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1. Reagents and Instruments

Reagents: 2,2-Dimethyl-1,3-dioxane-4,6-dione, 4-bromo-1,8-naphthalic
anhydride, 2-methoxyethanol, ethylenediamine and 2,4-dihydroxybenzaldehyde were
purchased from Sinopharm- Reagent (China). 2-nitro-1,4-phenylenediamine,
triethylamine (TEA), palladium on carbon (Pd/C, 10% Pd), NaH>PO,, NaClO,
NazS$204, Na2SO4, NaNOz, NaHCOs, MnCl>'4H20, NaCl, KCl, CuCl:-2H20,
MgCl,-6H,0, CaCl,, FeCl; and N,N-dimethylformamide (DMF) were obtained from
Aladdin Chemistry (China). 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H-tetrazolium
bromide (MTT), ascorbic acid (AA), glucose, amino acid, and dimethyl sulfoxide
(DMSO) were obtained from Sigma-Aldrich (U.S.A)).
2-(4-carboxyphenyl)-4.,4,5,5-tetramethyl-imidazoline-1-oxyl-3-oxide potassium
(cPTIO), Threonine (Glu), Phenylalanine (Phe), Tyrosine (Tyr), Lysine (Lys),
Cysteine (Cys), Histidine (His), Arginine (Arg), Valine (Val), Proline (Pro), Threonine
(Thr), Serine (Ser), Leucine (Leu), Methionine (Met), Glycine (Gly). Poly-d-lysine
(PDL), minimum essential medium (MEM) and phosphate-buffered saline (PBS)
were obtained from Thermo Fisher Scientific. O-Benzotriazole-N, N, N,
N'-tetramethyl-uronium-hexafluorophosphate (HBTU) were provided by Macklin
(China).

Instruments: Milli-Q water purification system was used to purify deionized
water. All NMR spectra were conducted from NMR spectrometer (500 MHz, Bruker,
Germany). The Mass spectra (MS) were obtained with MS spectrometer (6800,
Bruker, Germany). UV-vis absorption spectra were recorded on UV-vis
spectrophotometer (UH5300, Hitachi, Japan). The fluorescence spectra were collected
with fluorescence spectrophotometer (F-4500, Hitachi, Japan). Fourier transform
infrared (FT-IR) spectra were performed with Fourier transform infrared spectrometer
(Nicolet iS10, Thermo Fisher Scientific, U.S.A.). Fluorescence confocal imaging was
collected by confocal scanning microscope with 63x oil objective (TCS-SP8, Leica,

Germany).

2. Measurements of two-photon cross section and FRET efficiency.
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The two-photon action cross section (c®) was measured by using standard
materials combined with femtosecond fluorescence measurement technology and
Rhodamine 6G was used as reference. Firstly, the two-photon fluorescence intensity
of 10 uM NOP (10 mM PBS buffer containing ethanol, pH = 7.4) added with 50 uM
NO was carried out at 690-900 nm. The two-photon action cross section (d) was

calculated by using the following equation:
®, C,n,F,
s = T(’Ts CsnsFy

)

Where the s and r refer to RBD and the reference solutions, respectively. The

two-photon fluorescence intensity was described as F. The n and C are the refractive

index and concentration of the sample solution, respectively. The ® and o represent
the fluorescence quantum yield and the TPA cross section.

The FRET efficiency of NOP in the absence and in the presence of NO was

calculated according to the following equation:

E=1-1p4

Fp
E represents the FRET efficiency, Fp and Fpa represent the measured fluorescence

intensities of the donor in the absence and in the presence of acceptor, respectively.

3. Theoretical calculation and statistical analysis.

The HOMO and LUMO of the molecules are calculated using Gaussian 09 suite.
The geometry optimizations of the molecule were performed using density functional
theory (DFT) with Becke’s three-parameter hybrid exchange function with PBE1PBE
and 6-311G basis set. No constraints to bonds/angles/dihedral angles were applied in
the calculations and all atoms were free to optimize.

Data are expressed as means = SD of 3-4 samples in each experimental group.
The Student t test was used to assess the statistical significance between a pair of
experimental groups. P-values were generated by two-tailed t test assuming equal
variance using IBM SPSS Statistics Software. The value 0.05 (*), 0.01 (**), and
0.001 (***) was assumed as the level of significance for the statistic tests (n = 20; *, P
< 0.05; ** P < 0.01; *** P < 0.001; and NS means no statistical significance per

unpaired t-test).
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4. Characterization of NOP and intermediates (Fig. S1-S15).
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Fig. S1 'H NMR spectrum (500 MHz) of compound 1 in DMSO-de.
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Fig. S2 3C NMR spectrum (500 MHz) of compound 1 in DMSO-d.
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Fig. S6 MS spectrum of compound 2.
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Fig. S8 13C NMR spectrum (500 MHz) of NPM in DMSO-d.
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Fig. S15 MS spectrum of NOP.

5. The two-photon fluorescence emission spectra of NOP in cell lysates and cell

lysates only (Fig. S16).
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Fig. S16 TPF emission spectra of (a) NOP in cell lysates and (b) cell lysates only

under the excitation of 700 nm, respectively.

S11



6. Selectivity and competition tests of NOP toward metal ions, amino acids and

neurotransmitters (Fig. S17).
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Fig. S17 Selectivity and competition tests of NOP toward (A) metal ions, (B) amino
acids (100 puM) and (C) neurotransmitters (50 puM), respectively. The black bars
represent the influence of potential interferences to NOP probe. The red bars represent
the subsequent addition of 100 uM NO to the NOP solution with potential
interferences. The concentrations of K*, Na* and Ca?": 100 mM, 50 mM and 10 mM,

respectively. The concentration of Mg?*, Fe**, Fe?*, Cu?*, Cu”, Zn**, Mn?*: 300 uM.

7. Two-photon fluorescence emission spectra of CM and NOP (Fig. S19).
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Fig. S18 Two-photon fluorescence emission spectra of (a) CM, (b) NOP in the

absence and (c) in the presence of NO (200.0 uM), respectively.
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8. The structures of NOP before and after reacted with NO (Fig. S18).
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Fig. S19 Molecule structures of NOP before and after reacted with NO, respectively.

9. Cytotoxicity and apoptosis assay of NOP probe (Fig. S20-S22).
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Fig. S20 Viabilities of NSCs after incubated with different concentrations of NOP

probe for 48 h at 37 °C, respectively.
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Fig. S21 Cell apoptosis assay of NSCs after incubated with different concentrations of
NOP for 48 h (A) 0 uM, (B) 30 uM, (C) 60 uM, (D) 90 uM. QI1, Q2, Q3 and Q4

represent living cells, early apoptotic cells, late apoptotic cells, and dead cells,

respectively.
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Fig. S22 TTC staining of brain tissues obtained from the live mouse brain after
incubated with different concentrations of NOP (0, 30, 60, 90 uM) for different times
(15, 30 and 60 min)
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10. Western blot of EGFR and CD133 proteins in the used gNSCs (Fig. S23).

EGFR 170 KD

CD133 Ml 120 KD
B-actin "ME 42 KD

Fig. S23 Western blot analysis for the levels of EGFR and CD133 proteins in the used
gNSCs.

11. Fluorescence imaging of NSCs (Fig. S24-S25).
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Fig. S24 (A) Fluorescence imaging of NSCs treated with NOP (10 uM) for 20 min
and collected from blue, green and Fgreen/Fbie channels. (B) Colocalization images of
gNSCs incubated with NOP and CellTracker Red for 10 h. (C) Pearson’s coefficient
(p) obtained from incubated with NOP and CellTracker Red for 0.5 h and 10 h.
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Fig. S25 (A) Fluorescence imaging of NSCs incubated with NOP probe collected

03 \\}

from different channels under the stimulation of different concentrations of NO (0, 10,
30, 50, and 100 pM), and 100 uM NO in the presence of cPTIO (150 uM). (B)

Summarized data for Fgreen/Fole value obtained from (A).

12. Neurotoxicity of NO toward NSCs (Fig. S26).
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Fig. S26 Summarized data of NSCs viability stimulated by different concentrations of
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NO (0, 10, 30, 50, 70, 90 uM) for different times (0, 6, 12, 18, 24 h).

S16



13. FACS of qNSCs (Fig. S27).
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Fig. S27 FACS results of qNSCs after stimulated by (A) 0 uM, (B) 10 uM, (C) 30 uM,

(D) 50 uM, (E) 70 uM of NO, and (F) 70 uM of NO in the presence of cPTIO for 300
s, and then the stimulated QNSCs were cultured for 24 h (n=5, S. D.).

14. Histology aligned to Allen Brain Atlas (Fig. S28).

Fig. S28 Histology aligned to Allen Brain Atlas.
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15. The concentration of NO in gNSCs and neurons (Fig. S29).
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Fig. S29 Summarized data for Fgreen/Foe value obtained from gNSCs and neurons
(n=50, S. D.)

16. FACS of cells obtained from DG area (Fig. S30)
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Fig. S30 FACS results of cells obtained from DG area after the AD mice were treated
with aNSCs for different times (0, 7, 14, 21 and 28 days), respectively.
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17. The comparison of the sensing properties of our developed NOP probe and

the previously reported fluorescent ratiometric NO probes.

Table S1. The comparison of the sensing properties of our developed NOP probe and

the previously reported fluorescent ratiometric NO probes.

Probes Response Detection Liner Detection limit References
time range
TRP-NO 50 min 5.0-160.0 uM 1.8 uM S1
Prober 1 10 min 0.0-20.0 uM 17.0 nM S2
Cu (FL3A-Ppz-CC) 2 min 0.0-6.0 uM 21.0 ;M S3
AC-SA 15 min 0.0-700.0 nM 4.05 nM S4
Rh-NO-P 20s 0.5-12.0 uM 51.3nM S5
Hoe-Rh-NO 20s 0.0-40.0 uM 58.0 nsM S6
FP-NO 20s 0.25-2.00 uM 47.6 nM S7
Mito-N 20 min 0.0-40.0 uM 21.0 M S8
RBD@AuUNCs 55s 0.5-120.0 uM 105.0 nM S9
NOP 15s 0.100-200 uM 19.5nM Our work
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