acid hydrate in EtOH solution);

¹**H NMR (401 MHz, CDCl**₃) δ 4.21 (qd, *J* = 7.1, 1.3 Hz, 5H), 2.23 (t, *J* = 9.2 Hz, 2H), 1.24 (t, *J* = 7.2 Hz, 6H) ppm.

¹³C NMR (101 MHz, CDCl₃) δ 163.5 , 109.1 (t, *J* = 290.9 Hz), 62.4 , 38.9 (t, *J* = 11.5 Hz), 21.1 (t, *J* = 10.0 Hz), 13.7 ppm.

¹⁹F NMR (377 MHz, CDCl₃) δ -132.53 (t, *J* = 9.4 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for C₉H₁₂F₂NaO₄⁺ [M+Na]⁺: 245.0601, found: 245.0602.

IR (film) v_{max} 2986, 1739, 1447, 1371, 1259, 1176, 1033 cm⁻¹.

General Procedure B: Preparation of gem-Difluorocyclopropanes (1d-1g).

dibenzyl 2-ethylidenemalonate(S2). To an over dried 50 mL round-bottom flask under N_2 was charged with anhydrous DMSO (6 mL), L-Proline (0.15 g, 1.3 mmol), and acetaldehyde (5.0 M in THF, 12.0 mmol, 1.2 equiv). The suspension was stirred for 5 minutes after which dimethylmalonate (10 mmol, 1.0 equiv) was added. After 18 h, the reaction was diluted with ethyl acetate (30 mL) and washed with water (2*30 mL), dried over sodium sulfate and concentrated in vacuo. The desire product **S2** was obtained after column chromatography as a colorless oil. The analytical data obtained matched those reported in the literature.³

dibenzyl 2,2-difluoro-3-methylcyclopropane-1,1-dicarboxylate (1d) was prepared by a modified reported procedure. Under N₂ atmosphere, to a 50 mL two neck round bottom flask equipped with a stir bar were added NaF (20 mol%), dibenzyl 2-ethylidenemalonate (**S2**, 1.0 equiv, 5.0 mmol). The mixture was heated to 110 °C and stirred for 5 min. TFDA (FSO₂CF₂CO₂SiMe₃, 2.0 equiv. 10.0 mmol) was added dropwise in 15 min and the mixture was stirred for further 15 h at 110 °C. Then the mixture was cooled to room temperature and the reaction mixture was subjected to column chromatography directly (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.25, CAM solution, UV) to afford the pure product **1d** (0.36 g, 1.0 mmol, 20% yield) as a colorless oil.

¹**H NMR (401 MHz, CDCl₃)** δ 7.34 – 7.29 (m, 6H), 7.28 – 7.23 (m, 4H), 5.21 – 5.12 (m, 4H), 2.65 (dqd, *J* = 13.5, 6.7, 4.0 Hz, 1H), 1.22 (dd, *J* = 6.8, 1.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.0, 162.4, 134.8 (d, *J* = 9.0 Hz), 128.6, 128.5, 128.5, 128.4, 128.1, 110.4 (dd, *J* = 295.1, 292.3 Hz), 68.1, 67.7, 41.7 (dd, *J* = 13.1, 9.9 Hz), 27.9 (t, *J* = 10.0 Hz), 6.9 (d, *J* = 5.1 Hz) ppm;

¹⁹**F NMR (377 MHz, CDCl**₃) δ -131.02 (dd, *J* = 154.0, 13.5 Hz), -141.15 (dd, *J* = 154.1, 3.7 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for $C_{20}H_{18}F_2NaO_4^+$ [M+Na]⁺: 383.1071, found: 383.1078.

IR (film) v_{max} 2960, 1739, 1499, 1455, 1380, 1166, 750, 698 cm⁻¹.

CO₂Bn

dibenzyl 2,2-difluoro-3-nonylcyclopropane-1,1-dicarboxylate (1e) was prepared from dibenzyl malonate (1.0 equiv, 10 mmol, 2.84 g) and decanal (1.2 equiv, 12 mmol, 1.87 g) according to the *general procedure B*. 1e was obtained as a colorless oil (15% yield over two steps) after flash chromatography (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (401 MHz, CDCl₃)** δ 7.35 – 7.26 (m, 8H), 7.13 (d, *J* = 7.9 Hz, 2H), 7.07 (d, *J* = 8.1 Hz, 2H), 6.99 (d, *J* = 7.4 Hz, 2H), 6.00 (d, *J* = 2.7 Hz, 1H), 5.25 (d, *J* = 12.0 Hz, 1H), 5.14 (d, *J* = 12.0 Hz, 1H), 4.75 (d, *J* = 12.1 Hz, 1H), 4.38 (d, *J* = 12.1 Hz, 1H), 3.53 – 3.40 (m, 1H), 2.32 (s, 3H), 1.41 – 1.14 (m, 16H), 0.89 (t, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.1 , 162.5 , 134.8 (d, *J* = 4.1 Hz), 128.6 , 128.5 , 128.5 , 128.4 , 128.0 , 110.4 (q, *J* = 294.8 292.9 Hz), 68.1 , 67.6 , 41.8 (dd, *J* = 13.0, 9.3 Hz), 33.0 (t, *J* = 9.4 Hz), 31.8 , 29.4 , 29.3 , 29.3 , 28.9 , 28.1 , 22.7 , 22.3 (d, *J* = 2.6 Hz), 14.1 ppm;

¹⁹**F NMR (377 MHz, CDCl₃)** δ -129.77 (ddd, *J* = 154.6, 13.7, 3.6 Hz, 1F), -141.17 (dd, *J* = 154.6, 4.2 Hz 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₈H₃₄F₂NaO₄⁺ [M+H]⁺: 357.1853, found: 357.1847.

IR (film) v_{max} 2927, 2856, 1741, 1499, 1456, 1377, 1262, 1088, 749, 697 cm⁻¹.

dibenzyl 2,2-difluoro-3-phenethylcyclopropane-1,1-dicarboxylate (1f) was prepared from dibenzyl malonate (1.0 equiv, 10 mmol, 2.84 g) and 3-phenylpropanal (1.2 equiv, 12 mmol, 1.6 g) according to the *general procedure B*. **1f** was obtained as a colorless oil (27% yield over two steps) after flash chromatography (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.20, CAM solution, UV);

¹**H NMR (401 MHz, CDCl₃)** δ 7.37 – 7.33 (m, 3H), 7.32 – 7.25 (m, 9H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.11 (d, *J* = 6.9 Hz, 3H), 5.26 – 5.11 (m, 4H), 2.73 (h, *J* = 7.3 Hz, 2H), 2.69 – 2.54 (m, 1H), 2.04 – 1.88 (m, 1H), 1.80 (dq, *J* = 15.0, 8.1 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 163.9, 162.4, 140.1, 134.7 (d, *J* = 1.3 Hz), 128.6, 128.5, 128.5, 128.4, 128.4, 128.0, 126.3, 110.2 (dd, *J* = 295.3, 292.3 Hz), 41.9 (dd, *J* = 13.1, 9.4 Hz), 34.2, 32.3 (t, *J* = 9.3 Hz), 24.3 (d, *J* = 2.3 Hz) ppm;

¹⁹**F NMR (377 MHz, CDCl₃)** δ -129.89 (ddd, *J* = 154.4, 13.5, 3.8 Hz, 1F), -139.74 (dd, *J* = 154.7, 4.6 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₇H₂₄F₂NaO₄⁺ [M+Na]⁺: 473.1540, found: 473.1543.

IR (film) v_{max} 3032, 1739, 1498, 1455, 1378, 1263, 1166, 1090, 950, 750, 698 cm⁻¹.

dibenzyl 2,2-difluoro-3-isobutylcyclopropane-1,1-dicarboxylate (1g) was prepared from dibenzyl malonate (1.0 equiv, 10 mmol, 2.84 g) and 3-methylbutanal (1.2 equiv, 12 mmol, 1.0 g) according to the *general* procedure B. 1g was obtained as a colorless oil (15% yield over two steps) after flash chromatography (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.20, CAM solution, UV);

¹**H NMR (401 MHz, CDCl₃)** δ 7.35 – 7.25 (m, 10H), 5.23 – 5.11 (m, 4H), 2.58 (ddt, *J* = 14.1, 9.4, 4.7 Hz, 1H), 1.74 – 1.59 (m, 2H), 1.29 – 1.21 (m, 1H), 0.90 (dd, *J* = 10.1, 6.4 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.1, 162.6, 134.8 (d, *J* = 5.1 Hz), 128.6, 128.5, 128.5, 128.0, 110.4 (t, *J* = 294.0 Hz), 68.1, 67.6, 41.6 (dd, *J* = 13.5, 9.7 Hz), 31.7 (t, *J* = 9.5 Hz), 30.7, 27.4, 22.3, 21.5 ppm;

¹⁹**F NMR (377 MHz, CDCl₃)** δ -129.89 (ddd, *J* = 154.4, 13.5, 3.8 Hz, 1F), -139.74 (dd, *J* = 154.7, 4.6 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₃H₂₄F₂NaO₄⁺ [M+Na]⁺: 425.1540, found: 425.1542.

IR (film) v_{max} 2960, 1740, 1499, 1456, 1377, 1264, 1189, 1143, 1074, 965, 749, 697 cm⁻¹.

General Procedure C: Preparation of dibenzyl cyclopropane-1, 1-dicarboxylate (1h)

$$BnO \rightarrow OBn + Br \rightarrow Br \rightarrow Br \rightarrow CO_2Bn$$

$$CO_2Bn + Br \rightarrow DMF, rt \rightarrow CO_2Bn$$

$$1h$$

To a solution of dibenzyl malonate (1.0 equiv, 4 mmol, 1.0 g) in DMF (20 mL) was added K_2CO_3 (9.0 equiv, 36 mmol, 5.0 g) and 1,2-dibromoethane (3.0 equiv, 12 mmol, 1.0 mL). The reaction mixture was stirred at room temperature for 24 h. The reaction was diluted with ethyl acetate (30 mL) and washed with water (2 x 30 mL), dried over sodium sulfate and concentrated in vacuo. The desire product **1h** was obtained after column chromatography (Petroleum ether/EtOAc = 5 : 1, TLC Rf = 0.30, UV) as a colorless oil(0.96 g, 3.1 mmol, 78% yield).

1h

¹H NMR (401 MHz, CDCl₃) δ 7.36 – 7.26 (m, 10H), 5.15 (s, 4H), 1.49 (s, 4H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.7, 135.6, 128.6, 128.3, 128.2, 67.3, 28.3, 17.1 ppm;

HRMS (ESI, m/z): calculated for C₁₉H₁₉O₄⁺ [M+H]⁺: 311.1283, found: 311.1288.

IR (film) v_{max} 3034, 1731, 1498, 1456, 1383, 1318, 1199, 1128, 751, 697 cm⁻¹.

General Procedure D Preparation of dimethyl 2,2-dichlorocyclopropane-1,1-dicarboxylate (1i)

di-tert-butyl 2-methylenemalonate (**S3**) was prepared by a modified reported procedure.¹ To a 250 mL round bottom flask equipped with a stir bar were added di-tert-butyl malonate (1.0 equiv, 10 mmol, 2.84 g), paraformaldehyde (2.0 equiv, 20 mmol, 0.6 g), Diisopropylamine (10 mmol, 1.0 equiv, 1.4 mL), trifluoroacetic acid (11 mmol, 1.1 equiv, 0.82 mL) and dry THF (100 mL). The reaction mixture was stirred, open to the atmosphere, at reflux for 2 h. The mixture would become clear, then the reaction mixture was cooled down to room temperature and a second addition of paraformaldehyde (2.0 equiv, 20 mmol, 0.6 g) was performed. Next, the reaction mixture was stirred at reflux for an additional 6 h open to the atmosphere. The reaction mixture was cooled down and the solvent was removed under reduced pressure, dissolved in Et₂O and washed with brine. The solution mixture was dried (Na₂SO₄) and concentrated under vacuum to get the **S3** as a clear liquid (90% yield) which was carried on directly to the next step. Spectral data matched that previously reported¹.

di-tert-butyl 2,2-dichlorocyclopropane-1,1-dicarboxylate (S4) di-tert-butyl 2-methylenemalonate (S3, 2.0 g, 9.0 mmol), chloroform (5.0 mL), benzyltrimethylammonium bromide (0.41 g, 1.8 mmol, 2 mol%) were put in a flask equipped with a magnetic stirrer and thermometer. A 50% solution of sodium hydroxide (1.1 g, 27.0 mmol, 3.0 equiv) was added dropwise with cooling in an ice-salt bath (T<5 °C). The mixture was stirred for 2.0 h under ambient temperature and quenched with water. The organic layer was separated and washed with water. The aqueous layer was extracted with dichloromethane. The combined organic layers were dried and the solvent was removed in vacuo. The S4 was obtained after column chromatography (DCM = 100% to DCM/EA = 20 : 1, TLC (DCM) Rf = 0.15, 10% phosphomolybdic acid hydrate in EtOH solution) as a white solid(0.98 g, 0.34 mmol, 35% yield).

S4

¹H NMR (400 MHz, CDCl₃) δ 2.19 (s, 1H), 1.50 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 163.2, 83.4, 59.4, 44.9, 30.3, 27.9 ppm;

HRMS (ESI, m/z): calculated for C₁₃H₂₀Cl₂NaO₄⁺ [M+Na]⁺: 369.0272, found: 369.0280.

IR (film) v_{max} 2979, 1740, 1728, 1369, 1324, 1288, 1251, 1169, 1128, 843, 760 cm⁻¹.

2,2-dichlorocyclopropane-1,1-dicarboxylic acid (**S5**): Ester **S4** (310 mg, 1.0 mmol) and trifluoroacetic acid (1.0 mL) were allowed to stand for 1.0 h at ambient temperature. The reaction mixture was washed with hexane (5x5.0 mL) to give 2,2-dichlorocyclopropane-1,1-dicarboxylic acid (**S5**) as a sticky solid which was direct used in the next step without further purification.

dimethyl 2,2-dichlorocyclopropane-1,1-dicarboxylate (1i): The acid S5 was dissolved in Et₂O (8.0 mL) and MeOH (2.0 mL). The mixture was cooled to 0 °C, The Et₂O solution of TMSCHN₂ (2.0 mmol, 2.0 equiv) was added at 0 °C. The mixture was stirred at 0 °C for 30 min. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography (PE/EA = 20:1. Rf = 0.27, 10% phosphomolybdic acid hydrate in EtOH solution) to afford the 1i as a colourless liquid (0.14 g, 60%).

¹H NMR (400 MHz, CDCl₃) δ 3.83 (s, 6H), 2.37 (s, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.5, 59.4, 53.6, 43.6, 30.9 ;ppm;

HRMS (ESI, m/z): calculated for C₇H₈Cl₂NaO₄⁺ [M+Na]⁺: 248.9697, found: 348.9702.

IR (film) v_{max} 2925, 2854, 1743, 1437, 1324, 1291, 1254, 1126, 1054 cm⁻¹.

General Procedure E: Preparation of dimethyl 2,2-dibromocyclopropane-1,1-dicarboxylate (1j)

di-tert-butyl 2,2-dibromocyclopropane-1,1-dicarboxylate (S6): di-tert-butyl 2-methylenemalonate (2.0 g, 9.0 mmol), bromoform (1.1 mL, 13.5 mmol, 1.5 equiv), Benzyltriethylammonium chloride (TEBA, 0.4 g, 1.8 mmol, 2 mol%) and dichloromethane (20 mL) were put in a flask equipped with a magnetic stirrer and thermometer. A 50% solution of sodium hydroxide (1.1 g, 27.0 mmol, 3.0 equiv) was added dropwise with cooling in an ice-salt bath (T<5 °C). The mixture was stirred for 12 h under ambient temperature and quenched with water. The organic layer was separated and washed with water. The aqueous layer was extracted with dichloromethane. The combined organic layers were dried. The solvent was removed and the residue was crystallised from hexane giving ester S6 as a colourless solid (0.9 g, 25%). Spectral data matched that previously reported⁵.

2,2-dibromocyclopropane-1,1-dicarboxylic acid (S7): Ester S4 (0.79 g, 2.0 mmol) and trifluoroacetic acid (1.0 mL) were allowed to stand for 1 h at ambient temperature. The product was filtered and washed with hexane to give acid **S7** as a white solid (0.57 mg, 99%). Spectral data matched that previously reported⁵.

dimethyl 2,2-dibromocyclopropane-1,1-dicarboxylate (1j): The acid S7 (0.5 mmol, 0.14 g) was dissolved in Et₂O (4.0 mL) and MeOH (1.0 mL). The mixture was cooled to 0 °C, The Et₂O solution of TMSCHN₂ (1.0 mmol, 2.0 equiv) was added at 0 °C. The mixture was stirred at 0 °C for 30 min. The volatile was removed under reduced pressure and the crude residue was purified by column chromatography (PE/EA = 20:1. Rf = 0.25, UV) to afford the 1j as a colourless liquid (0.25g, 80%).

¹H NMR (401 MHz, CDCl₃) δ 2.32 (s, 2H), 1.52 (s, 18H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 163.5, 83.6, 44.0, 32.2, 27.9, 22.9 ppm;

HRMS (ESI, m/z): calculated for $C_7H_8Br_2O_4^+$ [M+H]⁺: 314.8868, found: 314. 8867.

IR (film) v_{max} 2955, 1747, 1436, 1315, 1238, 1123, 1039, 874, 696 cm⁻¹.

General Procedure F Preparation of dibenzyl 2-fluorocyclopropane-1,1-dicarboxylate (1k)

dibenzyl 2-fluorocyclopropane-1,1-dicarboxylate (1k) and (2, 4dimethylphenyl)(fluoromethyl)(phenyl)sulfonium tetrafluoroborate (S8) was prepared by a reported procedure.⁴ To a solution of dibenzyl 2-methylenemalonate (S1, 296 mg, 1.0 mmol, 1.0 equiv) in anhydrous added THF (100 mL) cooled in ice bath under atmosphere N_2 was (2, 4dimethylphenyl)(fluoromethyl)(phenyl)sulfonium tetrafluoroborate (S8, 668 mg, 2.0 mmol, 2.0 equiv) followed by NaH (60% in mineral oil, 400 mg, 10 mmol, 10 equiv). The reaction mixture was stirred for 15 min at 0 °C. When the substrate was completely conversed detected by TLC, the reaction was quenched with water, exacted with EA (15 x 3 mL), dried over sodium sulfate and concentrated in vacuo. The desire product 1k was obtained after column chromatography (Petroleum ether/EtOAc = 20 : 1, TLC Rf = 0.15, CAM solution, UV) as a colorless oil(0.11 g, 0.34 mmol, 34% yield).

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.26 (m, 10H), 5.28 – 5.01 (m, 5H), 2.24 (ddd, *J* = 22.3, 7.4, 4.2 Hz, 1H), 1.64 (dt, *J* = 13.7, 6.7 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.6, 164.4 (d, *J* = 3.2 Hz), 135.1, 134.9, 128.6, 128.5, 128.4, 128.3, 128.1, 128.1, 75.1 (d, *J* = 235.5 Hz), 67.9, 67.5, 34.4 (d, *J* = 12.5 Hz), 20.3 (d, *J* = 9.1 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -211.59 (ddd, J = 63.4, 22.4, 15.0 Hz) ppm;

HRMS (ESI, m/z): calculated for C19H17FNaO4⁺ [M+Na]⁺: 351.1009, found: 351.1014.

IR (film) v_{max} 3035, 1738, 1498, 1455, 1381, 1317, 1282, 1215, 1124, 1074, 1027, 750, 697 cm⁻¹.

dibenzyl 2-benzylidenemalonate (S9). To an over dried 100 mL round-bottom flask was charged with anhydrous toluene (30 mL), dibenzyl malonate (1.0 equiv, 10 mmol, 2.84 g), benzaldehyde (1.0 equiv, 10 mmol, 1.06 g), piperidine (10 mol%, 1 mmol, 85 mg) and glacial acetic acid (10 mol%, 1 mmol, 60 mg). The reaction mixture was refluxed under Dean-Stark condition until water collection ceased. The reaction mixture was then sequentially washed with water, 5% aqueous HCl, saturated aqueous NaHCO₃ and brine. The organic layer was dried over anhydrous Na₂SO₄ and the solvent was evaporated in vacuo. The desire product **S9** was obtained after column chromatography as a colorless oil. The analytical data obtained matched those reported in the literature.⁶

dibenzyl 2,2-difluoro-3-phenylcyclopropane-1,1-dicarboxylate (11). was prepared by a modified reported procedure. Under N₂ atmosphere, to a 50 mL two neck round bottom flask equipped with a stir bar were added NaF (20 mol%) and dibenzyl 2-benzylidenemalonate (**S9**, 1.0 equiv). The mixture was heated to 130 °C and stirred for 5 min. TFDA (FSO₂CF₂CO₂SiMe₃, 2.0 equiv) was added dropwise in 15 min and the mixture was stirred for further 15 h at 130 °C. Then the mixture was cooled to room temperature and the reaction mixture was subjected to column chromatography directly (Petroleum ether/EtOAc = 50 : 1, TLC Rf = 0.20, CAM solution, UV) to afford the pure product **11** (0.29 g, 0.7 mmol, 27% yield over two steps) as a colorless oil.

¹**H NMR (401 MHz, CDCl₃)** δ 7.36 – 7.19 (m, 13H), 6.98 (d, *J* = 7.6 Hz, 2H), 5.34 – 5.16 (m, 2H), 4.98 – 4.84 (m, 2H), 3.87 (dd, *J* = 14.3, 3.9 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 163.7 , 161.8 , 134.8 , 134.6 , 129.3 , 128.7 , 128.7 , 128.6 , 128.5 , 128.5 , 128.2 , 109.6 (dd, *J* = 298.0, 291.4 Hz), 68.6 , 67.7 , 44.7 (dd, *J* = 12.5, 8.0 Hz), 36.3 (dd, *J* = 12.4, 7.9 Hz) ppm;

¹⁹F NMR (377 MHz, CDCl₃) δ -124.79 (dd, J = 158.5, 14.4 Hz, 1F), -138.41 (dd, J = 158.4, 3.9 Hz, 1F) ppm; HRMS (ESI, m/z): calculated for C₂₅H₂₀F₂NaO₄⁺ [M+Na]⁺: 321.0984, found: 321.0992.

IR (film) v_{max}, 1741, 1500, 1456, 1436, 1379, 1263, 1090, 971, 747, 697 cm⁻¹.

3. Reaction Optimization

General Procedure for Screening of Unsaturated Systems

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ (20 mol%,0.02 mmol, 2.7 mg) and DCE (1.0 mL) in a glove box. Then, the unsaturated systems (1.5 equiv, 0.15 mmol) and dibenzyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1.0 equiv, 0.1 mmol) was added. Then., the reaction mixture was stirred at room temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

Table S1. Screening of Unsaturated Systems

^a Yields determined by ¹⁹F NMR.

General Procedure for optimization of Lewis acids

To an over dried 10 mL Schlenk tube equipped with a stir bar was added appropriate Lewis acid (20 mol%,0.02 mmol) and DCM (1.0 mL) in a glove box. The tube was sealed with a cap and then charged with 4-methylbenzaldehyde (1.5 equiv, 0.15 mmol) followed by dibenzyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1.0 equiv, 0.1 mmol) by microinjector. The reaction mixture was stirred at room temperature for 12 h. After 12 h, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

	O ₂ Bn + O ₂ Bn	Me	<a>O	vis acid (20 DCM, r.t. 12	mol%) 2 h F-	CO ₂ Bn	— Ме
1a , 1.0 e	equiv	2a , 1.5 equ	uiv		F	<u>-</u> 3a	
Entry	LA (20 mol%)	Yield of 3a (%)	Conversion of 1a (%)	Entry	LA (20 mol%)	Yield of 3a (%)	Conversion of 1a (%)
1	Sn(OTf) ₂	0	100	13	MgI_2	0	65
2	Zn(OTf) ₂	11	12	14	TMSOTf	trace	33
3	Yb(OTf) ₂	34	47	15	BF ₃ OEt	0	40
4	SnCl ₂	0	100	16	Ni(OTf) ₂	0	2
5	AlCl ₃	65	97	17	Fe(OTf) ₃	14	60
6	Cu(OTf) ₂	6	26	18	TfOH	0	15
7	Bi(OTf) ₂	4	52	19	In(OTf) ₃	62	100
8	La(OTf) ₃	0	10	20	Ga(OTf) ₃	12	35
9	NbCl ₅	0	100	21	MgCl ₂	0	8
10	Eu(OTf) ₃	7	31	22	Ti(OEt) ₄	0	7
11	Sc(OTf) ₃	0	100	23	TiCl ₄	0	100
12	AgSbF ₆	12	99	24	PPh ₃ AuCl	0	7

Table S2. Screening of Lewis Acids^a

^a Yields determined by ¹⁹F NMR.

General Procedure for optimization of equivalent of Lewis acid

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ in appropriate equivalent and DCM (1.0 mL) in a glove box. The tube was sealed with a cap and then charged with 4methylbenzaldehyde (1.5 equiv, 0.15 mmol) followed by dibenzyl 2,2-difluorocyclopropane-1,1dicarboxylate (1.0 equiv, 0.1 mmol) by microinjector. The reaction mixture was stirred at this temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

F CO ₂ Bn -		I ₃ (n mol%) BnO ↓, r.t. 12 h F	CO ₂ Bn
1a , 1.0 equiv	2a , 1.5 equiv	F	3a
Entry	Equivalent of Catalyst (n)	Yield of 3a (%)	Conversion of 1a (%)
1	1	0	5
2	2	0	6
3	5	trace	9
4	10	56	71
5	20	65	97
6	50	33	100

Table S3. Screening of Equivalent of Lewis Acid^a

^a Yields determined by ¹⁹F NMR.

General Procedure for optimization of solvent and temperature

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ (20 mol%, 0.02 mmol) appropriate Solvent (1.0 mL) in a glove box. The tube was sealed with a cap and the mixture was cooled to appropriate temperature. The tube was then charged with 4-methylbenzaldehyde (1.5 equiv, 0.15 mmol) followed by dibenzyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1.0 equiv, 0.1 mmol) by microinjector. The reaction mixture was stirred at the indicated temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

	0₂Bn + 0₂Bn Me ´	AICI3 Solve	ent, r.t. 12 h	F
1a	2	a , 1.5 equiv		3a
Entry	Solvent	T (°C)	Yield of 3a (%)	Conversion of 1a (%)
1	DCM	25	65	97
2	DCM	0	77	98
3	DCM	-20	82	99
4	DCE	25	52	100
5	DCE	-20	95	100

Table S4. Screening of Solvent and Temperature

^aYields determined by ¹⁹F NMR.

General Procedure for Screening of Other Unsaturated Systems

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ (20 mol%,0.02 mmol, 2.7 mg) and DCE (1.0 mL) in a glove box. Then, the unsaturated systems (1.5 equiv, 0.15 mmol) and dibenzyl 2,2-difluorocyclopropane-1,1-dicarboxylate (1.0 equiv, 0.1 mmol) was added. Then, the reaction mixture was stirred at room temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

Table S5. Screening of Other Unsaturated Systems

General Procedure for Enantioselective reaction

To an over dried 10 mL Schlenk tube equipped with a stir bar was added Lewis acid (10 mol%,0.01 mmol) and solvent (1.0 mL) in a glove box. The reaction mixture was stirred for 10 min. Then, dibenzyl 2,2-difluorocyclopropane-1,1-dicarboxylate **1a** (1.0 equiv, 0.1 mmol) and 4-methylbenzaldehyde 2a (1.5 equiv, 0.1 mmol) was added. The tube was sealed and stirred at room temperature for 12 h. Then, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

Table S6 Screening of Ligand

Table S6 Screening of the Combinations of Lewis acid and Ligand

General Procedure for Enantioselective Reaction

To an over dried 10 mL Schlenk tube equipped with a stir bar was added R-BINOL (20 mol%,0.01 mmol) and DCE (1.0 mL) in a glove box. The tube was sealed with a cap and the mixture was cooled to -20 °C. Then, AlMe3 in hexane (20 mol%) was added with the help of micro-syringe. The reaction mixture was vigorously stirred for 30 min. Then, the reaction mixture was stirred at this temperature for 12 h. Then, the solvent was removed *in vacuo* by rotary evaporation. The 1-iodo-4-(trifluoromethyl)benzene (0.1 mmol, 27.2 mg) was added to the crude residue and the mixture was dissolved with CDCl₃. Then the reaction mixture was analyzed by ¹⁹F NMR.

4. General Procedures

General Procedure (GP1): Preparation of gem-Difluorotetrahydrofuran Derivatives 3-6

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ (20 mol%,0.04 mmol, 5.3 mg) and DCE (1.0 mL) in a glove box. The tube was sealed with a cap and the mixture was cooled to -20 °C. The tube was then charged with aldehydes or ketones (1.5 equiv, 0.3 mmol in 0.5 mL DCE) followed by *gem*-difluorocyclopropanes (1.0 equiv, 0.2 mmol in 0.5 mL DCE) by syringe. The reaction mixture was stirred at this temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The crude residue was further purified by column chromatography on silica gel (Petroleum ether/EtOAc = 50:1 to 5:1) to afford the desired product.

General Procedure (GP2): Preparation of gem-Difluorotetrahydrofuran Derivatives 3-6

To an over dried 10 mL Schlenk tube equipped with a stir bar was added $In(OTf)_3$ (20 mol%,0.04 mmol, 22.5 mg) and DCE (1.0 mL) in a glove box. The tube was sealed with a cap and the mixture was cooled to - 20 °C. The tube was then charged with aldehydes or ketones (1.5 equiv, 0.3 mmol in 0.5 mL DCE) followed by *gem*-difluorocyclopropanes (1.0 equiv, 0.2 mmol in 0.5 mL DCE) by syringe. The reaction mixture was stirred at this temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The crude residue was further purified by column chromatography on silica gel (Petroleum ether/EtOAc = 50:1 to 5:1) to afford the desired product.

General Procedure (GP3): Preparation of Tetrahydrofuran Derivatives 7-10

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ (20 mol%,0.04 mmol, 5.3 mg) and DCE (1.0 mL) in a glove box. The tube was sealed with a cap and the mixture was cooled to -20 °C. The tube was then charged with *p*-Tolualdehyde (1.5 equiv, 0.3 mmol in 0.5 mL DCE) followed by cyclopropanes (1.0 equiv, 0.2 mmol in 0.5 mL DCE) by syringe. The reaction mixture was stirred at this temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The crude residue was further purified by column chromatography on silica gel (Petroleum ether/EtOAc = 50:1) to afford the desired product.

General Procedure (GP4): Preparation of gem-Difluorotetrahydrofuran Derivatives 11

To an over dried 10 mL Schlenk tube equipped with a stir bar was added AlCl₃ (20 mol%,0.04 mmol, 5.3 mg) and DCE (1.0 mL) in a glove box. The tube was sealed with a cap and the mixture was cooled to -20 °C. The tube was then charged with *p*-Tolualdehyde (1.5 equiv, 0.3 mmol in 0.5 mL DCE) followed by dibenzyl 2,2-difluoro-3-phenylcyclopropane-1,1-dicarboxylate (**1j**, 1.0 equiv, 0.2 mmol in 0.5 mL DCE). The reaction mixture was stirred at this temperature for 12 h. After this time, the solvent was removed *in vacuo* by rotary evaporation. The crude residue was further purified by column chromatography on silica gel (Petroleum ether/EtOAc = 20:1) to afford the desired product **5ja**.

5. DFT Study

The DFT calculations were performed with the Gaussian 09 program.⁷ Geometries of the minimum energy structures and the transition states were optimized at the B3-LYP level of theory with the 6-31G(d, p) basis set in MeCN implicitly.⁸ Harmonic vibrational frequency calculations were performed for all stationary points to confirm whether they are local minima or transition structures, and to derive the thermochemical corrections for the enthalpies and free energies. Solvent effects in CH₂Cl₂ were considered implicitly using the SMD polarizable continuum model.⁹ The single-point energies were obtained using the M06-2X functional with the 6-311G (d, p) basis set with more accurate energy information.¹⁰

Scheme S2. DFT Study: Gibbs Free Energy (kcal/mol) Profile for [3+2] Cycloaddition of *gem*-Difluorocyclopropane 1b and Aldehyde 2a

Table S5. The calculated Mulliken charge distribution of the gem-difluorocyclopropane 1b

Atom	value
C1	0.610
C2	-0.205
C3	-0.271

Table S6. The calculated Mulliken charge distribution of the intermediate 1b-I

Atom	value
C1	0.649
C2	-0.270
C3	-0.240

Table S7. The Calculated Mulliken Charge Distribution of the 1b-TS1

1b-TS1

Atom	value
C1	0.712
C2	-0.285
C3	-0.214

Scheme S3. LUMO Orbital of 1b and 1b-I with the Isovalue of 0.1 Atomic Units

1b

1b-I

Table S8 B3-LYP Calculated Energies, Enthalpies, and Free Energies

Geometry	E(elec-B3LYP) ^a	$G_{(Corr-B3LYP)}^{b}$	H _(Corr-B3LYP) ^c	$E_{(solv-M06)}^d$	G from shermo	IF ^e
1b	-772.12403131	0.10786	0.16549	-772.05448621	-771.94955630	-
2a	-384.91694252	0.10339	0.14646	-384.83179625	-384.73107380	-

AlCl ₃	-1623.24196790	-0.02493	0.01095	-1623.22504785	-1623.25006630	-
1b-I	-2395.42490186	0.10771	0.17902	-2395.35088227	-2395.24624210	-
1b-TS1	-2780.33660540	0.22977	0.32658	-2780.17426519	-2779.950234	-299.74
1b-II	-2780.37261839	0.23677	0.32940	-2780.21334222	-2779.98238620	-
1b-TS2	-2780.36676157	0.23807	0.32837	-2780.20712432	-2779.97486630	-21.43
1b-II'	-2780.37418279	0.23707	0.32950	-2780.21839224	-2779.98713890	-
1b-TS3	-2780.36994498	0.23915	0.32831	-2780.21478403	-2779.98145020	-17.34
1b-III	-2780.37691501	0.23811	0.32931	-2780.22214567	-2779.98985640	-
1b-IV	-2780.38934716	0.24188	0.33027	-2780.24961471	-2780.01358710	-

Relative energies (kcal/mol) for the studied complexes of at B3LYP/6-311G(d,p) level of theory. ^{*a*}The electronic energy calculated by B3-LYP in CH₂Cl₂. ^{*b*}The thermal correction to Gibbs free energy calculated by B3-LYP in CH₂Cl₂. ^{*c*}The thermal correction to enthalpy calculated by B3-LYP in CH₂Cl₂. ^{*d*}The electronic energy calculated by M06 in CH₂Cl₂. ^{*e*}The B3-LYP calculated imaginary frequencies for the transition states.

B3-LYP Geometries for All the Optimized Species and Transition State

1b			
01			
С	-0.47438100	-1.37601200	1.35954400
С	-0.16565100	-0.33182500	0.25343500
С	-0.85421600	-1.64147300	-0.03259300
Н	0.37089500	-1.92026600	1.76761400
Н	-1.26194500	-1.09096200	2.04937900
F	-0.17846100	-2.57130300	-0.74323900
F	-2.14885300	-1.64134300	-0.41331600
С	-1.02251200	0.90714900	0.27249800
0	-2.07336300	1.00253900	0.87094800
0	-0.47275200	1.88057300	-0.46539600
С	1.25535500	-0.15254400	-0.23628900
0	1.62433700	-0.35585400	-1.37206700
0	2.04471700	0.27721500	0.75843400
С	-1.20903900	3.12362900	-0.52793700
Н	-1.34134300	3.53864100	0.47356500
Н	-0.59991400	3.78870900	-1.13896500
Н	-2.18360900	2.96412900	-0.99456300
С	3.42098600	0.53573800	0.40020200
Н	3.90443000	0.86683400	1.31875800
Н	3.89584800	-0.37409600	0.02620500

2a
2a

0

С

0

0

С

Н

Н

Η

С

Η

Н

01			
С	1.75586200	-0.06378600	-0.00770800
С	1.16103300	1.20619300	-0.00625700
С	-0.22550000	1.34424900	-0.00164900
С	-1.04816000	0.20980700	0.00020300
С	-0.46077500	-1.06737400	-0.00302000
С	0.92065400	-1.19787100	-0.00778200
Н	1.79192300	2.09080700	-0.00899200
Н	-0.67622000	2.33387000	-0.00158000
Н	-1.10475300	-1.94152700	-0.00395000
Н	1.36928500	-2.18793200	-0.01255300
С	-2.51232700	0.37121200	0.00358000
0	-3.31708500	-0.54872100	0.00483300
Н	-2.86082800	1.42553400	0.00548900
С	3.25466200	-0.22217800	0.00938100
Н	3.76154000	0.71898400	-0.21986500
Н	3.59984300	-0.55544100	0.99620400
Н	3.58320400	-0.97604500	-0.71390200
1b-I			
01			
С	3.16144100	0.34247800	-0.83596500
С	1.67093900	0.15909800	-0.40334500
С	2.86814100	0.34911800	0.58481300
Н	3.62372900	-0.54475900	-1.25351300
Н	3.39096300	1.29010700	-1.30991900
F	3.17655800	-0.68885800	1.36840600
F	2.89553900	1.48528600	1.29132100
С	0.72889500	1.29529200	-0.53957900
0	-0.50606200	1.20083200	-0.37587800

1.28328600

1.04593400

-0.16991200

1.90024100

0.43294300

-0.07519400

1.12344900

-0.28695500

1.37979000

2.25905900

0.87600000

2.43313300

-1.19125400

-1.38261100

-2.16381500

3.62343800

3.76912600

4.43721200

3.49946600

-3.52721000

-4.15345900

-3.75472500

-0.82948400

-0.47893800

-0.36983500

-0.66749900

-0.90761400

0.04562100

-1.11612400

-1.71677400

-0.70684600

-0.84101900

0.23305300

Н	0.69284300	-3.63190300	-1.54725300
Al	-1.77094800	-0.16248800	0.11619400
Cl	-1.64216100	-1.08010000	2.10315200
Cl	-3.23842500	1.45446800	0.58875700
Cl	-2.82643500	-1.13746400	-1.53165800

1b-TS1

01			
С	0.43252300	0.28462900	-1.25719400
С	-1.01202200	0.13407800	-0.78797300
С	0.77353900	0.21742500	0.14088500
Н	0.79770300	-0.56185500	-1.83316200
Н	0.65603400	1.24603500	-1.71329200
F	0.98418200	-0.89464400	0.77247700
F	0.81895000	1.25030300	0.91723100
С	-1.82275500	1.28248500	-0.53121500
0	-3.04233400	1.25148600	-0.19315200
0	-1.21849700	2.44566300	-0.66653500
С	-1.63789600	-1.16260800	-0.71359000
0	-2.83107400	-1.35241100	-0.39712000
0	-0.84443900	-2.17946900	-1.01332300
С	-1.98036400	3.65374900	-0.38877400
Н	-2.32294900	3.64915600	0.64668800
Н	-1.27890600	4.46795700	-0.56091400
Н	-2.83008100	3.72391800	-1.06866600
С	-1.40765600	-3.51603800	-0.93082000
Н	-0.58166900	-4.18255500	-1.17311500
Н	-1.77547000	-3.70656900	0.07838400
Н	-2.21686200	-3.62573800	-1.65430700
Al	-4.29324200	-0.11416300	0.21347700
Cl	-4.13957300	-1.10551600	2.18104500
Cl	-5.74925000	1.50203100	0.82488500
Cl	-5.52322000	-0.98639400	-1.39781900
0	3.17189500	0.48611800	-0.21520300
С	3.97393500	-0.25026500	0.35978300
С	5.42677100	-0.13982200	0.24519600
Н	3.60960200	-1.06147200	1.01749900
С	6.02252900	0.84769500	-0.56255700
С	6.24172700	-1.03398300	0.95621100
С	7.40327700	0.92987500	-0.65039600
Н	5.38765100	1.53830000	-1.10861600
С	7.62777600	-0.94372500	0.86256300
Н	5.78453800	-1.79610800	1.58219900
С	8.23005200	0.03613000	0.05970000

Н	7.86014100	1.69382500	-1.27392300
Н	8.25321900	-1.63776700	1.41662900
С	9.72850600	0.13579100	-0.05430700
Н	10.05882400	-0.10218400	-1.07281200
Н	10.07273000	1.15332900	0.16208700
Н	10.23011600	-0.55072200	0.63247200
1b-II			
0 1			
С	-0.68678600	-0.24749600	-0.66135100
С	0.80222100	-0.11112800	-0.49141000
С	-1.41175600	-0.34085100	0.66827200
Н	-1.10233700	0.60985900	-1.19698500
Н	-0.93821000	-1.15099400	-1.22106900
F	-1.28033000	0.76876000	1.42285600
F	-1.03466100	-1.39058500	1.40749200
С	1.62950400	-1.24060700	-0.42400600
0	2.90212800	-1.23729700	-0.27044400
0	1.02689600	-2.42594900	-0.54574800
С	1.41955700	1.15814200	-0.37465900
0	2.65660100	1.36435300	-0.22595500
0	0.59441900	2.21040200	-0.44965800
С	1.85130200	-3.61153600	-0.50354500
Н	2.33967100	-3.70645000	0.46844500
Н	1.16116300	-4.43992900	-0.66185800
Н	2.60489800	-3.58919900	-1.29287800
С	1.18707700	3.52368000	-0.35488300
Н	0.35100300	4.21909800	-0.42848000
Н	1.69890700	3.64826000	0.60143500
Н	1.89004000	3.69074300	-1.17371800
Al	4.15962300	0.12322800	-0.02448600
Cl	4.49915700	0.99714600	1.99571800
Cl	5.74561000	-1.51363100	0.18196700
Cl	5.10315300	1.10759100	-1.78443300
0	-2.84022500	-0.57449800	0.46837800
С	-3.65877200	0.42930900	0.37049500
С	-5.02287400	0.22601700	0.13209300
Н	-3.25476700	1.43267600	0.49060100
С	-5.59015400	-1.07133400	-0.02404900
С	-5.85647000	1.37498800	0.06050500
С	-6.94249200	-1.19571800	-0.24313800
Н	-4.95454600	-1.94835800	0.03109800
С	-7.21251600	1.22718100	-0.15766800
Н	-5.41913900	2.36159800	0.18005700

С	-7.77865200	-0.05361500	-0.31153800
Н	-7.38330300	-2.18027600	-0.36387900
Н	-7.85200900	2.10179900	-0.21121200
С	-9.24943200	-0.22374900	-0.53603700
Н	-9.43478900	-0.82954700	-1.43022100
Н	-9.69869300	-0.76450800	0.30626000
Н	-9.75982100	0.73508000	-0.64475100
1h-TS2			
0.1			
С	-0.51827300	1.37741100	-0.66786000
C	0.83527200	0.76233800	-0.45070700
C	-1.35025000	1.56253200	0.61494500
Н	-0.41046000	2.37300500	-1.10025500
Н	-1.11167900	0.77703800	-1.36194900
F	-1.74143000	2.84398100	0.79014800
F	-0.73965800	1.16592500	1.73409000
С	0.96799400	-0.61467800	-0.23936400
0	2.05989500	-1.25839500	-0.04983200
0	-0.17271900	-1.31343600	-0.23210400
С	2.01284500	1.54638800	-0.39960700
0	3.18333100	1.09971700	-0.23747900
0	1.84028100	2.86614400	-0.54186100
С	-0.08761100	-2.74374400	-0.04405200
Н	0.35376400	-2.97942800	0.92619300
Н	-1.11832600	-3.09525900	-0.08644300
Н	0.50266200	-3.20359100	-0.83897100
С	3.02288100	3.69465000	-0.52702200
Н	2.65553400	4.71489900	-0.63686700
Н	3.55961100	3.58477100	0.41721700
Н	3.68330200	3.43871800	-1.35830800
Al	3.85306500	-0.72765200	-0.01898900
Cl	4.83133800	-0.03879200	1.85932800
Cl	4.40613900	-2.93068400	0.27037000
Cl	4.93143000	-0.48968800	-1.95110100
Ο	-2.55727100	0.74072100	0.59745000
С	-3.66246500	1.19979000	0.09417100
С	-4.79947800	0.38774500	0.00191500
Н	-3.68445100	2.23257100	-0.24929100
С	-4.80931700	-0.97116200	0.42843600
С	-5.97763800	0.96445500	-0.54378700
С	-5.96362800	-1.70979900	0.30668600
Н	-3.90946700	-1.41194100	0.84312200
С	-7.12652900	0.20571000	-0.65579100

Н	-5.96430800	2.00031500	-0.86842900
С	-7.14201800	-1.13826500	-0.23393000
Н	-5.97992700	-2.74643300	0.62817400
Н	-8.02790000	0.64315600	-1.07207300
С	-8.38565100	-1.96497600	-0.34302400
Н	-8.19389500	-2.87166000	-0.92868500
Н	-8.70748900	-2.29739600	0.65149300
Н	-9.20337600	-1.41103900	-0.80778600
1b-II'			
0 1			
С	0.01503900	2.56978300	-1.04452400
С	0.88704400	1.38974700	-0.70602300
С	-0.98879500	2.92275200	0.03451200
Н	0.61160400	3.47409400	-1.19277700
Н	-0.54627400	2.39255600	-1.96462500
F	-1.81270900	3.92215200	-0.35085800
F	-0.42387500	3.27092800	1.19551200
С	0.53747800	0.09443500	-1.09956500
0	1.20692900	-0.97600200	-0.87996300
0	-0.61243000	-0.03139300	-1.78009200
С	2.09896300	1.54721300	0.01321000
0	2.88879200	0.61637100	0.33612400
0	2.40500000	2.80345600	0.35224000
С	-0.97753800	-1.35037700	-2.24495600
Н	-1.11630600	-2.03224200	-1.40409300
Н	-1.91633100	-1.21168500	-2.78063300
Н	-0.21558600	-1.74676000	-2.91849600
С	3.64484900	3.01922600	1.06013000
Н	3.67652900	4.09095900	1.25529300
Н	3.65531400	2.46260800	1.99914300
Н	4.49632500	2.72076100	0.44495400
Al	2.77817600	-1.32321500	0.07292900
Cl	2.66069500	-1.54881500	2.28452600
Cl	2.45526800	-3.54204300	-0.39210300
Cl	4.77746600	-1.20977100	-0.89611100
0	-1.82726700	1.79038200	0.41529800
С	-2.86786800	1.48479100	-0.29896200
С	-3.66656400	0.38348900	0.02943700
Н	-3.11290800	2.11850400	-1.15013400
С	-3.37585900	-0.47178400	1.13095600
С	-4.80015900	0.12304500	-0.78743600
С	-4.19705100	-1.54497500	1.38905900
Н	-2.51010100	-0.27456400	1.75346000

С	-5.61232800	-0.95916400	-0.50973600
Н	-5.01860400	0.77982800	-1.62402300
С	-5.32687500	-1.81054600	0.57617500
Н	-3.98020300	-2.20298700	2.22454100
Н	-6.47873300	-1.16101300	-1.13070300
С	-6.19831400	-2.98962300	0.87991100
Н	-5.61395300	-3.91639200	0.83056900
Н	-6.58896400	-2.92201700	1.90218400
Н	-7.03745900	-3.06747300	0.18609700
1b-TS3			
01			
С	0.22597700	2.98295500	0.89234200
С	-0.58267400	1.75313600	0.57345800
С	1.55642400	3.14907900	0.14214700
Н	-0.32778800	3.90250100	0.67786000
Н	0.47160700	2.99331600	1.95497900
F	2.47900600	3.75647100	0.92436900
F	1.45043800	3.86431200	-0.98438600
С	-0.75833000	0.72466500	1.51070000
0	-1.45401200	-0.33796100	1.34397900
0	-0.13860500	0.87012000	2.69001400
С	-1.27385100	1.62477400	-0.66179400
0	-1.99573900	0.65142300	-1.00924900
0	-1.11697700	2.65251300	-1.49996500
С	-0.36240900	-0.13995900	3.70078300
Н	-0.03059900	-1.11946000	3.35209900
Н	0.23178800	0.18263200	4.55544900
Н	-1.41911100	-0.18315600	3.97099400
С	-1.79218100	2.58406100	-2.77578400
Н	-1.49605600	3.49140700	-3.30128200
Н	-1.47346200	1.70078700	-3.33248800
Н	-2.87484100	2.56205000	-2.63574800
Al	-2.38333500	-1.05278000	-0.11447300
Cl	-1.26224400	-2.05775900	-1.75755900
Cl	-2.69419700	-2.95025700	1.12161800
Cl	-4.54211300	-0.60686600	-0.38308100
0	2.15052700	1.91591400	-0.32521600
С	2.39242600	0.96094900	0.52840800
С	2.85108300	-0.28769300	0.09985800
Н	2.25643900	1.16388000	1.59012900
С	3.03943200	-0.60832700	-1.27589200
С	3.10874400	-1.27022800	1.09571800
С	3.46309500	-1.86989200	-1.62351600

Н	2.84324600	0.13940500	-2.03622400
С	3.53155200	-2.53048600	0.72463800
Н	2.96859800	-1.01853700	2.14260000
С	3.70820200	-2.85564600	-0.63549600
Н	3.60421300	-2.12436000	-2.66913900
Н	3.72393300	-3.28405100	1.48082800
С	4.12559600	-4.23319000	-1.04514000
Н	3.26818000	-4.76125100	-1.48319000
Н	4.90084800	-4.19629900	-1.81746600
Н	4.48672200	-4.81802700	-0.19681400

1b-III

01			
С	0.02501700	2.86657300	0.98905600
С	0.69969100	1.56218600	0.66470800
С	-1.11194600	3.23245900	0.04791000
Н	-0.39996600	2.84683900	1.99414300
Н	0.72777600	3.70305800	0.93637900
F	-0.70271600	3.42912300	-1.22329300
F	-1.76628700	4.33255500	0.44815100
С	1.77109100	1.50274900	-0.24724500
0	2.45232700	0.46098200	-0.54295200
0	2.09612300	2.64625400	-0.84697000
С	0.38169400	0.36845200	1.36732600
0	0.95110800	-0.74695300	1.21776500
0	-0.61253000	0.47463600	2.25726300
С	3.23854300	2.64685400	-1.73434800
Н	3.08963600	1.94483100	-2.55652400
Н	3.29954600	3.66709200	-2.11176900
Н	4.14772000	2.38885600	-1.18764800
С	-0.94044800	-0.70059500	3.03186400
Н	-1.77277500	-0.39837500	3.66691700
Н	-1.23809600	-1.52385500	2.38038100
Н	-0.08950900	-1.00491600	3.64452400
Al	2.41943400	-1.31868200	0.04503800
Cl	1.00013700	-2.76593200	-0.87939400
Cl	4.12909600	-1.73145000	-1.40856300
Cl	3.52670200	-1.93158200	1.87018300
0	-2.12986600	2.20945900	0.03267400
С	-2.00524000	1.19401000	-0.77601000
С	-2.86173800	0.09058900	-0.66726400
Н	-1.25429300	1.24875600	-1.56000900
С	-3.84197600	-0.02151100	0.35961300
С	-2.72499500	-0.94613700	-1.62789700

С	-4.65288600	-1.13272200	0.40185000
Н	-3.94192600	0.76687300	1.09745100
С	-3.55163800	-2.05197700	-1.56932300
Н	-1.96944800	-0.86049800	-2.40277100
С	-4.52598500	-2.16603400	-0.55921500
Н	-5.40340500	-1.22588200	1.18079400
Н	-3.44956500	-2.84437400	-2.30335500
С	-5.42839000	-3.35973400	-0.49032100
Н	-5.28704500	-3.89129500	0.45862600
Н	-6.47865600	-3.04669900	-0.52046000
Н	-5.24454400	-4.05624600	-1.31020300
1b-IV			
01			
С	1.20818200	0.91087500	0.87707800
0	1.83672500	2.19227500	1.00930300
С	1.79729500	2.94405300	-0.13978700
С	0.95542600	2.21674300	-1.18619100
С	0.22619900	1.10807500	-0.39943500
Н	0.59864000	0.76269300	1.77173800
Н	0.27825800	2.90117600	-1.69556400
Н	1.62661100	1.77260200	-1.91879200
F	3.07377000	3.15968100	-0.59443300
F	1.33229200	4.18427200	0.16968000
С	0.03573000	-0.18910100	-1.17822000
0	-0.89377000	-0.97872700	-0.98919800
0	0.96860300	-0.41019200	-2.06422900
С	-1.11316300	1.57370300	0.15454900
0	-2.09109500	0.83873300	0.39401200
0	-1.14312500	2.83697200	0.44071400
С	0.90839400	-1.65755300	-2.82184100
Н	-0.04317300	-1.72159000	-3.34990600
Н	1.74058300	-1.59694100	-3.51985300
Н	1.02965900	-2.50007500	-2.14014700
С	-2.34819200	3.39316800	1.06271700
Н	-2.10621200	4.43960900	1.23248000
Н	-3.18786200	3.28611800	0.37599700
Н	-2.54387300	2.87261600	2.00037800
С	2.20272900	-0.22388300	0.77712100
С	1.84745300	-1.47034500	1.30602900
С	3.46207600	-0.07326700	0.18081000
С	2.72294600	-2.55235900	1.21741200
Н	0.88321800	-1.59975100	1.78987600
С	4.33436400	-1.15671300	0.10636000

Н	3.76941200	0.88929300	-0.21191100
С	3.98062500	-2.41607400	0.61530100
Н	2.42628300	-3.51278300	1.62994800
Н	5.30907400	-1.02269700	-0.35587300
С	4.94018800	-3.57748900	0.54370600
Н	5.69245100	-3.51728300	1.34040800
Н	4.41937000	-4.53248300	0.65641700
Н	5.48160600	-3.59052400	-0.40761600
Al	-2.68624400	-0.96006900	0.04189400
Cl	-1.91121700	-2.72232500	1.08642800
Cl	-3.66574300	-1.17402000	-1.89930700
Cl	-4.45172600	-0.55990000	1.34594400

6. Compound Data of Products

dibenzyl 5,5-difluoro-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (3aa): Follow the general procedure (*GP1*), 3aa was obtained as a colorless oil (85.7 mg, 0.18 mmol, yield: 92%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.19;

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.18 (m, 10H), 7.05 (d, *J* = 8.0 Hz, 2H), 6.91 (d, *J* = 6.9 Hz, 2H), 6.11 (d, *J* = 3.6 Hz, 1H), 5.18 (s, 2H), 4.71 (d, *J* = 12.1 Hz, 1H), 4.44 (d, *J* = 12.1 Hz, 1H), 3.44 (ddd, *J* = 16.8, 14.9, 7.6 Hz, 1H), 2.92 (ddd, *J* = 14.9, 8.5, 3.0 Hz, 1H), 2.30 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.2 , 166.1 , 138.8 , 134.5 , 134.1 , 131.8 (d, *J* = 1.5 Hz), 130.2 (dd, *J* = 256.7, 254.0 Hz), 128.9 , 128.6 , 128.6 , 128.4 , 128.2 , 126.4 , 84.4 , 68.3 , 68.0 , 63.6 (d, *J* = 3.0 Hz), 40.3 (dd, *J* = 34.2, 30.4 Hz), 21.2 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -58.77 - -59.24 (m, 1F), -71.73 - -72.21 (m, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₇H₂₄F₂NaO₅⁺ [M+Na]⁺: 489.1489, found: 489.1495.

IR (film) v_{max} 1741, 1500, 1436, 1379, 1263, 1090, 971, 747, 697 cm⁻¹.

$$F = \frac{BnO_2C}{F} CO_2Bn}{F}$$

dibenzyl 5,5-difluoro-2-mesityldihydrofuran-3,3(2H)-dicarboxylate (3ab): Follow the general procedure (*GP1*), 3ab was obtained as a colorless oil (74.1 mg, 0.15 mmol, yield: 75%) after flash chromatography (Petroleum ether/EtOAc = 20:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.27 (m, 4H), 7.26 – 7.21 (m, 4H), 6.87 – 6.82 (m, 2H), 6.63 (s, 1H), 5.21 (s, 2H), 4.64 (d, *J* = 11.9 Hz, 1H), 4.19 (d, *J* = 12.0 Hz, 1H), 3.65 (ddd, *J* = 24.5, 14.9, 6.1 Hz, 1H), 2.94 (ddd, *J* = 14.8, 6.9, 1.0 Hz, 1H), 2.34 (s, 3H), 2.22 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.0 , 166.5 , 138.1 , 134.6 , 133.9 , 131.4 , 129.5 (dd, *J* = 259.8, 251.0 Hz), 129.4 , 128.7 , 128.6 , 128.4 , 128.4 , 128.4 , 128.3 , 128.0 , 81.7 , 68.4 , 68.1 , 62.6 (d, *J* = 4.1 Hz), 41.5 (dd, *J* = 35.1, 29.6 Hz), 20.8 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -56.08 - -56.59 (m, 1F), -80.28 (dd, *J* = 145.5, 5.1 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₉H₂₈F₂NaO₅⁺ [M+Na]⁺: 517.1803, found: 517.1799.

IR (film) v_{max} 2979, 1749, 1725, 1457, 1378, 1324, 1276, 1220, 1195, 1116, 1049, 987, 910, 862, 753, 699 cm⁻¹.

dibenzyl 5,5-difluoro-2-(naphthalen-2-yl)dihydrofuran-3,3(2H)-dicarboxylate (3ac): Follow the general procedure (*GP1*), 3ac was obtained as a colorless oil (85.3 mg, 0.17 mmol, yield: 85%) after flash chromatography (Petroleum ether/EtOAc = 20:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.83 – 7.78 (m, 2H), 7.73 (t, *J* = 8.0 Hz, 2H), 7.53 – 7.46 (m, 2H), 7.42 (dd, *J* = 8.6, 1.7 Hz, 1H), 7.36 – 7.27 (m, 3H), 7.22 (dd, *J* = 7.7, 1.7 Hz, 2H), 7.23 – 7.12 (m, 1H), 7.05 (t, *J* = 7.6 Hz, 2H), 6.63 (d, *J* = 7.2 Hz, 2H), 6.30 (d, *J* = 3.4 Hz, 1H), 5.21 (s, 2H), 4.57 (d, *J* = 12.0 Hz, 1H), 4.25 (d, *J* = 12.1 Hz, 1H), 3.53 (ddd, *J* = 16.4, 15.1, 7.7 Hz, 1H), 2.98 (ddd, *J* = 15.0, 8.7, 3.6 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.2 , 166.2 , 134.4 , 133.7 , 133.4 , 132.7 , 132.1 , 130.4 (dd, *J* = 258.6 , 255.5 Hz), 128.7 , 128.7 , 128.4 , 128.3 , 128.3 , 128.2 , 128.1 , 127.7 , 126.6 , 126.4 , 126.2 , 123.7 , 84.5 , 68.4 , 68.1 , 63.7 (d, *J* = 3.0 Hz), 40.51 (dd, *J* = 34.2 , 30.4 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.19 (ddd, J = 143.8, 16.3, 8.8 Hz, 1F), -71.58 - -72.08 (m, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{30}H_{24}F_2NaO_5^+$ [M+Na]⁺: 525.1489, found: 525.1498.

IR (film) v_{max} 3036, 1735, 1456, 1337, 1271, 1249, 1199, 1156, 1114, 1055, 912, 743, 700 cm⁻¹.

dibenzyl 5,5-difluoro-2-(4-methoxyphenyl)dihydrofuran-3,3(2H)-dicarboxylate (3ad): Follow the general procedure (*GP1*), 3ad was obtained as a colorless oil (38.6 mg, 0.08 mmol, yield: 40%) after flash chromatography (Petroleum ether/EtOAc = 20:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.32 – 7.19 (m, 10H), 6.95 – 6.90 (m, 2H), 6.79 – 6.73 (m, 2H), 6.09 (d, *J* = 3.5 Hz, 1H), 5.18 (d, *J* = 1.0 Hz, 2H), 4.72 (d, *J* = 12.2 Hz, 1H), 4.46 (d, *J* = 12.1 Hz, 1H), 3.76 (s, 3H), 3.43 (ddd, *J* = 16.8, 15.0, 7.6 Hz, 1H), 2.91 (ddd, *J* = 14.8, 8.6, 3.2 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.2 , 166.2 , 160.0 , 134.5 , 134.1 , 130.1 (dd, *J* = 256.8, 253.9 Hz), 128.7 , 128.6 , 128.4 , 128.2 , 127.9 , 126.8 , 126.8 , 113.6 , 84.3 , 68.3 , 68.0 , 63.6 (d, *J* = 2.8 Hz), 55.2 , 40.3 (dd, *J* = 34.3 , 30.4 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.19 (ddd, *J* = 144.4, 17.0, 8.5 Hz, 1F), -71.67 - -72.12 (m,1F) ppm.

HRMS (ESI, m/z): calculated for $C_{27}H_{24}F_2NaO_6^+$ [M+Na]⁺: 505.1439, found: 505.1434.

IR (film) v_{max} 1739, 1615, 1516, 1456, 1337, 1255, 1159, 1109, 1052, 1030, 944, 910, 748, 697 cm⁻¹.

dibenzyl 5,5-difluoro-2-(4-fluorophenyl)dihydrofuran-3,3(2H)-dicarboxylate (3ae): Follow the general procedure (*GP1*), 3ae was obtained as a white solid (57.3 mg, 0.12 mmol, yield: 61%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.20;

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.21 (m, 10H), 6.95 – 6.85 (m, 4H), 6.09 (d, *J* = 3.4 Hz, 1H), 5.19 (s, 2H), 4.70 (d, *J* = 12.1 Hz, 1H), 4.49 (d, *J* = 12.1 Hz, 1H), 3.48 – 3.37 (m, 1H), 2.93 (ddd, *J* = 14.9, 8.8, 3.8 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.1, 166.1, 162.9 (d, *J* = 248.0 Hz), 134.4, 133.9, 130.5, 130.0 (dd, *J* = 257.3, 254.4 Hz), 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 115.3, 83.7, 68.4, 68.1, 63.5, 40.4 (dd, *J* = 34.3, 30.3 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.51 (ddd, *J* = 143.2, 16.2, 8.9 Hz, 1F), -71.73 (ddt, *J* = 143.2, 7.1, 3.6 Hz, 1F), -112.09 (ddd, *J* = 13.5, 8.8, 5.6 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₆H₂₁F₃NaO₅⁺ [M+Na]⁺: 493.1239, found: 493.1237.

IR (film) v_{max} 1737, 1609, 1513, 1456, 1384, 1337, 1272, 1158, 1115, 1055, 948, 913, 851, 747, 700 cm⁻¹.

dibenzyl 2-(4-bromophenyl)-5,5-difluorodihydrofuran-3,3(2H)-dicarboxylate (3af): Follow the general procedure (*GP1*), 3af was obtained as a white solid (71.0 mg, 0.13 mmol, yield: 67%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.20;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.21 (m, 10H), 7.17 (d, *J* = 8.5 Hz, 2H), 6.91 (d, *J* = 6.8 Hz, 2H), 6.05 (d, *J* = 3.4 Hz, 1H), 5.19 (s, 2H), 4.69 (d, *J* = 12.0 Hz, 1H), 4.52 (d, *J* = 12.0 Hz, 1H), 3.42 (td, *J* = 15.4, 7.7 Hz, 1H), 2.92 (ddd, *J* = 15.0, 8.9, 4.0 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.0, 166.0, 134.4, 133.8, 133.7, 131.4, 130.0 (dd, *J* = 257.4, 255.0 Hz), 128.8, 128.7, 128.5, 128.5, 128.2, 123.2, 83.6, 68.4, 68.2, 63.4 (d, *J* = 2.7 Hz), 40.5 (dd, *J* = 34.4, 30.3 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.61 (ddd, *J* = 143.0, 14.9, 8.7 Hz), -71.66 (dd, *J* = 142.0, 9.6 Hz) ppm.

HRMS (ESI, m/z): calculated for C₂₆H₂₁BrF₂NaO₅⁺ [M+Na]⁺: 553.0438, found: 553.0443.

IR (film) v_{max} 3028, 1738, 1491, 1456, 1384, 1328, 1269, 1214, 1165, 1117, 1056, 1029, 980, 944, 912, 749, 701 cm⁻¹.

dibenzyl 5,5-difluoro-2-(4-(methoxycarbonyl)phenyl)dihydrofuran-3,3(2H)-dicarboxylate (3ag): Follow the general procedure (*GP1*), 3ag was obtained as a colorless oil (79.5 mg, 0.16 mmol, yield: 78%) after flash chromatography (Petroleum ether/EtOAc = 20:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.88 (d, *J* = 8.5 Hz, 2H), 7.39 (d, *J* = 8.3 Hz, 2H), 7.35 – 7.29 (m, 3H), 7.27 – 7.20 (m, 5H), 6.88 (d, *J* = 6.9 Hz, 2H), 6.15 (d, *J* = 3.4 Hz, 1H), 5.20 (s, 2H), 4.66 (d, *J* = 12.1 Hz, 1H), 4.46 (d, *J* = 12.1 Hz, 1H), 3.92 (s, 3H), 3.44 (td, *J* = 15.4, 7.6 Hz, 1H), 2.95 (ddd, *J* = 14.9, 8.8, 3.9 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.1 , 166.6 , 166.0 , 139.7 , 134.5 , 133.9 , 130.8 , 130.2 (dd, *J* = 257.5, 254.9 Hz), 129.6 , 128.9 , 128.8 , 128.7 , 128.6 , 128.6 , 128.5 , 126.6 , 83.8 , 68.6 , 68.2 , 63.7 (d, *J* = 2.7 Hz), 52.3 , 40.6 (dd, *J* = 34.2 , 30.3 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.34 – -59.86 (m, 1F), -71.55 – -72.01 (m, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{28}H_{24}F_2NaO_7^+$ [M+Na]⁺: 533.1388, found: 533.1390.

IR (film) v_{max} 2953, 1739, 1723, 1457, 1438, 1383, 1326, 1271, 1216, 1199, 1113, 1054, 982, 947, 913, 750, 701 cm⁻¹.

dibenzyl 5,5-difluoro-2-(4-(trifluoromethyl)phenyl)dihydrofuran-3,3(2H)-dicarboxylate (3ah): Follow the general procedure (*GP1*), 3ah was obtained as a colorless oil (72.8 mg, 0.14 mmol, yield: 70%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.47 – 7.41 (m, 4H), 7.35 – 7.28 (m, 4H), 7.26 – 7.21 (m, 4H), 6.86 (d, *J* = 7.2 Hz, 2H), 6.12 (d, *J* = 3.3 Hz, 1H), 5.20 (s, 2H), 4.66 (d, *J* = 12.0 Hz, 1H), 4.45 (d, *J* = 12.0 Hz, 1H), 3.43 (td, *J* = 15.2, 7.7 Hz, 1H), 2.94 (ddd, *J* = 15.0, 9.0, 4.3 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.9 , 166.0 , 138.6 , 134.3 , 133.6 , 131.0 (q, *J* = 32.7 Hz), 130.2 (dd, *J* = 258.6, 255.5 Hz), 128.8 , 128.7 , 128.7 , 128.5 , 128.4 , 127.0 , 125.2 , 125.1 , 123.7 (q, *J* = 273.7 Hz), 83.4 , 68.5 , 68.3 , 63.4 (d, *J* = 2.4 Hz), 40.6 (dd, *J* = 34.2, 30.3 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.71 (ddd, *J* = 143.2, 15.6, 8.7 Hz, 1F), -62.52 (s, 3F), -71.54 (ddt, *J* = 144.2, 8.1, 3.8 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{27}H_{21}F_5NaO_5^+$ [M+Na]⁺: 543.1207, found: 543.1210.

IR (film) v_{max} 1739, 1457, 1383, 1333, 1270, 1217, 1162, 1130, 1071, 982, 944, 913, 856, 750, 701 cm⁻¹.

dibenzyl 2-(4-cyanophenyl)-5,5-difluorodihydrofuran-3,3(2H)-dicarboxylate (3ai): Follow the general procedure (*GP1*), 3ai was obtained as a colorless oil (33.5 mg, 0.07 mmol, yield: 35%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.41 – 7.32 (m, 8H), 7.31 – 7.25 (m, 4H), 6.88 (d, *J* = 7.3 Hz, 2H), 6.07 (d, *J* = 3.3 Hz, 1H), 5.22 (d, *J* = 5.2 Hz, 2H), 4.59 (s, 2H), 3.42 (td, *J* = 15.0, 7.8 Hz, 1H), 2.94 (ddd, *J* = 15.0, 9.1, 4.9 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.8 , 165.9 , 139.6 (d, *J* = 1.2 Hz), 134.3 , 133.5 , 131.8 , 129.9 (dd, *J* = 258.4, 255.9 Hz), 128.9 , 128.7 , 128.6 , 127.2 , 118.3 , 112.8 , 83.1 , 68.6 , 68.2 , 63.4 (d, *J* = 2.5 Hz), 40.7 (dd, *J* = 34.4, 30.0 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -60.10 (ddd, *J* = 143.1, 14.6, 8.9 Hz, 1F), -71.32 (ddt, *J* = 143.4, 8.4, 4.5 Hz, 1F).

HRMS (ESI, m/z): calculated for $C_{27}H_{21}F_2NO_5^+$ [M+H]⁺: 478.1466, found: 478.1469.

IR (film) v_{max} 2230, 1738, 1498, 1456, 1378, 1275, 1197, 1158, 1113, 1052, 946, 910, 751, 698 cm⁻¹.

dibenzyl 5,5-difluoro-2-(4-nitrophenyl)dihydrofuran-3,3(2H)-dicarboxylate (3aj) : Follow the general procedure (*GP1*), **3aj** was obtained as a colorless oil (52.7 mg, 0.11 mmol, yield: 53%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.90 (d, *J* = 8.7 Hz, 1H), 7.43 (d, *J* = 8.8 Hz, 2H), 7.37 – 7.34 (m, 2H), 7.30 – 7.26 (m, 2H), 7.19 (t, *J* = 7.5 Hz, 1H), 6.85 (d, *J* = 7.4 Hz, 1H), 6.11 (d, *J* = 3.3 Hz, 1H), 5.28 (d, *J* = 12.0 Hz, 1H), 5.21 (d, *J* = 12.0 Hz, 1H), 4.66 (d, *J* = 11.9 Hz, 1H), 4.55 (d, *J* = 11.9 Hz, 1H), 3.45 (td, *J* = 14.8, 7.8 Hz, 1H), 2.96 (ddd, *J* = 14.7, 9.2, 5.1 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 165.9, 147.9, 141.4, 134.3, 133.4, 129.9 (dd, J = 258.6, 256.5 Hz), 128.9, 128.9, 128.7, 128.7, 128.6, 128.4, 127.3, 123.2, 82.9, 68.6, 68.2, 63.4 (d, J = 2.0 Hz), 40.8 (dd, J = 34.4, 30.1 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -60.18 (ddd, *J* = 143.1, 14.7, 9.1 Hz, 1F), -71.09 (ddt, *J* = 143.2, 8.3, 4.1 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₆H₂₁F₂NNaO₇⁺ [M+Na]⁺: 520.1184, found: 520.1193.

IR (film) v_{max} 1749, 1729, 1608, 1514, 1456, 1432, 1351, 1269, 1150, 1129, 1100, 1039, 1006, 911, 758, 702 cm⁻¹.

dibenzyl 5,5-difluoro-2-(furan-2-yl)dihydrofuran-3,3(2H)-dicarboxylate (3ak): Follow the general procedure (*GP1*), 3ak was obtained as a colorless oil (62.8 mg, 0.14 mmol, yield: 71%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.24 (m, 7H), 7.26 – 7.17 (m, 3H), 7.05 – 6.95 (m, 3H), 6.19 (d, *J* = 3.5 Hz, 1H), 5.19 (d, *J* = 1.4 Hz, 2H), 4.81 (d, *J* = 12.2 Hz, 1H), 4.56 (d, *J* = 12.2 Hz, 1H), 3.48 – 3.36 (m, 1H), 2.93 (ddd, *J* = 15.0, 8.8, 3.3 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.0 , 166.0 , 135.9 (d, *J* = 1.7 Hz) , 134.4 , 134.1 , 130.1 (dd, *J* = 256.9, 254.6 Hz), 128.7 , 128.6 , 128.5 , 128.4 , 128.3 , 126.2 , 125.8 , 123.7 , 81.3 , 68.4 , 68.1 , 63.3 (d, *J* = 2.7 Hz), 40.2 (dd, *J* = 33.8 , 30.7 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.17 (ddd, *J* = 144.3, 16.0, 8.7 Hz, 1F), -70.58 (ddt, *J* = 144.2, 7.7, 3.4 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₄H₂₀F₂NaO₆⁺ [M+Na]⁺: 443.1306, found: 443.1308.

IR (film) v_{max} 3108, 2968, 1758, 1735, 1457, 1338, 1274, 1195, 1160, 1112, 1056, 1033, 938, 898, 795, 752, 697 cm⁻¹.

dibenzyl 5,5-difluoro-2-(thiophen-3-yl)dihydrofuran-3,3(2H)-dicarboxylate (3al): Follow the general procedure (*GP1*), 3al was obtained as a colorless oil (49.4 mg, 0.11 mmol, yield: 54%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.33 – 7.23 (m, 7H), 7.07 (dd, *J* = 7.7, 17 Hz, 3H), 6.33 (d, *J* = 3.2 Hz, 1H), 6.24 (dd, *J* = 3.3, 1.8 Hz, 1H), 6.12 (d, *J* = 3.8 Hz, 1H), 5.25 – 5.16 (m, 2H), 4.83 (q, *J* = 12.0 Hz, 2H), 3.56 (ddd, *J* = 18.9, 14.8, 7.6 Hz, 1H), 3.00 (dd, *J* = 14.9, 7.8 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 165.0, 147.9 (d, *J* = 3.2 Hz), 143.7, 134.5, 134.2, 128.7, 128.6, 128.6, 128.5, 128.4, 128.4, 110.8, 110.4, 78.2, 68.6, 68.2, 62.6 (d, *J* = 2.9 Hz), 39.7 (t, *J* = 31.6 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -58.45 (ddd, *J* = 143.0, 18.0, 7.4 Hz, 1F), -70.30 (dd, *J* = 142.6, 10.4 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{24}H_{20}F_2NaO_5S^+$ [M+Na]⁺: 481.0897, found: 481.0892.

IR (film) v_{max} 1743, 1500, 1456, 1376, 1334, 1273, 1197, 1153, 1114, 1059, 1014, 937, 748, 698 cm⁻¹.

dibenzyl 2-benzyl-5,5-difluorodihydrofuran-3,3(2H)-dicarboxylate (3am): Follow the general procedure (*GP1*), 3am was obtained as a colorless oil (49.4 mg, 0.11 mmol, yield: 53%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.22;

¹H NMR (400 MHz, CDCl₃) δ 7.36 – 7.31 (m, 6H), 7.30 – 7.22 (m, 7H), 7.12 (d, J = 6.7 Hz, 2H), 5.18 – 5.06 (m, 5H), 3.39 – 3.23 (m, 1H), 2.95 – 2.81 (m, 2H), 2.70 (dd, J = 14.2, 10.3 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.8, 166.6, 136.4, 134.5, 134.3, 130.0 (t, *J* = 130.5 Hz), 129.2, 128.8, 128.7, 128.7, 128.5, 128.4, 128.4, 126.9, 84.1, 68.3, 68.2, 61.3 (d, *J* = 1.8 Hz), 40.8 (dd, *J* = 34.2, 31.5 Hz), 37.3 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.72 (ddd, *J* = 144.3, 13.2, 9.5 Hz, 1F), -66.89 (ddt, *J* = 144.4, 8.8, 4.9 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₇H₂₄F₂NaO₅⁺ [M+Na]⁺: 489.1489, found: 489.1492.

IR (film) v_{max} 3034, 1739, 1498, 1456, 1377, 1334, 1270, 1198, 1169, 1114, 1074, 748, 698 cm⁻¹.

dibenzyl 5,5-difluoro-2-phenethyldihydrofuran-3,3(2H)-dicarboxylate (3an): Follow the general procedure (*GP1*), 3an was obtained as a colorless oil (62.4 mg, 0.13 mmol, yield: 65%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.17 (m, 13H), 7.04 (d, *J* = 7.0 Hz, 2H), 5.19 – 5.09 (m, 3H), 5.02 (d, *J* = 12.0 Hz, 1H), 4.87 (dt, *J* = 10.1, 3.7 Hz, 1H), 3.26 (td, *J* = 14.4, 13.9, 8.2 Hz, 1H), 2.84 (dddd, *J* = 19.4, 14.4, 9.4, 5.4 Hz, 2H), 2.61 (ddd, *J* = 13.9, 9.3, 7.6 Hz, 1H), 1.81 – 1.64 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.6, 140.4, 134.6, 134.3, 130.0 (t, *J* = 255.4 Hz), 128.8, 128.6, 128.4, 128.3, 126.1, 82.7, 68.1, 61.4 (d, *J* = 2.2 Hz), 40.8 (dd, *J* = 33.9, 31.8 Hz), 32.8, 32.0 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.31 – -59.82 (m, 1F), -67.16 (dd, J = 149.0, 7.8 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₈H₂₆F₂O₅⁺ [M+Na]⁺: 503.1646, found: 503.1649.

IR (film) v_{max} 2960, 2926, 2855, 1742, 1502, 1456, 1263, 1171, 1113, 1031, 995, 909, 803, 751, 698 cm⁻¹.

dibenzyl 2-cyclohexyl-5,5-difluorodihydrofuran-3,3(2H)-dicarboxylate (3ao): Follow the general procedure, 3ao was obtained as a colorless oil (53.1 mg, 0.12 mmol, yield: 58%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.31 (m, 6H), 7.29 – 7.23 (m, 4H), 5.19 (d, *J* = 12.0 Hz, 1H), 5.15 (s, 2H), 5.05 (d, *J* = 11.9 Hz, 1H), 4.73 (dd, *J* = 6.1, 3.8 Hz, 1H), 3.24 (td, *J* = 14.5, 7.8 Hz, 1H), 2.80 (ddd, *J* = 14.6, 9.2, 5.0 Hz, 1H), 1.72 – 1.50 (m, 5H), 1.42 (m, 1H), 1.12 – 0.99 (m, 3H), 0.98 – 0.84 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.4 , 166.9 , 134.6 , 134.3 , 129.8 (t, *J* = 254.5 Hz), 128.89 , 128.8 , 128.7 , 128.6 , 128.4 , 88.0 , 68.1 , 68.12, 61.0 (d, *J* = 2.3 Hz), 42.1 (dd, *J* = 34.8, 30.8 Hz), 39.1 , 29.9 , 27.7 , 25.8 , 25.6 , 25.4 . ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -58.95 (ddd, *J* = 144.2, 14.1, 9.1 Hz, 1F), -70.04 (ddt, *J* = 144.2, 8.3, 4.7 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₆H₂₈F₂NaO₅⁺ [M+Na]⁺: 481.1803, found: 481.1809.

IR (film) v_{max} 2930, 2855, 1739, 1498, 1455, 1335, 1269, 1213, 1113, 1028, 972, 909, 751, 698 cm⁻¹.

dibenzyl 5,5-difluoro-2-isopropyldihydrofuran-3,3(2H)-dicarboxylate(3ap): Follow the general procedure (*GP1*), 3ap was obtained as a colorless oil (52.7 mg, 0.13 mmol, yield: 64%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.30;

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.30 (m, 6H), 7.26 – 7.21 (m, 4H), 5.14 (t, *J* = 5.6 Hz, 4H), 4.76 (dd, *J* = 6.2, 3.9 Hz, 1H), 3.26 (td, *J* = 14.7, 7.8 Hz, 1H), 2.89 – 2.77 (m, 1H), 1.85 (h, *J* = 6.6 Hz, 1H), 0.90 (d, *J* = 6.6 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.4 , 134.4 , 129.8 (t, *J* = 250.3 Hz), 128.6 , 128.6 , 99.0 , 68.0 , 67.1 , 43.2 (t, *J* = 31.8 Hz), 34.2 , 19.2 , 17.9 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.18 (ddd, *J* = 144.2, 14.5, 9.1 Hz, 1F), -70.08 (ddt, *J* = 144.2, 8.2, 4.3 Hz, 1F).

HRMS (ESI, m/z): calculated for C₂₃H₂₄F₂NaO₅⁺ [M+Na]⁺: 441.1489, found: 481.1495.

IR (film) v_{max} 3055, 2969, 1739, 1498, 1456, 1373, 1334, 1269, 1169, 1127, 1087, 1060, 909, 751, 698 cm⁻¹.

dibenzyl 5,5-difluoro-2-vinyldihydrofuran-3,3(2H)-dicarboxylate (3aq): Follow the general procedure (*GP1*), 3aq was obtained as a colorless oil (61.1 mg, 0.15 mmol, yield: 76%) after flash chromatography (Petroleum ether/EtOAc = 50:1, KMnO₄, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.30 (m, 5H), 7.27 – 7.20 (m, 4H), 5.66 (ddd, *J* = 16.9, 10.5, 6.2 Hz, 1H), 5.48 – 5.44 (m, 1zH), 5.40 (dt, *J* = 17.1, 1.3 Hz, 1H), 5.23 – 5.14 (m, 3H), 5.05 (dd, *J* = 21.4, 12.0 Hz, 2H), 3.24 (ddd, *J* = 16.3, 15.0, 7.8 Hz, 1H), 2.89 (ddd, *J* = 14.9, 8.4, 3.2 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 165.9, 134.5, 134.3, 130.7 (d, *J* = 2.1 Hz), 130.2 (t, *J* = 255.6 Hz), 128.70, 128.67, 128.62, 128.58, 128.54, 128.35, 120.1, 83.3, 68.3, 68.2, 62.3 (d, *J* = 2.7 Hz), 39.8 (t, *J* = 32.1 Hz) ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.00 (ddd, *J* = 144.4, 16.4, 8.4 Hz, 1F), -68.83 (ddt, *J* = 144.5, 7.3, 3.3 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{22}H_{20}F_2NaO_5^+$ [M+Na]⁺: 425.1176, found: 425.1174.

IR (film) v_{max} 1741, 1499, 1456, 1377, 1334, 1271, 1199, 1166, 1105, 1058, 948, 910, 750, 697 cm⁻¹.

dibenzyl 5,5-difluoro-2-(phenylethynyl)dihydrofuran-3,3(2H)-dicarboxylate (3ar): Follow the general procedure (*GP1*), 3ar was obtained as a white solid (85.7 mg, 0.18 mmol, yield: 90%) after flash chromatography (Petroleum ether/EtOAc = 20:1, KMnO₄, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.17 (m, 15H), 5.97 (d, *J* = 3.6 Hz, 1H), 5.22 (q, *J* = 12.1 Hz, 2H), 5.12 (s, 2H), 3.47 (ddd, *J* = 17.8, 14.9, 8.1 Hz, 1H), 3.03 (ddd, *J* = 14.8, 8.1, 1.5 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.9, 165.0, 134.4, 134.3, 131.9, 130.6 (dd, *J* = 259.1, 255.4 Hz), 129.3, 128.7, 128.6, 128.5, 128.4, 128.3, 128.2, 120.9, 89.7, 81.3 (d, *J* = 4.0 Hz), 73.4, 68.6, 68.4, 63.9 (d, *J* = 2.4 Hz), 39.5 (t, *J* = 31.7 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.12 (ddd, *J* = 143.1, 17.9, 9.0 Hz, 1F), -66.71 – -67.41 (m, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₈H₂₂F₂NaO₅⁺ [M+Na]⁺: 499.1333, found: 499.1336.

IR (film) v_{max} 3035, 2235, 1745, 1491, 1456, 1332, 1308, 1274, 1195, 1159, 1117, 1057, 757, 696 cm⁻¹.

tetrabenzyl 2,2'-(1,4-phenylene)bis(5,5-difluorodihydrofuran-3,3(2H)-dicarboxylate)(3as):

Follow the general procedure (*GP1*), **3as** was obtained as a white solid (85.7 mg, 0.18 mmol, yield: 90%) after flash chromatography (Petroleum ether/EtOAc = 20:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.18 (m, 20H), 6.97 (d, *J* = 7.7 Hz, 2H), 6.92 (d, *J* = 7.7 Hz, 2H), 6.09 (dd, *J* = 6.1, 3.5 Hz, 2H), 5.20 (d, *J* = 8.7 Hz, 4H), 4.70 (dd, *J* = 16.8, 12.1 Hz, 2H), 4.47 (t, *J* = 11.6 Hz, 2H), 3.49 – 3.33 (m, 2H), 2.95 (dd, *J* = 14.8, 8.7 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.3 , 168.2 , 166.1 , 165.8 , 135.9 , 135.7 , 134.6 , 134.5 , 134.1 , 134.0 , 130.4 (dd, J = 261.9, 254.8 Hz), 130.3 (dd, J = 261.9, 254.8 Hz), 126.7 , 126.6 , 84.0 , 84.0 , 68.6 , 68.6 , 68.3 , 68.3 , 63.7 (t, J = 3.2 Hz), 41.0 – 39.8 (m) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -58.53 – -59.88 (m), -71.47 – -72.78 (m) ppm;

HRMS (ESI, m/z): calculated for $C_{46}H_{38}F_4NaO_{10}^+$ [M+Na]⁺: 849.2299, found: 849.2302.

IR (film) v_{max} 3035, 1739, 1499, 1456, 1337, 1273, 1198, 1159, 1111, 1053, 700, 697 cm⁻¹.

benzyl 3-((benzylperoxy)-l2-methyl)-5,5-difluoro-2,2-dimethyltetrahydrofuran-3-carboxylate (4aa): Follow the general procedure (*GP1*), 4aa was obtained as a colorless oil (72.7 mg, 0.18 mmol, yield: 90%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.30;

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.31 (m, 6H), 7.30 – 7.26 (m, 4H), 5.19 (d, *J* = 12.2 Hz, 2H), 5.14 (d, *J* = 12.2 Hz, 2H), 3.11 (t, *J* = 9.1 Hz, 2H), 1.43 (s, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 134.6, 129.6 (t, *J* = 253.9 Hz), 128.6, 128.4, 87.8, 67.9, 65.3, 41.5 (t, *J* = 32.8 Hz), 24.8 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.35 (t, J = 9.1 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for $C_{22}H_{22}F_2NaO_5^+$ [M+Na]⁺: 427.1333, found: 427.1330.

IR (film) v_{max} 3035, 2986, 1742, 1456, 1390, 1272, 1100, 1029, 907, 750, 697 cm⁻¹.

benzyl 3-((benzylperoxy)-l2-methyl)-5,5-difluoro-2,2-diisopropyltetrahydrofuran-3-carboxylate (4ab): Follow the general procedure (*GP2*), **4ab** was obtained as a colorless oil (62.7 mg, 0.14 mmol, yield: 68%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.30;

¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.31 (m, 6H), 7.31 – 7.26 (m, 4H), 5.13 (d, J = 2.8 Hz, 4H), 3.13 (t, J = 8.7 Hz, 2H), 2.39 (hept, J = 7.0 Hz, 2H), 0.97 (d, J = 6.9 Hz, 6H), 0.92 (d, J = 7.0 Hz, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 168.4, 134.4, 129.8 (t, J = 250.3 Hz), 128.6, 128.6, 99.0, 68.0, 67.1, 43.2

(t, J = 31.8 Hz), 34.2 , 19.2 , 17.9 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.11 (t, *J* = 8.5 Hz, 2F) ppm;

HRMS (ESI, m/z): calculated for C₂₆H₃₀F₂NaO₅⁺ [M+Na]⁺: 483.1959, found: 483.1958.

IR (film) v_{max} 2978, 1741, 1456, 1395, 1344, 1256, 1139, 1041, 1013, 907, 752, 697 cm⁻¹.

dibenzyl 6,6-difluoro-5-oxaspiro[3.4]octane-8,8-dicarboxylate (4ac): Follow the general procedure (*GP1*), 4ac was obtained as a colorless oil (57.4 mg, 0.14 mmol, yield: 69%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.31 (m, 6H), 7.30 – 7.26 (m, 4H), 5.20 (d, *J* = 12.1 Hz, 2H), 5.14 (d, *J* = 12.1 Hz, 2H), 3.01 (t, *J* = 9.1 Hz, 2H), 2.48 – 2.29 (m, 4H), 2.02 – 1.89 (m, 1H), 1.55 – 1.44 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.7, 134.6, 129.3 (t, *J* = 255.2 Hz), 128.7, 128.6, 128.4, 90.6, 67.9, 63.6, 40.7 (t, *J* = 32.6 Hz), 31.4, 14.1 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -62.0 (t, J = 9.3 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for $C_{23}H_{22}F_2NaO_5^+$ [M+Na]⁺: 439.1333, found: 439.1337.

IR (film) v_{max} 2957, 1742, 1456, 1267, 1149, 1116, 1092, 1029, 908, 750, 697 cm⁻¹.

dibenzyl 2,2-difluoro-1-oxaspiro[4.4]nonane-4,4-dicarboxylate (4ad): Follow the general procedure (*GP1*), 4ad was obtained as a colorless oil (73.1 mg, 0.17 mmol, yield: 85%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.30 (m, 6H), 7.27 – 7.24 (m, 4H), 5.17 (d, *J* = 12.2 Hz, 2H), 5.12 (d, *J* = 12.2 Hz, 2H), 3.09 (t, *J* = 9.1 Hz, 2H), 2.09 – 1.97 (m, 2H), 1.84 – 1.65 (m, 4H), 1.55 – 1.46 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.2 , 134.6 , 129.4 (t, *J* = 253.7 Hz), 128.6 , 128.4 , 97.8 , 67.8 , 64.0 , 42.2 (t, *J* = 32.7 Hz), 35.2 , 23.7 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -60.08 (t, J = 8.9 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for C₂₄H₂₄F₂NaO₅⁺ [M+Na]⁺: 453.1489, found: 453.1492.

IR (film) v_{max} 2962, 1742, 1455,1331, 1266, 1157, 1095, 1030, 1013, 975, 908, 750, 697 cm⁻¹.

dibenzyl 2,2-difluoro-1-oxaspiro[4.5]decane-4,4-dicarboxylate (4ae): Follow the general procedure (*GP1*), 4ae was obtained as a colorless oil (63.9 mg, 0.14 mmol, yield: 72%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV).

¹**H NMR (400 MHz, CDCl**₃) δ 7.38 – 7.29 (m, 6H), 7.28 (dd, *J* = 6.7, 3.1 Hz, 4H), 5.20 (d, *J* = 12.2 Hz, 2H), 5.13 (d, *J* = 12.2 Hz, 2H), 3.10 (t, *J* = 9.1 Hz, 2H), 1.80 (d, *J* = 9.5 Hz, 2H), 1.69 – 1.49 (m, 7H), 1.16 – 1.01 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.3 , 134.6 , 129.6 (t, *J* = 253.7 Hz), 128.6 , 128.5 , 128.3 , 89.8 , 67.7 , 65.7 , 41.3 (t, *J* = 32.9 Hz), 32.0 , 24.8 , 21.9 ppm;

¹⁹F NMR (**376** MHz, CDCl₃) δ -58.92 (t, *J* = 9.1 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for C₂₅H₂₆F₂NaO₅⁺ [M+Na]⁺: 467.1646, found: 467.1644.

IR (film) v_{max} 3035, 2939, 2866, 1743, 1455, 1339, 1263, 1105, 1015, 958, 916, 833, 750, 697 cm⁻¹.

dibenzyl 2,2-difluoro-1-oxaspiro[4.7]dodecane-4,4-dicarboxylate (4af): Follow the general procedure (*GP1*), 4af was obtained as a colorless oil (53.6 mg, 0.11 mmol, yield: 57%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.26 (m, 10H), 5.20 (d, *J* = 12.1 Hz, 2H), 5.12 (d, *J* = 12.1 Hz, 2H), 3.10 (t, *J* = 9.2 Hz, 2H), 1.85 (t, *J* = 5.5 Hz, 4H), 1.70 – 1.57 (m, 3H), 1.56 – 1.43 (m, 3H), 1.43 – 1.28 (m, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.8 , 134.5 , 129.5 (t, *J* = 253.4 Hz), 128.6 , 128.6 , 128.5 , 93.0 , 67.8 , 67.3 , 42.2 (t, *J* = 32.7 Hz), 32.0 , 27.5 , 23.7 , 21.0 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -58.91 (t, *J* = 9.2 Hz, 2F) ppm;

HRMS (ESI, m/z): calculated for C₂₇H₃₀F₂NaO₅⁺ [M+Na]⁺: 495.1959, found: 495.1961.

IR (film) v_{max} 3034, 2925, 1740, 1455, 1337, 1269, 1164, 1094, 1029, 908, 751, 697 cm⁻¹.

dibenzyl 2,2-difluoro-1-oxaspiro[4.11]hexadecane-4,4-dicarboxylate (4ag): Follow the general procedure (*GP2*), 4ag was obtained as a colorless oil (70.7 mg, 0.13 mmol, yield: 67%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25);

¹**H NMR (400 MHz, CDCl**₃) δ 7.37 – 7.31 (m, 10H), 7.31 – 7.27 (m, 5H), 5.24 (d, *J* = 11.9 Hz, 2H), 5.06 (d, *J* = 11.9 Hz, 2H), 3.14 (t, *J* = 9.3 Hz, 2H), 1.69 – 1.61 (m, 6H), 1.37 – 1.23 (m, 5H), 1.22 – 1.10 (m, 12H).

¹³C NMR (101 MHz, CDCl₃) δ 167.7, 134.47, 129.12 (t, *J* = 252.9 Hz), 128.85, 128.71, 128.62, 93.52, 67.88, 66.12, 42.85 (t, *J* = 33.0 Hz), 31.04, 26.18, 25.80, 22.45, 21.87, 19.46.

¹⁹F NMR (376 MHz, CDCl₃) δ -59.79 (s, 2F) ppm;

HRMS (ESI, m/z): calculated for C₃₁H₃₈F₂NaO₅⁺ [M+Na]⁺: 551.2585, found: 551.2593.

IR (film) v_{max} 2930, 2892, 1747,1729,1473, 1331, 1263, 1198, 1150, 1098, 1029, 945, 907, 752, 698 cm⁻¹.

dibenzyl (1r,3r,5r,7r)-5',5'-difluorodihydro-3'H-spiro[adamantane-2,2'-furan]-3',3'-dicarboxylate (4ah): Follow the general procedure (*GP1*), 4ah was obtained as a white solid (70.4 mg, 0.14 mmol, yield: 71%) after flash chromatography (Petroleum ether/EtOAc = 50:1, CAM solution, UV): TLC Rf = 0.25;

¹**H NMR (400 MHz, CDCl₃)** δ 7.35 – 7.31 (m, 6H), 7.28 – 7.22 (m, 4H), 5.11 (s, 4H), 3.38 (t, *J* = 9.2 Hz, 2H), 2.61 (s, 2H), 2.26 (d, *J* = 11.4 Hz, 2H), 1.77 (d, *J* = 10.5 Hz, 3H), 1.64 (s, 2H), 1.62 – 1.53 (m, 5H).

¹³C NMR (101 MHz, CDCl₃) δ 167.1, 134.3, 128.6, 128.5, 128.3 (t, *J* = 277.5 Hz), 95.7, 68.1, 64.3, 43.5 (t, *J* = 32.2 Hz), 37.8, 34.7, 33.9, 33.3, 26.4, 25.9 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -61.28 (t, *J* = 9.2 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for C₂₉H₃₀F₂NaO₅⁺ [M+Na]⁺: 519.1959, found: 519.1960.

IR (film) v_{max} 2923, 1731, 1455, 1330, 1248, 1223, 1188, 1056, 1027, 1005, 899, 749, 694 cm⁻¹.

dibenzyl 2,2,8,8-tetrafluoro-1-oxaspiro[4.5]decane-4,4-dicarboxylate (**4ai**): Follow the general procedure (*GP2*), **4ai** was obtained as a colorless oil (68.2 mg, 0.14 mmol, yield: 71%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.36 – 7.31 (m, 4H), 7.29 – 7.25 (m, 3H), 5.20 (d, *J* = 12.1 Hz, 1H), 5.12 (d, *J* = 12.1 Hz, 1H), 3.12 (t, *J* = 9.2 Hz, 1H), 2.16 – 1.83 (m, 6H).

¹³C NMR (101 MHz, CDCl₃) δ 166.84, 134.27, 129.42 (t, *J* = 255.2 Hz), 128.73, 128.66, 128.45, 122.01 (dd, *J* = 243.4, 238.5 Hz), 87.22, 68.11, 64.58, 41.34 (t, *J* = 32.6 Hz), 29.67 (t, *J* = 25.0 Hz), 28.69, 28.59.

¹⁹F NMR (376 MHz, CDCl₃) δ -59.64 (t, J = 9.2 Hz), -93.52 (d, J = 237.4 Hz), -103.33 - -104.27 (m).

HRMS (ESI, m/z): calculated for C₂₅H₂₄F₄NaO₅⁺ [M+Na]⁺: 503.1458, found: 503.1463.

IR (film) v_{max} 3035, 2951, 1742, 1456, 1390, 1266, 1171, 1111, 1078, 992, 911, 750, 698 cm⁻¹.

dibenzyl 2,2-bis(3-chloropropyl)-5,5-difluorodihydrofuran-3,3(2H)-dicarboxylate (4aj):

Follow the general procedure (*GP1*), **4aj** was obtained as a colorless oil (82.4 mg, 0.16 mmol, yield: 78%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.20, CAM solution, UV);

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.32 (m, 7H), 7.31 – 7.26 (m, 4H), 5.20 (d, J = 12.0 Hz, 2H), 5.11 (d, J = 12.0 Hz, 2H), 3.31 (t, J = 5.7 Hz, 4H), 3.14 (t, J = 9.2 Hz, 2H), 1.94 – 1.71 (m, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.3 , 134.3 , 129.1 (t, *J* = 254.0 Hz), 128.8 , 128.8 , 128.7 , 91.4 , 68.2 , 66.2 , 44.8 , 42.1 (t, *J* = 32.5 Hz), 32.1 , 26.4 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.83 (s, 2F) ppm;

HRMS (ESI, m/z): calculated for $C_{26}H_{28}Cl_2F_2NaO_5^+$ [M+Na]⁺: 551.1180, found: 551.1176.

IR (film) v_{max} 3714, 3034, 2961, 1741, 1456, 1264, 1215, 1153, 1099, 752, 698 cm⁻¹.

dibenzyl 2-(2-chloroethyl)-5,5-difluoro-2-phenyldihydrofuran-3,3(2H)-dicarboxylate (4ak): Follow the general procedure (*GP1*), 4ak was obtained as a colorless oil (86.4 mg, 0.17 mmol, yield: 84%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.60 (dd, J = 6.7, 2.9 Hz, 2H), 7.34 – 7.19 (m, 11H), 6.93 (d, J = 6.4 Hz, 1H), 5.18 (d, J = 12.0 Hz, 1H), 5.13 (d, J = 12.0 Hz, 1H), 4.64 (d, J = 12.2 Hz, 1H), 4.29 (d, J = 12.2 Hz, 1H), 3.58 (td, J = 11.3, 4.9 Hz, 1H), 3.35 (ddd, J = 15.4, 9.5, 5.8 Hz, 1H), 3.22 – 3.10 (m, 2H), 3.03 (td, J = 11.2, 4.4 Hz, 1H), 2.42 (td, J = 12.7, 4.3 Hz, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.0, 166.3, 136.0, 134.2, 134.0, 129.3 (t, *J* = 254.8 Hz), 128.8, 128.7, 128.6, 128.5, 128.4, 128.2, 128.2, 126.1, 91.7, 68.2, 67.9, 67.4, 41.7 (dd, *J* = 35.0, 29.3 Hz), 40.4, 39.0 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -54.40 (ddd, *J* = 145.9, 11.4, 5.6 Hz, 1F), -65.17 (dt, *J* = 145.8, 10.4 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₈H₂₅ClF₂NaO₅⁺ [M+Na]⁺: 537.1256, found: 537.1258.

IR (film) v_{max} 3034, 1740, 1498, 1456, 1342, 1269, 1168, 1108, 1049, 1029, 947, 909, 750, 696 cm⁻¹.

dibenzyl 5,5-difluoro-3',4,4',5-tetrahydro-2'H,3H-spiro[furan-2,1'-naphthalene]-3,3-dicarboxylate (4al): Follow the general procedure (*GP1*), 4al was obtained as a colorless oil (68.9 mg, 0.14 mmol, yield: 70%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.30 (m, 5H), 7.28 (d, J = 7.3 Hz, 2H), 7.25 – 7.10 (m, 4H), 6.99 (d, J

= 7.2 Hz, 1H), 6.85 (d, *J* = 6.9 Hz, 2H), 5.30 (d, *J* = 12.1 Hz, 1H), 5.15 (d, *J* = 12.2 Hz, 1H), 4.77 (d, *J* = 11.9 Hz, 1H), 4.34 (d, *J* = 11.9 Hz, 1H), 3.72 (ddd, *J* = 15.8, 13.7, 9.7 Hz, 1H), 3.25 (ddd, *J* = 15.9, 8.9, 2.6 Hz, 1H), 2.63 (dt, *J* = 16.7, 5.5 Hz, 1H), 2.37 – 2.24 (m, 2H), 2.21 – 2.13 (m, 1H), 1.90 – 1.79 (m, 1H), 1.74 – 1.62 (m, 1H).

¹³C NMR (101 MHz, CDCl₃) δ 168.5 , 167.3 , 138.3 , 136.4 (d, *J* = 2.0 Hz), 134.4 , 134.1 , 130.4 (dd, *J* = 252.3, 255.5 Hz), 129.5 , 128.7 , 128.6 , 128.5 , 128.4 , 128.4 , 128.3 , 126.2 , 125.8 , 90.5 , 68.1 , 68.0 , 68.0 , 43.4 (t, *J* = 32.2 Hz), 34.4 , 29.3 , 19.2 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -57.24 (ddd, *J* = 145.9, 14.0, 9.1 Hz, 1F), -59.58 (dd, *J* = 145.7, 9.2 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{29}H_{26}F_2NaO_5^+$ [M+Na]⁺: 515.1646, found: 515.1646.

IR (film) v_{max} 3726, 3034, 2943, 1741, 1455, 1274, 1109, 1045, 909, 752, 697 cm⁻¹.

dibenzyl 5,5-difluoro-2-methyl-2-phenyldihydrofuran-3,3(2H)-dicarboxylate (4am): Follow the general procedure (*GP1*), 4am was obtained as a colorless oil (65.2 mg, 0.14 mmol, yield: 72%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.64 – 7.58 (m, 2H), 7.34 – 7.20 (m, 11H), 6.95 (dd, *J* = 7.6, 1.5 Hz, 2H), 5.18 (d, *J* = 12.1 Hz, 1H), 5.13 (d, *J* = 12.0 Hz, 1H), 4.69 (d, *J* = 12.2 Hz, 1H), 4.36 (d, *J* = 12.2 Hz, 1H), 3.34 (ddd, *J* = 15.2, 9.4, 5.7 Hz, 1H), 3.19 (dt, *J* = 15.4, 10.8 Hz, 1H), 1.89 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 166.9, 139.5, 134.4, 134.2, 129.4 (t, *J* = 253.5 Hz), 128.7, 128.6, 128.5, 128.3, 128.3, 128.1, 127.8, 125.8, 91.0, 68.0, 67.8, 67.2, 42.0 (dd, *J* = 35.4, 29.6 Hz), 26.1 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -53.48 – -54.01 (m, 1F), -64.46 (dt, J = 145.8, 10.8 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₇H₂₄F₂NaO₅⁺ [M+Na]⁺: 489.1489, found: 489.1492.

IR (film) v_{max} 3034, 1741, 1456, 1343, 1243, 1169, 1110, 1025, 908, 765, 740, 697 cm⁻¹.

dibenzyl 5,5-difluoro-2,2-diphenyldihydrofuran-3,3(2H)-dicarboxylate (4an): Follow the general procedure (*GP1*), 4an was obtained as a colorless oil (53.9 mg, 0.10 mmol, yield: 51%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.43 (dd, *J* = 8.0, 1.6 Hz, 4H), 7.34 – 7.25 (m, 6H), 7.24 – 7.17 (m, 6H), 7.08 – 7.03 (m, 4H), 4.85 (d, *J* = 12.0 Hz, 2H), 4.80 (d, *J* = 12.0 Hz, 2H), 3.40 (t, *J* = 8.8 Hz, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 140.6, 134.1, 130.0 (t, J = 253.6 Hz), 128.5, 128.5, 128.0, 127.9,

127.1, 95.2, 68.3, 68.2, 42.9 (t, *J* = 31.3 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.71 (t, *J* = 8.9 Hz, 2F) ppm.

HRMS (ESI, m/z): calculated for C₃₂H₂₆F₂NaO₅⁺ [M+Na]⁺: 551.1646, found: 551.1651.

IR (film) v_{max} 3066, 3034, 2957, 1741, 1722, 1497, 1448, 1379, 1347, 1292, 1146, 1055, 935, 898, 750, 697, 624 cm⁻¹.

$$F = \frac{1}{4ao} = \frac{1}{2} \frac{1}$$

dibenzyl (E)-5,5-difluoro-2-phenyl-2-styryldihydrofuran-3,3(2H)-dicarboxylate (4ao): Follow the general procedure (*GP1*), 4ao was obtained as a colorless oil (33.2 mg, 0.06 mmol, yield: 30%) after flash chromatography (Petroleum ether/EtOAc = 20:1, TLC Rf = 0.30, KMnO₄, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.73 – 7.64 (m, 2H), 7.32 – 7.20 (m, 16H), 7.00 (dd, *J* = 7.6, 1.8 Hz, 2H), 6.83 (s, 2H), 5.22 (d, *J* = 12.0 Hz, 1H), 5.12 (d, *J* = 12.0 Hz, 1H), 4.71 (d, *J* = 12.2 Hz, 1H), 4.50 (d, *J* = 12.1 Hz, 1H), 3.29 – 3.14 (m, 2H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.2 , 166.7 , 138.8 (d, *J* = 2.5 Hz), 136.0 , 134.4 , 134.2 , 131.4 , 129.7 (dd, *J* = 255.2, 252.8 Hz), 128.7 , 128.7 , 128.6 , 128.5 , 128.4 , 128.4 , 128.2 , 128.1 , 128.1 , 128.0 , 127.85 , 127.8 , 126.9 , 126.0 , 92.3 , 68.2 , 67.9 , 41.1 (dd, *J* = 33.3 , 29.3 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -57.55 (dd, J = 140.6, 8.4 Hz, 1F), -60.89 – -61.48 (m, 1F) ppm.

HRMS (ESI, m/z): calculated for C₃₄H₂₈F₂NaO₅⁺ [M+Na]⁺: 577.1803, found: 577.1808.

IR (film) v_{max} 3062, 3032, 1742, 1449, 1344, 1263, 1241, 1161, 1111, 746, 695 cm⁻¹.

benzyl 3-((benzylperoxy)-l2-methyl)-2-ethyl-5,5-difluoro-2-vinyltetrahydrofuran-3-carboxylate (4ap): Follow the general procedure (*GP1*), **4ap** was obtained as a colorless oil (55.0 mg, 0.13 mmol, yield: 64%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, KMnO₄, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.34 – 7.30 (m, 6H), 7.28 – 7.24 (m, 4H), 5.76 (dd, *J* = 17.2, 11.1 Hz, 1H), 5.39 (dd, *J* = 17.1, 1.2 Hz, 1H), 5.20 – 5.02 (m, 5H), 3.08 (td, *J* = 9.1, 1.4 Hz, 2H), 1.86 – 1.68 (m, 2H), 0.83 (t, *J* = 7.3 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.3 , 167.0 , 134.6 (d, *J* = 3.8 Hz), 134.0 (d, *J* = 1.6 Hz), 129.7 (t, *J* = 255.3 Hz), 128.6 , 128.5 , 128.5 , 128.4 , 128.4 , 117.5 , 91.9 , 67.9 , 67.9 , 66.3 , 40.8 (dd, *J* = 33.8 , 30.7 Hz), 28.1 , 7.5 .

¹⁹F NMR (376 MHz, CDCl₃) δ -56.43 (dt, *J* = 146.1, 9.0 Hz, 1F), -62.92 (dt, *J* = 146.1, 8.9 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₄H₂₄F₂NaO₅⁺ [M+Na]⁺: 453.1489, found: 453.1494.

IR (film) v_{max} 2939, 1742, 1456, 1282, 1266, 1102, 1041, 939, 907,698 cm⁻¹.

dibenzyl 5,5-difluoro-2-((trimethylsilyl)ethynyl)-2-vinyldihydrofuran-3,3(2H)-dicarboxylate (4aq): Follow the general procedure (*GP1*), 4aq was obtained as a colorless oil (64.7 mg, 0.13 mmol, yield: 65%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, KMnO₄, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.22 (m, 10H), 6.05 (dd, *J* = 17.0, 10.6 Hz, 1H), 5.61 (d, *J* = 17.0 Hz, 1H), 5.24 – 5.05 (m, 5H), 3.35 (ddd, *J* = 15.2, 12.6, 10.5 Hz, 1H), 3.13 – 3.03 (m, 1H), 0.14 (s, 9H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.2, 166.1, 134.5, 134.4, 131.6, 129.7 (dd, *J* = 259.1, 255.4 Hz), 128.5, 128.5, 128.5, 128.3, 128.1, 119.5, 99.1, 95.4, 84.0 (d, *J* = 2.4 Hz), 68.1, 68.0, 67.6, 41.2 (dd, *J* = 34.5, 29.3 Hz), -0.6 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -58.77 (ddd, *J* = 142.1, 10.4, 4.5 Hz, 1F), -62.20 (ddd, *J* = 142.6, 12.7, 9.6 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for C₂₇H₂₈F₂NaO₅Si⁺ [M+Na]⁺: 521.1572, found: 521.1575.

IR (film) v_{max} 2961, 1745, 1456, 1336, 1272, 1238, 1157, 1112, 948, 849, 750, 697 cm⁻¹.

benzyl 3-((benzylperoxy)-l2-methyl)-5,5-difluoro-2-(hex-1-yn-1-yl)-2-phenethyltetrahydrofuran-3carboxylate (4ar): Follow the general procedure (*GP1*), 4ar was obtained as a colorless oil (104.2 mg, 0.19 mmol, yield: 93%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, KMnO₄, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.38 – 7.16 (m, 15H), 7.05 (d, *J* = 7.0 Hz, 2H), 5.23 – 5.15 (m, 3H), 5.10 (d, *J* = 12.1 Hz, 1H), 3.36 (ddd, *J* = 15.1, 12.6, 10.6 Hz, 1H), 3.12 – 2.94 (m, 2H), 2.81 (td, *J* = 13.2, 4.8 Hz, 1H), 2.32 (td, *J* = 13.0, 4.2 Hz, 1H), 2.17 – 2.07 (m, 3H), 1.47 – 1.34 (m, 4H), 0.90 (t, *J* = 7.1 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 166.8, 166.4, 141.2, 134.7, 134.4, 129.9 (dd, *J* = 258.6, 254.1 Hz), 128.6, 128.5, 128.45, 128.4, 128.4, 128.3, 128.3, 125.9, 90.8, 85.4 (d, *J* = 2.0 Hz), 75.7 (d, *J* = 2.5 Hz), 68.0, 66.9, 41.5 (dd, *J* = 34.6, 29.8 Hz), 38.0, 31.2, 30.2, 21.8, 18.2, 13.5 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -58.51 – -59.07 (m), -61.92 (dt, *J* = 143.1, 10.7 Hz) ppm.

HRMS (ESI, m/z): calculated for C₃₄H₃₄F₂NaO₅⁺ [M+Na]⁺: 583.2272, found: 583.2277.

IR (film) v_{max} 2958, 2245, 1746, 1498, 1455, 1270, 1240, 1158, 1112, 1039, 950, 749, 698 cm⁻¹.

dimethyl 5,5-difluoro-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (5ba): Follow the general procedure (*GP1*), 5ba was obtained as a colorless oil (59.7 mg, 0.19 mmol, yield: 95%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.23 (d, *J* = 8.2 Hz, 2H), 7.14 (d, *J* = 7.5 Hz, 2H), 6.09 (d, *J* = 3.6 Hz, 1H), 3.83 (s, 3H), 3.39 (ddd, *J* = 17.2, 14.9, 7.5 Hz, 1H), 3.26 (s, 3H), 2.90 (ddd, *J* = 14.9, 8.4, 2.8 Hz, 1H), 2.32 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 169.0, 166.7, 138.9, 131.9 (d, *J* = 1.6 Hz), 130.2 (dd, *J* = 253.3, 256.5 Hz), 128.9, 126.3, 84.4, 53.6, 52.9, 40.1 (dd, *J* = 34.3, 30.2 Hz), 21.2 ppm;

¹⁹**F NMR (376 MHz, CDCl**₃) δ -59.09 (ddd, *J* = 24.3, 18.0, 9.0 Hz, 1F), -72.08 - -72.56 (m, 1F) ppm;

HRMS (ESI, m/z): calculated for C₁₅H₁₆F₂NaO₅⁺ [M+Na]⁺: 337.0863, found: 337.0867.

IR (film) v_{max} 2957, 1743, 1518, 1437, 1337, 1280, 1256, 1209, 1161, 1115, 1060, 944, 800 cm⁻¹.

diethyl 5,5-difluoro-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (5ca): Follow the general procedure (*GP1*), 5ca was obtained as a colorless oil (49.2 mg, 0.14 mmol, yield: 72%) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 (d, *J* = 8.1 Hz, 2H), 7.13 (d, *J* = 7.9 Hz, 2H), 6.10 (d, *J* = 3.7 Hz, 1H), 4.37 – 4.21 (m, 2H), 3.80 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.58 (dq, *J* = 10.7, 7.2 Hz, 1H), 3.40 (ddd, *J* = 17.4, 14.9, 7.6 Hz, 1H), 2.89 (ddd, *J* = 14.9, 8.4, 2.8 Hz, 1H), 2.31 (s, 3H), 1.27 (t, *J* = 7.1 Hz, 3H), 0.87 (t, *J* = 7.1 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.5 , 166.3 , 138.8 , 132.0 (d, *J* = 2.0 Hz), 130.3 (d, *J* = 256.8, 253.7 Hz), 128.8 , 126.5 , 84.4 , 63.4 (d, *J* = 2.8 Hz), 62.6 , 62.2 , 40.1 (dd, *J* = 33.8, 30.2 Hz), 21.1 , 13.9 , 13.3 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.06 (ddd, *J* = 144.0, 17.5, 8.4 Hz, 1F), -72.27 (ddt, *J* = 143.1, 6.2, 2.7 Hz, 1F) ppm.

HRMS (ESI, m/z): calculated for $C_{17}H_{20}F_2NaO_5^+$ [M+Na]⁺: 365.1176, found: 365.1173.

IR (film) v_{max} 2985, 1740, 1518, 1447, 1369, 1336, 1271, 1204, 1161,1109, 1059, 1019, 990, 863, 807 cm⁻¹.

dibenzyl 5,5-difluoro-4-methyl-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (5da): Follow the general procedure (*GP1*), 5da was obtained as a white solid (70.0 mg, 0.15 mmol, yield: 73%, d.r.=8:1) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.34 – 7.21 (m, 8H), 7.15 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 6.9 Hz, 2H), 6.03 (d, *J* = 3.9 Hz, 1H), 5.18 (s, 2H), 4.75 (d, *J* = 12.1 Hz, 1H), 4.36 (d, *J* = 12.1 Hz, 1H), 3.60 (dp, *J* = 14.8, 7.3 Hz, 1H), 2.31 (s, 3H), 1.18 (d, *J* = 7.2 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.5 , 166.3 , 138.9 , 134.4 , 134.2 , 132.4 (d, *J* = 2.7 Hz), 130.5 (dd, *J* = 260.8, 252.2 Hz), 129.0 , 128.6 , 128.6 , 128.6 , 128.4 , 128.4 , 126.8 , 83.8 (d, *J* = 1.0 Hz), 68.1 , 67.8 , 66.70 (d, *J* = 3.9 Hz), 43.9 (t, *J* = 30.0 Hz), 21.2 , 9.4 (d, *J* = 4.8 Hz) ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -71.64 (dd, J = 143.5, 14.8 Hz, 1F), -76.45 - -76.92 (m, 1F) ppm;

HRMS (ESI, m/z): calculated for C₂₈H₂₆F₂NaO₅⁺ [M+Na]⁺: 503.1646, found: 503.1646.

IR (film) v_{max} 3032, 1735, 1456, 1387, 1338, 1269, 1246, 1203, 1135, 1058, 1016, 978, 906, 746, 696 cm⁻¹.

dibenzyl 5,5-difluoro-4-nonyl-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate(5ea) : Follow the general procedure (*GP1*), 5ea was obtained as a white solid (92.3 mg, 0.16 mmol, yield: 78%, d.r.=10:1) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.34 – 7.25 (m, 8H), 7.12 (d, *J* = 7.9 Hz, 2H), 7.06 (d, *J* = 8.1 Hz, 2H), 6.98 (d, *J* = 7.4 Hz, 2H), 5.99 (d, *J* = 2.7 Hz, 1H), 5.24 (d, *J* = 12.0 Hz, 1H), 5.13 (d, *J* = 12.0 Hz, 1H), 4.74 (d, *J* = 12.1 Hz, 1H), 4.37 (d, *J* = 12.1 Hz, 1H), 3.52 – 3.40 (m, 1H), 2.31 (s, 3H), 1.40 – 1.16 (m, 16H). 0.88 (t, *J* = 6.9 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.8, 166.2, 138.9, 134.5, 134.2, 132.6, 130.8 (dd. *J* = 260.0. 255.5 Hz), 129.0, 128.7, 128.6, 128.6, 128.4, 126.9, 83.9, 68.1, 67.8, 66.7, 66.6, 48.2 (t, *J* = 28.4 Hz), 31.9, 29.6, 29.5, 29.3, 26.9, 25.5, 22.7, 21.2, 14.1 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -70.62 – -71.54 (m) ppm;

HRMS (ESI, m/z): calculated for $C_{36}H_{43}F_2O_5^+$ [M+H]⁺: 593.3079, found: 593.3069.

IR (film) v_{max} 2919. 2851, 1734, 1499, 1262, 1233, 1201, 1037, 744, 698 cm⁻¹

dibenzyl 5,5-difluoro-4-phenethyl-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (5fa) : Follow the general procedure (*GP1*), 5fa was obtained as a white solid (100.0 mg, 0.18 mmol, yield: 88%, d.r.=7:1) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.20, CAM solution, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.33 – 7.24 (m, 7H), 7.19 (t, *J* = 7.3 Hz, 4H), 7.13 (d, *J* = 8.1 Hz, 2H), 7.06 (d, *J* = 7.9 Hz, 4H), 6.98 (d, *J* = 7.2 Hz, 2H), 6.03 (s, 1H), 5.22 (d, *J* = 11.9 Hz, 1H), 5.11 (d, *J* = 12.0 Hz, 1H), 4.76 (d, *J* = 12.1 Hz, 1H), 4.39 (d, *J* = 12.1 Hz, 1H), 3.57 (ddt, *J* = 15.0, 10.3, 4.9 Hz, 1H), 2.84 (td, *J* = 13.1, 4.7 Hz, 1H), 2.73 – 2.61 (m, 1H), 2.31 (s, 3H), 1.93 (ddd, *J* = 17.3, 11.3, 5.5 Hz, 1H), 1.82 – 1.68 (m, 1H) ppm;

¹³C NMR (101 MHz, CDCl₃) & 167.6, 166.1, 141.1, 138.9, 134.3, 134.14, 132.4, 130.7 (dd, *J* = 255.8, 258.3 Hz), 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 128.3, 126.8, 126.0, 84.0, 68.3, 67.8, 66.6, 48.0 (t, *J* = 28.5 Hz), 33.1, 27.3, 21.2 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -70.69 (dd, *J* = 11.1, 6.7 Hz, 2F) ppm;

HRMS (ESI, m/z): calculated for $C_{35}H_{32}F_2NaO_5^+$ [M+Na]⁺: 593.2116, found: 593.2123.

IR (film) v_{max} 3031, 1735, 1456, 1335, 1272, 1259, 1226, 1201, 1103, 1033, 975, 909, 752, 699 cm⁻¹.

dibenzyl 5,5-difluoro-4-isobutyl-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (5ga) : Follow the general procedure (*GP1*), 5ga was obtained as a white solid (41.8 mg, 0.08 mmol, yield: 40%, d.r.=50:1) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.35 – 7.26 (m), 7.14 (d, *J* = 8.1 Hz), 7.07 (d, *J* = 8.0 Hz), 6.99 (d, *J* = 7.2 Hz), 5.99 (d, *J* = 3.6 Hz), 5.26 (d, *J* = 12.0 Hz), 5.15 (d, *J* = 12.0 Hz), 4.75 (d, *J* = 12.1 Hz), 4.38 (d, *J* = 12.1 Hz), 3.68 – 3.54 (m), 2.32 (s), 1.85 – 1.70 (m), 1.43 – 1.24 (m), 0.87 (dd, *J* = 13.9, 6.6 Hz) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.3, 138.9, 134.5, 134.2, 132.6 (d, *J* = 2.6 Hz), 130.8 (dd, *J* = 253.2, 261.1 Hz), 129.0, 128.8, 128.7, 128.6, 128.5, 128.4, 126.9, 84.0, 68.1, 67.8, 66.7 (d, *J* = 4.2 Hz), 45.9 (t, *J* = 28.5 Hz), 34.2, 24.8, 23.5, 21.2, 21.1 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -70.84 (dd, *J* = 144.6, 15.0 Hz, 1F), -71.56 (ddd, *J* = 144.8, 8.1, 2.7 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for $C_{31}H_{32}F_2NaO_5^+$ [M+Na]⁺: 545.2116, found: 545.2121.

IR (film) v_{max} 3037, 2961, 1735, 1500, 1469, 1379, 1279, 1231, 1200, 1166, 1123, 1089, 1053, 1040, 1020, 941, 902, 805, 744, 697, cm⁻¹.

dibenzyl 5,5-difluoro-2-(1-(4-isopropylphenyl)propan-2-yl)dihydrofuran-3,3(2H)-dicarboxylate (6aa): Follow the general procedure, **6aa** was obtained as a colorless oil (69.7 mg, 0.13 mmol, yield: 65%, d.r.=1:1) after flash chromatography (Petroleum ether/EtOAc = 50:1, TLC Rf = 0.25, CAM solution, UV); ¹**H NMR (400 MHz, CDCl**₃) δ 7.36 – 7.26 (m, 6H), 7.25 – 7.20 (m, 4H), 7.10 (d, *J* = 5.8 Hz, 2H), 6.94 (dd, *J* = 17.7, 7.1 Hz, 2H), 5.23 – 5.01 (m, 4.5H), 4.79 (dd, *J* = 7.5, 3.0 Hz, 0.5H), 3.42 – 3.20 (m, 1H), 2.96 – 2.81 (m, 2.5H), 2.73 (dd, *J* = 13.6, 5.5 Hz, 0.5H), 2.41 – 2.27 (m, 1H), 2.08 – 1.90 (m, 1H), 1.24 (d, *J* = 7.0 Hz, 6H), 0.76 (d, *J* = 6.6 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.4 , 168.3 , 167.0 , 166.6 , 146.6 , 146.5 , 136.7 , 136.5 , 134.6 , 134.6 , 134.3 , 134.3 , 130.1 (t, J = 254.5 Hz) , 129.6 (t, J = 24.5 Hz) , 129.3 , 129.0 , 128.8 , 128.7 , 128.6 , 128.5 , 128.3 , 128.3 , 126.3 , 126.2 , 87.8 , 86.6 , 68.2 , 68.2 , 68.2 , 61.2 , 61.2 , 42.6 (dd, J = 35.1, 30.5 Hz), 41.4 (dd, J = 33.9, 31.3 Hz), 40.4 , 37.9 , 36.4 , 33.7 , 24.0 , 15.7 , 13.3 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -57.96 (ddd, J = 144.5, 16.6, 8.5 Hz, 0.5F), -59.98 (ddd, J = 143.9, 12.5, 10.4 Hz, 0.5F), -68.72 - -69.80 (m, 0.5F), -70.36 - -71.46 (m, 0.5F) ppm;

HRMS (ESI, m/z): calculated for C₃₁H₃₂F₂NaO₅⁺ [M+Na]⁺: 545.2116, found: 545.2114.

IR (film) v_{max} 2961, 1740, 1456, 1266, 1242, 1213, 1120, 1058, 750, 697 cm⁻¹.

dibenzyl 5,5-difluoro-2-(4-((2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)chroman-6yl)oxy)phenyl)dihydrofuran-3,3(2H)-dicarboxylate (6ab): Follow the general procedure (*GP2*), 6ab was obtained as a colorless(143.8 mg, 0.16 mmol, yield: 82%) after flash chromatography (Petroleum ether/EtOAc = 20:1, TLC Rf =0.30, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.25 (ddd, *J* = 21.1, 14.7, 7.0 Hz, 10H), 6.98 (d, *J* = 6.4 Hz, 2H), 6.70 (d, *J* = 8.7 Hz, 2H), 6.11 (d, *J* = 3.3 Hz, 1H), 5.18 (d, *J* = 2.6 Hz, 2H), 4.79 (d, *J* = 12.2 Hz, 1H), 4.36 (d, *J* = 12.2 Hz, 1H), 3.53 – 3.37 (m, 1H), 2.92 (ddd, *J* = 14.9, 8.5, 2.9 Hz, 1H), 2.59 (t, *J* = 6.7 Hz, 2H), 2.12 (s, 3H), 1.95 (s, 3H), 1.91 (s, 3H), 1.89 – 1.78 (m, 2H), 1.66 – 1.37 (m, 7H), 1.34 – 1.22 (m, 11H), 1.19 – 1.04 (m, 7H), 0.88 (t, *J* = 6.6 Hz, 12H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.2 , 166.2 , 159.4 , 148.8 , 143.1 , 134.5 , 134.1 , 130.0 (dd, *J* = 256.9, 253.9 Hz), 128.6 , 128.6 , 128.5 , 128.4 , 128.4 , 128.1 , 128.0 , 127.9 , 127.0 , 126.0 , 123.3 , 117.9 , 114.5 , 84.3 , 75.0 , 68.3 , 67.9 , 63.6 , 63.5 , 40.3 (dd, *J* = 34.1 , 30.5 Hz), 39.96 , 39.33 , 37.6 , 37.4 , 37.4 , 37.3 , 32.8 , 32.7 , 31.2 , 31.2 , 27.95 , 24.79 , 24.42 , 23.8 , 23.8 .22.7 , 22.6 , 21.0 , 20.6 , 19.7 (t, *J* = 6.9 Hz), 12.8 , 11.9 , 11.8 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -59.19 (ddd, J = 144.0, 16.9, 8.6 Hz, 1F), -71.75 - -72.23 (m, 1F) ppm;

HRMS (ESI, m/z): calculated for C₅₅H₇₀F₂NaO₇⁺ [M+Na]⁺: 903.4987, found: 903.4991.

IR (film) v_{max} 2927, 2867, 1740, 1611, 1507, 1456, 1411, 1378, 1251, 1161, 1110, 1052, 939, 911, 737, 696 cm⁻¹.

dimethyl 2-(2-ethoxy-2-oxoethyl)-5',5'-difluoro-4',5'-dihydro-3'H,6H-spiro[dibenzo[b,e]oxepine-11,2'furan]-3',3'-dicarboxylate (6bc): Follow the general procedure (*GP1*), 6bc was obtained as a colorless oil (29.4 mg, 0.06 mmol, yield: 30%) after flash chromatography (Petroleum ether/EtOAc = 5:1, TLC Rf = 0.10, CAM solution, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.83 – 7.78 (m, 1H), 7.51 (d, *J* = 2.1 Hz, 1H), 7.27 – 7.19 (m, 3H), 7.04 (d, *J* = 8.1 Hz, 1H), 6.91 – 6.87 (m, 1H), 5.40 (d, *J* = 15.5 Hz, 1H), 4.94 (d, *J* = 15.5 Hz, 1H), 4.11 (q, *J* = 7.1 Hz, 2H), 3.58 (d, *J* = 3.5 Hz, 2H), 3.55 (s, 3H), 3.48 (s, 3H), 3.31 (dt, *J* = 14.5, 7.4 Hz, 1H), 3.18 (dt, *J* = 14.3, 9.4 Hz, 1H), 1.23 (t, *J* = 7.1 Hz, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 171.4 , 167.4 , 167.2 , 152.9 , 136.8 , 136.6 , 135.1 , 131.0 , 130.7 , 129.7 (t, *J* = 253.7 Hz), 128.5 , 126.6 , 126.4 , 126.1 , 125.3 , 121.1 , 94.0 , 73.0 , 67.1 , 60.9 , 53.0 , 52.9 , 42.3 (t, *J* = 29.9 Hz), 41.0 , 14.1 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -64.14 – -64.23 (m, 2F) ppm;

HRMS (ESI, m/z): calculated for C₂₅H₂₄F₂NaO₈⁺ [M+Na]⁺: 513.1337, found: 513.1335.

IR (film) v_{max} 2953, 1739, 1499, 1434, 1340, 1251, 1146, 1103, 1031, 946, 772,756 cm⁻¹.

dibenzyl 2-(4-(2-(1-(4-chlorobenzoyl)-5-methoxy-2-methyl-1H-indol-3-yl)acetoxy)phenyl)-5,5difluorodihydrofuran-3,3(2H)-dicarboxylate (6ad): Follow the general procedure (*GP1*), 6ad was obtained as a coless oil (114.6 mg, 0.14 mmol, yield: 71%) after flash chromatography (Petroleum ether/EtOAc = 5:1, TLC Rf = 0.25, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.68 (d, *J* = 8.4 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.36 – 7.29 (m, 5H), 7.22 – 7.17 (m, 5H), 7.06 (d, *J* = 2.5 Hz, 1H), 6.98 (d, *J* = 8.6 Hz, 2H), 6.93 (d, *J* = 6.3 Hz, 2H), 6.90 (d, *J* = 9.0 Hz, 1H), 6.71 (dd, *J* = 9.0, 2.5 Hz, 1H), 6.11 (d, *J* = 3.3 Hz, 1H), 5.22 – 5.12 (m, 2H), 4.73 (d, *J* = 12.1 Hz, 1H), 4.40 (d, *J* = 12.1 Hz, 1H), 3.91 (s, 2H), 3.83 (s, 3H), 3.43 (td, *J* = 15.6, 7.7 Hz, 1H), 2.92 (ddd, *J* = 14.9, 8.8, 3.7 Hz, 1H), 2.47 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 168.9 , 168.2 , 168.0 , 166.1 , 156.1 , 151.1 , 139.3 , 136.2 , 134.4 , 134.0 , 133.7 , 132.4 , 131.2 , 130.8 , 130.4 , 130.0 (dd, *J* = 257.6 254.8 Hz), 129.1 , 128.7 , 128.6 , 128.4 , 127.7 , 121.3 , 115.0 , 111.8 , 111.7 , 101.2 , 83.7 , 68.4 , 68.1 , 63.6 , 63.5 , 55.7 , 40.4 (dd, *J* = 34.4 , 30.2 Hz), 30.5 , 13.4 ppm; ¹⁹**F NMR (376 MHz, CDCl₃)** δ -59.47 (ddd, *J* = 143.8, 16.1, 8.8 Hz, 1F), -71.73 (ddt, *J* = 143.5, 7.3, 3.0 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₄₅H₃₆ClF₂NNaO₉⁺ [M+Na]⁺: 830.1944, found: 830.1949.

IR (film) v_{max} 3034, 2957, 1738, 1683, 1508, 1478, 1456, 1323, 1122, 1014, 926, 834, 753, 697 cm⁻¹.

dibenzyl 2-(4-chlorophenyl)-5,5-difluoro-2-(4-((1-isopropoxy-2-methyl-1-oxopropan-2yl)oxy)phenyl)dihydrofuran-3,3(2H)-dicarboxylate(6ae): Follow the general procedure (*GP1*), 6ae was obtained as a coless oil (64.9 mg, 0.09 mmol, yield: 46%) after flash chromatography (Petroleum ether/EtOAc = 20:1, TLC Rf = 0.2, CAM solution, UV);

¹H NMR (400 MHz, CDCl₃) δ 7.37 – 7.28 (m, 8H), 7.17 (d, J = 9.0 Hz, 2H), 7.11 – 7.02 (m, 6H), 6.66 (d, J = 9.0 Hz, 2H), 5.04 (hept, J = 6.3 Hz, 1H), 4.90 – 4.77 (m, 4H), 3.44 (dt, J = 15.5, 9.9 Hz, 1H), 3.28 (ddd, J = 15.5, 8.8, 6.5 Hz, 1H), 1.55 (s, 6H), 1.16 (d, J = 6.7 Hz, 6H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 173.3 , 167.5 , 167.0 , 155.5 , 139.2 , 129.9 (t, *J* = 253.7 Hz), 128.7 , 128.6 , 128.6 , 128.5 , 128.5 , 128.5 , 128.2 , 127.8 , 117.7 , 94.5 , 79.1 , 69.0 , 68.4 , 68.3 , 42.9 (t, *J* = 31.4 Hz), 25.3 , 21.5 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -58.89 – -60.48 (m, 2F) ppm;

HRMS (ESI, m/z): calculated for C₃₉H₃₇ClF₂NaO₈⁺ [M+Na]⁺: 729.2043, found: 729.2045.

IR (film) v_{max} 2983, 1731, 1608, 1509, 1289, 1148, 1105, 1010, 934, 829, 750, 697 cm⁻¹.

dibenzyl (5S,8R,9S,10S,13S,14S,17S)-17-(benzoyloxy)-5',5'-difluoro-10,13-dimethyloctadecahydro-3'Hspiro[cyclopenta[a]phenanthrene-3,2'-furan]-3',3'-dicarboxylate (6af): Follow the general procedure (*GP1*), 6af was obtained as a colorless oil (85.9 mg, 0.12 mmol, yield: 58%) after flash chromatography (Petroleum ether/EtOAc = 5:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 8.03 (d, J = 7.2 Hz, 2H), 7.54 (t, J = 7.4 Hz, 1H), 7.42 (t, J = 7.7 Hz, 2H), 7.35 – 7.27 (m, 10H), 5.23 (dd, J = 14.7, 12.1 Hz, 2H), 5.10 (t, J = 12.1 Hz, 2H), 4.81 (t, J = 8.3 Hz, 1H), 3.09 (t, J = 9.0 Hz, 2H), 2.34 – 2.21 (m, 1H), 1.86 – 1.73 (m, 2H), 1.71 – 1.58 (m, 5H), 1.55 – 1.43 (m, 3H), 1.38 – 1.24 (m, 5H), 1.23 – 1.14 (m, 2H), 1.14 – 0.97 (m, 3H), 0.90 (s, 3H), 0.76 (m, 1H), 0.57 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 167.5, 167.4, 166.5, 134.6, 134.5, 132.7, 130.7, 129.6 (t, *J* = 254.5 Hz), 129.5, 128.7, 128.6, 128.6, 128.5, 128.3, 90.2, 83.3, 67.8, 65.5, 53.4, 50.6, 43.0, 41.2 (t, J = 32.8 Hz), 41.2, 36.9, 35.2, 35.1, 34.6, 34.0, 31.2, 28.0, 27.9, 27.67, 23.6, 20.4, 12.4, 11.3 ppm;

¹⁹F NMR (376 MHz, CDCl₃) δ -58.07 (dt, *J* = 146.6, 8.8 Hz, 1F), -59.00 (dt, *J* = 146.6, 9.0 Hz, 1F) ppm;

HRMS (ESI, m/z): calculated for C₄₅H₅₀F₂NaO₇⁺ [M+Na]⁺: 763.3422, found: 763.3428.

IR (film) v_{max} 2029, 1741, 1716, 1451, 1276, 1115, 1099, 907, 7751, 712, 697 cm⁻¹.

dimethyl 5,5-dichloro-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate (9) : Follow the general procedure (*GP3*), 9 was obtained as a white solid (38.0 mg, 0.11 mmol, yield: 55%) after flash chromatography (Petroleum ether/EtOAc = 5:1, TLC Rf = 0.20, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.27 (d, *J* = 6.5 Hz, 2H), 7.12 (d, *J* = 8.0 Hz, 2H), 5.67 (s, 1H), 3.82 (s, 3H), 3.62 (s, 3H), 3.25 (d, *J* = 17.5 Hz, 1H), 3.05 (d, *J* = 17.5 Hz, 1H), 2.32 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 175.9, 168.1, 167.7, 139.1, 133.1, 128.8, 128.4, 63.4, 62.3, 53.3, 52.9, 35.3, 21.1 ppm;

HRMS (ESI, m/z): calculated for C₁₅H₁₆Cl₂NaO₅⁺ [M+Na]⁺: 369.0272, found: 369.0280.

IR (film) v_{max} 2952, 1742, 1714, 1500, 1430, 1413, 1309, 1288, 1249, 1195, 1065, 953, 889 cm⁻¹.

dimethyl 5,5-dibromo-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate(10): Follow the general procedure (*GP3*), 10 was obtained as a white solid (13.0 mg, 0.03 mmol, yield: 15%) after flash chromatography (Petroleum ether/EtOAc = 10:1, TLC Rf = 0.30, UV);

¹**H NMR (400 MHz, CDCl₃)** δ 7.24 (d, *J* = 8.2 Hz, 2H), 7.16 (d, *J* = 8.0 Hz, 2H), 6.14 (s, 1H), 3.84 (s, 3H), 3.48 (d, *J* = 18.0 Hz, 1H), 3.29 (s, 3H), 2.96 (d, *J* = 18.0 Hz, 1H), 2.33 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 172.7, 168.8, 167.2, 139.1, 131.3, 129.0, 126.1, 82.4, 61.9, 53.6, 52.9, 36.2, 21.2 ppm;

HRMS (ESI, m/z): calculated for C₁₅H₁₆Br₂NaO₅⁺ [M+Na]⁺: 456.9260, found: 456.9260.

IR (film) v_{max} 2956, 1795, 1738, 1436, 1400, 1270, 1207, 1181, 1071, 1031, cm⁻¹.

dibenzyl 4,4-difluoro-5-phenyl-2-(p-tolyl)dihydrofuran-3,3(2H)-dicarboxylate(11) : Follow the general procedure (*GP4*), **11** was obtained as a white solid (78.0 mg, 0.14 mmol, yield: 72%, d.r.> 50:1) after flash chromatography (Petroleum ether/EtOAc = 20:1, TLC Rf = 0.25, CAM solution, UV);

¹**H NMR (400 MHz, CDCl**₃) δ 7.62 – 7.57 (m, 2H), 7.54 (d, *J* = 8.1 Hz, 2H), 7.41 – 7.37 (m, 3H), 7.28 – 7.17 (m, 8H), 7.14 (d, *J* = 8.1 Hz, 2H), 6.81 (d, *J* = 7.5 Hz, 2H), 5.80 (s, 1H), 5.28 – 5.14 (m, 3H), 4.75 (d, *J* = 12.1 Hz, 1H), 4.50 (d, *J* = 12.1 Hz, 1H), 2.33 (s, 3H) ppm;

¹³C NMR (101 MHz, CDCl₃) δ 164.7 (d, J = 3.9 Hz), 163.0 (d, J = 6.7 Hz), 138.7 , 134.7 , 134.1 , 132.7 , 131.7 , 128.9 , 128.8 , 128.4 , 128.3 , 128.2 , 128.0 , 127.8 , 126.9 , 126.5 (dd, J = 279.8, 249.2 Hz), 85.3 (dd, J = 35.2, 24.6 Hz), 81.6 (d, J = 2.9 Hz), 70.6 (dd, J = 24.7, 19.1 Hz), 67.9 , 67.6 , 21.3 ppm;

¹⁹**F NMR (376 MHz, CDCl₃)** δ -88.24 (dd, *J* = 241.1, 20.4 Hz), -108.95 (dd, *J* = 241.0, 8.9 Hz) ppm;

HRMS (ESI, m/z): calculated for C₃₃H₂₈F₂NaO₅⁺ [M+Na]⁺: 565.1803, found: 565.1809.

IR (film) v_{max} 3034, 1739, 1517, 1498, 1456, 1379, 1313, 1270, 1231, 1120, 1068, 1038, 997, 907, 749, 696 cm⁻¹.

7. References:

(1) A. Bugarin, K. D. Jones, B. T. Connell, Chem. Commun. 2010, 46, 1715-1717.

(2) F. Tian, V. Kruger, O. Bautista, J.-X. Duan, A.-R. Li, W. R. Dolbier and Q.-Y. Chen, Org. Lett., 2000, 2, 563-564.

(3) F. de Nanteuil, J. Waser, Angew. Chem. Int. Ed. 2013, 52, 9009-9013.

(4) (a) A. Kazia, R. Melngaile, A. Mishnev and J. Veliks, *Org. Biomol. Chem.*, 2020, **18**, 1384-1388. (b) A. Sperga, R. Melngaile, A. Kazia, S. Belyakov and J. Veliks, *J. Org. Chem.*, 2021, **86**, 3196-3212.

(5) M. S. Baird, V. M. Boitsov, A. V. Stepakov, A. P. Molchanov, J. Kopf, M. Rajaratnam, R. R. Kostikov, *Tetrahedron* 2007, **63**, 7717-7726.

(6) S. Hajra, S. M. Aziz, R. Maji, RSC Advances 2013, 3, 10185-10188.

(7) Frischi, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Mennucii, B.; Petersson, G. A.; Nakatsuji, H.; Caricato, M.; Li, X.; Hratchian, H. P.; Izmaylov, A. F.; Bloino, J.; Zheng, G.; Sonnenberg J. L.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Montgomery, J. A.; Jr., Peralta, J. E.; Ogliaro, F.; Bearpark, M.; Heyd, J. J.; Brothers, E.; Kudin, K. N.; Staroverov, V. N.; Keith, T.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Rega, N.; Millam, J. M.; Klene, M.; Knox, J. E.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Zakrzewski, V. G.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Dapprich, S.; Daniels, A. D.; Farkas, O.; Foresman, J. B.; Ortiz, J. V.; Cioslowski, J.; Fox, D. J.; Gaussian 09, Revision D.01;

(8) (a) A. D. Becke, J. Chem. Phys., 1993, **98**, 5648-5652. (b) C. Lee, W. Yang and R. G. Parr, Phys. Rev. B, 1988, **37**, 785-789. (c) R. Peverati and D. G. Truhlar, J. Phys. Chem. Lett., 2011, **2**, 2810-2817.

(9) (a) M. Cossi, V. Barone, R. Cammi, J. Tomasi, Chem. Phys. Lett. 1996, 255, 327-335. (b) B. Mennucci,

E. Cancès, J. Tomasi, J. Phys. Chem. B 1997, 101, 10506-10517.

(10) Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215-241.

8. NMR-Spectra of New Compounds

lhd-2234-1 single_pulse -131.72 -131.74 -131.77

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -26 fl (ppm)

LHD-5177-3 single_pulse

LHD-6021-1 single_pulse 5.21 5.17 5.17 5.13 5.13 7.32 7.32 7.31 7.31 7.30 7.30 7.30 7.30 7.30 7.30 7.29 7.28 7.26 7.26 7.26 BnO₂C Mé 1d ¹H NMR (400 MHz, CDCl₃) 6.15_¥ 3.15-≖ 1.00-4.35H 0.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 2.5 fl (ppm) 2.0 1.5 1.0 0.5 0.0 -0.5 -1

1d ¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -21 f1 (ppm)

¹H NMR (400 MHz, CDCl₃)

LHD-6099-7-3 single_pulse

-129.55 -129.55 -129.58 -129.59 -129.95 -129.99 -129.99 -129.99 -129.99 -129.99 -141.37 -141.37

O₂Bn Me 1e

¹⁹F NMR (376 MHz, CDCl₃)

CO₂Bn Ph CO₂Bn 1f

¹H NMR (400 MHz, CDCl₃)

LHD-6071-3-5 single_pulse

-129.66 -129.67 -129.71 -129.71 -130.07 -130.09 -130.12 -139.53 -139.54 -139.95

.CO₂Bn Ph CO₂Bn 1f

¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -21 f1 (ppm)

S67

LHD-6071-3-5 single_pulse

-129.66 -129.70 -129.70 -129.71 -130.07 -130.07 -130.03 -139.54 -139.54 -139.54

CO₂Bn ĊO₂Bn 1g ¹⁹F NMR (376 MHz, CDCl₃)

LHD-6083-3-6 single_pulse

¹H NMR (400 MHz, CDCl₃)

LHD-6083-3-6 single_pulse

¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 fl (ppm)

Characterization Control of the second second

BnO₂C,CO₂Bn Ме F റ 3aa

¹H NMR (400 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

--- 0.00

BnO₂C CO₂Bn Me F Me F 3ab

¹H NMR (400 MHz, CDCl₃)

LHD-5193-4 single_pulse

-56.11 -56.12 -56.17 -56.19 -56.49 -56.51 -56.51 -56.57 -56.57 -56.57 -56.57 -56.57 -56.57 -56.57 -56.57 -56.57 -56.57 -56.49 -56.57 -56.49 -56.57 -56.49 -56.57 -57.57 -5

BnO₂C CO₂Bn ·Ме F Me

3ab ¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 fil (ppm)

--- 0.00

LHD-6005-2 single_pulse

BnO₂C, CO₂Bn OMe F F 3ad

¹⁹F NMR (376 MHz, CDCl₃)

BnO₂C₂CO₂Bn F7 F Ó 3ae ¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -21 fl (ppm)

BnO₂C, CO₂Bn -Br F 3af ¹H NMR (400 MHz, CDCl₃)

LHD-5193-3-2 single_pulse

LHD-5193-3-2 single_pulse -59.39 -59.41 -59.45 -59.45 -59.77 -59.81 -59.83 -59.83 -71.46 -71.48 -71.86

BnO₂C₂Bn Br F٠ F 3af

¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -26 ſ[(ppm)

 $\overbrace{F}^{BnO_2C}_{F} \overbrace{O_2Bn}_{CO_2Bn} \\ CF_3$

¹H NMR (400 MHz, CDCl₃)

LHD-6033-4 single_pulse -59.49 -59.51 -59.55 -59.55 -59.85 -59.89 -59.91 -59.89 -59.91 -59.89 -59.91 -59.89 -59.91 -59.89 -59.91 -59.89 -59.89 -59.89 -59.89 -59.89 -59.89 -59.89 -59.89 -59.89 -59.89 -59.89 -59.80 -59.85 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -59.95 -57.33 -77.13 -7

BnO₂C_{CO2}Bn ·CF₃ F 3ah $^{19}\mathsf{F}~\mathsf{NMR}$ (376 MHz, $\mathsf{CDCI}_3)$

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 f1 (ppm)

100 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 fl (ppm)

¹⁹F NMR (376 MHz, CDCl₃)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 f1 (ppm)

BnO₂C₂CO₂Bn F 3al ¹H NMR (400 MHz, CDCl₃)

LHD-6013-9 single_pulse

----0.00

BnO₂C CO₂Bn F 3an

¹H NMR (400 MHz, CDCl₃)

LHD-5191-5-2 single_pulse

-59.34 -59.38 -59.40 -59.75 -59.75 -59.79 -66.95 -66.95 -66.97

BnO₂C CO₂Bn F

3an ¹⁹F NMR (376 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -26 f1 (ppm)

 $\begin{array}{c} BnO_2C \quad CO_2Bn \\ F \quad Me \\ F \quad Me \\ F \quad 3ap \end{array}$

LHD-6097-3 single_pulse

¹H NMR (400 MHz, CDCl₃)

- 0.00

BnO₂C_{CO2}Bn F-/ F

3aq ¹H NMR (400 MHz, CDCl₃)

S100

LHD-5185-4-3 single_pulse

 $F = \frac{1}{5}$

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

LHD-5185-4-3 single_pulse 58.89 58.92 58.94 58.97 55.927 55.9.27 559.32 559.32 559.32 559.33 66.80 66.80 66.80 66.718

BnO₂C, CO₂Bn Ph F٦ F

3ar ¹⁹F NMR (376 MHz, CDCl₃)

LHD-6087-5-2 single_pulse LLD-6087-5-2 structure to the second se

¹H NMR (400 MHz, CDCl₃)

Bisling 55, 100, 100 55, 100 5

BnO₂C, CO₂BnBnO₂C, CO₂Bn F

3as ¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -24 r1 (ppm)

LHD-6003-3 single_pulse

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -24 fl (ppm) LHD-6097-2 single_pulse ----0.00 7.34 7.33 7.32 7.29 7.28 7.28 5.16 5.13 5.12 5.09 2,3152,442,422,422,422,422,2402,332,332,332,330.98 0.96 0.93 BnO₂C₂CO₂Bn . ∕Pr F 4ab ¹H NMR (400 MHz, CDCl₃) **6.03** 6.02 4.03 2.00 4.08H 1.99

2.5 2.0 1.5 0.5

0.0 -0.5 -1.

D.0 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 4.0 3.5 3.0 fl (ppm)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 fl (ppm)

4ag ¹H NMR (400 MHz, CDCl₃)

4ag ¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 fl (ppm)

¹H NMR (400 MHz, CDCl₃)

S116

LHD-6029-1-2 single_pulse

BnO₂C₂CO₂Bn .Ph F CΙ 4ak

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (101 MHz, CDCl₃)

LHD-6029-1-2 single_pulse

-54.18 -54.20 -54.21 -54.21 -54.57 -54.57 -54.57 -54.57 -54.56 -54.56 -54.56 -54.56 -54.56 -54.56 -54.56 -54.56 -54.57 -54.56 -55.37 -55.33 -55.33

BnO₂C₂CO₂Bn Ph CI 4ak

¹⁹F NMR (376 MHz, CDCl₃)

----0.00

чч 0.98 2.03] 1.94 -[11.30 2.0 1.04 1.00 -1.00 -0.5 -1.).0 9.5 9.0 8.5 6.0 0.0 8.0 6.5 5.5 5.0 4.5 f1 (ppm) 4.0 3.5 3.0 2.5 1.5 1.0 0.5
*1*7.3 CDCI3
 *7*7.0 CDCI3

 *7*7.0 CDCI3

 *6*8.0

 *6*7.2
 LHD-5185-1-3 single pulse decoupled gated NOE $< rac{167.5}{166.9}$ 139.5 134.4 134.2 134.2 134.2 134.2 128.5 128.5 128.5 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.3 128.5 42.3 42.0 41.9 41.6 - 26.1 BnO₂C, CO₂Bn .Ph F `Ме 4am ¹³C NMR (101 MHz, CDCl₃)

200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -1 f1 (ppm)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 r1 (ppm) $\begin{array}{c}
 BnO_2C \\
 CO_2Bn \\
 F \\
 F \\
 F \\
 4ao
\end{array}$ Ph

¹H NMR (400 MHz, CDCl₃)

--- 0.00

-57.35 -57.37 -57.72 -57.75 -57.75 -60.97 -61.00 -61.03 -61.38 -61.38

BnO₂C₂CO₂Bn ∠Ph F Ρh 4ao ¹⁹F NMR (376 MHz, CDCl₃)

LHD-6019-3 single_pulse

LHD-6003-6 single_pulse BnO₂C, CO₂Bn ∠Et F

4ap ¹⁹F NMR (376 MHz, CDCl₃)

-10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -26 f1 (ppm)

-58.56 -58.57 -58.58 -58.58 -58.93 -58.93 -58.93 -58.93 -58.93 -58.93 -58.93 -62.01 -62.01 -62.03 -62.33 -6

BnO₂C, CO₂Bn TMS F٠

LHD-6017-6 single_pulse

4aq ¹⁹F NMR (376 MHz, CDCl₃)

FHD-9013-3 5.5.177736 5.5.177736 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.177736 7.33 5.5.13736 7.33 5.3.3336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33336 7.33 5.3.33337 7.33 5.3.33336 7.33 5.3.33337 7.33 5.3.33337 7.33 5.3.33337 7.33 5.3.3333

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -21 f1 (ppm)

BnO₂C CO₂Bn ⁿBu Ρh 4ar

¹H NMR (400 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2¢ fl (ppm)

-58.86 -58.91 -58.91 -58.93 -58.93 -58.25 -59.25 -59.27 -72.11

MeO₂C CO₂Me -Me F 5ba

LHD-6051-3 single_pulse

¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 f1 (ppm)

LHD-6035-4 single_pulse

7.725 7.725 7.725 7.725 7.725 7.727 7.727 7.727 7.725 7.725 7.725 7.725 7.725 7.727 7.727 7.727 7.727 7.727 7.727 7.727 7.727 7.728 7.728 7.728 7.728 7.728 7.727 7.727 7.728 7.728 7.728 7.728 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 7.729 <th 7.720</

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -260 fl (ppm)

¹H NMR (400 MHz, CDCl₃)

BnO₂C Me, Me F E 5da

¹⁹F NMR (376 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

LHD-6075-2-2 single_pulse

LHD-7130-2-3 single_pulse

-80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -2 fl (ppm) -70 -10 -20 -30 -40 -50 -60

LHD-7136-1-3 single_pulse

S143

----0.00

 $^{19}\mathrm{F}\ \mathrm{NMR}\ (376\ \mathrm{MHz},\ \mathrm{CDCl}_3)$

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220 -230 -240 -250 -26(r1 (ppm))

LHD-7136-3-4 single_pulse

6af ¹H NMR (400 MHz, CDCl₃)

LHD-7136-3-4 single_pulse

6af ¹⁹F NMR (376 MHz, CDCl₃)

0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -110 -120 -130 -140 -150 -160 -170 -180 -190 -200 -210 -220

