Supporting Information

Optical Resolution of 1,16-Dihydroxytetraphenylene by Chiral Gold(III) Complexation and Its Applications as Chiral Ligands in Asymmetric Catalysis

Jia Guo, ^a Wen-Bin Xiong, ^a Hao-Ran Ma, ^{ab} Luoyi Fan, ^a You-Yun Zhou, ^a Henry N. C. Wong ^{abc} and Jian-Fang Cui *^a

^{*a*} Department of Chemistry, Southern University of Science and Technology, 1088 Xueyuan Blvd., Shenzhen 518055, China, E-mail: cuijf@sustech.edu.cn

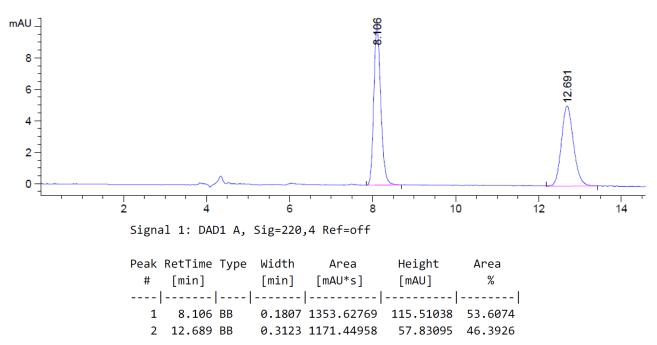
^b School of Science and Engineering, The Chinese University of Hong Kong (Shenzhen), 2001 Longxiang Blvd., Shenzhen 518172, China

^c Department of Chemistry, The Chinese University of Hong Kong, Shatin, New Territories, Hong Kong SAR, China

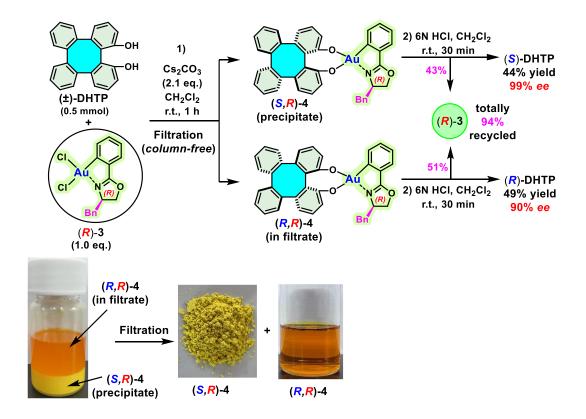
General Methods

Unless otherwise noted, reagents and solvents were purchased from commercial sources and used without further purification. (±)-1,16-Dihydroxytetraphenylene (**DHTP**) were synthesized according to literature procedure (Synthesis, 2017, 49, 181-187). Enantiopure oxazoline-based cyclometalated gold(III) dichlorides were synthesized according to literatures (Angew. Chem. Int. Ed., 2017, 56, 3074-3079; Org. Lett., 2019, 21, 6289-6294). Potassium alkynyltrifluoroborates were prepared according to literatures (Org. Lett., 2020, 22, 7427-7423; Org. Lett., 2013, 15, 5052-5055). Allylic alcohol substrates were prepared according to literatures (Angew. Chem. Int. Ed., 2012, 51, 3470-3473; Synthesis 2015, 47, 976-984; Synthesis, 2011, 2600-2608). Thin layer chromatography was performed on precoated silica gel 60 F²⁵⁴ plates. Flash column chromatography was performed using silica gel (200-300 mesh). ¹H NMR and ¹³C NMR spectra were recorded on Bruker AscendTM 400 and AscendTM 600 spectrometers. Chemical shifts (ppm) were referenced to TMS and coupling constants are given in Hz. Data for ¹H NMR were recorded as follows: chemical shift (δ , ppm), multiplicity (s, singlet; brs, broad singlet; d, doublet; dd, double doublet; ddd, double-double doublet; t, triplet; td, triple doublet; tt, triple triplet; q, quartet; qd, quadruple doublet, m, multiplet), coupling constant (Hz), integration. Data for ¹³C NMR are reported in terms of chemical shift (δ, ppm). Data for ¹⁹F NMR and ³¹P NMR were reported in terms of chemical shift (δ , ppm). High resolution mass spectra (HRMS) were obtained on Thermo Scientific Q Exactive, or Waters Xevo G2-XS QTof spectrometers. X-ray crystallographic data were recorded on Bruker D8 VENTURE. High pressure liquid chromatography (HPLC) analyses were performed on Agilent 1260 Infinity II equipped with chiral column from Daicel[®]. Circular dichroism (CD) spectra were measured on an Applied Photophysics Chirascan spectrometer. Melting points (mp) were determined on an SGW X-4A microscopic melting point apparatus. Optical rotations were recorded on a Rudolph Automatic Polarimeter. IR spectra were collected on Bruker VERTEX 70v and Bruker VERTEX 80v spectrometers. Known compounds were characterized by comparison of their ¹H, and ¹³C NMR spectra the previously reported data.

Compounds	References
ОН (±)-DHTP	 a) JF. Wen, W. Hong, K. Yuan, T. C. W. Mak and H. N. C. Wong, J. Org. Chem., 2003, 68, 8918-8931; b) JF. Cui, H. Huang and H. N. C. Wong, Synlett, 2011, 1018-1022; c) GL. Chai, JW. Han and H. N. C. Wong, Synthesis, 2017, 49, 181-187.
CI N(R) Bn (R)-3	JF. Cui, HM. Ko, KP. Shing, JR. Deng, N. CH. Lai and MK. Wong, <i>Angew. Chem. Int. Ed.</i> , 2017 , <i>56</i> , 3074-3079.
CI AU N (S)-3	JF. Cui, HM. Ko, KP. Shing, JR. Deng, N. CH. Lai and MK. Wong, <i>Angew. Chem. Int. Ed.</i> , 2017 , <i>56</i> , 3074-3079.
CI AU NO Ph (R)-3b	JF. Cui, HM. Ko, KP. Shing, JR. Deng, N. CH. Lai and MK. Wong, <i>Angew. Chem. Int. Ed.</i> , 2017 , <i>56</i> , 3074-3079.
CI N(R) (R)-3c	JF. Cui, HM. Ko, KP. Shing, JR. Deng, N. CH. Lai and MK. Wong, <i>Angew. Chem. Int. Ed.</i> , 2017 , <i>56</i> , 3074-3079.

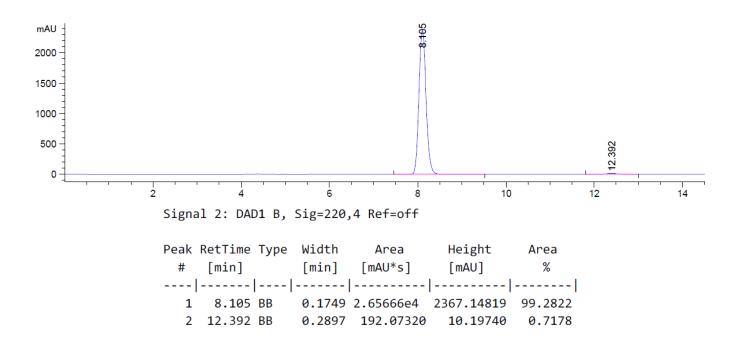

Table S1 References of Key Known Compounds Used in this Article

	JJ. Jiang, JF. Cui, B. Yang, Y. Ning, N. CH. Lai and MK. Wong,
CI	Org. Lett., 2019, 21, 6289-6294.
Au	
(<i>R</i>)-3d	
	H. Huang, T. Stewart, M. Gutmann, T. Ohhara, N. Niimura, YX. Li,
омом	JF. Wen, R. Bau and H. N. C. Wong, J. Org. Chem., 2009, 74, 359-
ОМОМ	369.
(S)-5	
	GL. Chai, B. Zhu and J. Chang, J. Org. Chem., 2019, 84, 120–127.
С	
ОН	
(S)-8a	

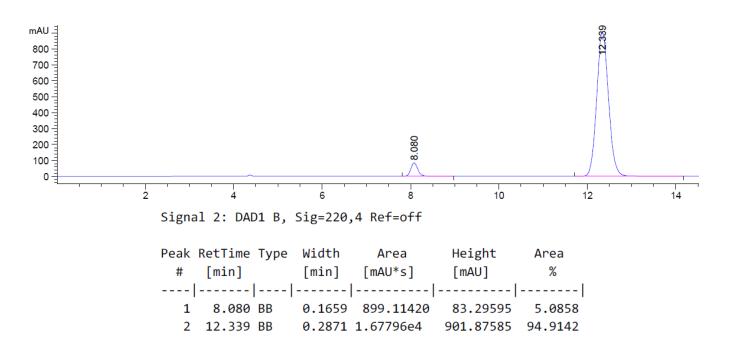

Experimental Procedures

HPLC spectrum of (±)-DHTP:

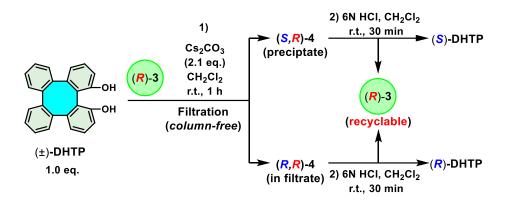
Daicel Chiralpak[®] AD-H, 40% ^{*i*}PrOH, 60% hexane, 0.7 mL/min, 30 °C, 220 nm; $t_{R1} = 8.11$ min, $t_{R2} = 12.69$ min.



Procedure for Optical Resolution of (\pm) -DHTP by Enantiopure (R)-3


To a solution of (\pm) -1,16-dihydroxytetraphenylene (**DHTP**) (168 mg, 0.5 mmol) and Cs₂CO₃ (342 mg, 2.1 eq.) in CH₂Cl₂ (10 mL) was added enantiopure oxazoline-based cyclometalated gold(III) dichloride (*R*)-**3** (252 mg, 1.0 eq.). A yellow precipitate was formed in a suspension quickly (within minutes). The resulting mixture was stirred for additional 1 h at room temperature (25 °C). The yellow precipitate was collected by filtration, washed with H₂O (5 mL× 2) and CH₂Cl₂ (5 mL× 2), dried under vacuum to give *O*,*O*'-chelated **DHTP**/Au(III) complexes (*S*,*R*)-**4** as a yellow powder. Subsequently, the obtained (*S*,*R*)-**4** was added in CH₂Cl₂ (10 mL). To the resulting suspension of (*S*,*R*)-**4** in CH₂Cl₂ was added 6N hydrochloric acid (2 mL) at room temperature. After being stirred for 30 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (100% CH₂Cl₂ to EtOAc/hexane 1:1) to give (*S*)-**DHTP** as a white solid (74 mg, 44% yield, 99% *ee*), and recovered (*R*)-**3** (108 mg, 43% yield).

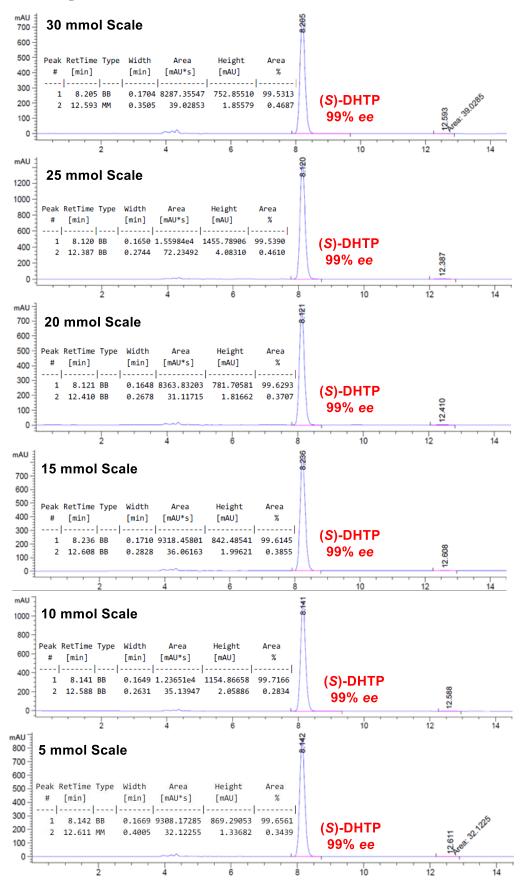
HPLC spectrum of the obtained (*S*)-**DHTP**: Daicel Chiralpak[®] AD-H, 40% ^{*i*}PrOH, 60% hexane, 0.7 mL/min, 30 °C, 220 nm; 99% *ee* (t_R (major) = **8.10 min**, t_R (minor) = 12.39 min).

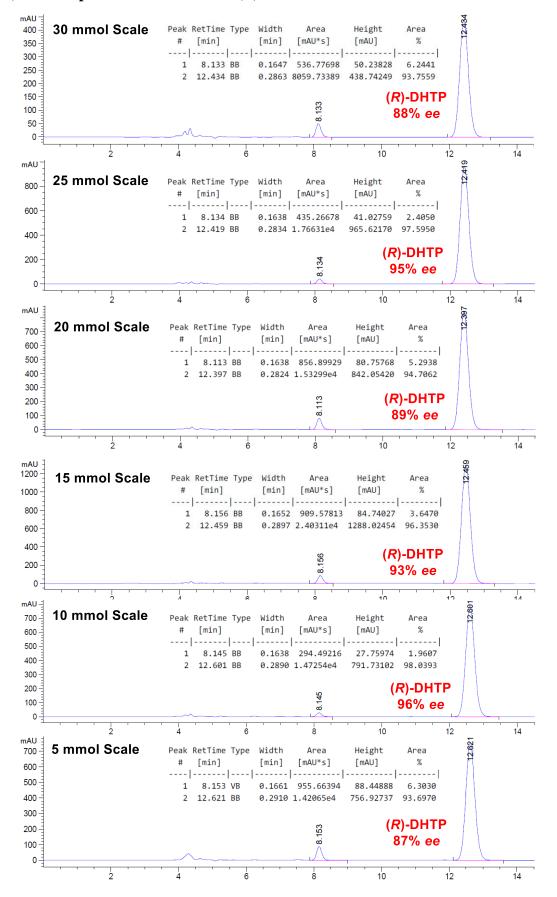


The filtrate [~ 20 mL DCM, mainly containing (R,R)-4] was washed with H₂O (10 mL × 2) and the CH₂Cl₂ layer was separated. To the collected CH₂Cl₂ layer was added 6N hydrochloric acid (2 mL) at room temperature. After being stirred for 30 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (100% CH₂Cl₂ to EtOAc/hexane 1:1) to give (R)-**DHTP** as a white solid (83 mg, 49% yield, 90% *ee*), and recovered (R)-**3** (127 mg, 51% yield).

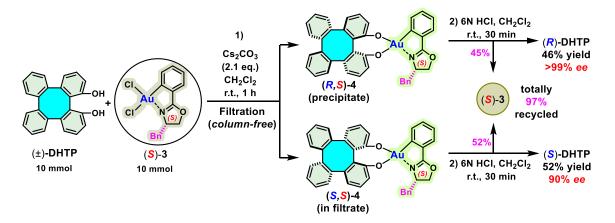
HPLC spectrum of the obtained (*R*)-**DHTP**: Daicel Chiralpak[®] AD-H, 40% ^{*i*}PrOH, 60% hexane, 0.7 mL/min, 30 °C, 220 nm; 90% *ee* (t_R (major) = 12.34 min, t_R (minor) = 8.08 min).

HPLC Spectra of (S)-DHTP and (R)-DHTP from Multi-Grams Scale Optical Resolution of (±)-DHTP and Recyclability Experiments of (R)-3^{[a][b][c]}

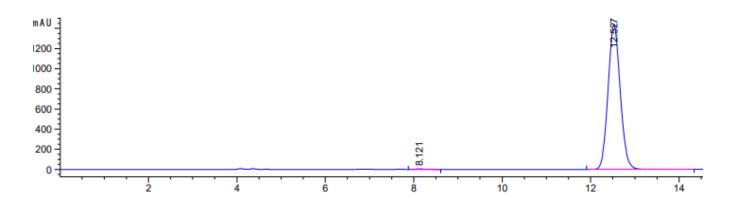



Entry	Scale of (±)- DHTP	Yield and <i>ee</i> of (<i>S</i>)- DHTP	Yield and <i>ee</i> of (<i>R</i>)- DHTP	Recovery yield of (<i>R</i>)- 3	
	(mmol)	Yield [<i>ee</i>] (%)	Yield [<i>ee</i>] (%)	(%)	
1	30	45 [99]	49 [88]	98 (14.8 g)	
2 ^[d]	25	47 [99]	50 [95]	99	
3 ^[d]	20	45 [99]	50 [89]	98	
4 ^[d]	15	46 [99]	49 [93]	98	
5 ^[d]	10	46 [99]	48 [96]	99	
6 ^[d]	5	48 [99]	50 [87]	98	

[a] Reaction conditions: step 1): (\pm)-**DHTP** (1.0 eq.), (*R*)-**3** (1.0 eq.), Cs₂CO₃ (2.1 eq.), CH₂Cl₂ ([substrate] = 0.1 M), room temperature (25 °C), reaction time: 1 h; step 2): CH₂Cl₂ ([substrate] = 0.1 M), HCl (6 N, aq.), room temperature, reaction time: 30 min. [b] Yield of isolated product. [c] *ee*% was determined by chiral HPLC analysis. [d] (*R*)-**3** came from the last reaction cycle.


HPLC analyses conditions: Daicel Chiralpak[®] AD-H, 40% ^{*i*}PrOH, 60% hexane, 0.7 mL/min, 30 °C, 220 nm.

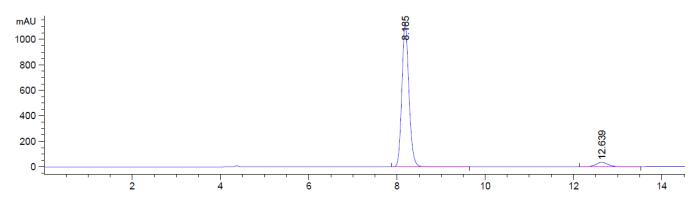
A) HPLC Spectra of the Obtained (S)-DHTP from Different Scales


B) HPLC Spectra of the Obtained (R)-DHTP from Different Scales

Procedure for Optical Resolution of (±)-DHTP by Enantiopure (S)-3

To a solution of (±)-**DHTP** (3.36 g, 10 mmol) and Cs₂CO₃ (6.83 g, 2.1 eq.) in CH₂Cl₂ (100 mL) was added enantiopure oxazoline-based cyclometalated gold(III) dichloride (*S*)-**3** (5.04 g, 10 mmol). A yellow precipitate was formed in a suspension quickly (within minutes). The resulting mixture was stirred for additional 1 h at room temperature (25 °C). The yellow precipitate was collected by filtration, washed with H₂O (100 mL × 2) and CH₂Cl₂ (100 mL × 2), dried under vacuum to give *O*,*O*'-chelated **DHTP**/Au(III) complexes (*R*,*S*)-**4** as a yellow powder. Subsequently, the obtained (*R*,*S*)-**4** was added in CH₂Cl₂ (50 mL). To the resulting suspension of (*R*,*S*)-**4** in CH₂Cl₂ was added 6N hydrochloric acid (10 mL) at room temperature. After being stirred for 30 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (100% CH₂Cl₂ to EtOAc/hexane 1:1) to give (*R*)-**DHTP** as a white solid (1.55 g, 46% yield, >99% *ee*), and recovered (*S*)-**3** (2.26 g, 45% yield).

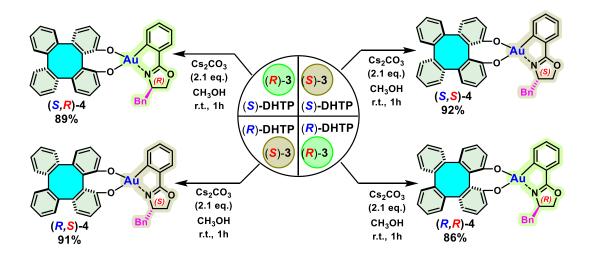
HPLC spectrum of the obtained (*R*)-**DHTP**: Daicel Chiralpak[®] AD-H, 40% ^{*i*}PrOH, 60% hexane, 0.7 mL/min, 30 °C, 220 nm; >99% *ee* (t_R (major) = 12.53 min, t_R (minor) = 8.12 min).

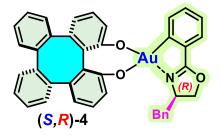


Signal 2: DAD1 B, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.121	BB	0.1711	66.52022	5.91744	0.2408
2	12.527	BB	0.2980	2.75638e4	1435.65161	99.7592

The filtrate [~ 300 mL CH₂Cl₂, mainly containing (*S*,*S*)-**4**] was washed with H₂O (100 mL × 2) and the CH₂Cl₂ layer was separated. To the collected CH₂Cl₂ layer was added 6N hydrochloric acid (10 mL) at room temperature. After being stirred for 30 min, the solvent was removed under reduced pressure. The residue was purified by flash chromatography on silica gel (100% CH₂Cl₂ to EtOAc/hexane 1:1) to give (*S*)-**DHTP** as a white solid (1.74 g, 52% yield, 90% *ee*), and recovered (*S*)-**3** (2.61 g, 52% yield).


HPLC spectrum of the obtained (*S*)-**DHTP**: Daicel Chiralpak[®] AD-H, 40% ^{*i*}PrOH, 60% hexane, 0.7 mL/min, 30 °C, 220 nm; 90% *ee* (t_R (major) = 8.18 min, t_R (minor) = 12.64 min).


Signal 2: DAD1 B, Sig=220,4 Ref=off

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.185	BB	0.1727	1.26352e4	1128.18079	95.1578
2	12.639	BB	0.3024	642.95929	32.84866	4.8422

General Procedure for Synthesis of Enantiopure DHTP/oxazoline Au(III) Complexes

To a solution of enantiopure (*S*)-**DHTP** or (*R*)-**DHTP** (34.0 mg, 0.1 mmol) and Cs₂CO₃ (68.3 mg, 0.21 mmol) in CH₃OH (2.0 mL) was added enantiopure oxazoline-based cyclometalated gold(III) dichloride (*R*)-**3** or (*S*)-**3** (50.4 mg, 0.1 mmol) at room temperature (25 °C). A yellow precipitate was formed in a suspension quickly (within minutes). The mixture was stirred for additional 1 h at room temperature, and then the precipitate was collected by filtration, washed by H₂O and CH₃OH, dried under vacuum to give the corresponding *O*,*O* -chelated **DHTP**/oxazoline Au(III) complexes (*S*,*R*)-**4**, (*R*,*S*)-**4**, (*S*,*S*)-**4** and (*R*,*R*)-**4**, respectivey.

Yellow solid. 68.0 mg, 89% yield. mp 236.7 – 237.2 °C. $[\alpha]^{20}$ _D: –979.7 (c = 1.06, CHCl₃).

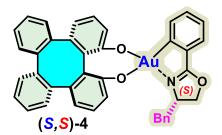

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.75 (d, *J* = 7.7 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.34 – 7.23 (m, 8H), 7.23 – 7.19 (m, 1H), 7.15 (q, *J* = 2.5 Hz, 2H), 7.12 – 7.07 (m, 2H), 7.06 – 6.99 (m, 3H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.73 (d, *J* = 6.5 Hz, 1H), 6.50 (d, *J* = 7.5 Hz, 1H), 5.09 (t, *J* = 8.7 Hz, 1H), 4.93 – 4.84 (m, 2H), 3.56 (d, *J* = 13.4 Hz, 1H), 3.04 (dd, *J* = 13.6, 8.9 Hz, 1H).

¹³**C NMR** (150 MHz, DMSO-*d*₆) δ 180.32, 161.08, 160.10, 144.31, 143.53, 142.72, 142.56, 142.30, 141.66, 141.34, 136.47, 134.58, 134.03, 131.81, 129.85, 129.17, 129.09, 129.06, 128.88, 128.59, 128.16,

128.13, 128.08, 127.66, 127.58, 127.56, 127.42, 127.36, 124.09, 121.86, 121.70, 120.77, 77.82, 62.43, 38.02.

HRMS (**ESI**): [M+H]⁺ Calcd. for [C₄₀H₂₉O₃NAu]⁺ 768.1807, found 768.1809.

IR (neat): 3058, 3027, 2923, 2852, 1620, 1579, 1560, 1491, 1430, 1306, 1265, 1243, 907, 731 cm⁻¹.


Yellow solid. 70.0 mg, 91% yield. mp 228.9 – 230.4 °C. $[\alpha]^{20}$ _D: +924.0 (*c* = 1.0, CHCl₃).

¹**H NMR** (600 MHz, DMSO-*d*₆) δ 7.75 (d, *J* = 7.8 Hz, 1H), 7.59 (t, *J* = 7.4 Hz, 1H), 7.46 – 7.40 (m, 2H), 7.33 – 7.24 (m, 8H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.15 (d, *J* = 6.3 Hz, 2H), 7.10 (t, *J* = 8.3 Hz, 2H), 7.06 – 7.00 (m, 3H), 6.88 (d, *J* = 7.9 Hz, 1H), 6.73 (d, *J* = 6.3 Hz, 1H), 6.50 (d, *J* = 7.5 Hz, 1H), 5.09 (t, *J* = 8.8 Hz, 1H), 4.93 – 4.84 (m, 2H), 3.56 (d, *J* = 12.3 Hz, 1H), 3.03 (dd, *J* = 13.6, 8.9 Hz, 1H).

¹³**C NMR** (150 MHz, DMSO-*d*₆) δ 180.31, 161.08, 160.10, 144.31, 143.53, 142.72, 142.56, 142.30, 141.66, 141.34, 136.47, 134.58, 134.03, 131.81, 129.85, 129.17, 129.10, 129.06, 128.88, 128.59, 128.16, 128.13, 128.08, 127.66, 127.58, 127.55, 127.42, 127.36, 124.09, 121.86, 121.70, 120.77, 77.82, 62.43, 38.02.

HRMS (**ESI**): [M+H]⁺ Calcd. for [C₄₀H₂₉O₃NAu]⁺ 768.1807, found 768.1808.

IR (neat): 3055, 3026, 2925, 2852, 1619, 1578, 1560, 1490, 1430, 1306, 1266, 1243, 910, 733 cm⁻¹.

Yellow solid. 71.0 mg, 92% yield. mp 235.9 – 236.5 °C. $[\alpha]^{20}$ D: -658.2 (c = 1.0, CHCl₃).

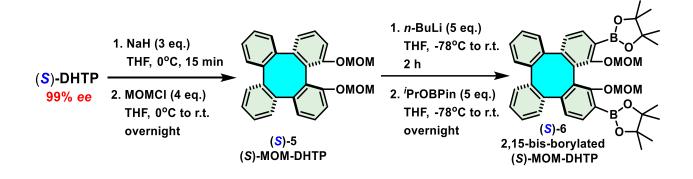
¹**H NMR** (600 MHz, CD₂Cl₂) δ 7.95 (d, *J* = 7.8 Hz, 1H), 7.54 (td, *J* = 7.6, 1.6 Hz, 1H), 7.40 – 7.22 (m, 13H), 7.18 (dd, *J* = 5.6, 3.3 Hz, 1H), 7.16 (td, *J* = 8.3, 1.8 Hz, 2H), 7.05 (dt, *J* = 14.0, 7.7 Hz, 2H), 6.98 (dd, *J* = 8.1, 1.3 Hz, 1H), 6.86 (dd, *J* = 7.6, 1.3 Hz, 1H), 6.63 (dd, *J* = 7.4, 1.3 Hz, 1H), 4.84 – 4.72 (m, 3H), 3.76 (dd, *J* = 13.8, 2.9 Hz, 1H), 3.33 (dd, *J* = 13.8, 7.0 Hz, 1H).

¹³C NMR (150 MHz, CD₂Cl₂) δ 181.20, 160.55, 144.93, 144.09, 143.68, 143.12, 142.48, 142.26, 141.76, 135.48, 134.82, 134.57, 132.43, 130.36, 129.53, 129.51, 129.20, 129.07, 129.00, 128.70, 128.39, 128.36, 128.00, 127.87, 127.67, 127.64, 127.41, 127.38, 124.84, 122.28, 121.35, 121.27, 76.90, 62.68, 39.38.
 DEPT135 ¹³C NMR (150 MHz, CD₂Cl₂) δ 134.27, 129.82, 128.99, 128.96, 128.66, 128.53, 128.45, 128.16, 127.85, 127.81, 127.45, 127.33, 127.12, 127.09, 126.86, 124.30, 121.74, 120.81, 120.72, 76.35(CH₂), 62.13, 38.83(CH₂).

HRMS (**ESI**): [M+H]⁺ Calcd. for [C₄₀H₂₉O₃NAu]⁺ 768.1807, found 768.1807.

IR (neat): 3056, 3024, 2923, 2855, 1619, 1579, 1560, 1491, 1430, 1305, 1265, 1241, 908, 732 cm⁻¹.

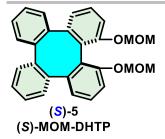
Yellow solid. 66.0 mg, 86% yield. mp 236.0 – 236.7 °C. $[\alpha]^{20}$ _D: +693.1 (*c* = 1.02, CHCl₃).


¹**H NMR** (400 MHz, CD_2Cl_2) δ 8.00 (dd, J = 7.9, 1.0 Hz, 1H), 7.58 (td, J = 7.6, 1.7 Hz, 1H), 7.44 – 7.27 (m, 13H), 7.25 – 7.18 (m, 3H), 7.10 (dt, J = 8.4, 7.5 Hz, 2H), 7.03 (dd, J = 8.0, 1.5 Hz, 1H), 6.91 (dd, J = 7.5, 1.3 Hz, 1H), 6.69 (dd, J = 7.3, 1.4 Hz, 1H), 4.91 – 4.70 (m, 3H), 3.79 (dd, J = 13.9, 2.5 Hz, 1H), 3.46 – 3.30 (m, 1H).

¹³**C NMR** (100 MHz, CD₂Cl₂) δ 180.65, 160.01, 159.98, 144.40, 143.58, 143.11, 142.57, 141.95, 141.73, 141.23, 134.93, 134.29, 134.01, 131.90, 129.84, 129.00, 128.96, 128.68, 128.55, 128.48, 128.19, 127.88, 127.85, 127.48, 127.34, 127.15, 127.12, 126.89, 126.83, 124.32, 121.76, 120.86, 120.74, 76.34, 62.12, 38.82.

DEPT135 ¹³**C NMR** (100 MHz, CD₂Cl₂) δ 134.29, 129.84, 129.00, 128.96, 128.68, 128.55, 128.48, 128.19, 127.88, 127.85, 127.48, 127.34, 127.15, 127.12, 126.90, 124.32, 121.77, 120.86, 120.74, 76.34, 62.12, 38.82.

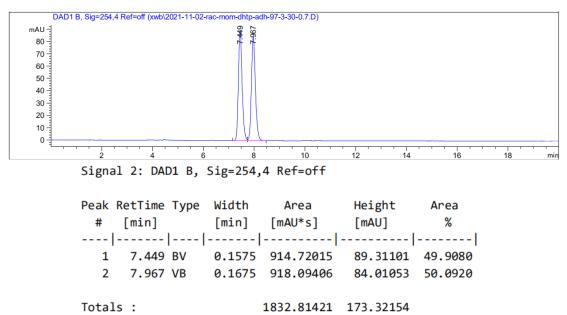
HRMS (ESI): [M+H]⁺ Calcd. for [C₄₀H₂₉O₃NAu]⁺ 768.1807, found 768.1809.


IR (neat): 3058, 3024, 2928, 2855, 1618, 1578, 1559, 1491, 1430, 1305, 1266, 1242, 908, 731 cm⁻¹.

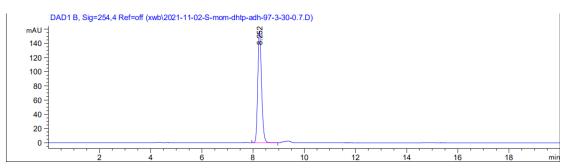
Procedure for Methoxymethylation and Borylation of (S)-DHTP

To a suspension of NaH (60% in mineral oil, 2.4 g, 60 mmol) in dry THF (150 mL), enantiopure (*S*)-**DHTP** (6.72 g, 20 mmol) was added under Argon atmosphere at 0 °C. After being stirred for 15 min, chloromethyl methyl ether (6.1 mL, 80 mmol) was added dropwise. The resulting mixture was slowly warmed to room temperature (25 °C) and stirred overnight. The reaction was quenched with ice water (100 mL), and then THF was removed by evaporation. The residual aqueous layer was extracted with CH₂Cl₂ (150 mL × 3). The combined organic phase was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel (CH₂Cl₂/EtOAc/hexane 1:1:10) to give 1,16-*bis*(methoxymethoxy)tetraphenylene [(*S*)-**5**] as a white solid (8.06 g, 95% yield).

To a solution of (*S*)-**5** (8.48 g, 20 mmol) in dry THF (350 mL) was added 1.6 M *n*-BuLi in hexane (62.5 mL, 100 mmol, 5 eq.). The solution was stirred for 2 h at room temperature (25 °C). The resulting suspension was cooled to -78 °C, and 2-isopropyl-4,4,5,5-tetramethyl-1,3,2-dioxabrolane (20.4 mL, 100 mmol) was added *via* syringe over a period of 20 min. The solution was allowed to warm to room temperature and stirred overnight. The reaction mixture was cooled to 0 °C, H₂O (150 mL) was added, and the reaction mixture was stirred for 1 h. The THF was removed by evaporation. The residual aqueous layer was extracted with CH_2Cl_2 (200 mL × 3). The combined organic phase was concentrated under reduced pressure. The residue was purified by column chromatography on silica gel ($CH_2Cl_2/EtOAc$ /hexane 1:1:6) to give (*S*)-**6** as white solid (12.17 g, 90% yield).

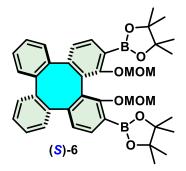

White solid. 8.06 g, 95% yield.

¹**H NMR** (600 MHz, CD_2Cl_2) δ 7.37 – 7.31 (m, 2H), 7.30 – 7.24 (m, 2H), 7.20 – 7.14 (m, 1H), 7.10 (d, *J* = 8.3 Hz, 1H), 6.89 (d, *J* = 7.6 Hz, 1H), 5.07 (d, *J* = 6.6 Hz, 1H), 4.96 (d, *J* = 6.5 Hz, 1H), 3.31 (s, 3H). ¹³**C NMR** (150 MHz, CD_2Cl_2) δ 154.41, 143.40, 141.45, 141.36, 128.96, 128.23, 128.04, 127.33, 127.29, 127.15, 122.87, 114.09, 95.19, 55.60.


HRMS (ESI): [M+Na]⁺ Calcd. for [C₂₈H₂₄NaO₄]⁺ 447.1567, found 447.1568.

HPLC: Daicel Chiralpak[®] AD-H, 3% ^{*i*}PrOH, 97% hexane, 0.7 mL/min, 30 °C, 254 nm; >99% *ee* (t_R (major) = 8.25 min).

Racemic

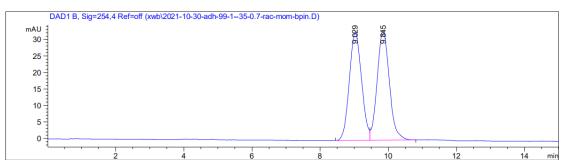


Enantioenriched

Peak RetTime Type Width Height Area Area # [min] [min] [mAU*s] [mAU] % 1 8.252 BB 0.1579 1611.13196 156.79631 100.0000 Totals : 1611.13196 156.79631

Signal 2: DAD1 B, Sig=254,4 Ref=off

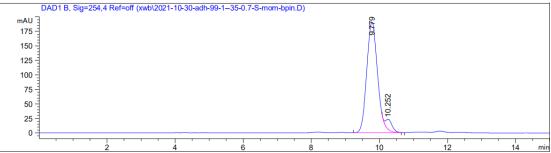
White solid. 12.17 g, 90% yield. mp 110.5 – 111.2 °C. $[\alpha]^{25}$ _D: –17.1 (*c* = 1.0, CHCl₃).


¹**H NMR** (600 MHz, CD_2Cl_2) δ 7.69 (d, J = 7.6 Hz, 1H), 7.37 – 7.33 (m, 2H), 7.28 – 7.25 (m, 1H), 7.20 – 7.17 (m, 1H), 7.01 (d, J = 7.6 Hz, 1H), 4.83 (d, J = 6.0 Hz, 1H), 4.53 (d, J = 6.0 Hz, 1H), 2.84 (s, 3H), 1.36 (s, 6H), 1.36 (s, 6H).

¹³**C NMR** (150 MHz, CD₂Cl₂) δ 160.62, 146.76, 141.32, 141.16, 135.84, 131.44, 129.05, 128.59, 127.48, 127.25, 124.69, 100.66, 83.59, 55.96, 24.62, 24.53.

HRMS (ESI): [M+Na]⁺ Calcd. for [C₄₀H₄₆B₂O₈Na]⁺ 699.3271, found 699.3278.

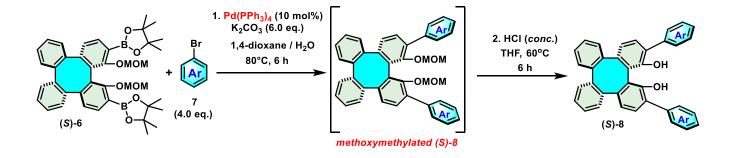
IR (neat): 3063, 2979, 2928, 2823, 1595, 1467, 1360, 1308, 1218, 1140, 1063, 968, 858, 762, 667 cm⁻¹. **HPLC**: Daicel Chiralpak[®] AD-H, 1% ^{*i*}PrOH, 99% hexane, 0.7 mL/min, 35 °C, 254 nm; >99% *ee* (t_R (major) = 9.78 min).


Racemic

Signal 2: DAD1 B, Sig=254,4 Ref=off

Peak F	RetTime	Туре	Width	Area	Height	Area
				[mAU*s]		
-						
1	9.029	BV	0.3858	820.03979	32.78717	49.7838
2	9.845	VB	0.3861	827.16260	33.26366	50.2162
Totals	5 :			1647.20239	66.05083	

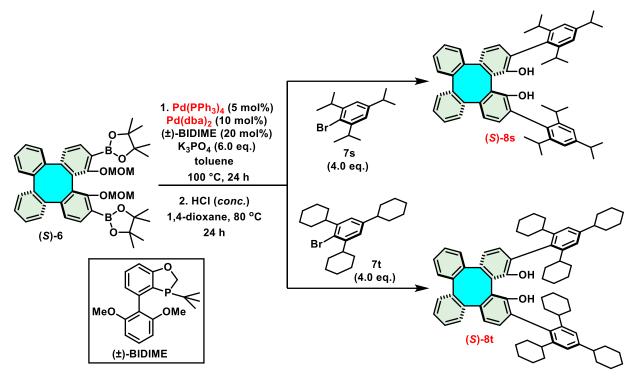
Enantioenriched



Signal 2: DAD1 B, Sig=254,4 Ref=off

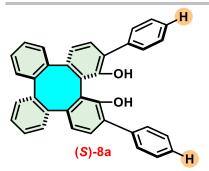
#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	9.779	BV R	0.3445	4225.39648	190.69658	94.7313
2	10.252	VB E	0.2028	235.00377	17.26702	5.2687
Total	.s :			4460.40025	207.96360	

General Procedure for Synthesis of 2,15-diaryl DHTPs


1) Standard Procedure:

To a Schlenk flask were added (*S*)-**6** (1 mmol, 1.0 eq.), aryl bromine **7** (4.0 eq.), Pd(PPh₃)₄ (10 mol%), K₂CO₃ (6.0 eq.), 1,4-dioxane (16 mL) and H₂O (4 mL). The mixture was degassed and refilled with Ar three times. The mixture was heated at 80 °C for 6 h. After cooling to room temperature (25°C), the mixture was diluted with H₂O (30 ml), and the aqueous layer was extracted with CH₂Cl₂ (50 mL × 3). The combined organic phase was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/hexane or EtOAc/hexane) to give the corresponding precursor, methoxymethylated (*S*)-**8**.

The obtained methoxymethylated (*S*)-8 was dissolved in THF (10 mL) followed by the addition of concentrated HCl (37% w/w, 2 mL). The mixture was heated at 60 °C for 6 h (or 24 h). The solvents were removed under reduced pressure, and the resulting residue was dissolved in CH₂Cl₂. This organic phase was washed with saturated aqueous NaHCO₃, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/hexane or EtOAc/hexane) to give the corresponding 2,15-diaryl **DHTP** (*S*)-8.


2) Modified Procedure [for (S)-8s and (S)-8t]:

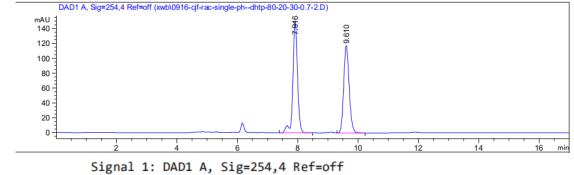
To a Schlenk flask were added (*S*)-6 (1 mmol, 1.0 eq.), aryl bromine 7 (4.0 eq.), Pd(PPh₃)₄ (5 mol%), Pd(dba)₂ (10 mol%), (\pm)-BIDIME (20 mol%), K₃PO₄ (6.0 eq.), dry toluene (20 mL). The mixture was degassed and refilled with Ar three times. The mixture was heated at 100 °C for 24 h. After cooling to room temperature (25°C), the mixture was diluted with H₂O (30 ml), and the aqueous layer was extracted with CH₂Cl₂ (50 mL × 3). The combined organic phase was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (CH₂Cl₂/hexane) to give the corresponding precursor, *methoxymethylated* (*S*)-8.

The obtained methoxymethylated (*S*)-**8** was dissolved in 1,4-dioxane (10 mL) followed by the addition of concentrated HCl (37% w/w, 2 mL). The mixture was heated at 80 °C for 24 h. The solvents were removed under reduced pressure, and the resulting residue was dissolved in CH_2Cl_2 . This organic phase was washed with saturated aqueous NaHCO₃, and concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel (EtOAc/hexane) to give the corresponding 2,15-diaryl **DHTP** (*S*)-**8**.

Compounds (\pm) -8 for HPLC determination were prepared by using racemic (\pm) -6 to instead of (S)-6 under the above standard conditions and modified conditions.

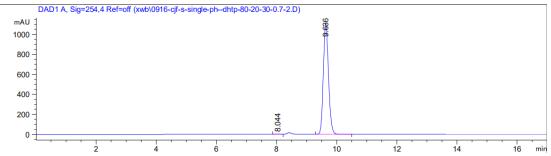
White solid. 439.6 mg, 90% yield. mp 150.0 – 151.5 °C. $[\alpha]^{25}_{D}$: +190.2 (c = 1.0, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.51 (d, *J* = 7.2 Hz, 2H), 7.40 (t, *J* = 7.7 Hz, 2H), 7.34 – 7.29 (m, 4H), 7.27 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.15 (m, 1H), 6.90 (d, *J* = 7.8 Hz, 1H), 5.27 (s, 1H).

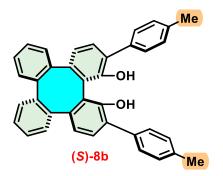

¹³**C NMR** (150 MHz, CDCl₃) δ 149.16, 143.74, 141.44, 141.01, 137.30, 130.48, 129.34, 129.28, 128.62, 128.19, 127.58, 127.50, 127.41, 127.30, 122.20, 121.74.

HRMS (**ESI**): [M+H]⁺ Calcd. for [C₃₆H₂₅O₂]⁺ 489.1850, found 489.1850.

IR (neat): 3532, 3058, 3019, 2925, 2852, 1467, 1417, 1219, 1183, 906, 751, 700 cm⁻¹.


HPLC: Daicel Chiralpak[®] AD-H, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 9.64 min, t_R(minor) = 8.04 min).

Racemic



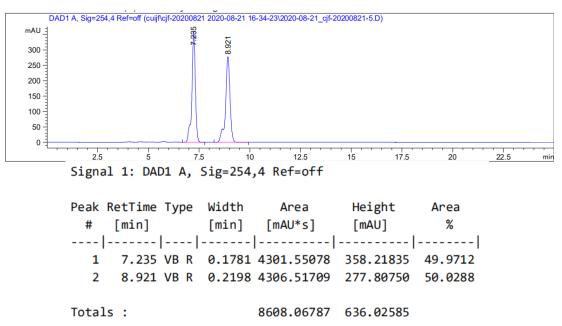
Peak RetTime Type Width Height Area Area [min] [min] [mAU*s] [mAU] % # ----| 7.916 VB R 0.1542 1604.34961 150.30582 52.0873 1 9.610 VB 2 0.1947 1475.76526 117.40374 47.9127

Enantioenriched

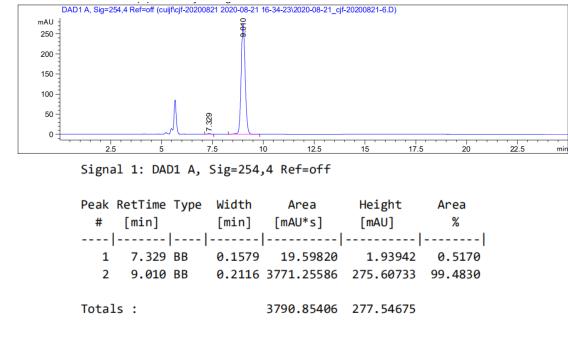
Peak	RetTime Type	Width	Area	Height	Area
#	[min]	[min]	[mAU*s]	[mAU]	%
1	8.044 BV	0.1462	31.53606	3.33837	0.2369
2	9.636 BB	0.1856	1.32782e4	1109.50366	99.7631

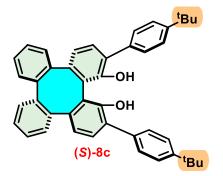
White solid. 418.6 mg, 81% yield. mp 147.7 – 149.8 °C. $[\alpha]^{25}_{D}$: +194.7 (c = 1.0, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.39 (d, *J* = 8.0 Hz, 2H), 7.32 – 7.27 (m, 3H), 7.25 – 7.19 (m, 3H), 7.18 – 7.14 (m, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 5.27 (s, 1H), 2.35 (s, 3H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.21, 143.49, 141.50, 141.14, 137.28, 134.35, 130.34, 129.39, 129.33, 129.15, 128.25, 127.54, 127.40, 127.28, 122.15, 121.83, 21.23.

HRMS (**ESI**): [M+Na]⁺ Calcd. for [C₃₈H₂₈O₂Na]⁺ 539.1982, found 539.1987.

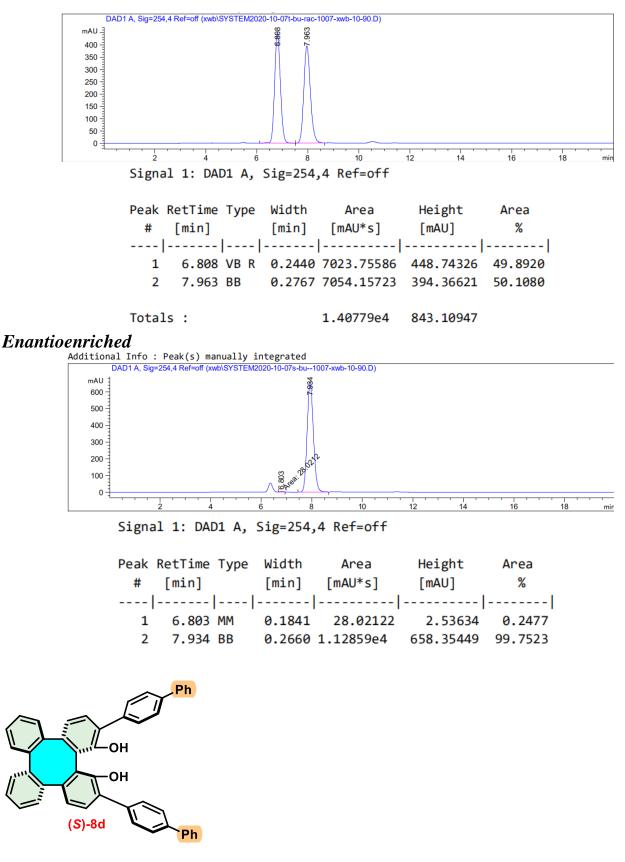

IR (neat): 3531, 3058, 3019, 2917, 2857, 1468, 1429, 1387, 1184, 906, 815, 750 cm⁻¹.


HPLC: Daicel Chiralpak[®] AD-H, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 9.01 min, t_R (minor) = 7.33 min).

Racemic

Enantioenriched

White solid. 510.8 mg, 85% yield. mp 151.2 – 153.6 °C. $[\alpha]^{25}_{D}$: +195.9 (c = 1.0, CHCl₃).


¹**H NMR** (600 MHz, CDCl₃) δ 7.47 – 7.39 (m, 4H), 7.32 – 7.27 (m, 3H), 7.25 (d, *J* = 7.8 Hz, 1H), 7.15 (ddd, *J* = 4.7, 3.2, 1.5 Hz, 1H), 6.87 (d, *J* = 7.9 Hz, 1H), 5.28 (s, 1H), 1.33 (s, 9H).

¹³**C NMR** (150 MHz, CDCl₃) δ 150.44, 149.25, 143.51, 141.51, 141.14, 134.32, 130.38, 129.33, 128.94, 128.23, 127.54, 127.40, 127.17, 125.62, 122.16, 121.76, 34.63, 31.39.

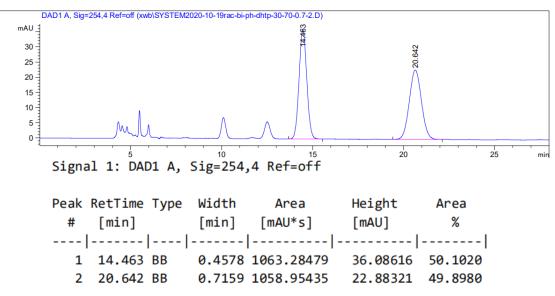
HRMS (**ESI**): [M+Na]⁺ Calcd. for [C₄₄H₄₀O₂Na]⁺ 623.2921, found 623.2921.

IR (neat): 3531, 3056, 3019, 2962, 2902, 2865, 1467, 1432, 1391,1270, 1220, 1184, 821, 769, 753 cm⁻¹. **HPLC**: Daicel Chiralpak[®] AD-H, 10% ^{*i*}PrOH, 90% hexane, 0.7 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 7.93 min, t_R(minor) = 6.80 min).

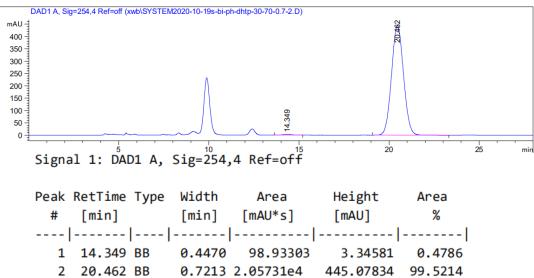
Racemic

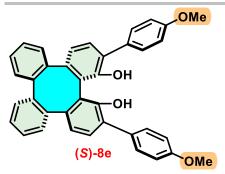
White solid. 538.0 mg, 84% yield. mp 161.0 – 161.5 °C. $[\alpha]^{25}$ _D: +282.1 (*c* = 1.0, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.66 – 7.58 (m, 6H), 7.43 (t, *J* = 7.8 Hz, 2H), 7.36 – 7.30 (m, 5H), 7.21 – 7.16 (m, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 5.33 (s, 1H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.28, 143.88, 141.45, 140.96, 140.73, 140.31, 136.27, 130.53, 129.70, 129.40, 128.83, 128.19, 127.65, 127.47, 127.40, 127.30, 127.12, 126.95, 122.34, 121.64.

HRMS (**ESI**): [M-H]⁻ Calcd. for [C₄₈H₃₁O₂]⁻ 639.2330, found 639.2323.


IR (neat): 3528, 3061, 3022, 2926, 2853, 1468, 1427, 1387, 1215, 1182, 1088, 906, 824, 752, 698, 667 cm⁻¹.

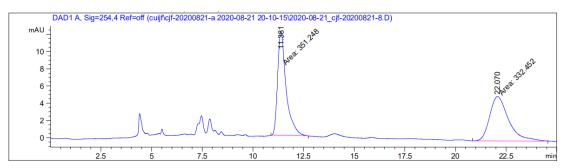

HPLC: Daicel Chiralpak[®] AD-H, 30% ^{*i*}PrOH, 70% hexane, 0.7 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 20.46 min, t_R (minor) = 14.35 min).

Racemic

Enantioenriched

White solid. 422.5 mg, 77% yield. mp 156.3 – 156.7 °C. $[\alpha]^{25}_{D}$: +203.5 (c = 1.0, CHCl₃).

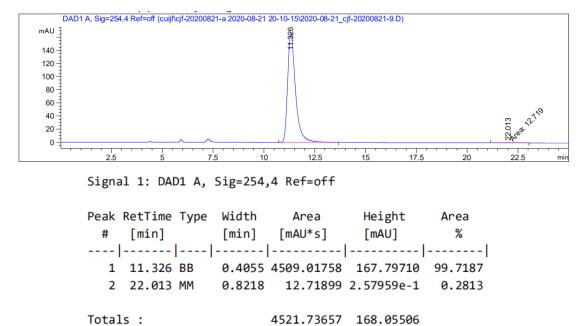
¹**H NMR** (600 MHz, CDCl₃) δ 7.44 (d, *J* = 8.7 Hz, 2H), 7.30 (d, *J* = 3.2 Hz, 3H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.18 – 7.14 (m, 1H), 6.93 (d, *J* = 8.7 Hz, 2H), 6.88 (d, *J* = 7.8 Hz, 1H), 5.25 (s, 1H), 3.81 (s, 3H).

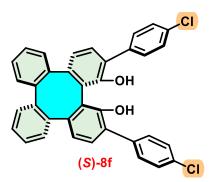

¹³**C NMR** (150 MHz, CDCl₃) δ 159.04, 149.14, 143.29, 141.48, 141.09, 130.43, 130.29, 129.58, 129.32, 128.21, 127.51, 127.37, 126.96, 122.13, 121.69, 114.07, 55.33.

HRMS (**ESI**): [M+H]⁺ Calcd. for [C₃₈H₂₉O₄]⁺ 549.2061, found 549.2061.

IR (neat): 3525, 3058, 2925, 2850, 1467, 1432, 1245, 1177, 1091, 905, 728, 650 cm⁻¹.

HPLC: Daicel Chiralpak[®] IC, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 11.33 min, t_R(minor) = 22.01 min).


Racemic



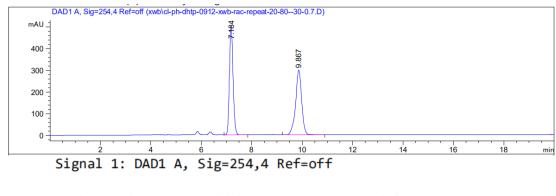
Signal 1: DAD1 A, Sig=254,4 Ref=off

<pre>Peak RetTime Type # [min]</pre>			-	
		-		
1 11.381 MM	0.4862	351.24780	12.04135	51.3746
2 22.070 MM	1.0784	332.45181	5.13782	48.6254
Totals :		683.69962	17.17917	

Enantioenriched

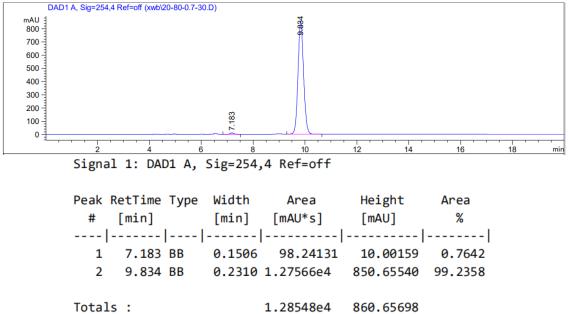
White solid. 451.2 mg, 81% yield. mp 151.6 – 152.9 °C. $[\alpha]^{25}$ _D: +197.6 (*c* = 1.0, CHCl₃).

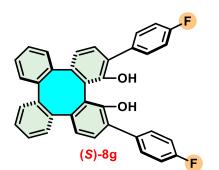
¹**H** NMR (400 MHz, CDCl₃) δ 7.45 (d, *J* = 8.2 Hz, 2H), 7.35 (d, *J* = 8.2 Hz, 2H), 7.33 – 7.27 (m, 3H), 7.24 (s, 1H), 7.19 – 7.12 (m, 1H), 6.91 (d, *J* = 7.8 Hz, 1H), 5.18 (s, 1H).


¹³**C NMR** (100 MHz, CDCl₃) δ 149.11, 144.19, 141.33, 140.66, 135.71, 133.45, 130.68, 130.65, 129.46, 128.65, 128.09, 127.76, 127.52, 126.27, 122.46, 121.27.

HRMS (**ESI**): [M-H]⁻ Calcd. for [C₃₆H₂₁Cl₂O₂]⁻ 555.0924, found 555.0925.

IR (neat): 3528, 3058, 3016, 2925, 1468, 1432, 1387, 1215, 1183, 1093, 1014, 819, 751, 668 cm⁻¹.


HPLC: Daicel Chiralpak[®] AD-H, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 30 °C, 254 nm; 98% *ee* (t_R (major) = 9.83 min, t_R(minor) = 7.18 min).

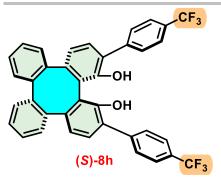

Racemic

Peak RetTi	ime Type	Width	Area	Height	Area
# [mir	n]	[min]	[mAU*s]	[mAU]	%
1 7.1	L84 BB	0.1545	5034.10840	504.10718	50.1169
2 9.8	367 BB	0.2515	5010.61572	299.04016	49.8831

White solid. 393.1 mg, 75% yield. mp 128.0 – 128.5 °C. $[\alpha]^{25}$ _D: +171.8 (c = 1.0, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 7.53 – 7.46 (m, 2H), 7.35 – 7.28 (m, 3H), 7.25 (d, *J* = 4.4 Hz, 1H), 7.19 – 7.14 (m, 1H), 7.13 – 7.04 (m, 2H), 6.91 (d, *J* = 7.8 Hz, 1H), 5.18 (s, 1H).

¹³**C NMR** (100 MHz, CDCl₃) δ 162.25 (d, *J* = 246.8 Hz), 149.09, 143.92, 141.37, 140.75, 133.20 (d, *J* = 3.3 Hz), 130.99 (d, *J* = 8.0 Hz), 130.67, 129.42, 128.10, 127.69, 127.47, 126.43, 122.35, 121.34, 115.41 (d, *J* = 21.3 Hz).


¹⁹**F NMR** (376 MHz, CDCl₃) δ –114.79.

HRMS (**ESI**): [M-H]⁻Calcd. for [C₃₆H₂₁F₂O₂]⁻ 523.1515, found 523.1512.

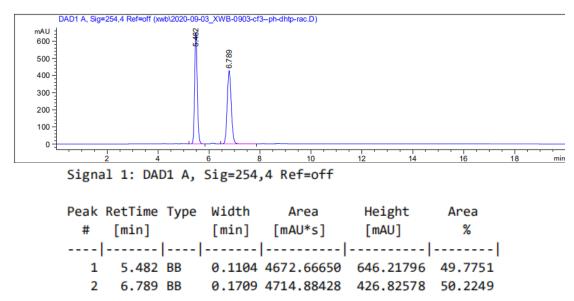
IR (neat): 3530, 3061, 3017, 2928, 2857, 1517, 1468, 1432, 1384, 1227, 1184, 1160, 908, 822, 750 cm⁻¹. **HPLC**: Daicel Chiralpak[®] AD-H, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 30 °C, 254 nm; 98% *ee* (t_R (major) = 9.07 min, t_R(minor) = 6.95 min).

Racemic

White solid. 437.5 mg, 70% yield. mp 128.3 – 128.5 °C. $[\alpha]^{25}_{D}$: +162.6 (c = 1.0, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.65 (s, 4H), 7.36 – 7.29 (m, 4H), 7.20 – 7.16 (m, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 5.18 (s, 1H).

¹³**C NMR** (150 MHz, CDCl₃) δ 149.20, 144.76, 141.25, 140.96, 140.43, 130.98, 129.65, 129.53, 129.45 (q, *J* = 32.5 Hz), 128.01, 127.89, 127.58, 126.15, 125.29 (q, *J* = 3.7 Hz), 124.21 (q, *J* = 271.9 Hz), 122.65, 121.03.

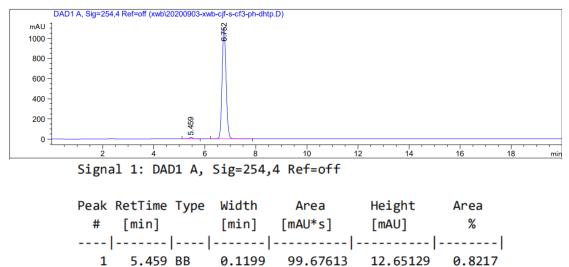

¹⁹**F NMR** (565 MHz, CDCl₃) δ –62.50.

HRMS (**ESI**): [M-H]⁻Calcd. for [C₃₈H₂₁F₆O₂]⁻ 623.1451, found 623.1451.

IR (neat): 538, 3061, 3017, 2930, 2852, 1617, 1386, 1325, 1215, 1167, 1125, 852, 824, 751, 668 cm⁻¹.

HPLC: Daicel Chiralpak[®] AD-H, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 30 °C, 254 nm; 98% *ee* (t_R (major) = 6.75 min, t_R(minor) = 5.46 min).

Racemic

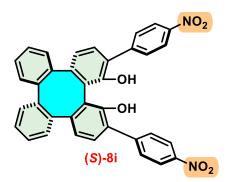


1

2

6.752 BB

Enantioenriched



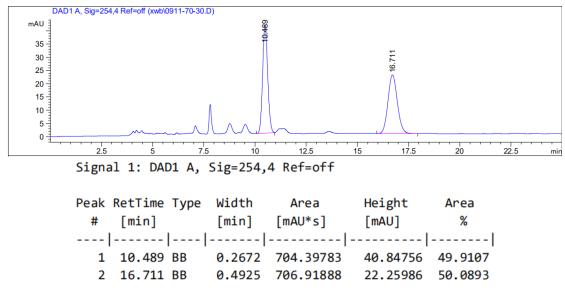
0.1695 1.20312e4 1100.59680

12.65129

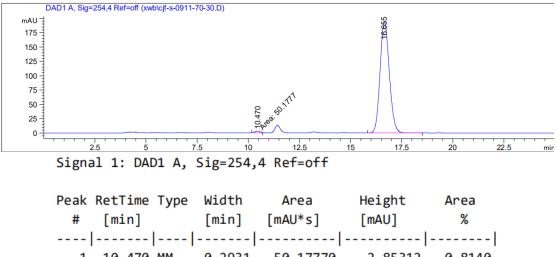
0.8217

99.1783

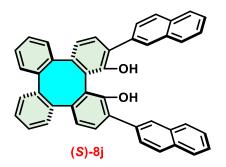
Pale yellow solid. 497.3 mg, 86% yield. mp 281.2 – 281.7 °C. $[\alpha]^{25}$ p: +241.3 (c = 1.0, CHCl₃) ¹**H NMR** (600 MHz, CDCl₃) δ 8.20 (d, J = 8.8 Hz, 2H), 7.70 (d, J = 8.8 Hz, 2H), 7.37 - 7.29 (m, 4H), 7.18 (dq, J = 7.1, 3.7 Hz, 1H), 6.99 (d, J = 7.9 Hz, 1H), 5.34 (s, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 149.40, 146.83, 145.56, 144.18, 141.13, 140.13, 131.21, 130.18, 129.65,


128.10, 127.94, 127.71, 125.44, 123.48, 122.90, 120.84.

HRMS (**ESI**): [M-H]⁻Calcd. for [C₃₆H₂₁N₂O₆]⁻ 577.1405, found 577.1399.


IR (neat): 3515, 3061, 2928, 1597, 1515, 1435, 1387, 1345, 1220, 1182, 858, 772, 754 cm⁻¹.

HPLC: Daicel Chiralpak[®] AD-H, 30% ⁱPrOH, 70% hexane, 0.7 mL/min, 30 °C, 254 nm; 98% ee (t_R $(major) = 16.66 \text{ min}, t_R(minor) = 10.47 \text{ min}).$

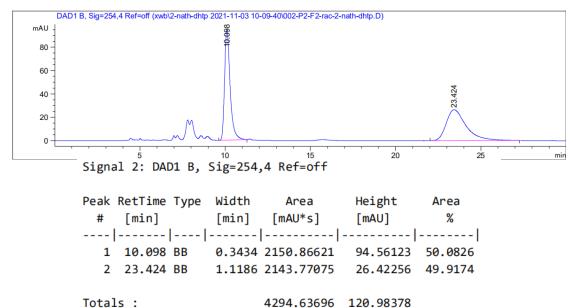

Racemic

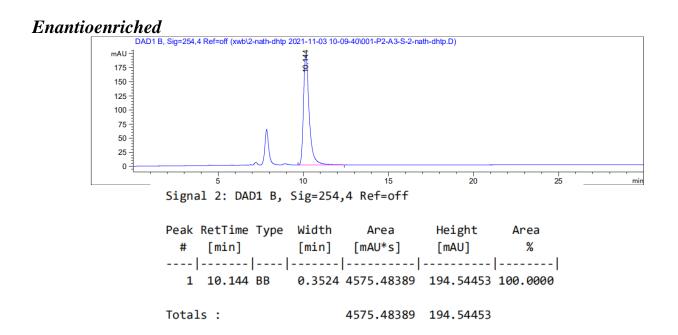
Enantioenriched

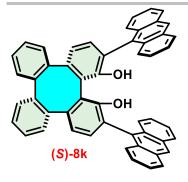
1	10.470 MM	0.2931	50.1///0	2.85312	0.8140
2	16.655 BB	0.4906	6114.48926	193.53551	99.1860

White solid. 447.2 mg, 76% yield. mp 169.2 – 171.1 °C. $[\alpha]^{25}$ _D: +228.0 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.98 (s, 1H), 7.87 (d, *J* = 8.5 Hz, 1H), 7.82 (ddd, *J* = 9.5, 6.1, 3.4 Hz, 2H), 7.65 (dd, *J* = 8.5, 1.8 Hz, 1H), 7.47 (dq, *J* = 6.8, 3.5 Hz, 2H), 7.38 (d, *J* = 7.8 Hz, 1H), 7.37 – 7.32 (m, 3H), 7.22 – 7.18 (m, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 5.42 (s, 1H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.40, 143.90, 141.47, 141.02, 134.82, 133.49, 132.61, 130.78, 129.39, 128.25, 128.17, 128.11, 127.66, 127.65, 127.47, 127.30, 126.28, 126.16, 122.36, 121.83.


HRMS (ESI): [M+H]⁺ Calcd. for [C₄₄H₂₉O₂]⁺ 589.2162, found 589.2164.

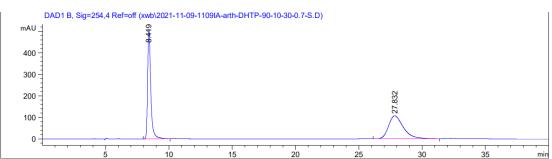

IR (neat): 3530, 3058, 3019, 2928, 2852, 1436, 1228, 906, 818, 731, 650 cm⁻¹.

HPLC: Daicel Chiralpak[®] IC, 10% ^{*i*}PrOH, 90% hexane, 0.7 mL/min, 30 °C, 254 nm; >99% *ee* (t_R (major) = 10.14 min).

Racemic

White solid. 496.0 mg, 72% yield. mp 233.8 – 234.0 °C. $[\alpha]^{25}_{D}$: +85.8 (c = 1.0, CHCl₃).

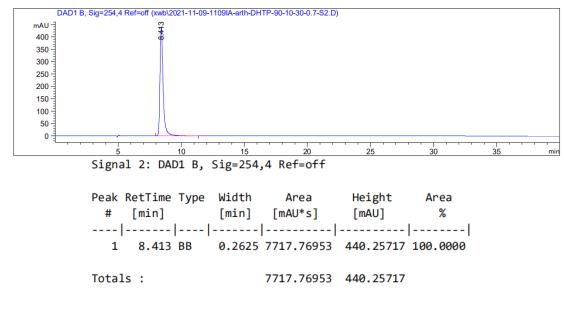
¹**H NMR** (600 MHz, CDCl₃) δ 8.48 (s, 1H), 8.00 (dd, *J* = 13.5, 8.5 Hz, 2H), 7.70 (d, *J* = 8.8 Hz, 1H), 7.52 (d, *J* = 7.3 Hz, 1H), 7.49 – 7.41 (m, 3H), 7.37 (t, *J* = 7.5 Hz, 1H), 7.33 (d, *J* = 7.2 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.24 (t, *J* = 7.6 Hz, 1H), 7.21 – 7.16 (m, 2H), 7.04 (d, *J* = 7.6 Hz, 1H), 4.78 (s, 1H).

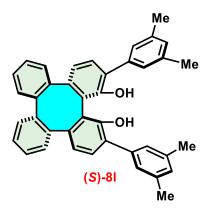

¹³**C NMR** (150 MHz, CDCl₃) δ 150.48, 144.27, 141.75, 141.53, 131.64, 131.55, 131.45, 130.72, 130.59, 130.55, 128.93, 128.52, 128.50, 127.91, 127.58, 127.57, 127.19, 126.19, 126.13, 126.07, 126.01, 125.35, 125.32, 123.38, 123.03, 121.59.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{52}H_{33}O_2]^+$ 689.2476, found 689.2479.

IR (neat): 3513, 3053, 2923, 1558, 1436, 1409, 1310, 1238, 1219, 903, 772, 739 cm⁻¹.

HPLC: Daicel Chiralpak[®] IA, 10% ^{*i*}PrOH, 90% hexane, 0.7 mL/min, 30 °C, 254 nm; >99% *ee* (t_R (major) = 8.41 min).


Racemic



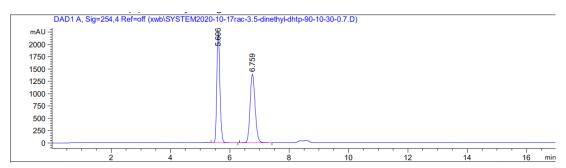
Signal 2: DAD1 B, Sig=254,4 Ref=off

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	8.419	вв	0.2600	8708.83496 8632.01660	507.92249	50.2215
Total	s :			1.73409e4	614,66649	

Enantioenriched

White solid. 490.2 mg, 90% yield. mp 154.0 – 155.3 °C. $[\alpha]^{25}_{D}$: +167.4 (c = 0.5, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 7.34 – 7.28 (m, 3H), 7.23 (d, *J* = 7.8 Hz, 1H), 7.19 – 7.14 (m, 1H), 7.11 (s, 2H), 6.97 (s, 1H), 6.87 (d, *J* = 7.8 Hz, 1H), 5.32 (s, 1H), 2.32 (s, 6H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.14, 143.48, 141.50, 141.20, 138.31, 137.16, 130.13, 129.30, 129.23, 128.27, 127.48, 127.42, 127.34, 127.01, 122.01, 21.36.

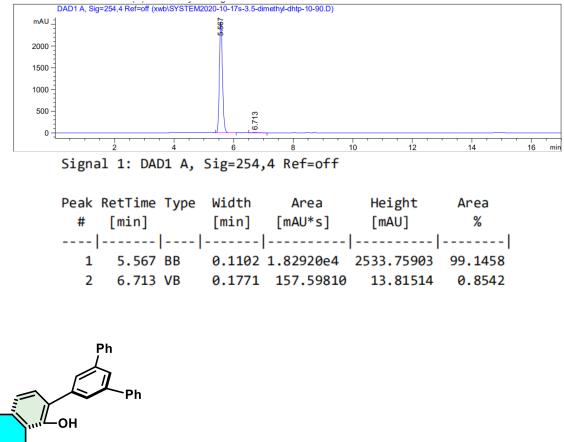
HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{40}H_{33}O_2]^+$ 545.2476, found 545.2479.

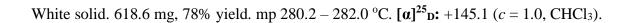
IR (neat): 3529, 3061, 3017, 2917, 2855, 1601, 1468, 1435, 1393, 1297, 1237, 1215, 1181, 855, 822, 750, 707 cm⁻¹.

HPLC: Daicel Chiralpak[®] AD-H, 10% ^{*i*}PrOH, 90% hexane, 0.7 mL/min, 30 °C, 254 nm; 98% *ee* (t_R (major) = 5.57 min, t_R(minor) = 6.71 min).

Racemic

Signal 1: DAD1 A, Sig=254,4 Ref=off

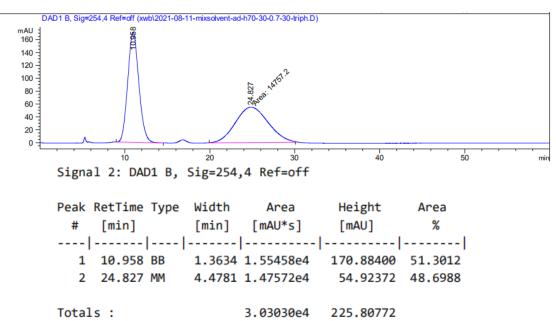

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
		-				
1	5.606	VB	0.1131	1.62048e4	2222.23950	49.7188
2	6.759	VB R	0.1833	1.63881e4	1390.87524	50.2812

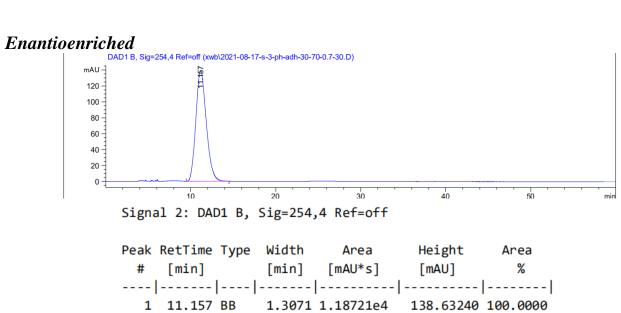


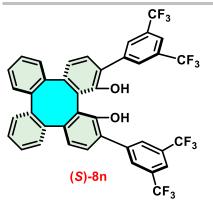
ОН

(S)-8m

Ph


¹**H NMR** (600 MHz, CDCl₃) δ 7.76 – 7.74 (m, 3H), 7.65 (d, *J* = 7.7 Hz, 4H), 7.46 – 7.39 (m, 5H), 7.38 – 7.32 (m, 5H), 7.21 – 7.18 (m, 1H), 6.96 (d, *J* = 7.8 Hz, 1H), 5.40 (s, 1H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.35, 144.09, 142.19, 141.44, 140.96, 138.26, 130.67, 129.42, 128.82, 128.25, 127.68, 127.54, 127.48, 127.39, 127.20, 125.33, 122.39, 121.74.

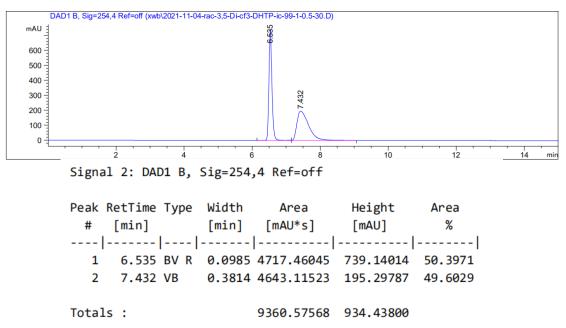

HRMS (**ESI**): [M+H]⁺ Calcd. for [C₆₀H₄₁O₂]⁺ 793.3102, found 793.3104.

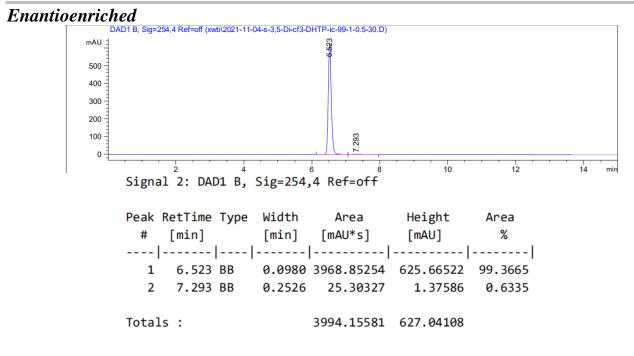
IR (neat): 528, 3061, 3017, 2925, 1594, 1497, 1400, 1216, 1182, 1076, 884,753, 699, 669 cm⁻¹.

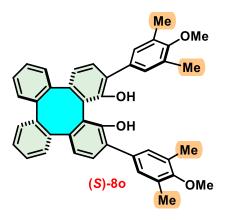
HPLC: Daicel Chiralpak[®] AD-H, 30% ^{*i*}PrOH, 70% hexane, 0.7 mL/min, 30 °C, 254 nm; >99% *ee* (t_R (major) = 11.16 min).

White solid. 616.0 mg, 81% yield. mp 135.8 – 137.0 °C. $[\alpha]^{25}_{D}$: +126.6 (c = 0.5, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 8.04 (s, 2H), 7.82 (s, 1H), 7.39 (d, *J* = 7.9 Hz, 1H), 7.38 – 7.34 (m, 2H), 7.34 – 7.31 (m, 1H), 7.20 – 7.16 (m, 1H), 7.03 (d, *J* = 7.9 Hz, 1H), 5.22 (s, 1H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.29, 145.70, 141.10, 139.93, 139.28, 131.52 (q, *J* = 33.2 Hz), 131.28, 129.74, 129.57 (d, *J* = 3.8 Hz), 128.18, 127.92, 127.77, 124.75, 123.40 (q, *J* = 272.6 Hz), 123.05, 121.05-120.95 (m), 120.41.


¹⁹**F** NMR (565 MHz, CDCl₃) δ –62.78.

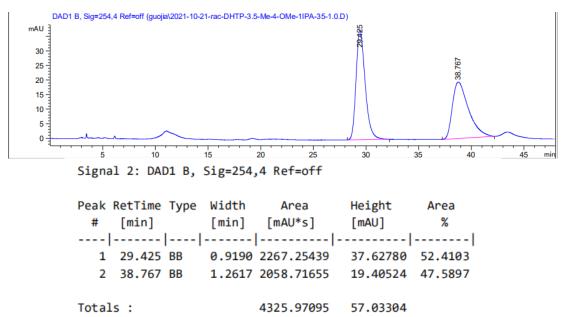

HRMS (ESI): $[M-H]^-$ Calcd. for $[C_{40}H_{19}F_{12}O_2]^-$ 759.1198, found 759.1202.

IR (neat): 3543, 3066, 2928, 2860, 1382, 1279, 1180, 1135, 901, 762, 735, 705, 684 cm⁻¹.

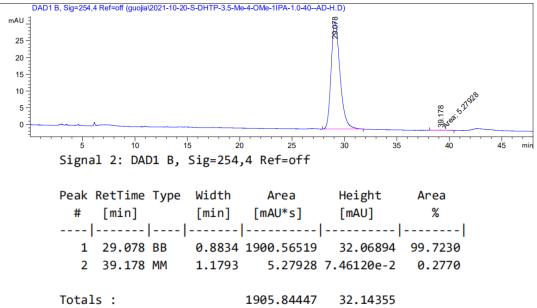
HPLC: Daicel Chiralpak[®] IC, 1% ^{*i*}PrOH, 99% hexane, 0.5 mL/min, 30 °C, 254 nm; 98% *ee* (t_R (major) = 6.52 min, t_R(minor) = 7.29 min).

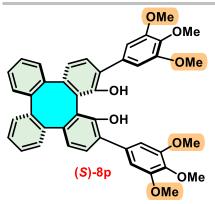
White solid. 513.9 mg, 85% yield. mp 152.6 – 153.7 °C. $[\alpha]^{25}_{D}$: +164.8 (c = 1.0, CHCl₃).

¹**H NMR** (600 MHz, CDCl₃) δ 7.30 (t, *J* = 4.2 Hz, 3H), 7.22 (d, *J* = 7.8 Hz, 1H), 7.16 (d, *J* = 7.2 Hz, 3H), 6.86 (d, *J* = 7.8 Hz, 1H), 5.30 (s, 1H), 3.73 (s, 3H), 2.29 (s, 6H).


¹³**C NMR** (150 MHz, CDCl₃) δ 156.48, 149.09, 143.38, 141.48, 141.13, 132.67, 131.17, 130.17, 129.70, 129.30, 128.23, 127.49, 127.34, 127.02, 122.03, 121.82, 59.72, 16.16.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{42}H_{37}O_4]^+$ 605.2687, found 605.2689.

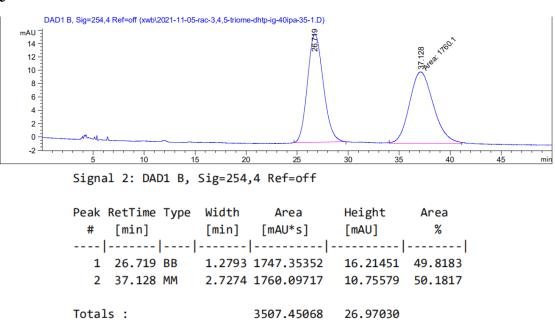

IR (neat): 3528, 3056, 3014, 2930, 2855, 2826, 1481, 1467, 1435, 1242, 1203, 1166, 750 cm⁻¹.

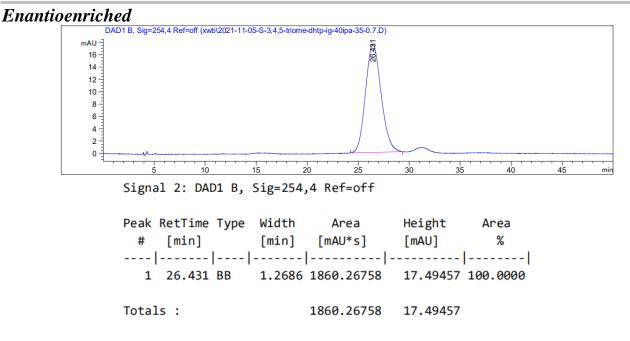

HPLC: Daicel Chiralpak[®] AD-H, 1% ^{*i*}PrOH, 99% hexane, 1.0 mL/min, 40 °C, 254 nm; 99% *ee* (t_R (major) = 29.08 min, t_R(minor) = 39.18 min).

Racemic

Enantioenriched

White solid. 501.6 mg, 75% yield. mp 153.5 – 154.6 °C. $[\alpha]^{25}_{D}$: +131.2 (c = 1.0, CHCl₃).


¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.43 – 7.36 (m, 3H), 7.33 (d, *J* = 7.8 Hz, 1H), 7.26 – 7.20 (m, 1H), 6.93 (d, *J* = 7.8 Hz, 1H), 6.75 (s, 2H), 5.53 (s, 1H), 3.86 (s, 6H), 3.83 (s, 3H).

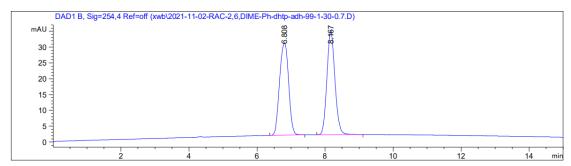

¹³**C NMR** (150 MHz, CDCl₃) δ 153.43, 149.10, 143.72, 141.43, 141.01, 137.55, 132.73, 130.12, 129.41, 128.34, 127.60, 127.38, 127.17, 122.17, 122.08, 106.46, 60.91, 56.24.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{42}H_{37}O_8]^+$ 669.2483, found 669.2487.

IR (neat): 3528, 3058, 3014, 2936, 2834, 1585, 1511, 1466, 1430, 1402, 1347, 1238, 1126, 1004, 750 cm⁻¹.

HPLC: Daicel Chiralpak[®] IG, 60% ^{*i*}PrOH, 40% hexane, 0.7 mL/min, 35 °C, 254 nm; >99% *ee* (t_R (major) = 26.43 min).

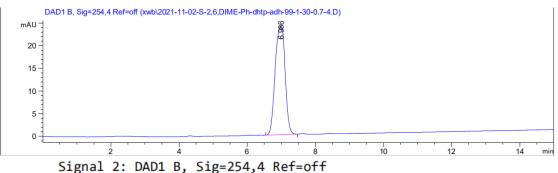
White solid. 305.0 mg, 56% yield. mp 141.2 – 143.0 °C. $[\alpha]^{25}_{D}$: +103.3 (c = 1.0, CHCl₃).


¹**H NMR** (400 MHz, CDCl₃) δ 7.30 (ddd, *J* = 19.9, 5.6, 3.4 Hz, 3H), 7.19 – 7.02 (m, 4H), 6.94 (d, *J* = 7.7 Hz, 1H), 6.85 (d, *J* = 7.7 Hz, 1H), 4.70 (s, 1H), 2.09 (s, 3H), 1.74 (s, 3H).

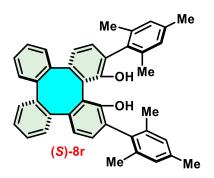
¹³**C NMR** (100 MHz, CDCl₃) δ 148.96, 143.42, 141.62, 141.40, 137.60, 137.39, 135.72, 129.47, 128.78, 128.01, 127.67, 127.65, 127.63, 127.25, 127.05, 125.71, 122.30, 121.49, 20.64, 19.85.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{40}H_{33}O_2]^+$ 545.2476, found 545.2477.

IR (neat): 3533, 3058, 3014, 2917, 2857, 1464, 1437, 1296, 1216, 1183, 1084, 906, 824, 750, 668 cm⁻¹. **HPLC**: Daicel Chiralpak[®] AD-H, 1% ^{*i*}PrOH, 99% hexane, 0.7 mL/min, 30 °C, 254 nm; >99% *ee* (t_R (major) = 6.99 min).

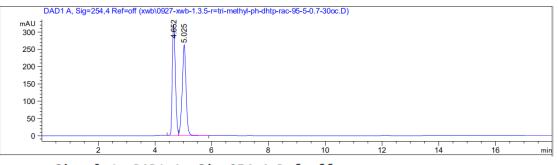


Signal 2: DAD1 B, Sig=254,4 Ref=off


Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	6.808	BB	0.2971	536.65985	29.11122	49.9223
2	8.167	BB	0.2525	538.32965	32.96986	50.0777

#	[min]	[min]	Area [mAU*s]	[mAU]	%
		•	484.56012		
Total	s :		484.56012	23.97944	

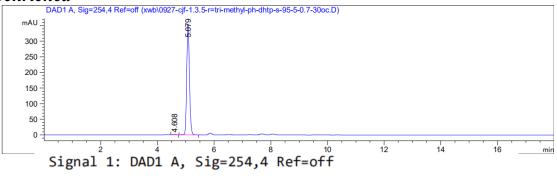
White solid. 240.5 mg, 42% yield. mp 142.1 – 143.0 °C. $[\alpha]^{25}_{D}$: +87.2 (c = 0.5, CHCl₃).

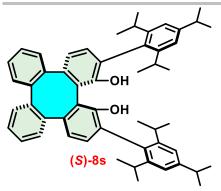

¹H NMR (600 MHz, CDCl₃) δ 7.34 – 7.30 (m, 1H), 7.30 – 7.26 (m, 2H), 7.18 – 7.14 (m, 1H), 6.95 – 6.91 (m, 2H), 6.89 (s, 1H), 6.84 (d, *J* = 7.7 Hz, 1H), 4.72 (s, 1H), 2.29 (s, 3H), 2.05 (s, 3H), 1.71 (s, 3H).
¹³C NMR (150 MHz, CDCl₃) δ 149.08, 143.25, 141.59, 141.41, 137.55, 137.43, 137.20, 132.68, 129.66, 128.74, 128.43, 127.68, 127.17, 126.99, 125.66, 122.18, 121.39, 21.11, 20.48, 19.73.

HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{42}H_{37}O_2]^+$ 573.2789, found 573.2790.

IR (neat): 3529, 3056, 3014, 2921, 2857, 1558, 1458, 1437, 1219, 1084, 904, 852, 770, 753 cm⁻¹.

HPLC: Daicel Chiralpak[®] AD-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 5.08 min, t_R(minor) = 4.61 min).


Racemic


Signal 1: DAD1 A, Sig=254,4 Ref=off

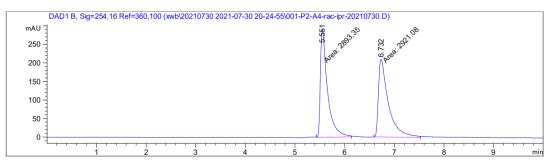
Peak RetTime Type # [min]	[min]			
1 4.652 BV	0.1207	2430.43530	319.75024	49.4706
2 5.025 VB	0.1405	2482.45776	262.20929	50.5294

Enantioenriched

Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	4.608	BB	0.0799	9.01947	1.55030	0.3772
2	5.079	BB	0.1021	2381.87036	355.84863	99.6228

This compound was prepared following modified procedure.

White solid. 555.6 mg, 75% yield. mp 143.5 – 144.6 °C. $[\alpha]^{25}_{D}$: +99.6 (*c* = 1.0, CHCl₃).

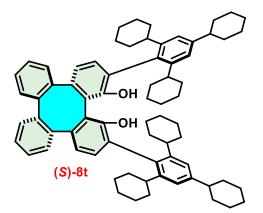

¹**H NMR** (400 MHz, CDCl₃) δ 7.37 (dd, *J* = 5.7, 3.2 Hz, 1H), 7.35 – 7.27 (m, 2H), 7.23 – 7.15 (m, 1H), 7.10 (s, 1H), 7.05 (s, 1H), 6.97 (d, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 7.6 Hz, 1H), 4.64 (s, 1H), 3.03 – 2.76 (m, 2H), 2.22 – 2.04 (m, 1H), 1.31 (d, *J* = 6.9 Hz, 6H), 1.14 (d, *J* = 6.8 Hz, 3H), 1.10 (d, *J* = 7.0 Hz, 3H), 0.90 (d, *J* = 6.9 Hz, 3H), 0.85 (d, *J* = 6.8 Hz, 3H).

¹³**C NMR** (150 MHz, CDCl₃) δ 149.90, 148.82, 147.96, 147.73, 143.04, 141.73, 141.56, 130.49, 130.01, 128.49, 127.11, 126.94, 126.82, 124.99, 122.23, 121.20, 121.07, 120.43, 34.31, 30.71, 30.18, 24.37, 24.06, 24.01, 23.95, 23.68, 23.68.

HRMS (**ESI**): [M-H]⁻Calcd. for [C₅₄H₅₉O₂]⁻ 739.4520, found 739.4514.

IR (neat): 3529, 3058, 3021, 2961, 2925, 2868, 1558, 1458, 1429, 1216, 770, 668 cm⁻¹.

HPLC: Daicel Chiralpak[®] IA, 0.1% ^{*i*}PrOH, 99.9 % hexane, 0.7 mL/min, 30 °C, 254 nm; 98% *ee* (t_R (major) = 6.58 min).


Signal 2: DAD1 B, Sig=254,16 Ref=360,100

#	[min]		[min]	Area [mAU*s]	[mAU]	%
1	5.551	MM	0.1662	2893.35449	290.08139	49.7616
2	6.732	MM	0.2320	2921.08276	209.86952	50.2384
Total	s :			5814.43726	499.95091	

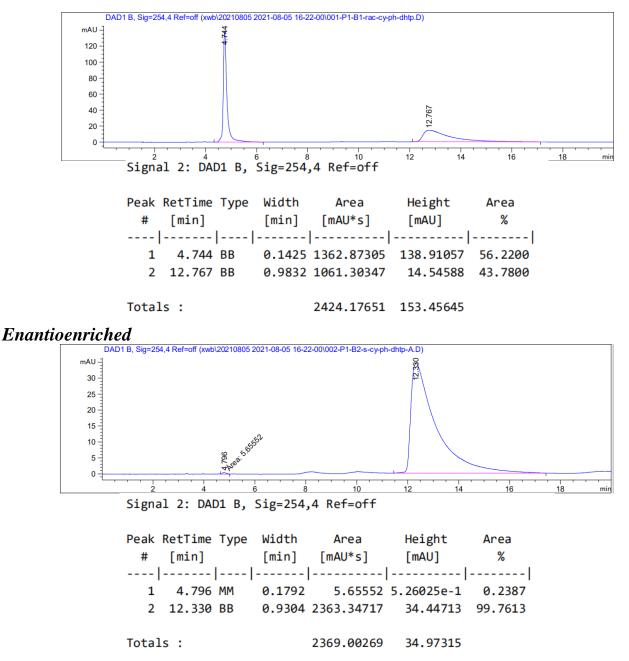
Enantioenriched DAD1B, Sig=254, 16 Ref=360,100 (xwb/20210730 2021-07-30 20-24-55/002-P2-A5-s-ipr-20210730 D) $mAU = \frac{1}{2}$

Signal 2: DAD1 B, Sig=254,16 Ref=360,100

	[min] [mAU*s]	Height Area [mAU] %	
		803.48834 100.0000	
Totals :	1.06157e4	803.48834	

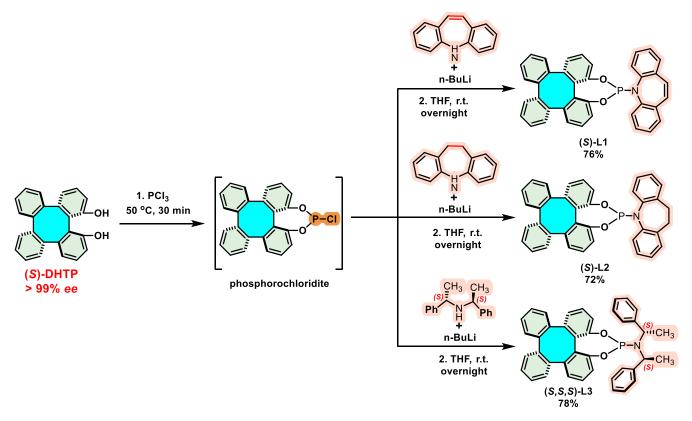
This compound was prepared following modified procedure.

White solid. 687.0 mg, 70% yield. mp 154.4 – 154.8 °C. $[\alpha]^{25}$ _D: +107.4 (c = 0.5, CHCl₃).


¹**H** NMR (600 MHz, CDCl₃) δ 7.32 (d, *J* = 6.8 Hz, 1H), 7.23 – 7.16 (m, 2H), 7.07 (d, *J* = 7.0 Hz, 1H), 6.94 (s, 1H), 6.89 (s, 1H), 6.82 (d, *J* = 7.7 Hz, 1H), 6.74 (d, *J* = 7.6 Hz, 1H), 4.47 (s, 1H), 2.42 (ddd, *J* = 11.5, 8.1, 3.4 Hz, 1H), 2.31 (td, *J* = 10.3, 8.7, 6.0 Hz, 1H), 1.85 (d, *J* = 11.8 Hz, 2H), 1.77 (d, *J* = 12.4 Hz, 2H), 1.72 – 1.61 (m, 3H), 1.52 – 1.12 (m, 17H), 1.12 – 0.92 (m, 5H), 0.66 (q, *J* = 12.9 Hz, 1H), 0.43 (q, *J* = 12.7 Hz, 1H).

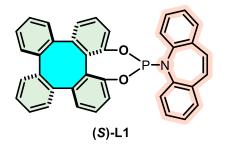
¹³**C NMR** (150 MHz, CDCl₃) δ 149.99, 147.65, 146.99, 146.92, 142.97, 141.79, 141.77, 130.91, 130.18, 128.85, 127.41, 127.29, 126.76, 124.85, 122.21, 122.19, 122.04, 120.44, 44.74, 41.48, 41.17, 34.58, 34.55, 34.50, 34.48, 34.43, 33.81, 27.04, 27.01, 26.84, 26.79, 26.59, 26.27, 26.17, 26.10.

HRMS (**ESI**): [M-H]⁻Calcd. for [C₇₂H₈₃O₂]⁻ 979.6398, found 979.6390.


IR (neat): 3529, 3056, 2960, 2928, 2869, 1558, 1460, 1429, 1362, 1306, 1218, 1084, 906, 878, 751, 668 cm⁻¹.

HPLC: Daicel Chiralpak[®] IA, 0.2% ^{*i*}PrOH, 99.8 % hexane, 1.0 mL/min, 30 °C, 254 nm; 99% *ee* (t_R (major) = 12.33 min, t_R(minor) = 4.80 min).

General Procedure for Synthesis of (S)-DHTP Derived Phosphoramidite Ligands


Procedure A:

A flame dried Schlenk flask under argon was charged with the (*S*)-**DHTP** (1 mmol, 1.0 eq.) and PCl₃ (15.0 eq.) was heated at 50°C during 30 min. The initially heterogeneous mixture turned into a brownish homogenous solution. After cooling to room temperature (25°C), the excess PCl₃ was thoroughly evaporated in vacuo to remove remaining PCl₃. The resulting phosphorchloridite was redissolved in anhydrous THF (5 mL). In a separate Schlenk flask under argon, the corresponding amine (1.2 eq.) dissolved in anhydrous THF (10 mL) was deprotonated at -78°C by the slow addition of *n*-BuLi (1.6 M solution in hexanes, 1.1 eq.). After being stirred at -78 °C for 1 hour, the aforementioned phosphorchloridite solution was slowly transferred into the resulting solution via syringe. The resulting mixture was stirred at -78°C, then warmed to 25°C and continued to stir overnight. The solvent was evaporated in vacuo and purification by flash chromatography on silica gel using hexanes/toluene as the eluents to give the corresponding product as a white solid.

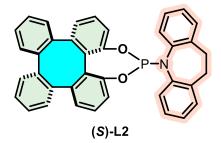
Procedure B: 2. toluene, r.t. overnight 1. PCI₃ (S)-L4 50 °C, 30 min он 85% ОН (S)-DHTP > 99% ee phosphorochloridite 2. toluene. r.t. overnight (S)-L5 83%

A flame dried Schlenk flask under argon was charged with the (*S*)-**DHTP** (1 mmol, 1.0 eq.) and PCl₃ (15.0 eq.) was heated at 50°C during 30 min. The initially heterogeneous mixture turned into a brownish homogenous solution. After cooling to room temperature (25° C), the excess PCl₃ was thoroughly evaporated in vacuo to remove remaining PCl₃. The resulting phosphorochloridite was dissolved in anhydrous toluene (5 mL) and cooled to 0 °C. To the resulting solution of phosphorochloridite were slowly added triethylamine (1.2 eq.) and the corresponding amine (1.2 eq.) via syringe. The resulting mixture was warmed to 25°C and continued to stir overnight. The solvent was evaporated in vacuo and purification by flash chromatography on silica gel using hexanes/EtOAc as the eluents to give the corresponding product as a white solid.

This compound was prepared following general procedure A using iminostilbene.

White solid. 423.6 mg, 76% yield. mp 274.1 – 274.6 °C. $[\alpha]^{20}$ _D: –225.00 (c = 0.5, CHCl₃).

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.42 – 7.17 (m, 15H), 7.11 – 6.97 (m, 6H), 6.88 (dd, J = 9.4, 8.0 Hz, 2H), 6.76 (d, J = 7.4 Hz, 1H).


¹³**C NMR** (100 MHz, Acetone- d_6) δ 149.47, 149.07 (d, J = 6.5 Hz), 144.08 (d, J = 1.6 Hz), 143.01 (d, J = 1.2 Hz), 142.95, 142.77, 142.30 (d, J = 4.4 Hz), 141.27, 141.17, 141.03, 140.59, 136.45 (d, J = 3.2 Hz), 136.00, 131.60, 131.19, 130.43 (d, J = 4.4 Hz), 129.51, 129.40, 129.22, 129.21, 129.08 (d, J = 3.0 Hz),

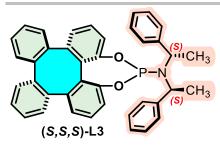
129.04, 128.98, 128.62, 128.59 (d, J = 1.4 Hz), 128.44 (d, J = 8.4 Hz), 128.26, 128.16, 127.82, 127.70, 127.30, 127.27, 126.91 (d, J = 1.4 Hz), 126.67, 126.65, 125.13, 120.67 (d, J = 2.4 Hz), 120.37. **DEPT 135** ¹³**C NMR** (150 MHz, Acetone- d_6) δ 131.59, 131.19, 129.51, 129.40, 129.22, 129.21, 129.08 (d, J = 2.8 Hz), 129.05, 128.99, 128.62, 128.59, 128.44 (d, J = 8.4 Hz), 128.27, 128.16, 127.82, 127.70, 127.30, 127.27, 126.92, 126.67, 126.66, 125.13, 120.67 (d, J = 2.5 Hz), 120.37. ³¹**P NMR** (162 MHz, Acetone- d_6) δ 135.09.

 $1 \text{ NMR} (102 \text{ MHZ}, \text{Acctone-} u_6) = 155.05.$

HRMS (ESI): [M+H]⁺ Calcd. for [C₃₈H₂₅NO₂P]⁺ 558.1618, found 558.1625.

IR (neat): 3065, 1595, 1560, 1485, 1431, 1207, 1107, 1076, 991, 914, 800, 760, 748, 727, 629 cm⁻¹.

This compound was prepared following general procedure A using iminodibenzyl.


White solid. 403.2 mg, 72% yield. mp 270.1 – 270.6 °C. $[\alpha]^{20}$ D: –256.2 (c = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CD₂Cl₂) δ 7.26 – 7.01 (m, 12H), 7.01 – 6.93 (m, 3H), 6.91 – 6.77 (m, 4H), 6.72 – 6.62 (m, 2H), 6.58 (d, J = 8.0 Hz, 1H), 3.55 (dddd, J = 28.7, 15.2, 8.6, 3.2 Hz, 2H), 2.87 – 2.73 (m, 2H). ¹³**C NMR** (100 MHz, CD₂Cl₂) δ 149.35, 149.26 (d, J = 7.3 Hz), 144.04 (d, J = 1.5 Hz), 143.13 (d, J = 1.1 Hz), 142.98 (d, J = 16.3 Hz), 142.82 (d, J = 5.9 Hz), 141.33, 141.25, 141.08, 140.71, 137.40 (d, J = 3.4 Hz), 137.29 (d, J = 1.8 Hz), 130.51 (d, J = 4.6 Hz), 130.21, 129.92, 129.71, 129.51, 129.02, 128.47 (d, J = 1.5 Hz), 128.42 (d, J = 4.5 Hz), 128.36, 128.30, 128.18 (d, J = 2.2 Hz), 127.87 (d, J = 10.8 Hz), 127.73, 127.34, 127.30, 127.11, 126.67, 126.53, 126.46, 126.40, 125.14, 120.91 (d, J = 2.5 Hz), 120.20, 31.62, 31.53.

³¹**P NMR** (162 MHz, CD₂Cl₂) δ 133.79.

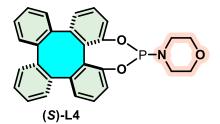
HRMS (ESI): [M+H]⁺ Calcd. for [C₃₈H₂₇NO₂P]⁺ 560.1774, found 560.1785.

IR (neat): 3063, 2912, 1566, 1485, 1433, 1234, 1186, 1107, 984, 914, 798, 748, 725, 696, 629 cm⁻¹.

This compound was prepared following general procedure A using $bis[(S)-\alpha$ -methylbenzyl]amine.

White solid. 459.1 mg, 78% yield. mp 114.2 – 114.6 °C. $[\alpha]^{20}$ _D: –430.1 (c = 0.5, CHCl₃).

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.41 – 7.32 (m, 3H), 7.31 – 7.10 (m, 16H), 7.07 – 7.02 (m, 2H), 7.01 – 6.94 (m, 2H), 6.85 (d, J = 7.5 Hz, 1H), 4.50 (dq, J = 11.0, 7.0 Hz, 2H), 1.68 (d, J = 7.1 Hz, 6H).


¹³**C NMR** (150 MHz, CDCl₃) δ 149.33, 149.04 (d, *J* = 8.6 Hz), 142.87 (d, *J* = 1.6 Hz), 142.47, 142.30, 140.35, 140.21, 140.18, 139.81, 129.57, 129.53, 128.75, 128.55, 127.72, 127.39 (d, *J* = 1.8 Hz), 127.22, 127.12, 127.04, 126.99, 126.97, 126.76, 126.53, 126.47, 126.03, 125.96, 125.66, 124.08, 119.91 (d, *J* = 2.7 Hz), 119.69, 53.72, 53.65, 21.98, 21.90.

Dept135 ¹³**C NMR** (150 MHz, CDCl₃) δ 128.75, 128.55, 127.71, 127.22, 127.12, 127.04, 126.99, 126.97, 126.76, 126.53, 126.47, 126.03, 125.96, 125.66, 124.08, 119.91 (d, *J* = 2.7 Hz), 119.69, 53.72, 53.65, 21.98, 21.90.

³¹**P NMR** (243 MHz, CDCl₃) δ 149.30.

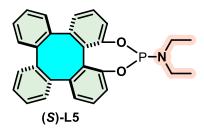
HRMS (ESI): [M+H]⁺ Calcd. for [C₄₀H₃₃NO₂P]⁺ 590.2244, found 590.2254.

IR (neat): 3105, 2959, 2872, 1720, 1543, 1531, 1346, 1234, 1171, 1111, 1076, 910, 800, 752, 727, 700, 629 cm⁻¹.

This compound was prepared following general procedure A using morpholine.

White solid. 384.0 mg, 85% yield. mp 127.4 – 128.1 °C. $[\alpha]^{20}_{D}$: –149.5 (c = 0.5, CHCl₃).

¹**H** NMR (400 MHz, Acetone- d_6) δ 7.41 – 7.28 (m, 6H), 7.24 (dd, J = 7.5, 1.3 Hz, 2H), 7.18 (d, J = 8.0 Hz, 1H), 7.13 (dd, J = 8.2, 1.1 Hz, 1H), 7.10 (d, J = 7.5 Hz, 2H), 7.02 (d, J = 7.6 Hz, 1H), 6.99 (d, J = 7.6 Hz, 1H), 3.51 (t, J = 4.7 Hz, 4H), 3.14 – 3.03 (m, 2H), 3.00 – 2.89 (m, 2H).


¹³**C NMR** (100 MHz, Acetone-*d*₆) δ 150.03, 149.61 (d, *J* = 4.4 Hz), 143.96 (d, *J* = 1.7 Hz), 143.64, 141.21, 141.14, 140.92, 140.67, 130.38 (d, *J* = 4.2 Hz), 129.55, 129.40 (d, *J* = 1.8 Hz), 129.09, 129.07, 128.49, 128.47, 127.83, 127.80, 127.38, 127.33, 126.56 (d, *J* = 1.6 Hz), 125.64, 120.64, 120.47 (d, *J* = 2.2 Hz), 67.48, 67.43, 44.45, 44.27.

Dept135 ¹³**C NMR** (150 MHz, Acetone- d_6) δ 129.55, 129.09, 129.06, 128.49, 128.47, 127.83, 127.80, 127.38, 127.33, 126.56, 125.63, 120.64, 120.47 (d, J = 2.1 Hz), 67.47, 67.44, 44.42, 44.30.

³¹**P** NMR (162 MHz, Acetone- d_6) δ 141.99.

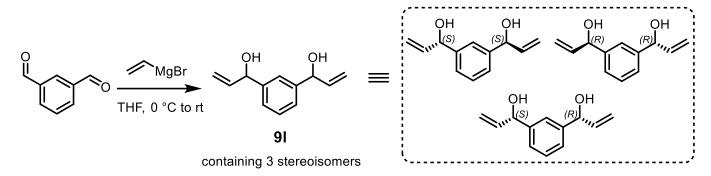
HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{28}H_{23}NO_3P]^+$ 452.1411, found 452.1417.

IR (neat): 3107, 2957, 2928, 2855, 1720, 1543, 1431, 1346, 1258, 1234, 1171, 1111, 1078, 1043, 954, 910, 800, 761, 744, 727, 700, 679, 630 cm⁻¹.

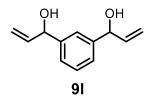
This compound was prepared following general procedure B using diethylamine.

White solid. 363.5 mg, 83% yield. mp 95.4 – 95.8 °C. $[\alpha]^{20}_{D}$: –217.1 (c = 0.5, CHCl₃).

¹**H NMR** (400 MHz, CDCl₃) δ 7.27 – 7.20 (m, 2H), 7.20 – 7.08 (m, 6H), 7.06 – 6.96 (m, 3H), 6.87 (tdd, *J* = 7.7, 6.6, 1.2 Hz, 3H), 3.02 – 2.87 (m, 2H), 2.75 (ddd, *J* = 14.3, 12.9, 7.0 Hz, 2H), 0.98 (t, *J* = 7.1 Hz, 6H).


¹³**C NMR** (100 MHz, CDCl₃) δ 150.19, 149.90 (d, *J* = 4.2 Hz), 143.73 (d, *J* = 1.4 Hz), 143.50, 141.25, 141.16, 141.14, 140.88, 130.47 (d, *J* = 4.3 Hz), 129.84, 129.66, 129.43 (d, *J* = 1.8 Hz), 128.65, 128.54, 128.49, 128.40, 127.53, 127.13, 127.07, 126.49 (d, *J* = 1.4 Hz), 125.34, 120.59 (d, *J* = 2.4 Hz), 120.19, 38.37, 38.15, 14.82, 14.79.

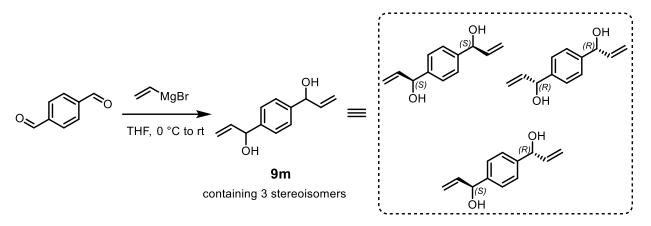
³¹**P NMR** (162 MHz, CDCl₃) δ 147.00.


HRMS (ESI): $[M+H]^+$ Calcd. for $[C_{28}H_{25}NO_2P]^+$ 438.1618, found 438.1624.

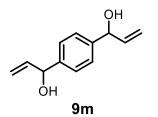
IR (neat): 3107, 2961, 2910, 2872, 1719, 1630, 1541, 1462, 1346, 1277, 1169, 1078, 1041, 995, 916, 798, 727, 719, 680, 630 cm⁻¹.

Procedure for the Synthesis of 91^[1]

In a flame dried Schlenk flask, a solution of isophthalaldehyde (10 mmol, 1.34 g) in dry THF (20 mL) was cooled to 0 °C under Argon. Vinyl magnesium bromide (20 mmol, 20 ml, 1.0 M in THF) was added dropwise. After 15 min, the reaction was allowed to warm to room temperature and stirred for additional 3 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl and extracted with EtOAc (3×50 ml). The organic phase was washed with brine, dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (EtOAc/hexane 1:4) to give the corresponding allylic alcohol substrates **9**I (containing 3 stereoisomers which were not separable by TLC and NMR).

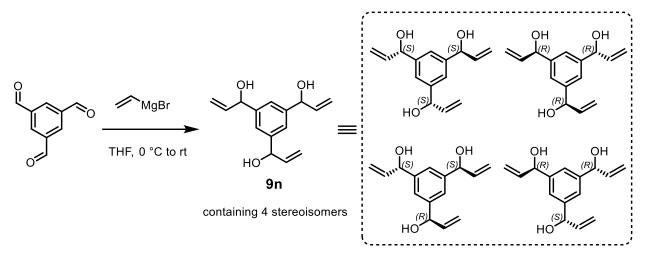


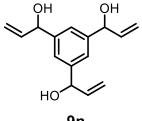
Colorless oil. 1.05 g, 55% yield.


¹**H** NMR (400 MHz, CDCl₃) δ 7.29 (s, 1H), 7.24 (d, J = 6.9 Hz, 1H), 7.21 – 7.16 (m, 2H), 6.01 – 5.87 (m, 2H), 5.30 – 5.20 (m, 2H), 5.14 – 5.05 (m, 4H), 2.32 (s, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.95, 140.10, 128.76, 125.78, 124.28, 115.28, 75.26.

Procedure for the Synthesis of 9m^[2]


In a flame dried Schlenk flask, a solution of terephthalaldehyde (10 mmol, 1.34 g) in dry THF (20 mL) was cooled to 0 °C under Argon. Vinyl magnesium bromide (20 mmol, 20 ml, 1.0 M in THF) was added dropwise. After 15 min, the reaction was allowed to warm to room temperature and stirred for additional 3 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl and extracted with EtOAc (3×50 ml). The organic phase was washed with brine, dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (EtOAc/hexane 1:4) to give the corresponding allylic alcohol substrates **9m** (containing 3 stereoisomers which were not separable by TLC and NMR).

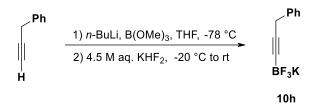

White solid. 0.80 g, 42% yield. ¹**H NMR** (400 MHz, CDCl₃) δ 7.29 (s, 4H), 6.04 – 5.87 (m, 2H), 5.28 (d, *J* = 17.1 Hz, 2H), 5.18 – 5.08 (m, 4H), 1.86 (brs, 2H).

¹³C NMR (100 MHz, CDCl₃) δ 142.13, 140.14, 126.56, 115.24, 75.13.

Procedure for the Synthesis of 9n

In a flame dried Schlenk flask, a solution of benzene-1,3,5-tricarbaldehyde (10 mmol, 1.62 g) in dry THF (20 mL) was cooled to 0 °C under Argon. Vinyl magnesium bromide (30 mmol, 30 ml, 1.0 M in THF) was added dropwise. After 15 min, the reaction was allowed to warm to room temperature and stirred for additional 3 h. The reaction mixture was quenched by addition of saturated aqueous NH₄Cl and extracted with EtOAc (3×50 ml). The organic phase was washed with brine, dried over MgSO₄. The solvent was removed under vacuum and the residue was purified by column chromatography on silica gel (EtOAc/hexane 1:2) to give the corresponding allylic alcohol substrates **9n** (containing 4 stereoisomers which were not separable by TLC and NMR).

9n


Pale yellow solid. 1.16 g, 47% yield. mp 97.9 – 98.5 °C.

¹H NMR (400 MHz, DMSO-*d*₆) δ 7.16 (s, 1H), 5.91 (ddd, *J* = 16.5, 10.0, 6.0 Hz, 1H), 5.45 (d, *J* = 3.9 Hz, 1H), 5.24 (d, *J* = 17.1 Hz, 1H), 5.10 – 4.95 (m, 2H).
¹³C NMR (100 MHz, DMSO-*d*₆) δ 144.30, 142.51, 123.14, 113.78, 74.09.

HRMS (**ESI**): [M+Na]⁺ Calcd for [C₁₅H₁₈O₃Na]⁺ 269.1149, found 269.1143.

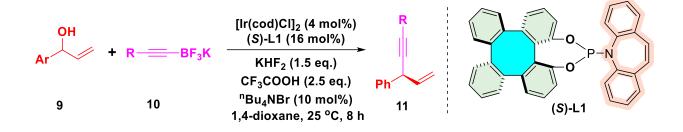
IR(neat): 3367, 2922, 2855, 1660, 1603, 1470, 1421, 1221, 991, 912, 773, 745, 611 cm⁻¹.

Procedure for the Synthesis of Potassium Alkynyltrifluoroborates 10h^[3]

To a solution of 3-phenyl-1-propyne (5 mmol, 0.58 g) in dry THF (10 mL) at -78 °C was added *n*-BuLi (5 mmol, 3.1 mL, 1.6 M in hexane) was added dropwise. The resulting solution was stirred for 0.5 h. Trimethylborate (7.5 mmol, 0.78 g) was added dropwise at -78 °C. After being stirred for 0.5 h, the reaction mixture was warmed to -20 °C and stirred for additional 0.5 h. Aqueous KHF₂ (30 mmol) was added dropwise, and after 1 h the solution was allowed to warm to rt for 2 h. The solvent was removed under reduced pressure. The residue was dried under vacuum to remove water and then dissolved in hot acetone (3 x 15 mL). The solution was filtered and the filtrated was concentrated to a minimal volume (~10 mL) under vacuum. Et₂O (~30 mL) was added to precipitate the potassium trifluoroborate. The mixture was cooled to 0 °C to complete the precipitation. The white solid was collected by filtration to give **10h**.

BF₃K

10h


White solid. 0.61 g, 55% yield.

¹**H NMR** (400 MHz, DMSO-*d*₆) δ 7.35 – 7.27 (m, 4H), 7.22 – 7.17 (m, 1H), 3.44 (s, 2H).

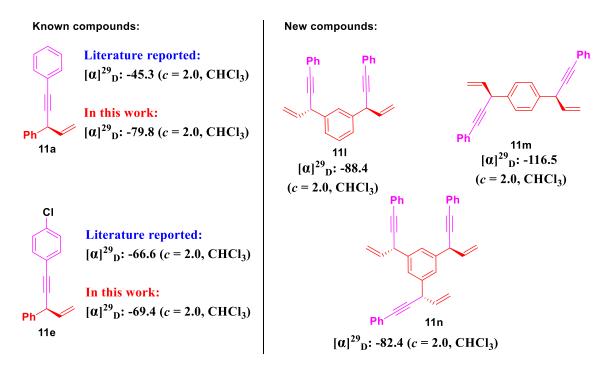
¹³**C NMR** (150 MHz, DMSO- d_6) δ 138.69, 128.64, 128.32, 126.52, 87.00 (relaxation time d1 = 3 seconds, no clear signal for the second acetylenic carbon atom), 25.57.

¹⁹**F NMR** (565 MHz, DMSO-*d*₆) δ -131.25.

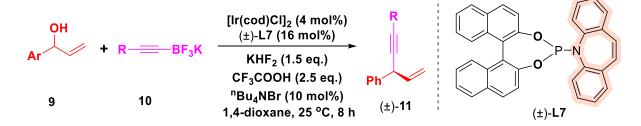
HRMS (**ESI**): [M-K]⁻ Calcd for [C₉H₇BF₃]⁻ 183.0598, found 183.0591.

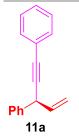
General Procedure for Ir-Catalyzed Allylic Alkynylation

A) Procedure for Product 11a:


[Ir(cod)Cl]₂ (5.4 mg, 8.0 μ mol, 4 mol%) and (*S*)-**L1** (17.8 mg, 32.0 μ mol, 16 mol%) were dissolved in 1,4-dioxane (0.4 mL) in a Schlenk tube and vigorously stirred for 15 min. To the resulting dark red solution, allylic alcohol **9a** (0.2 mmol, 1.0 eq.), potassium alkynyltrifluoroborate **10a** (0.3 mmol, 1.5 eq.), ⁿBu₄NBr (6.6 mg, 20 μ mol, 10 mol%), KHF₂ (23.7 mg, 0.3 mmol, 1.5 eq.), and CF₃COOH (58.0 mg, 0.5 mmol, 2.5 eq.) were sequentially added. Reaction vessel was flushed with nitrogen, and resulting heterogeneous orange mixture was stirred at 25 °C for 8 h. The reaction mixture was diluted with hexanes (1.0 mL), treated with triethylamine (0.1 mL), and directly subjected to purification by flash chromatography on silica gel using CH₂Cl₂/hexane as the eluents to give to give the product **11a**.

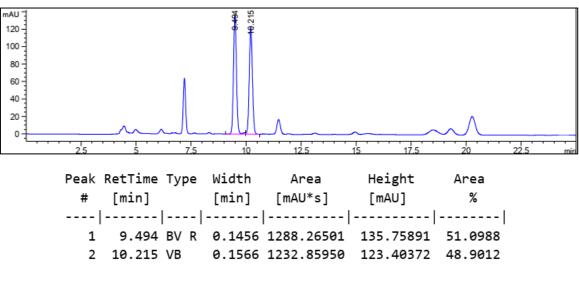
B) General Procedure for Products 11b-n:


[Ir(cod)Cl]₂ (10.8 mg, 16.0 μ mol, 4 mol%) and (*S*)-L1 (35.6 mg, 64.0 μ mol, 16 mol%) were dissolved in 1,4-dioxane (0.8 mL) in a Schlenk tube and vigorously stirred for 15 min. To the resulting dark red solution, allylic alcohol **9** (0.4 mmol, 1.0 eq.), potassium alkynyltrifluoroborate **10** (0.6 mmol, 1.5 eq.), ⁿBu₄NBr (13.0 mg, 40 μ mol, 10 mol%), KHF₂ (47.6 mg, 0.6 mmol, 1.5 eq.), and CF₃COOH (115.2 mg, 1.0 mmol, 2.5 eq.) were sequentially added. Reaction vessel was flushed with nitrogen, and resulting heterogeneous orange mixture was stirred at 25 °C for 8 h. The reaction mixture was diluted with hexanes (2.0 mL), treated with triethylamine (0.2 mL), and directly subjected to purification by flash chromatography on silica gel using CH₂Cl₂/hexane as the eluents to give to give the product **11**.


(*Notes*: when the substrate **9** containing two or three allylic alcohol moieties (**9**l, **9m** and **9n**), the usage amount of potassium alkynyltrifluoroborate **10** and all of additives were double or triple, respectively.)

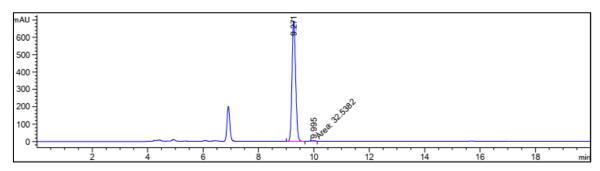
The stereoconfiguration of products **11a-n** was determined by comparison of optical rotations of **11a** and **11e** previously reported in literature (*Angew. Chem. Int. Ed.*, **2013**, *52*, 7532-7535). ^[4]

The (\pm) -**11a-n** *for HPLC determination were prepared by using racemic BINOL-based* (\pm) -**L7** *as a ligand under the above standard conditions.*



Colorless oil. 37.1 mg, 85% yield. $[\alpha]^{29}$ D: -79.8 (c = 2.0, CHCl₃) (lit^[4]: $[\alpha]^{29}$ D: -45.3 (c = 2.0, CHCl₃)). ¹H NMR (400 MHz, CDCl₃) δ 7.50 – 7.40 (m, 4H), 7.39 – 7.32 (m, 2H), 7.32 – 7.28 (m, 3H), 7.27 – 7.24 (m, 1H),, 6.01 (ddd, J = 16.9, 9.9, 6.1 Hz, 1H), 5.46 (dt, J = 16.9, 1.5 Hz, 1H), 5.19 (dt, J = 9.9, 1.4 Hz, 1H), 4.59 (d, J = 6.1 Hz, 1H).

¹³**C NMR** (150 MHz, CDCl₃) δ 140.15, 137.91, 131.67, 128.65, 128.22, 127.96, 127.68, 127.02, 123.49, 115.25, 88.64, 85.32, 41.96.

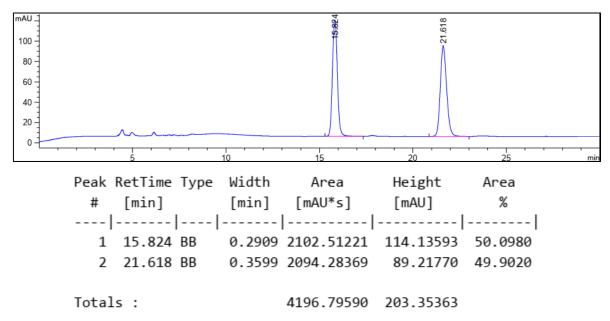

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 9.27 min, t_R(minor) = 10.00 min).

Racemic

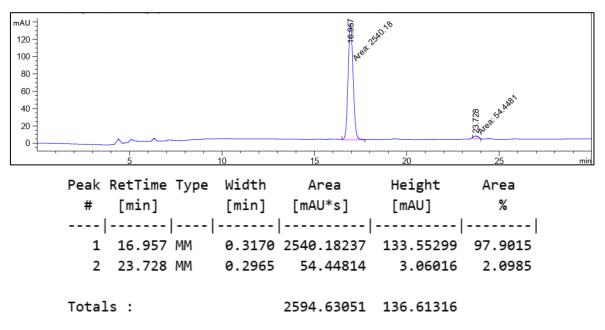
Enantioenriched

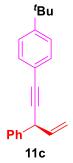
Peak I	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
-						
1	9.271	BB	0.1423	6316.11670	693.52704	99.4875
2	9.995	MM	0.1433	32.53820	3.78506	0.5125
Totals	s :			6348.65490	697.31210	

OMe Ph


11b

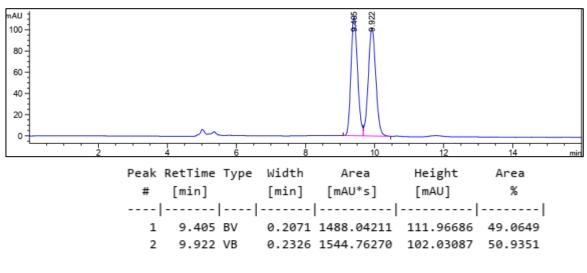
Colorless oil. 80.4 mg, 81% yield.


¹**H NMR** (600 MHz, CDCl₃) δ 7.43 (d, *J* = 7.6 Hz, 2H), 7.40 (d, *J* = 8.8 Hz, 2H), 7.35 (t, *J* = 7.6 Hz, 2H), 7.27 – 7.23 (m, 1H), 6.83 (d, *J* = 8.6 Hz, 2H), 6.00 (ddd, *J* = 16.4, 9.9, 6.1 Hz, 1H), 5.44 (d, *J* = 16.9 Hz, 1H), 5.17 (d, *J* = 9.8 Hz, 1H), 4.57 (d, *J* = 6.2 Hz, 1H), 3.80 (s, 3H).

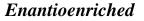

¹³**C NMR** (100 MHz, CDCl₃) δ 159.37, 140.37, 138.14, 133.05, 128.63, 127.69, 126.97, 115.65, 115.13, 113.85, 87.10, 85.13, 55.29, 42.01.

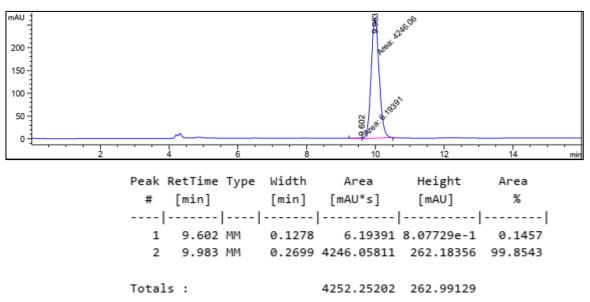
HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 96% *ee* (t_R (major) = 16.95 min, t_R(minor) = 23.73 min).

Enantioenriched


Colorless oil. 76.8 mg, 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.50 – 7.41 (m, 4H), 7.41 – 7.33 (m, 4H), 7.32 – 7.26 (m, 1H), 6.03 (ddd, J = 16.8, 9.9, 6.1 Hz, 1H), 5.48 (dt, J = 16.9, 1.4 Hz, 1H), 5.21 (dt, J = 9.9, 1.4 Hz, 1H), 4.61 (d, J = 6.0 Hz, 1H), 1.34 (s, 9H).

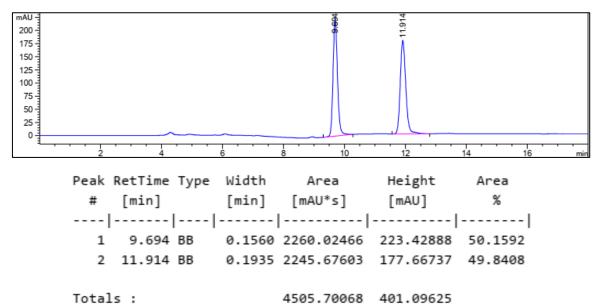

¹³C NMR (100 MHz, CDCl₃) δ 151.20, 140.31, 138.08, 131.40, 128.64, 127.70, 126.98, 125.24, 120.49, 115.15, 87.91, 85.43, 42.01, 34.74, 31.21.

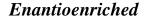

HPLC: Daicel Chiralcel[®] OJ-H, 0.5% ^{*i*}PrOH, 99.5% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 9.98 min, t_R(minor) = 9.60 min).

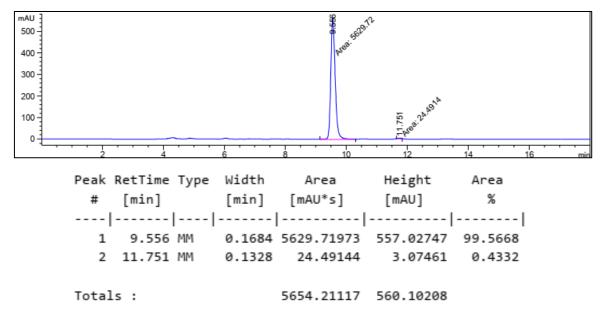
Racemic

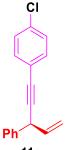
Colorless oil. 70.8 mg, 75% yield. $[\alpha]^{29}_{D}$: -43.7 (c = 2.0, CHCl₃).

¹**H** NMR (400 MHz, CDCl₃) δ 7.49 – 7.39 (m, 4H), 7.36 (t, *J* = 7.6 Hz, 2H), 7.30 – 7.23 (m, 1H), 6.99 (t, *J* = 8.7 Hz, 2H), 5.99 (ddd, *J* = 16.9, 9.9, 6.1 Hz, 1H), 5.44 (dt, *J* = 16.9, 1.5 Hz, 1H), 5.19 (dt, *J* = 9.8, 1.4 Hz, 1H), 4.57 (d, *J* = 6.1 Hz, 1H).

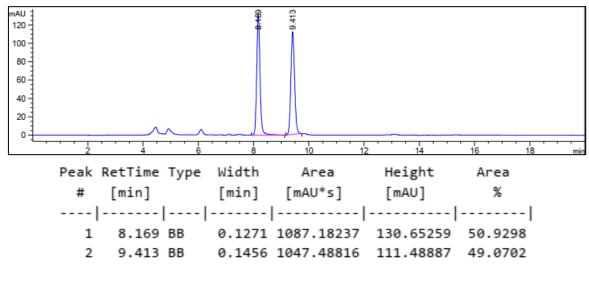

¹³**C NMR** (100 MHz, CDCl₃) δ 162.34 (d, *J* = 248.8 Hz), 140.04, 137.80, 133.52 (d, *J* = 8.3 Hz), 128.71, 127.67, 127.10, 119.53 (d, *J* = 3.6 Hz), 115.59, 115.36 (d, *J* = 3.3 Hz), 88.33, 84.23, 41.92.


¹⁹**F NMR** (376 MHz, CDCl₃) δ -111.59.


HRMS (APCI): $[M]^+$ Calcd. for $[C_{17}H_{13}F]^+$ 236.0996, found 236.1000.

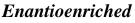

IR (neat): 3065, 3020, 2978, 2203, 1599, 1506, 1452, 1215, 1155, 837, 752, 698, 667 cm⁻¹.

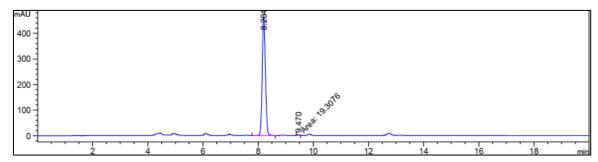
HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 9.56 min, t_R(minor) = 11.75 min).

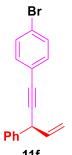


11e

Colorless oil. 66.5 mg, 66% yield. [α]²⁹_D: -69.4 (*c* = 2.0, CHCl₃) (lit^[4]: [α]²⁹_D: -66.6 (*c* = 2.0, CHCl₃)). ¹³C NMR (150 MHz, CDCl₃) δ 139.91, 137.67, 133.97, 132.92, 128.72, 128.57, 127.66, 127.14, 121.98, 115.42, 89.75, 84.20, 41.96.


HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 8.20 min, t_R(minor) = 9.47 min).





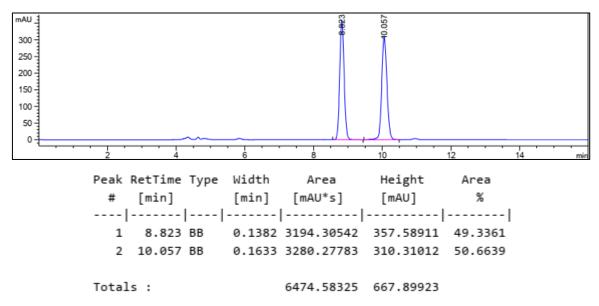
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	8.204	BB	0.1225	3720.83691	469.10587	99.4838
2	9.470	MM	0.1208	19.30764	2.66430	0.5162

Totals :

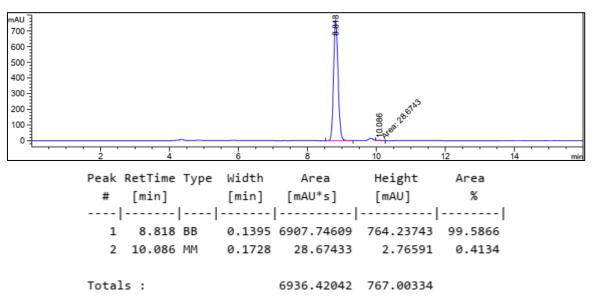
3740.14455 471.77017

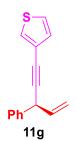
11f

Colorless oil. 61.6 mg, 52% yield. $[\alpha]^{29}$ _D: -38.3 (c = 2.0, CHCl₃).


¹**H NMR** (400 MHz, CDCl₃) δ 7.46 – 7.39 (m, 4H), 7.38 – 7.24 (m, 5H), 5.99 (ddd, *J* = 16.9, 9.8, 6.1 Hz, 1H), 5.43 (dt, *J* = 16.9, 1.4 Hz, 1H), 5.19 (dt, *J* = 9.8, 1.4 Hz, 1H), 4.56 (d, *J* = 6.1 Hz, 1H).

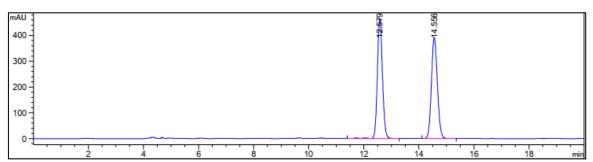
¹³**C NMR** (100 MHz, CDCl₃) δ 139.87, 137.63, 133.15, 131.50, 128.73, 127.67, 127.15, 122.45, 122.16, 115.44, 89.96, 84.26, 41.98.


HRMS (APCI): $[M]^+$ Calcd. for $[C_{17}H_{13}Br]^+$ 296.0196, found 296.0200.


IR (neat): 3063, 3020, 2928, 2203, 1639, 1585, 1485, 1215, 1070, 1011, 926, 825, 748, 698, 667 cm⁻¹.

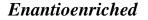
HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 8.82 min, t_R(minor) = 10.09 min).

Enantioenriched

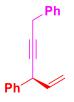


Colorless oil. 62.7 mg, 70% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.47 – 7.38 (m, 3H), 7.39 – 7.30 (m, 2H), 7.29 – 7.21 (m, 2H), 7.12 (dd, J = 5.0, 1.2 Hz, 1H), 5.99 (ddd, J = 16.9, 9.9, 6.1 Hz, 1H), 5.43 (dt, J = 16.9, 1.5 Hz, 1H), 5.18 (dt, J = 9.9, 1.4 Hz, 1H), 4.56 (d, J = 6.1 Hz, 1H).


¹³C NMR (100 MHz, CDCl₃) δ 140.09, 137.86, 130.06, 128.69, 128.26, 127.71, 127.07, 125.14, 122.46, 115.34, 88.21, 80.36, 42.01.

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 97% *ee* (t_R (major) = 12.58 min, t_R(minor) = 14.61 min).

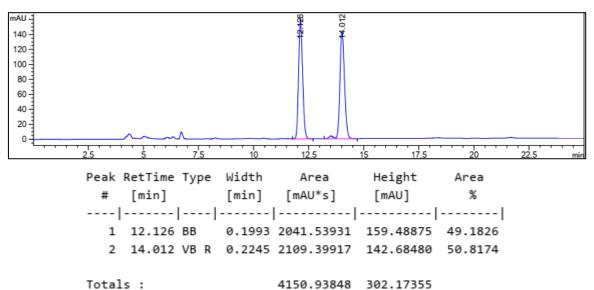


	min]		[min]	Area [mAU*s]	[mAU]	%
1 1	2.579 VB	BR.	0.1962	5956.21240 5862.19141	464.37054	50.3978

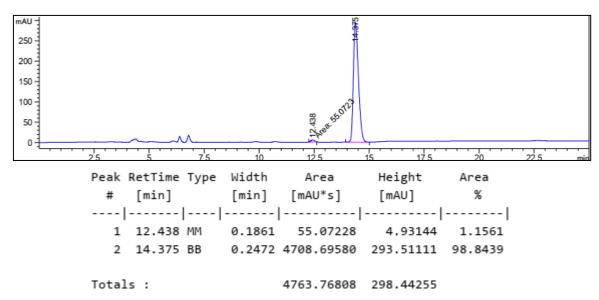
Totals: 1.18184e4 855.96835

11h

Colorless oil. 30.6 mg, 33% yield. $[\alpha]^{29}$ _D: -19.8 (c = 2.0, CHCl₃).


¹**H** NMR (400 MHz, CDCl₃) δ 7.43 – 7.28 (m, 8H), 7.27 – 7.19 (m, 2H), 5.95 (ddd, *J* = 16.6, 9.9, 6.1 Hz, 1H), 5.39 (dt, *J* = 16.8, 1.6 Hz, 1H), 5.13 (dt, *J* = 9.9, 1.5 Hz, 1H), 4.42 (dd, *J* = 4.1, 2.0 Hz, 1H), 3.70 (d, *J* = 2.3 Hz, 2H).

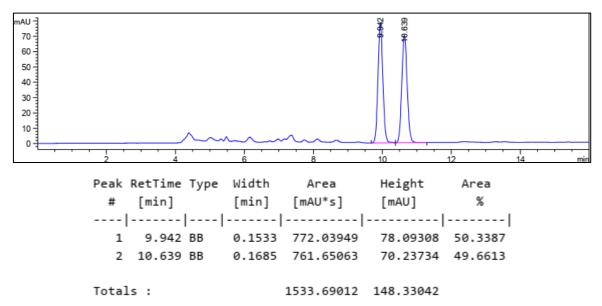
¹³**C NMR** (100 MHz, CDCl₃) δ 140.59, 138.42, 137.19, 128.60, 128.49, 127.90, 127.65, 126.91, 126.51, 114.97, 82.84, 81.43, 41.60, 25.31.

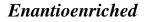

HRMS (APCI): $[M]^+$ Calcd. for $[C_{18}H_{16}]^+$ 232.1247, found 232.1252.

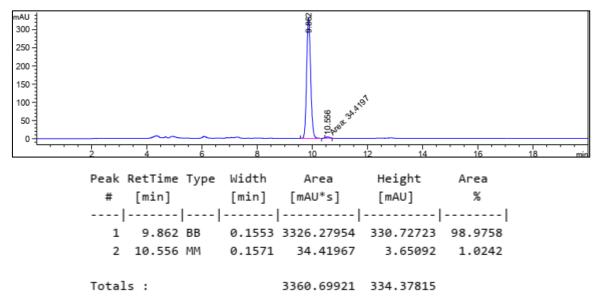
IR (neat): 3063, 3032, 2922, 2237, 1730, 1643, 1599, 1493, 1452, 1269, 1208, 923, 756, 733, 698 cm⁻¹. HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 14.38 min, t_R(minor) = 12.44 min).

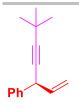
Enantioenriched

Ph


11i

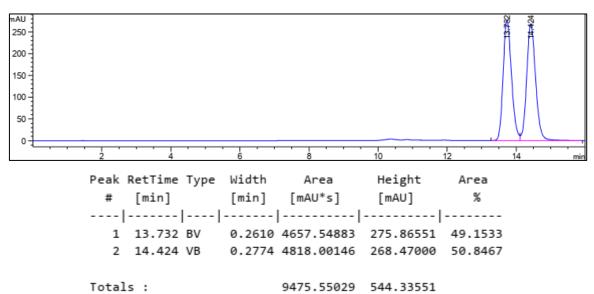

Colorless oil. 50.2 mg, 69% yield.


¹**H NMR** (400 MHz, CDCl₃) δ 7.37 – 7.27 (m, 4H), 7.26 – 7.18 (m, 1H), 5.89 (ddd, *J* = 16.9, 9.9, 6.2 Hz, 1H), 5.32 (dt, *J* = 16.9, 1.5 Hz, 1H), 5.10 (dt, *J* = 9.8, 1.5 Hz, 1H), 4.30 (dd, *J* = 6.1, 1.8 Hz, 1H), 1.35 – 1.25 (m, 1H), 0.80 – 0.71 (m, 2H), 0.73 – 0.65 (m, 2H).

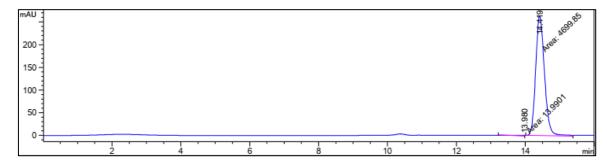

¹³C NMR (100 MHz, CDCl₃) δ 141.01, 138.92, 128.81, 127.86, 127.09, 114.98, 88.83, 74.54, 41.75, 8.54, 8.52.

HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 98% *ee* (t_R (major) = 9.86 min, t_R (minor) = 10.56 min).

11j


Colorless oil. 23.8 mg, 30% yield.

¹**H NMR** (400 MHz, CDCl₃) δ 7.40 – 7.27 (m, 4H), 7.26 – 7.19 (m, 1H), 5.90 (dddd, *J* = 16.9, 9.8, 6.0, 1.2 Hz, 1H), 5.35 (dq, *J* = 16.8, 1.5 Hz, 1H), 5.08 (dq, *J* = 9.8, 1.4 Hz, 1H), 4.32 (dd, *J* = 6.0, 1.5 Hz, 1H), 1.26 (s, 9H).

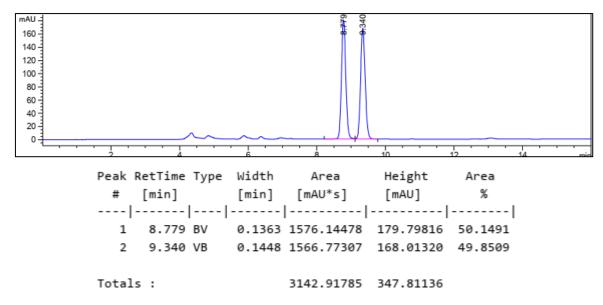

¹³**C NMR** (100 MHz, CDCl₃) δ 140.96, 138.96, 128.45, 127.53, 126.68, 114.29, 94.27, 76.69, 41.31, 31.29, 27.57.

HPLC: Daicel Chiralcel[®] OJ-H, 0.1% ^{*i*}PrOH, 99.9% hexane, 0.3 mL/min, 25 °C, 220 nm; 99% *ee* (t_R (major) = 14.42 min, t_R (minor) = 13.98 min).

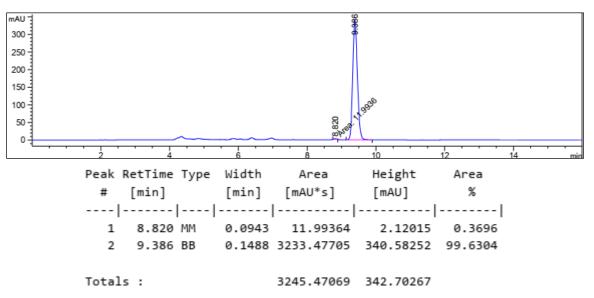
Racemic

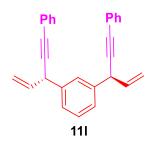
Enantioenriched

Peak RetTime Type	Width	Area	Height	Area
# [min]	[min]	[mAU*s]	[mAU]	%
1 13.980 MM	0.1980	13.99014	1.17753	0.2968
2 14.419 MM	0.2964	4699.84814	264.25183	99.7032
Totals :		4713.83828	265.42937	



Colorless oil. 33.1 mg, 38% yield.

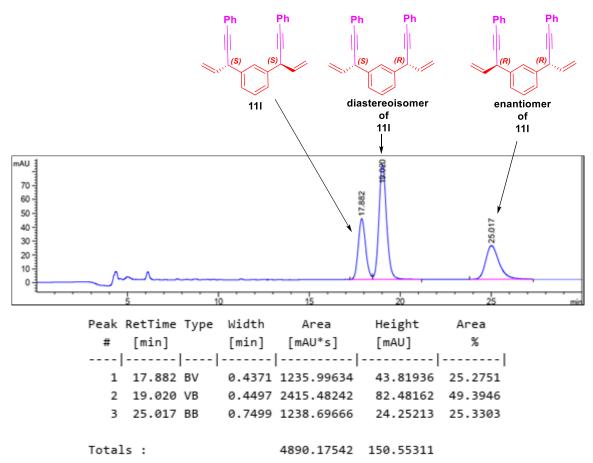

¹**H NMR** (400 MHz, CDCl₃) δ 7.38 – 7.29 (m, 4H), 7.27 – 7.21 (m, 1H), 5.91 (ddd, *J* = 16.9, 9.9, 6.1 Hz, 1H), 5.34 (dt, *J* = 16.8, 1.5 Hz, 1H), 5.12 (dt, *J* = 9.8, 1.4 Hz, 1H), 4.38 – 4.28 (m, 1H), 3.66 (t, *J* = 6.4 Hz, 2H), 2.47 (td, *J* = 6.8, 2.3 Hz, 2H), 1.99 (p, *J* = 6.6 Hz, 2H).


¹³C NMR (100 MHz, CDCl₃) δ 140.55, 138.42, 128.60, 127.54, 126.92, 114.84, 83.37, 80.24, 43.79, 41.46, 31.65, 16.39.

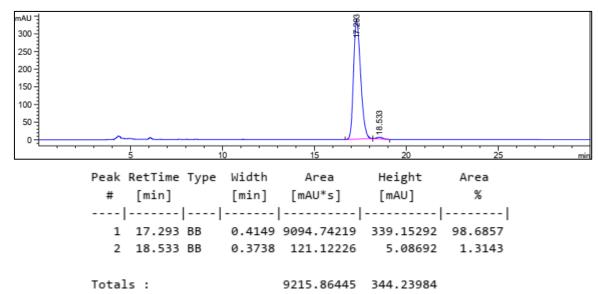
HPLC: Daicel Chiralcel[®] OJ-H, 5% ^{*i*}PrOH, 95% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee* (t_R (major) = 9.39 min, t_R(minor) = 8.82 min).

Enantioenriched

Colorless oil. 81.7 mg, 57% yield. $[\alpha]^{29}$ _D: -88.4 (*c* = 2.0, CHCl₃).


¹**H** NMR (400 MHz, CDCl₃) δ 7.53 (s, 1H), 7.49 – 7.40 (m, 4H), 7.35 (d, *J* = 1.5 Hz, 3H), 7.31 – 7.27 (m, 4H), 7.26 (d, *J* = 4.4 Hz, 2H), 6.01 (ddd, *J* = 16.9, 9.9, 6.1 Hz, 2H), 5.46 (dt, *J* = 16.9, 1.5 Hz, 2H), 5.20 (dt, *J* = 9.9, 1.4 Hz, 2H), 4.60 (dd, *J* = 6.2, 1.6 Hz, 2H).

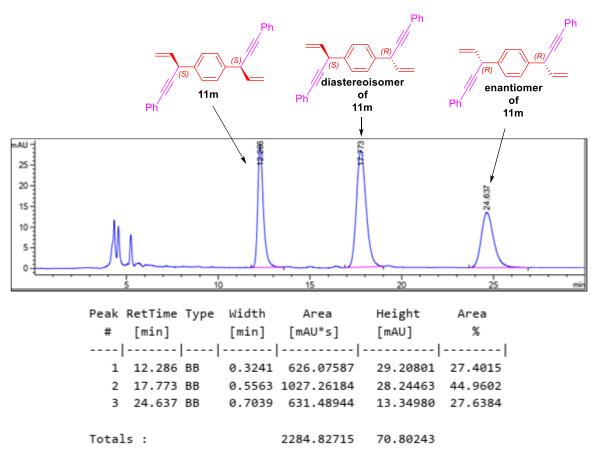
¹³C NMR (100 MHz, CDCl₃) δ 140.53, 137.82, 131.69, 128.94, 128.22, 127.96, 127.04, 126.41, 123.46, 115.41, 88.57, 85.42, 41.94.


HRMS (APCI): $[M]^+$ Calcd. for $[C_{28}H_{22}]^+$ 358.1717, found 358.1718.

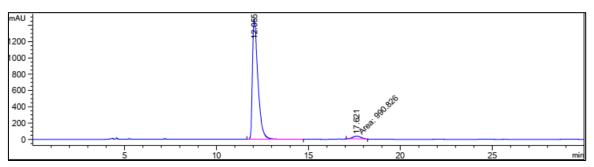
IR (neat): 3082, 3059, 3018, 2928, 2856, 2210, 1639, 1599, 1489, 1441, 1217, 988, 916, 752, 690 cm⁻¹. HPLC: Daicel Chiralcel[®] OJ-H, 10% ^{*i*}PrOH, 90% hexane, 0.7 mL/min, 40 °C, 220 nm; >99% *ee*, 75:1 dr (t_R (major) = 17.29 min, t_R(minor) = 18.53 min [peak of diastereoisomer]).

Racemic

Colorless oil. 80.0 mg, 56% yield. $[\alpha]^{29}_{D}: -116.5$ (c = 2.0, CHCl₃).

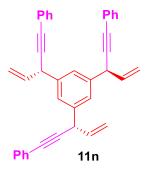

¹H NMR (400 MHz, Chloroform-*d*) δ 7.54 – 7.47 (m, 2H), 7.45 (s, 2H), 7.38 – 7.30 (m, 3H), 6.03 (ddd, J = 16.7, 9.9, 6.1 Hz, 1H), 5.49 (d, J = 16.9 Hz, 1H), 5.22 (d, J = 9.9 Hz, 1H), 4.61 (d, J = 6.1 Hz, 1H).
¹³C NMR (100 MHz, CDCl₃) δ 138.97, 137.83, 131.68, 128.23, 127.99, 127.98, 123.47, 115.31, 88.62, 85.33, 41.63.

HRMS (APCI): [M]⁺ Calcd. for [C₂₈H₂₂]⁺ 358.1717, found 358.1722.


IR (neat): 3080, 3055, 3018, 2928, 2856, 2199, 1636, 1599, 1508, 1491,1443, 1215, 988, 916, 752, 690 cm⁻¹.

HPLC: Daicel Chiralcel[®] OJ-H, 10% ^{*i*}PrOH, 90% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee*, 31:1 *dr* (t_R (major) = 12.06 min, t_R (minor) = 17.62 min [peak of diastereoisomer]).

Racemic

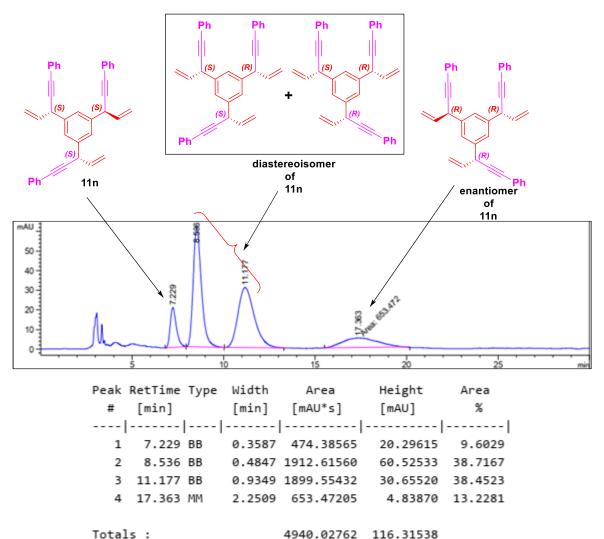

(S,S)- Enantioenriched

Peak Table

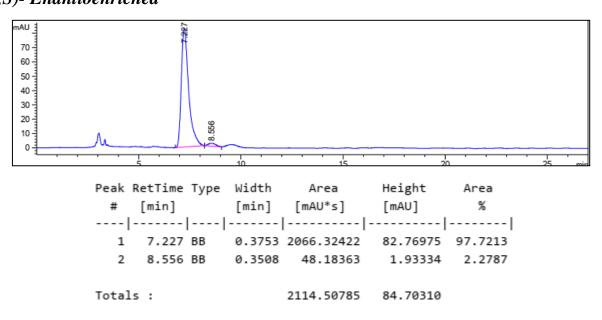
Peak	RetTime	Туре	Width	Area	Height	Area
#	[min]		[min]	[mAU*s]	[mAU]	%
1	12.055	BB	0.3108	3.05596e4	1468.50818	96.8595
2	17.621	MM	0.5101	990.82617	32.37307	3.1405

Totals : 3.15504e4 1500.88125

Colorless oil. 109.6 mg, 55% yield. $[\alpha]^{29}$ _D: -82.40 (c = 2.0, CHCl₃).

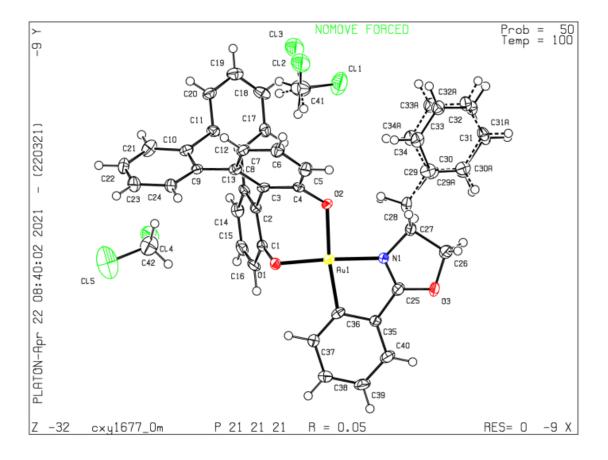

¹**H** NMR (400 MHz, CDCl₃) δ 7.52 – 7.37 (m, 3H), 7.32 – 7.19 (m, 3H), 6.02 (ddd, *J* = 16.3, 9.8, 6.3 Hz, 1H), 5.47 (dt, *J* = 16.9, 1.5 Hz, 1H), 5.21 (dt, *J* = 9.8, 1.5 Hz, 1H), 4.61 (d, *J* = 6.3 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃) δ 140.88, 137.73, 131.70, 128.22, 127.95, 125.83, 123.45, 115.57, 88.54, 85.52, 41.93.


HRMS (APCI): $[M+H]^+$ Calcd. for $[C_{39}H_{31}]^+$ 499.2421, found 499.2424.

IR (neat): 3082, 3057, 3018, 2926, 2201, 1639, 1599, 1491, 1445, 1215, 1070, 989, 926, 750, 690 cm⁻¹. HPLC: Daicel Chiralcel[®] OJ-H, 20% ^{*i*}PrOH, 80% hexane, 0.7 mL/min, 40 °C, 220 nm; 99% *ee*, 43:1 *dr* (t_R (major) = 7.23 min, t_R (minor) = 8.56 min [peak of diastereoisomer]).

Racemic



Crystallographic Data

1) X-ray diffraction of (*S*,*R*)-4 (CCDC 2126362)

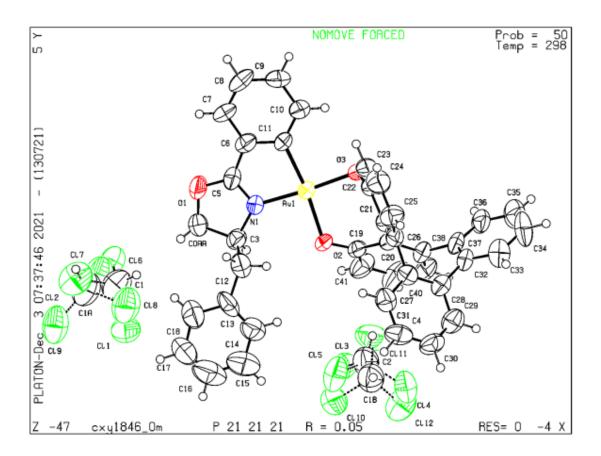


Table S2 Crystal data and structure refinement for (S,R)-4.

Identification code	cxy1677_0m
Empirical formula	C42H32AuCl4NO3
Formula weight	937.45
Temperature/K	100
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	12.5780(10)
b/Å	13.7123(11)
c/Å	21.0398(15)
α/\circ	90
β/°	90
$\gamma^{/\circ}$	90
Volume/Å ³	3628.8(5)
Z	4
$\rho_{calc}g/cm^3$	1.716
μ/mm^{-1}	4.391
F(000)	1848.0
Crystal size/mm ³	$0.35 \times 0.32 \times 0.28$

Radiation	MoKa ($\lambda = 0.71073$)
2Θ range for data collection/	°4.394 to 56.886
Index ranges	$-16 \le h \le 16, -18 \le k \le 18, -28 \le l \le 25$
Reflections collected	70184
Independent reflections	9114 [$R_{int} = 0.0524$, $R_{sigma} = 0.0284$]
Data/restraints/parameters	9114/243/482
Goodness-of-fit on F ²	1.144
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0493, wR_2 = 0.1205$
Final R indexes [all data]	$R_1 = 0.0506, wR_2 = 0.1212$
Largest diff. peak/hole / e Å-	3 5.10/-4.56
Flack parameter	0.024(3)

2) X-ray diffraction of (*R*,*S*)-4 (CCDC 2126367)

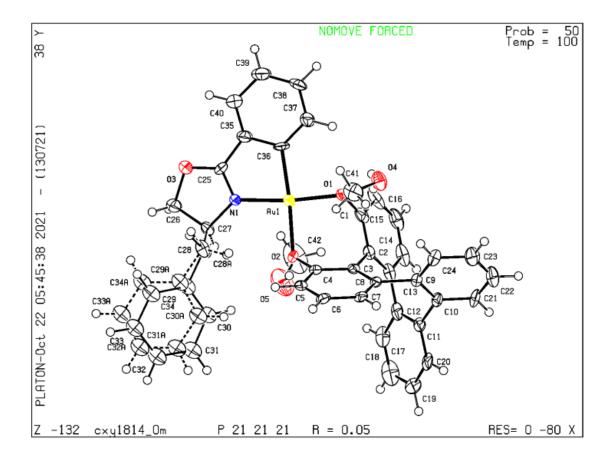


Table S3 Crystal data and structure refinement for (*R*,*S*)-4.

Identification code	cxy1846_0m
Empirical formula	C41.17H29.17AuCl3.5NO3
Formula weight	906.87
Temperature/K	298
Crystal system	orthorhombic
Space group	$P2_12_12_1$

a/Å	12.999(5)
b/Å	13.954(4)
c/Å	22.150(8)
$\alpha/^{\circ}$	90
β/°	90
γ/°	90
Volume/Å ³	4018(2)
Z	4
$\rho_{calc}g/cm^3$	1.499
μ/mm^{-1}	3.931
F(000)	1783.0
Crystal size/mm ³	$0.31 \times 0.24 \times 0.22$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/	°4.66 to 54.672
Index ranges	$-16 \le h \le 16, -18 \le k \le 15, -25 \le l \le 28$
Reflections collected	37984
Independent reflections	9044 [$R_{int} = 0.0454$, $R_{sigma} = 0.0479$]
Data/restraints/parameters	9044/270/550
Goodness-of-fit on F ²	1.071
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0476, wR_2 = 0.1201$
Final R indexes [all data]	$R_1 = 0.0723, wR_2 = 0.1338$
Largest diff. peak/hole / e Å-	³ 1.20/-0.98
Flack parameter	-0.013(4)

3) X-ray diffraction of (*S*,*S*)-4 (CCDC 2126368)

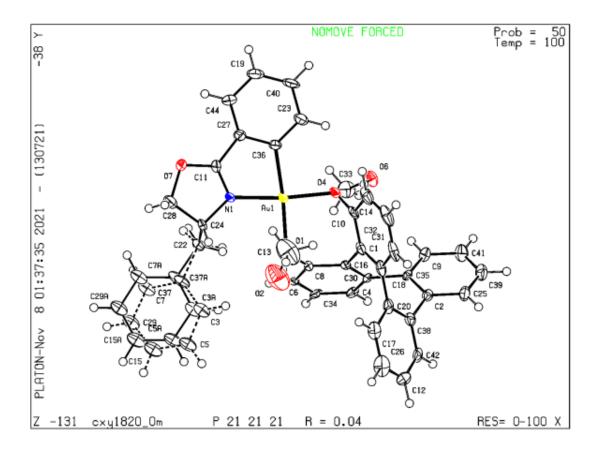


Table S4 Crystal data and structure refinement for (*S*,*S*)-4.

e e e e e e e e e e e e e e e e e e e	
Identification code	cxy1814_0m
Empirical formula	C42H36AuNO5
Formula weight	831.68
Temperature/K	100
Crystal system	orthorhombic
Space group	P212121
a/Å	9.9266(7)
b/Å	13.1669(9)
c/Å	27.3976(19)
α/\circ	90
β/°	90
γ/°	90
Volume/Å ³	3580.9(4)
Z	4
$\rho_{calc}g/cm^3$	1.543
μ/mm^{-1}	4.154
F(000)	1656.0
Crystal size/mm ³	$0.32 \times 0.31 \times 0.25$
Radiation	MoK α ($\lambda = 0.71073$)
2Θ range for data collection/	° 5.068 to 55.106
Index ranges	$-12 \le h \le 12, -17 \le k \le 17, -35 \le l \le 35$

Reflections collected	84689
Independent reflections	8230 [$R_{int} = 0.0994$, $R_{sigma} = 0.0491$]
Data/restraints/parameters	8230/221/469
Goodness-of-fit on F ²	1.260
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0512, wR_2 = 0.1213$
Final R indexes [all data]	$R_1 = 0.0595, wR_2 = 0.1231$
Largest diff. peak/hole / e Å ⁻	³ 2.53/-3.12
Flack parameter	0.007(4)

4) X-ray diffraction of (*R*,*R*)-4 (CCDC 2126366)

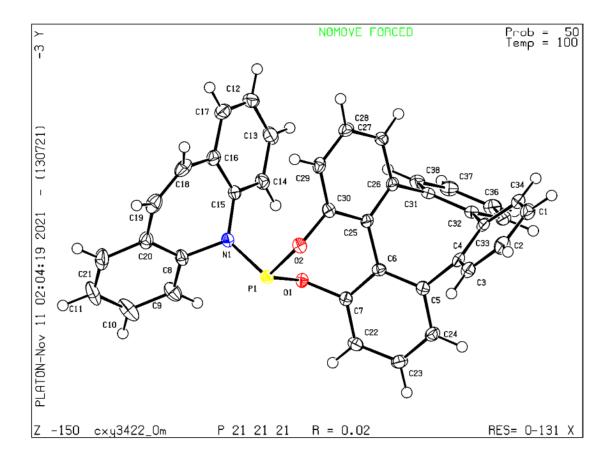


Table S5 Crystal data and structure refinement for (R,R)-4.

Identification code	cxy1820_0m
Empirical formula	$AuC_{43}H_{40}NO_6$
Formula weight	863.72
Temperature/K	100
Crystal system	orthorhombic
Space group	$P2_12_12_1$
a/Å	9.9306(6)
b/Å	13.2468(9)
c/Å	27.4297(18)

α/°	90
β/°	90
γ/°	90
Volume/Å ³	3608.3(4)
Z	4
$\rho_{calc}g/cm^3$	1.590
μ/mm^{-1}	4.128
F(000)	1728.0
Crystal size/mm ³	$0.31 \times 0.24 \times 0.19$
Radiation	MoKα ($\lambda = 0.71073$)
2Θ range for data collection/	°4.274 to 56.712
Index ranges	$-13 \le h \le 13, -17 \le k \le 17, -36 \le l \le 36$
Reflections collected	53502
Independent reflections	8989 [$R_{int} = 0.0615$, $R_{sigma} = 0.0427$]
Data/restraints/parameters	8989/192/465
Goodness-of-fit on F ²	1.164
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0409, wR_2 = 0.0792$
Final R indexes [all data]	$R_1 = 0.0455, wR_2 = 0.0804$
Largest diff. peak/hole / e Å ⁻	³ 1.62/-3.40
Flack parameter	0.027(11)

5) X-ray diffraction of (S)-L1 (CCDC 2124171)

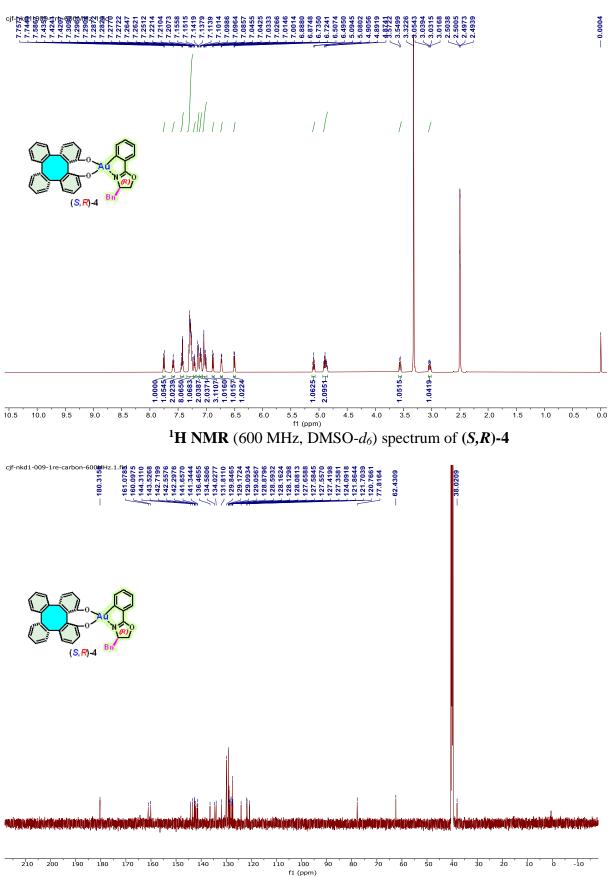
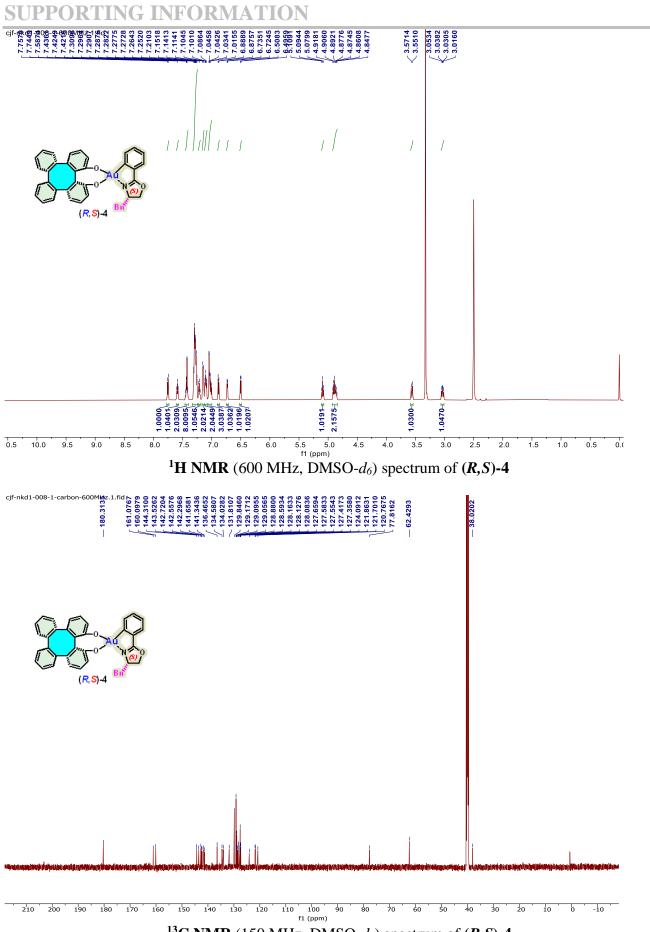
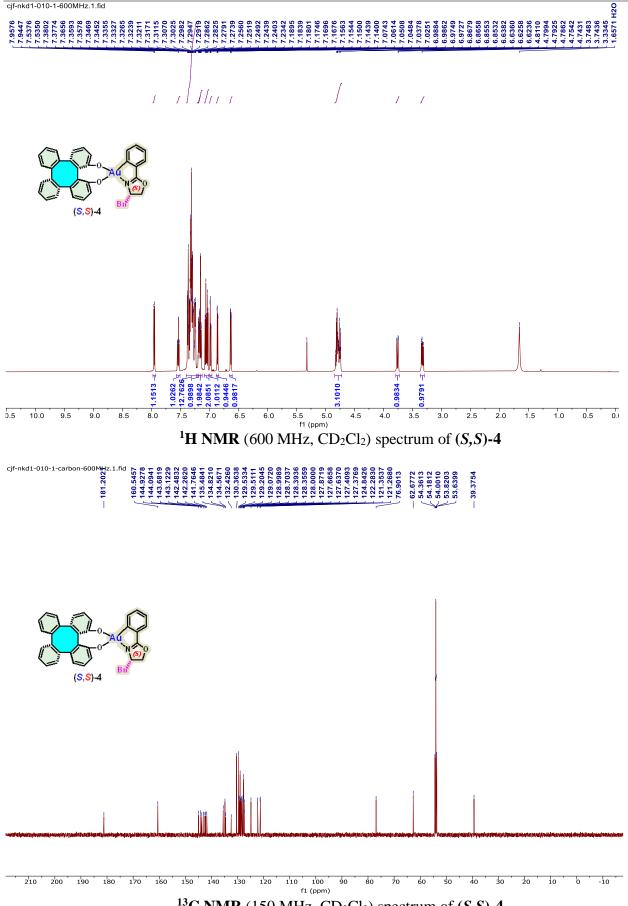


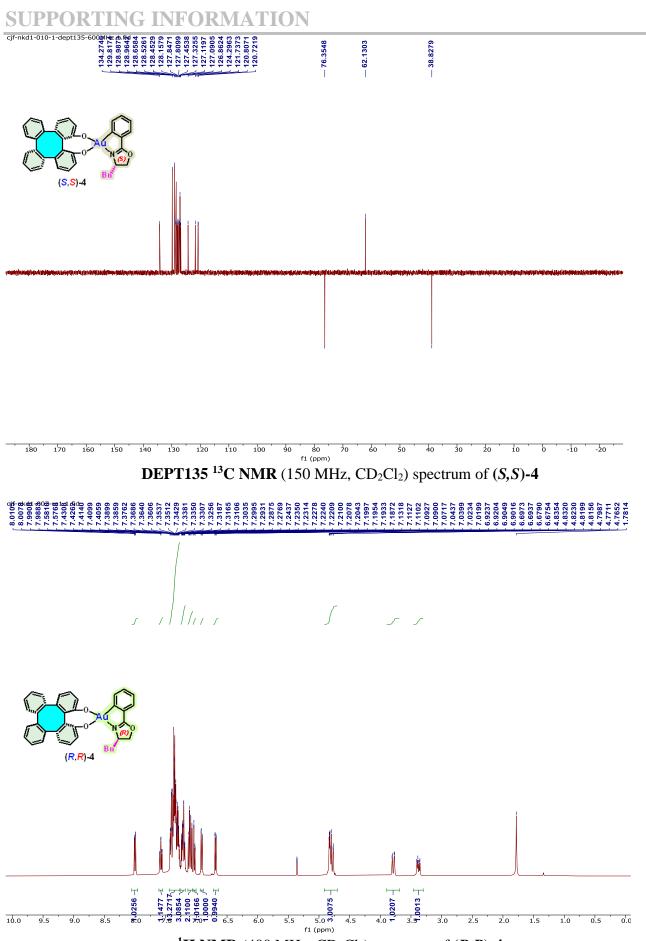
Table S6 Crystal data and structure refinement for (S)-L1.

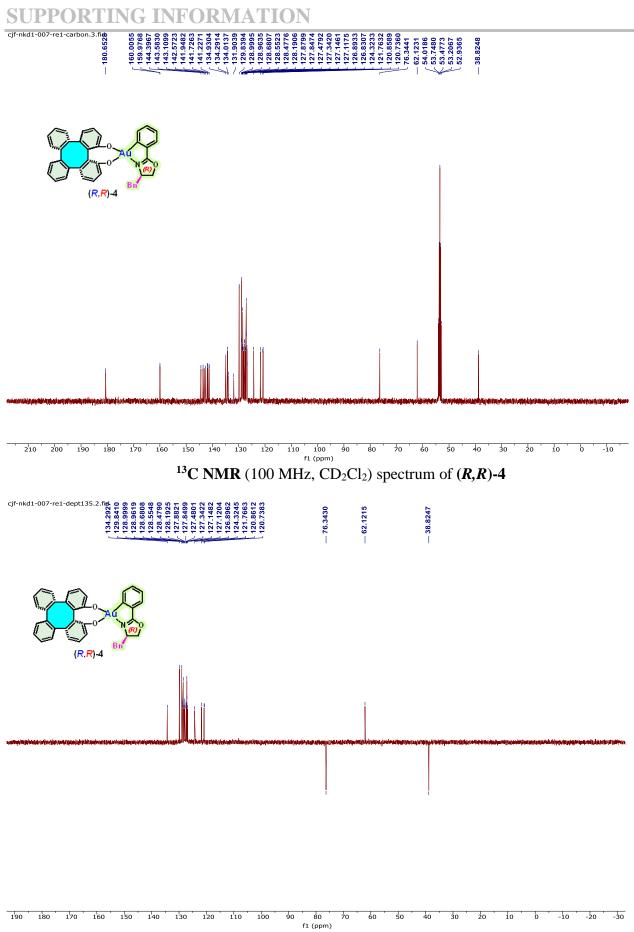

Tuble by Oryblan data and	
Identification code	cxy3422_0m
Empirical formula	$C_{38}H_{24}NO_2P$
Formula weight	557.55
Temperature/K	100
Crystal system	orthorhombic
Space group	P212121
a/Å	11.8935(6)
b/Å	12.6595(6)
c/Å	18.8734(10)
α/\circ	90
β/°	90
γ/°	90
Volume/Å ³	2841.7(2)
Z	4
$\rho_{calc}g/cm^3$	1.303
μ/mm^{-1}	1.139
F(000)	1160.0
Crystal size/mm ³	$0.35 \times 0.31 \times 0.26$
Radiation	$CuK\alpha (\lambda = 1.54178)$
2Θ range for data collection/	° 8.41 to 144.7
Index ranges	$-13 \le h \le 14, -15 \le k \le 15, -20 \le l \le 23$

Reflections collected	34083
Independent reflections	5619 [$R_{int} = 0.0397$, $R_{sigma} = 0.0219$]
Data/restraints/parameters	5619/0/380
Goodness-of-fit on F ²	1.047
Final R indexes $[I \ge 2\sigma(I)]$	$R_1 = 0.0242, wR_2 = 0.0607$
Final R indexes [all data]	$R_1 = 0.0250, wR_2 = 0.0610$
Largest diff. peak/hole / e Å-	³ 0.18/-0.21
Flack parameter	-0.002(4)

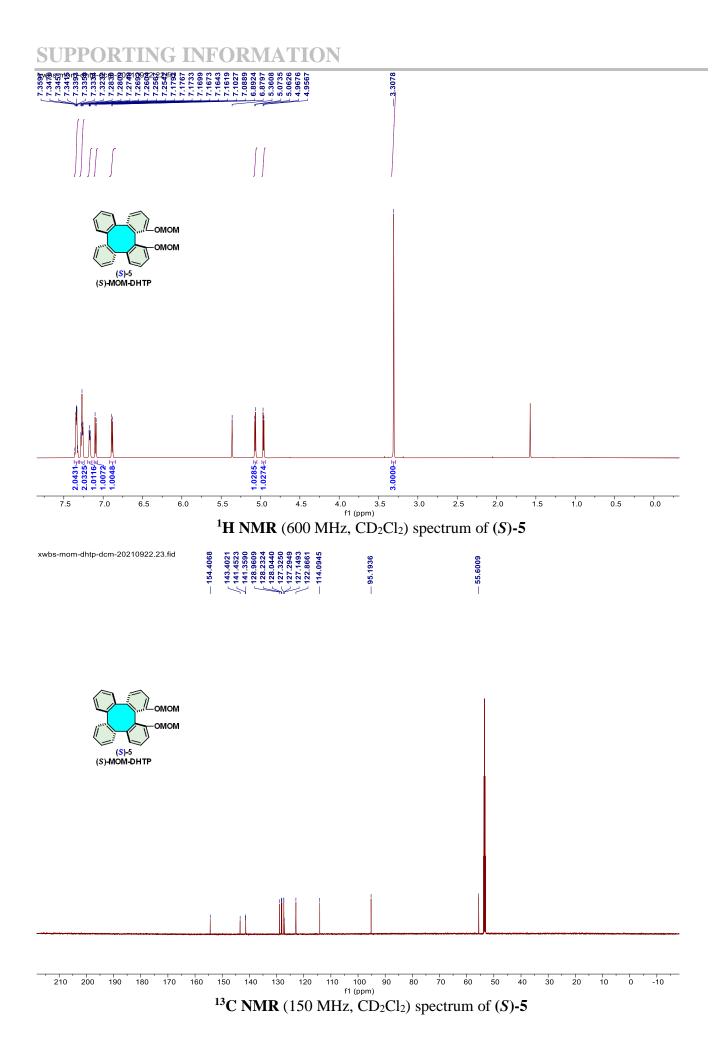
NMR spectra

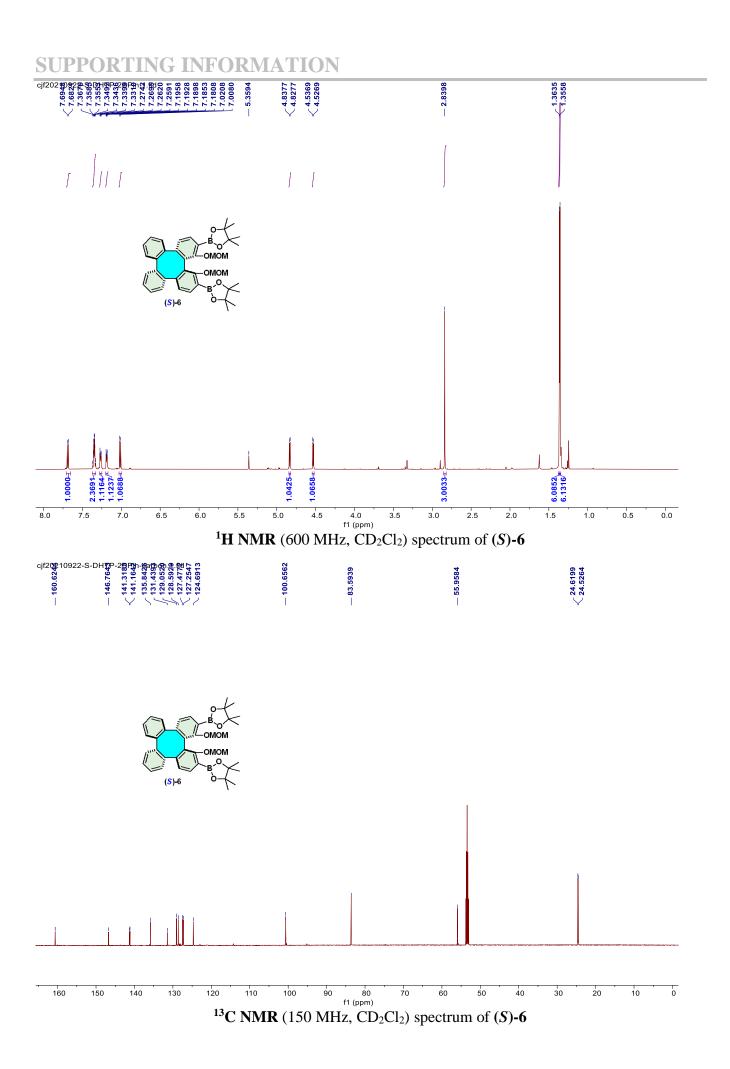


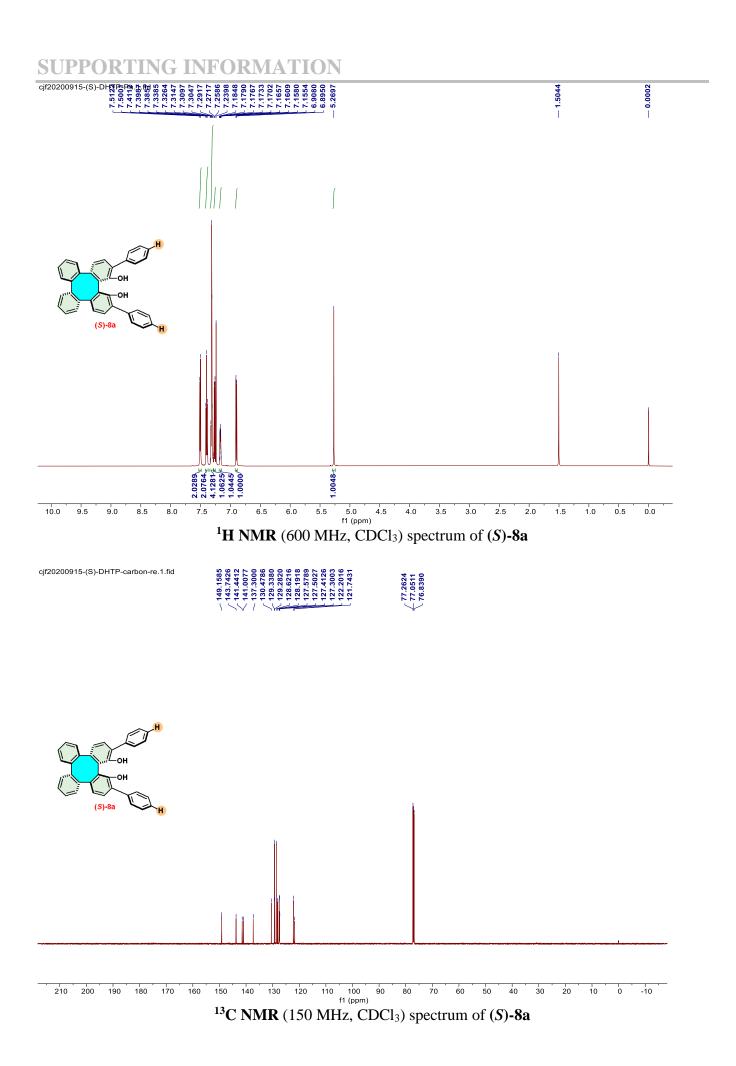

¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of (*S*,*R*)-4

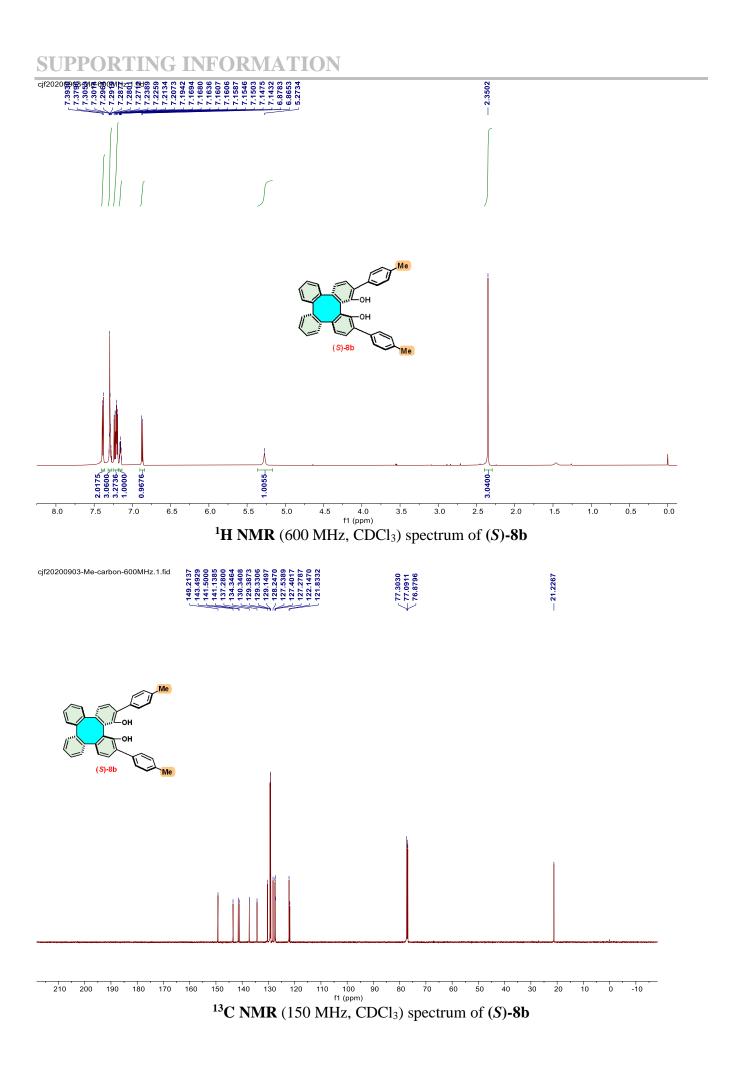

¹³C NMR (150 MHz, DMSO-*d*₆) spectrum of (*R*,*S*)-4

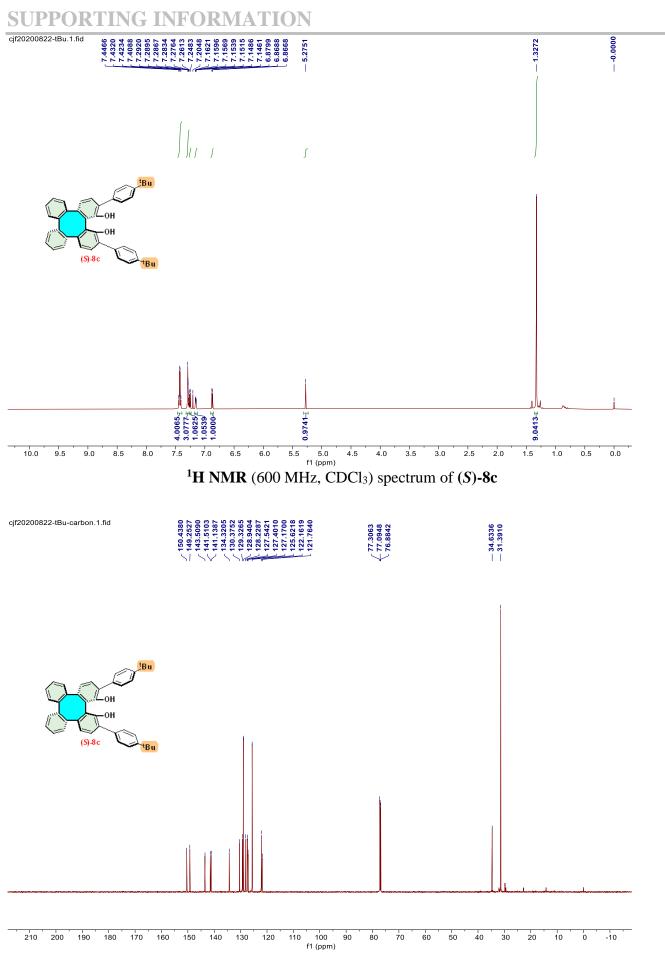
cjf-nkd1-010-1-600MHz.1.fid

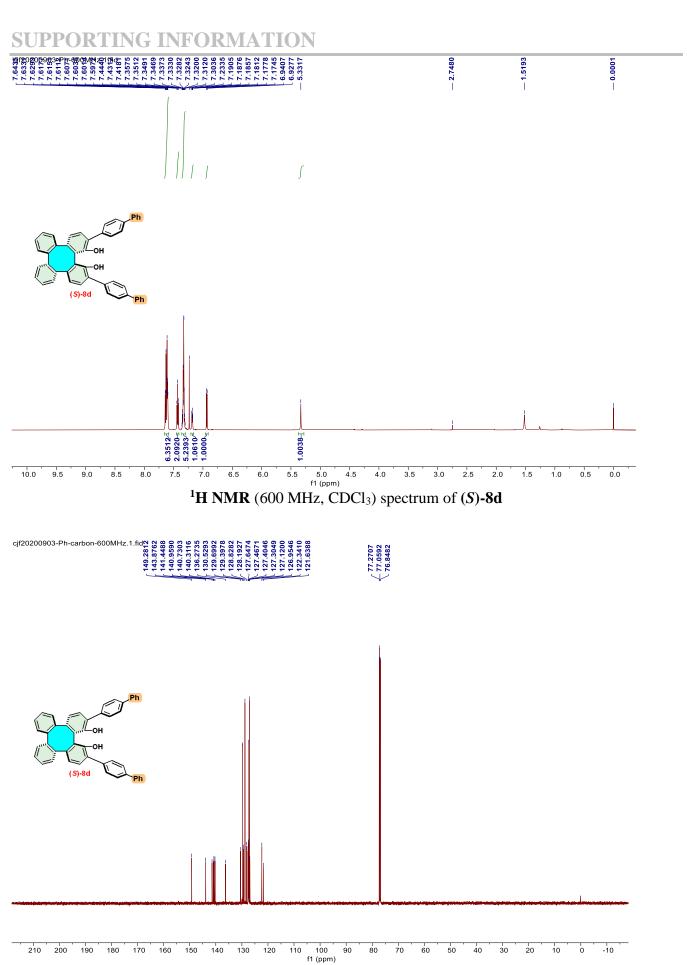


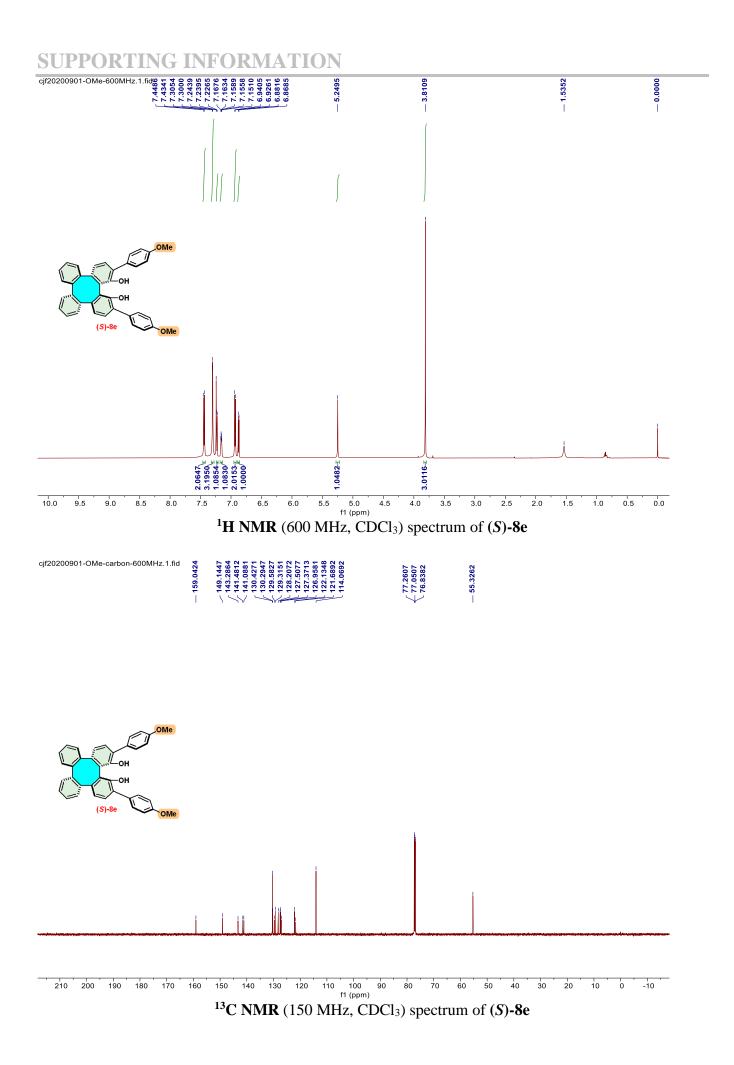


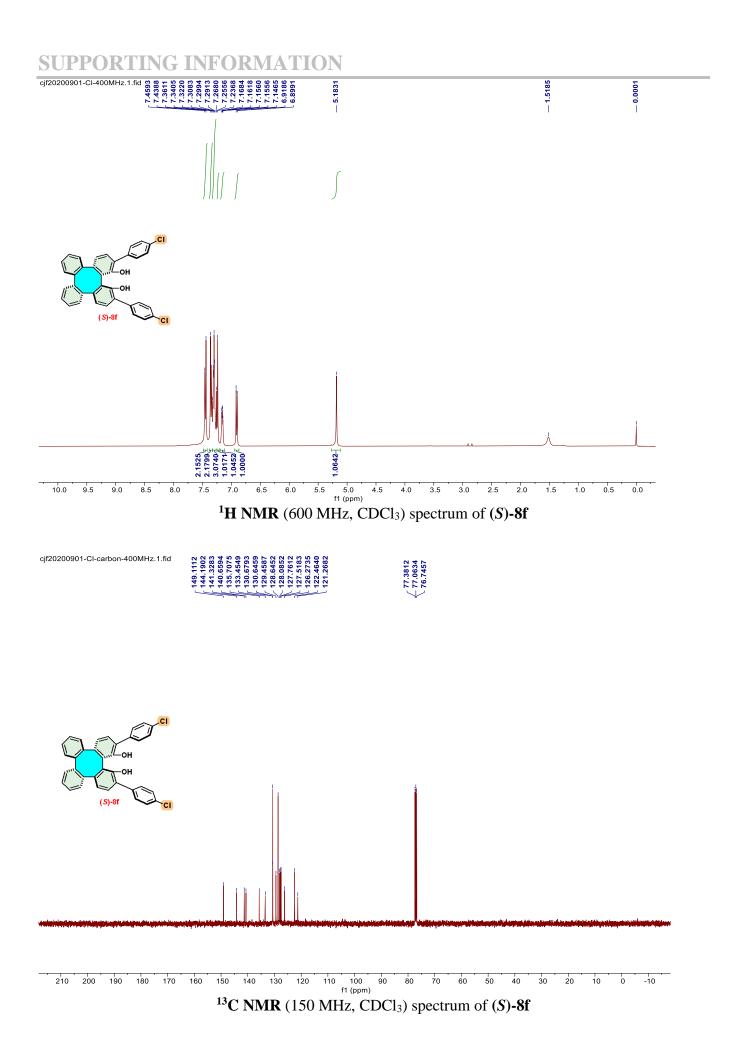



DEPT135 ¹³C NMR (100 MHz, CD₂Cl₂) spectrum of (*R*,*R*)-4

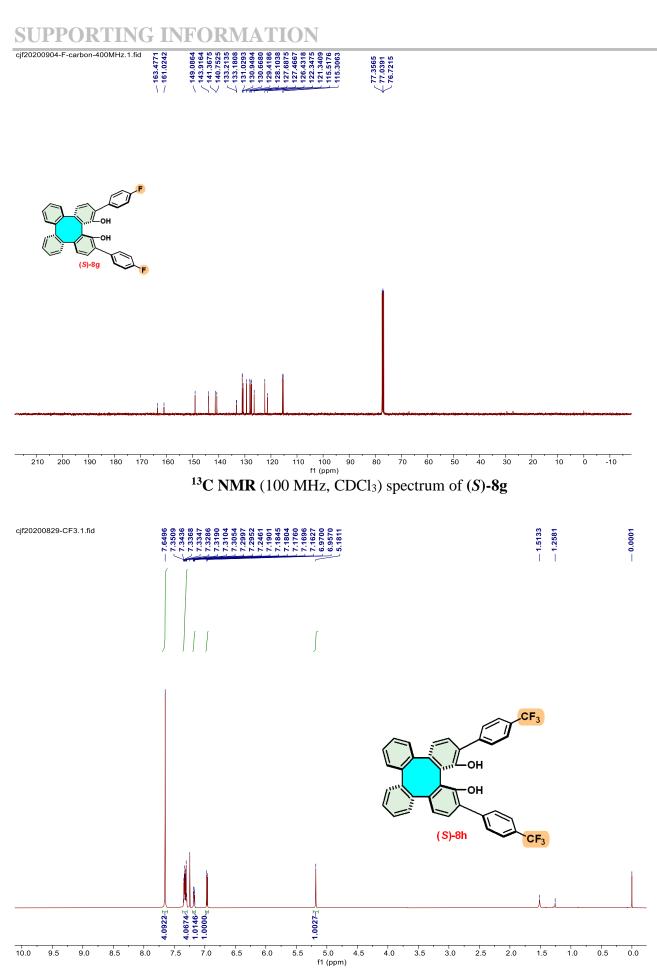


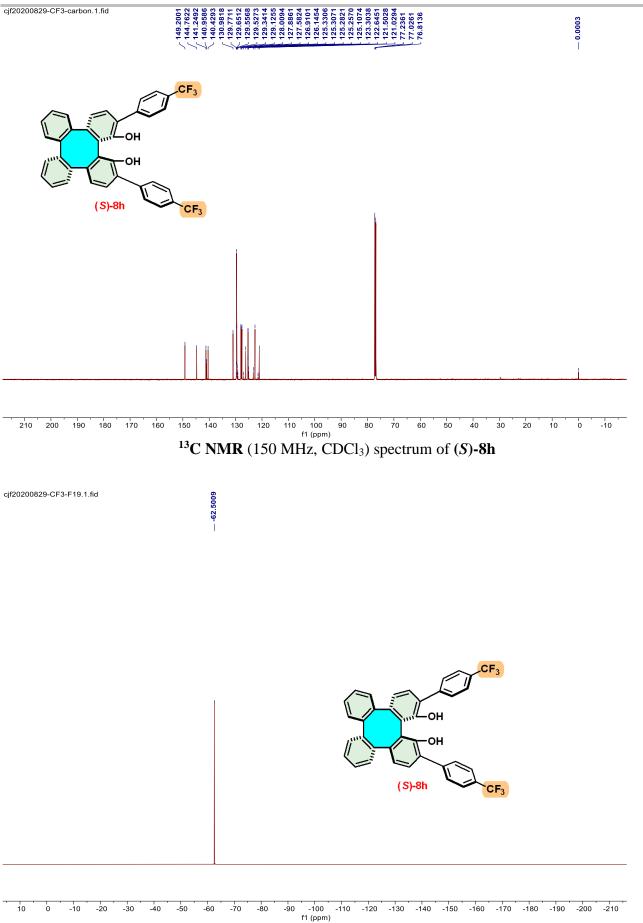


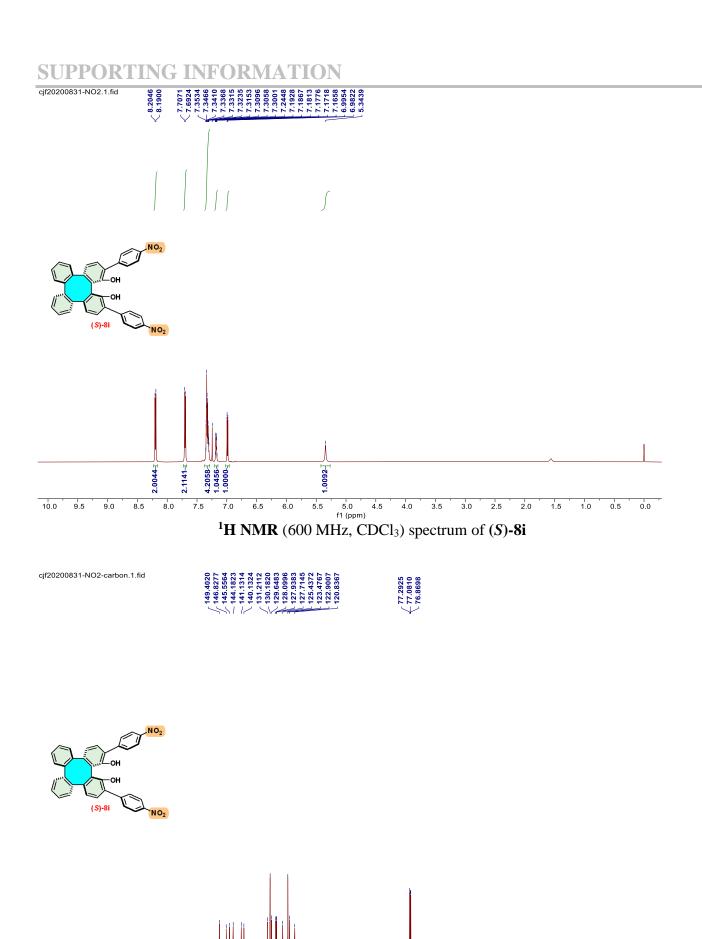


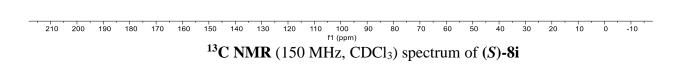


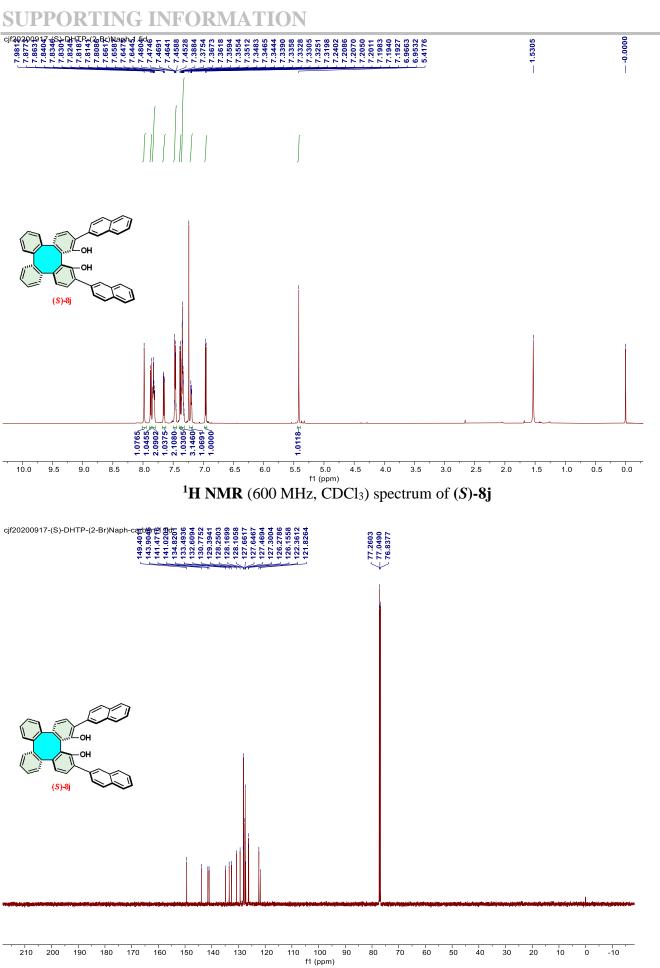

¹³C NMR (150 MHz, CDCl₃) spectrum of (*S*)-8c

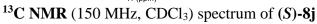

¹³C NMR (150 MHz, CDCl₃) spectrum of (*S*)-8d

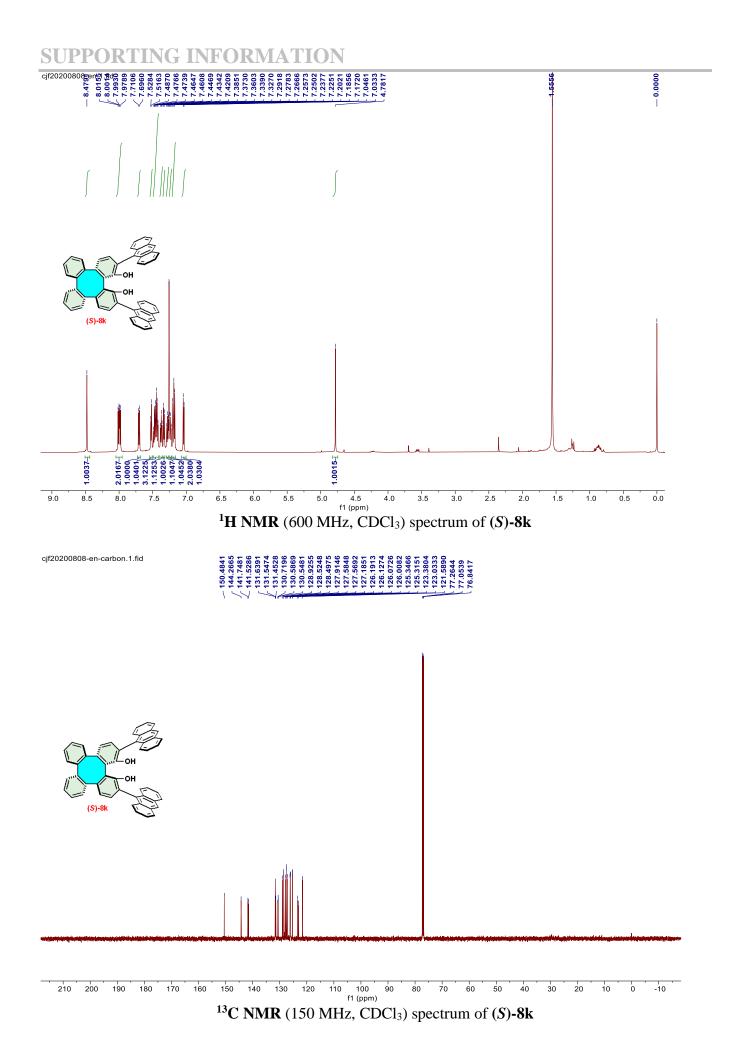


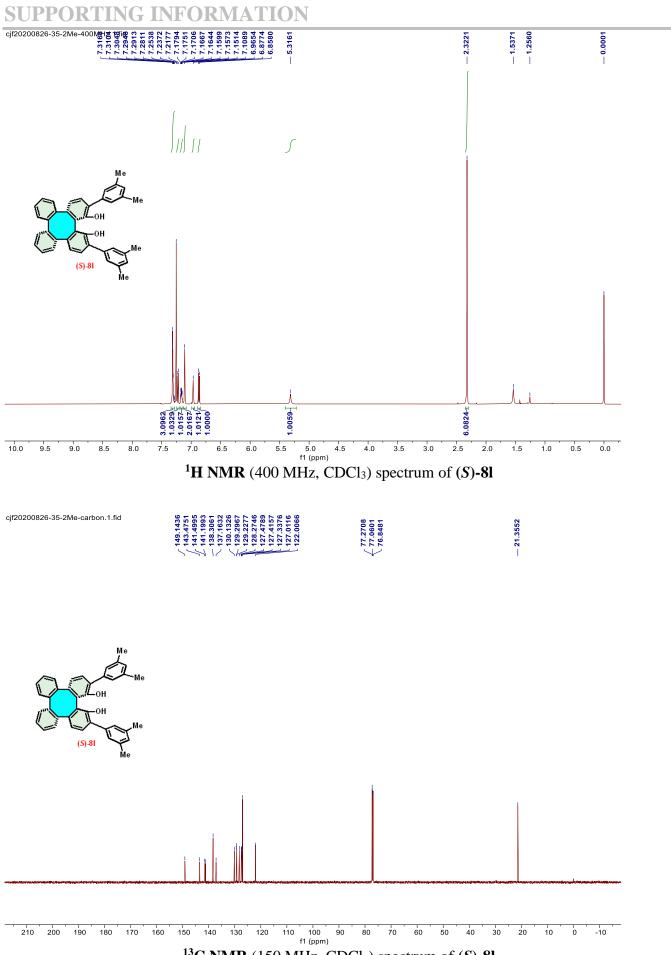


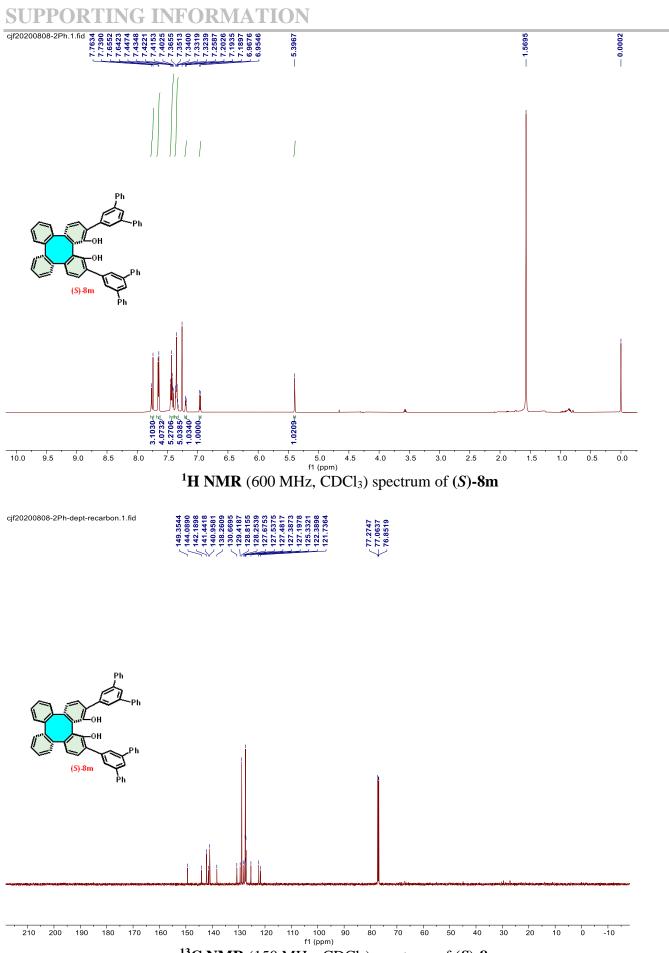


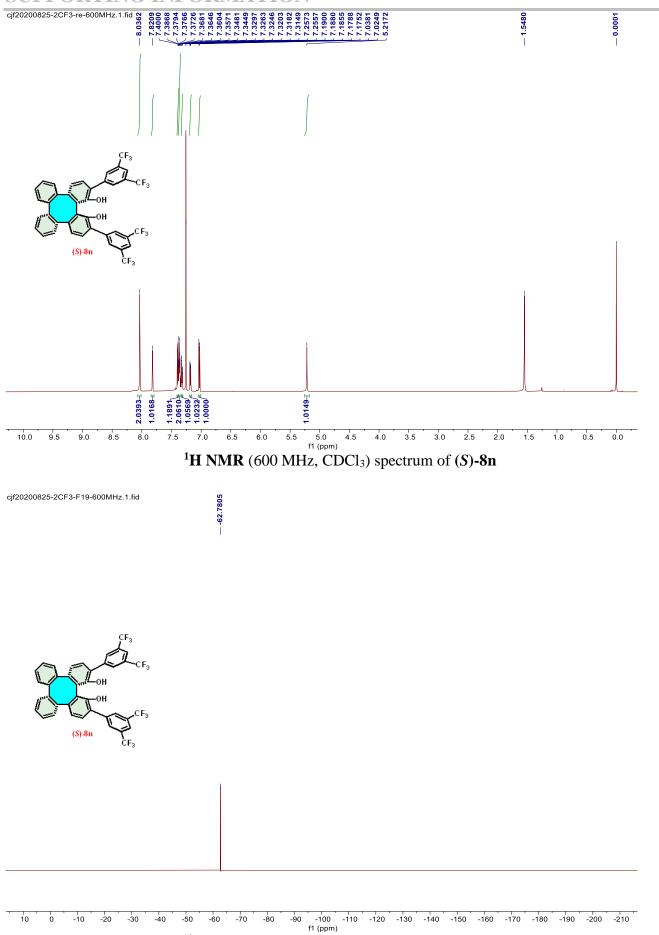

¹H NMR (600 MHz, CDCl₃) spectrum of (*S*)-8h



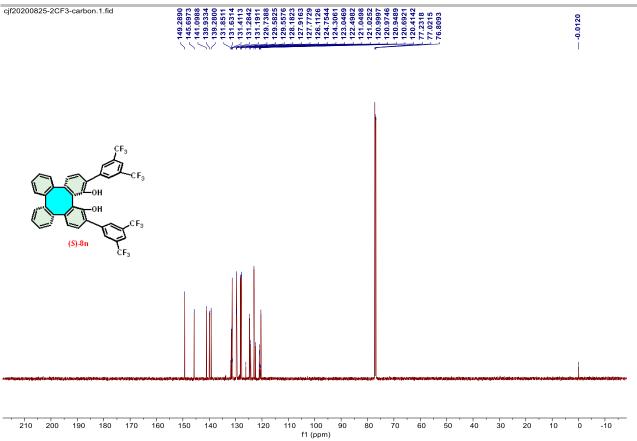

¹⁹**F NMR** (565 MHz, CDCl₃) spectrum of (*S*)-8h



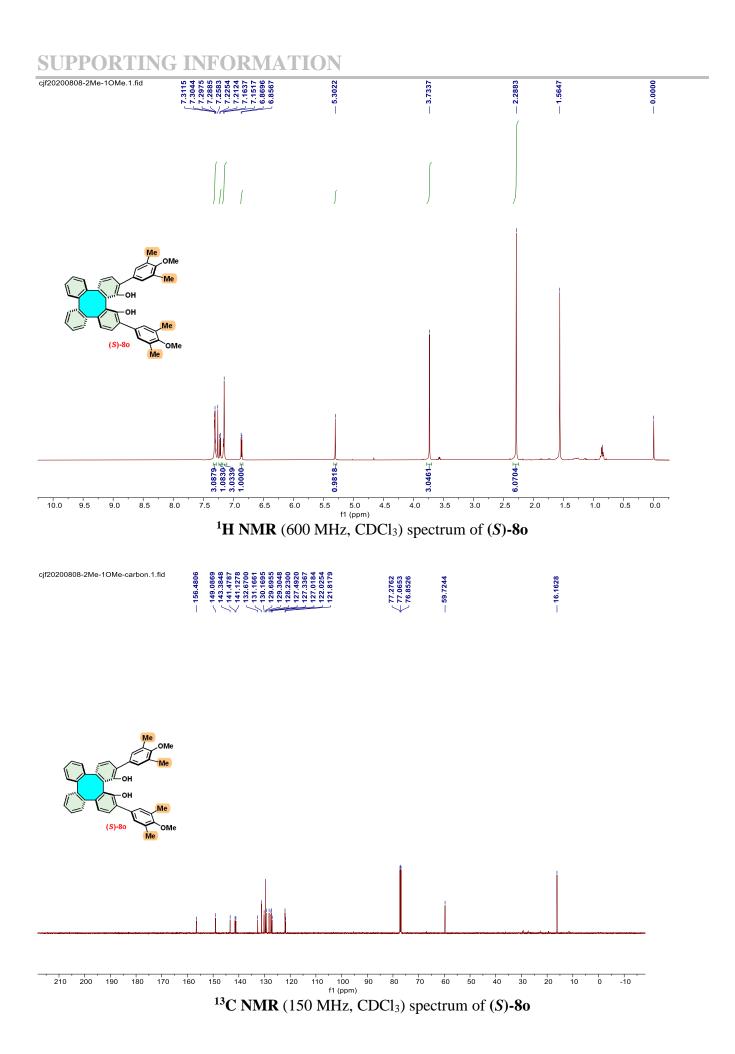


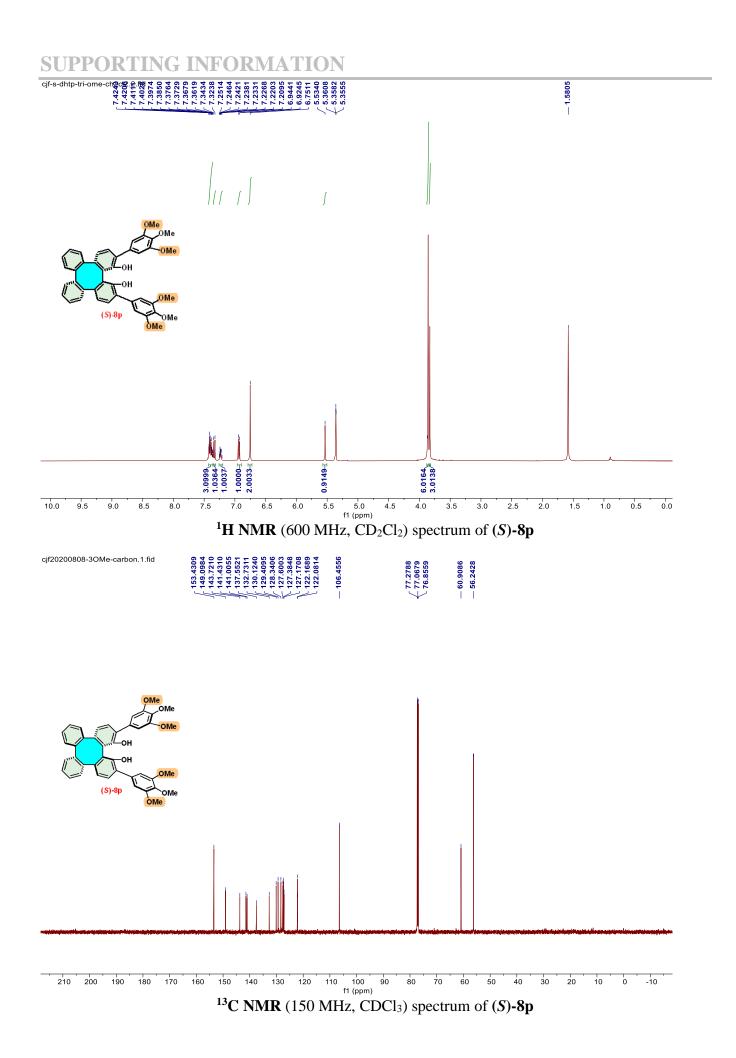


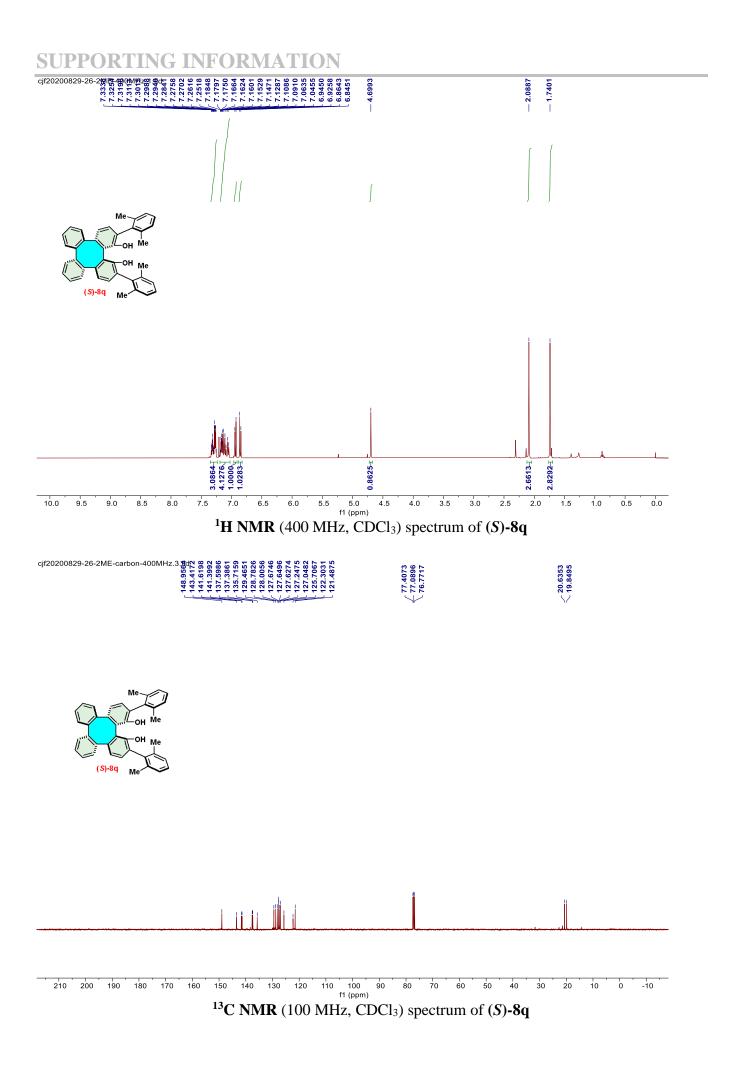
¹³C NMR (150 MHz, CDCl₃) spectrum of (S)-8l

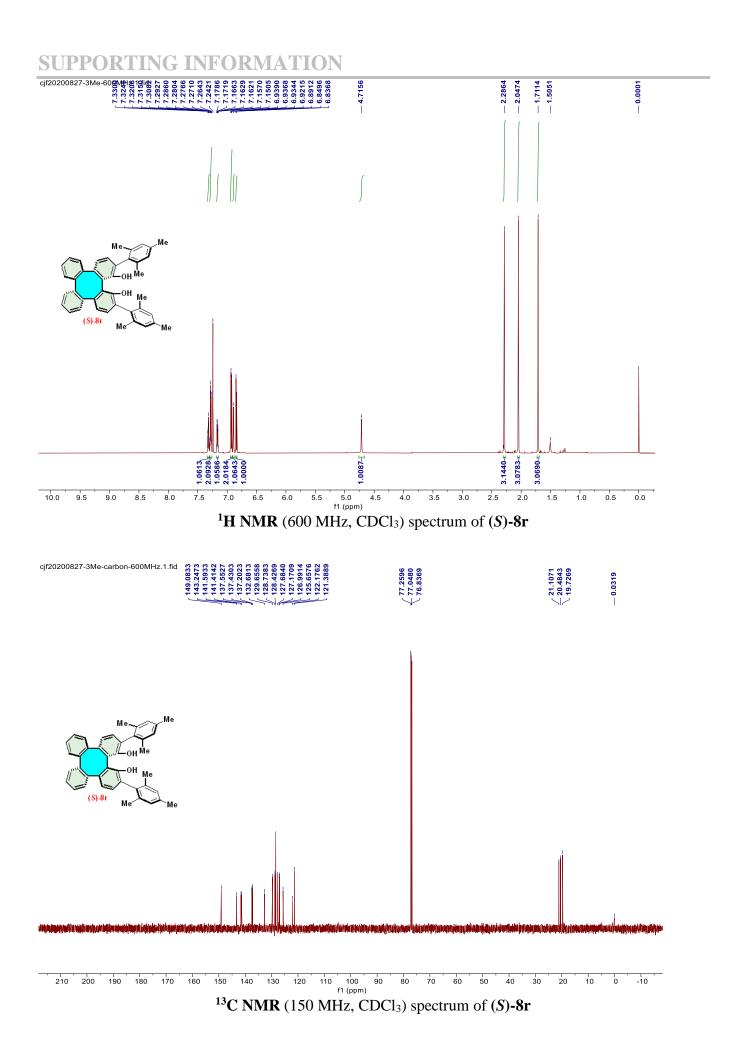


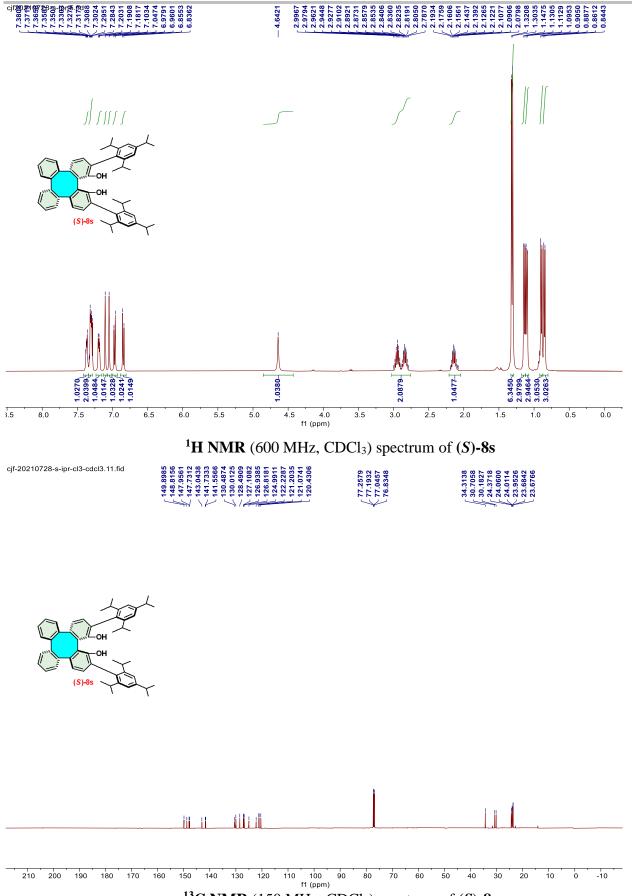
¹³C NMR (150 MHz, CDCl₃) spectrum of (*S*)-8m

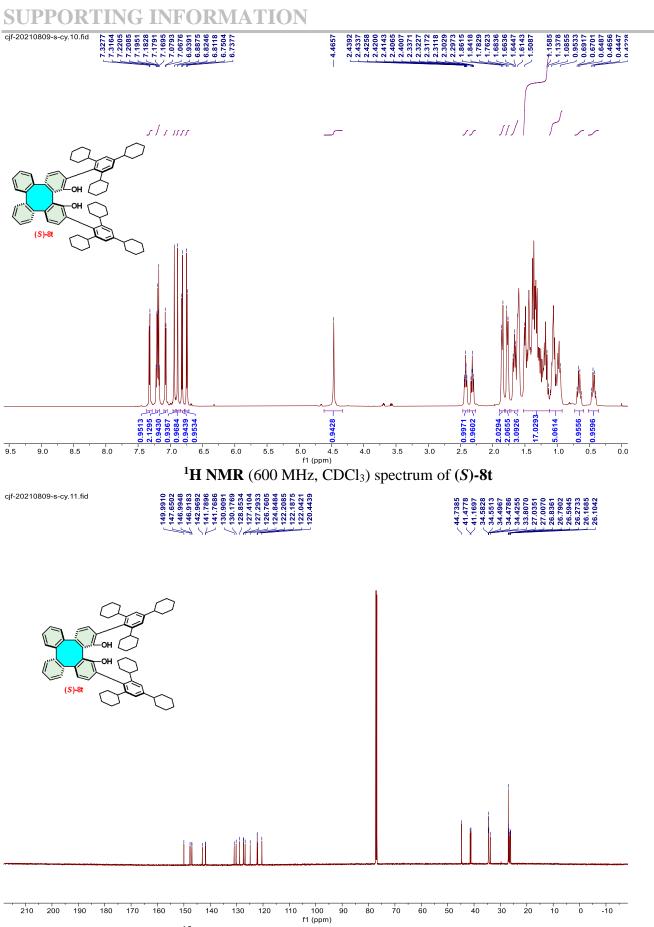


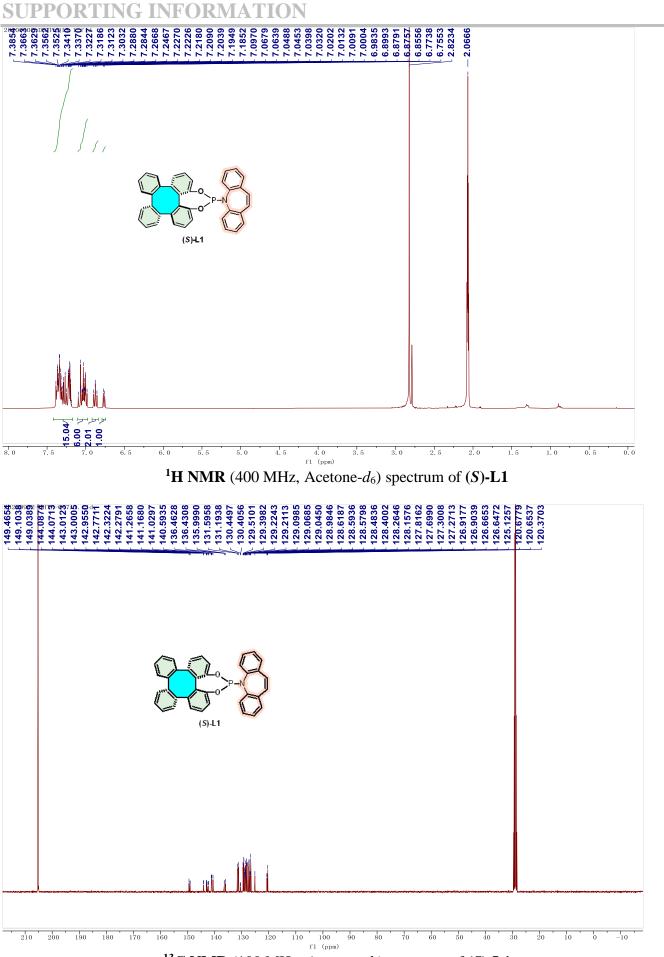


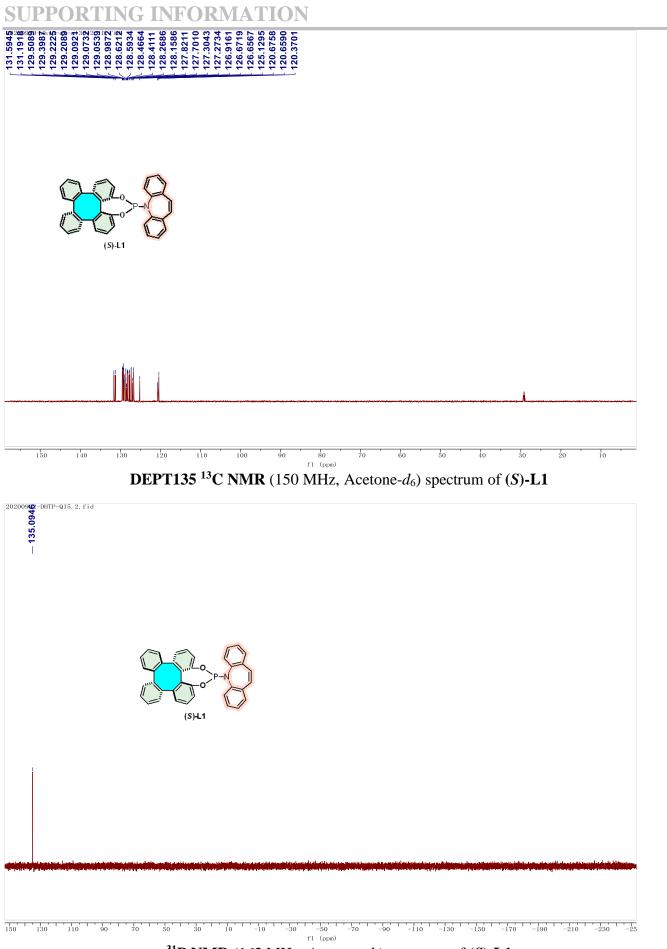

¹⁹**F NMR** (565 MHz, CDCl₃) spectrum of (*S*)-8n

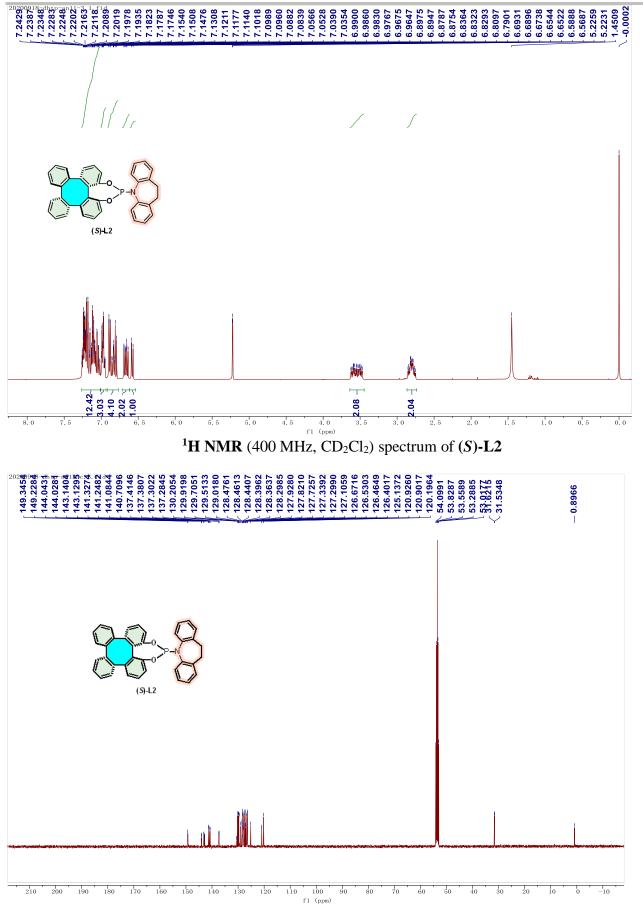


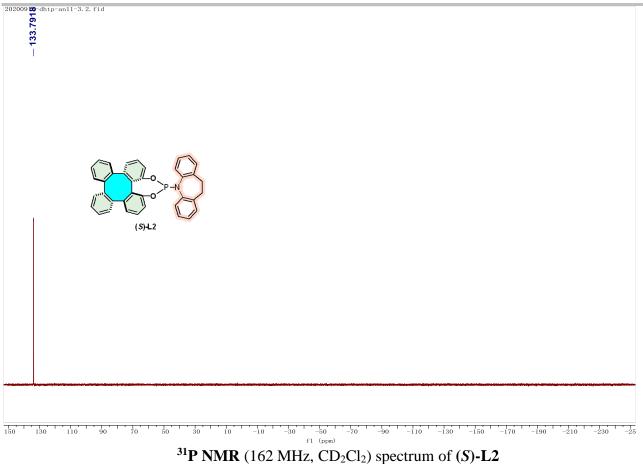

¹³C NMR (150 MHz, CDCl₃) spectrum of (S)-8n

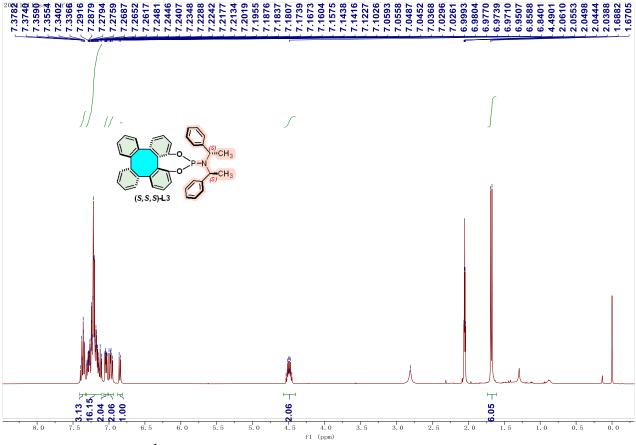


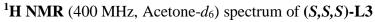


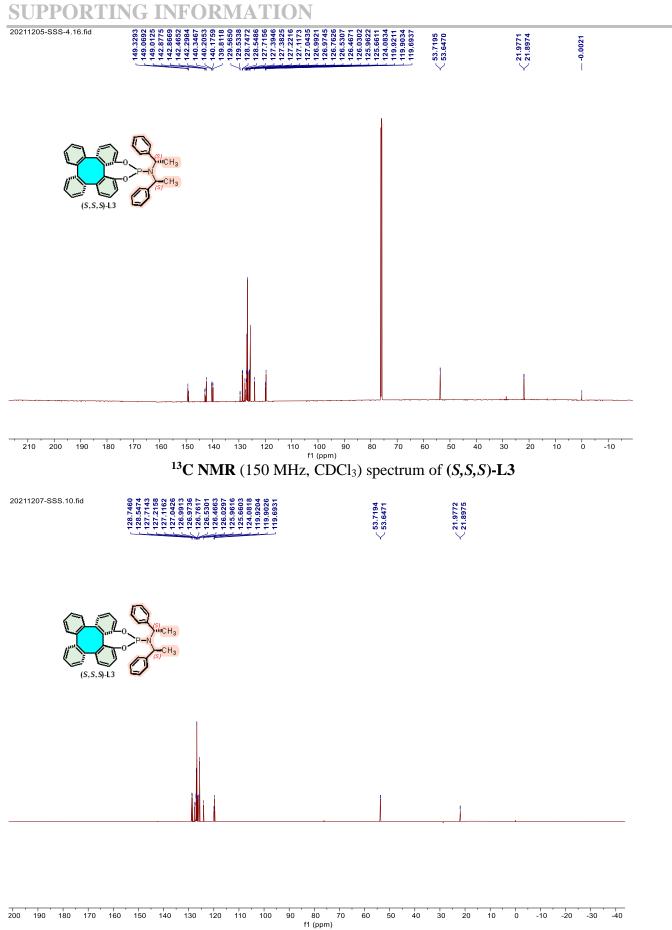

¹³C NMR (150 MHz, CDCl₃) spectrum of (S)-8s


¹³C NMR (150 MHz, CDCl₃) spectrum of (S)-8t

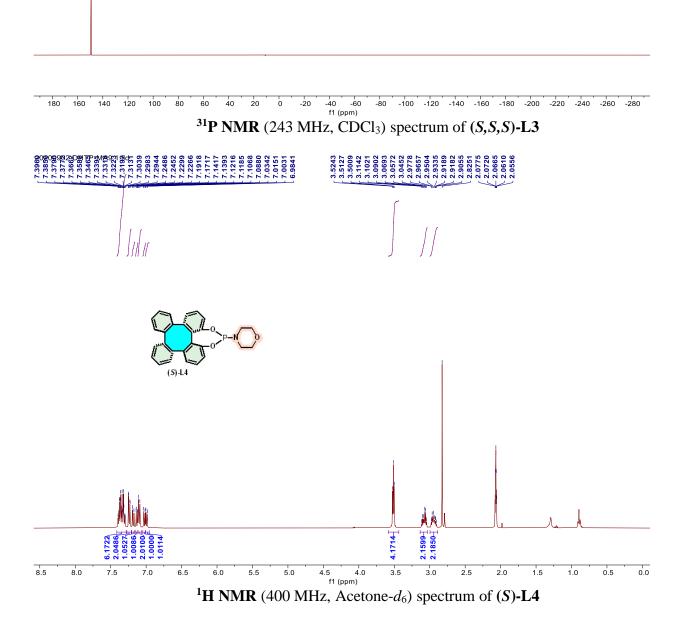

¹³C NMR (100 MHz, Acetone- d_6) spectrum of (S)-L1

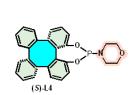


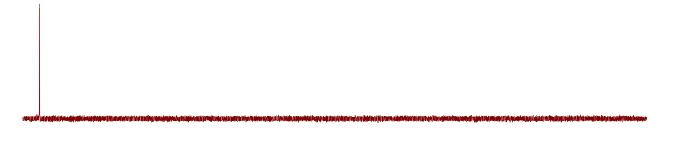

³¹**P** NMR (162 MHz, Acetone- d_6) spectrum of (S)-L1

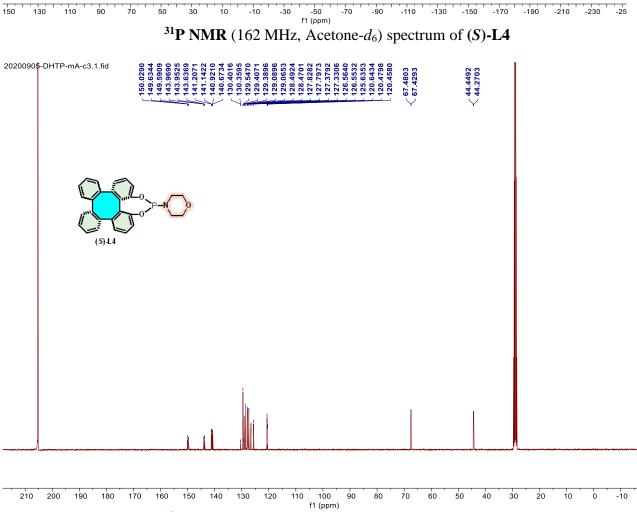


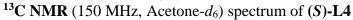
¹³C NMR (100 MHz, CD₂Cl₂) spectrum of (S)-L2

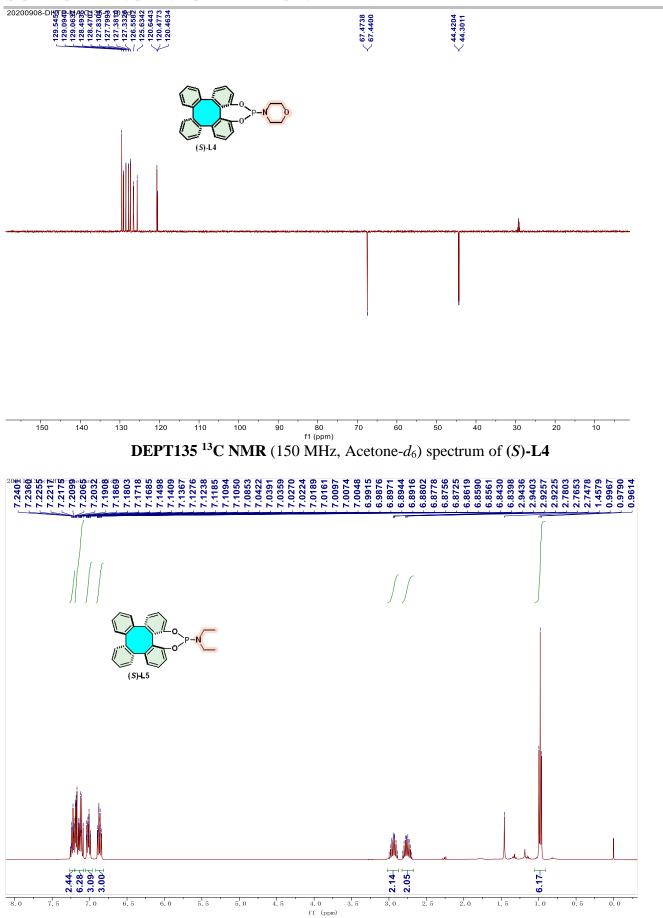


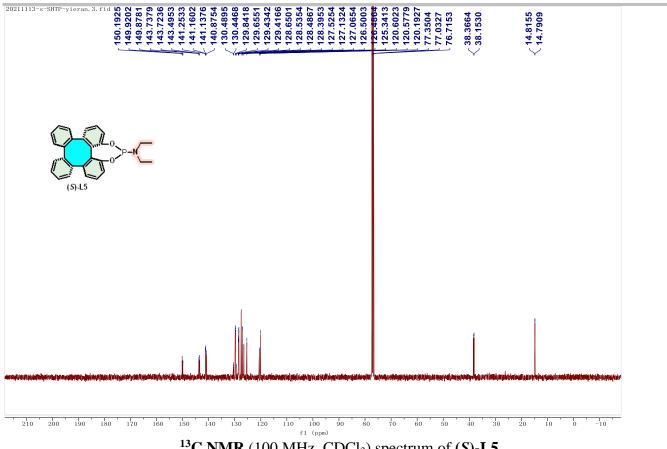


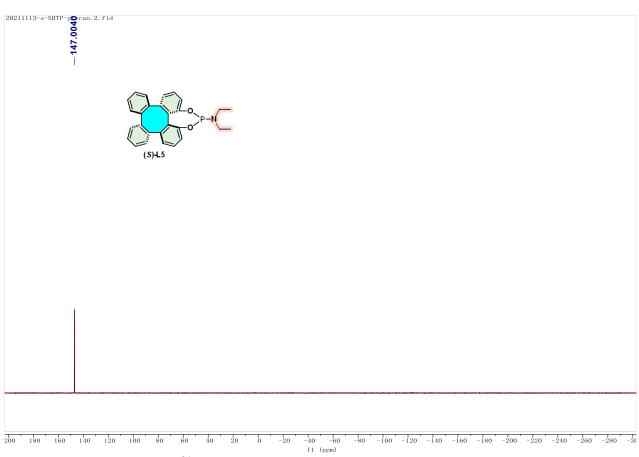

DEPT135 ¹³**C NMR** (150 MHz, CDCl₃) spectrum of (*S*,*S*,*S*)-L3

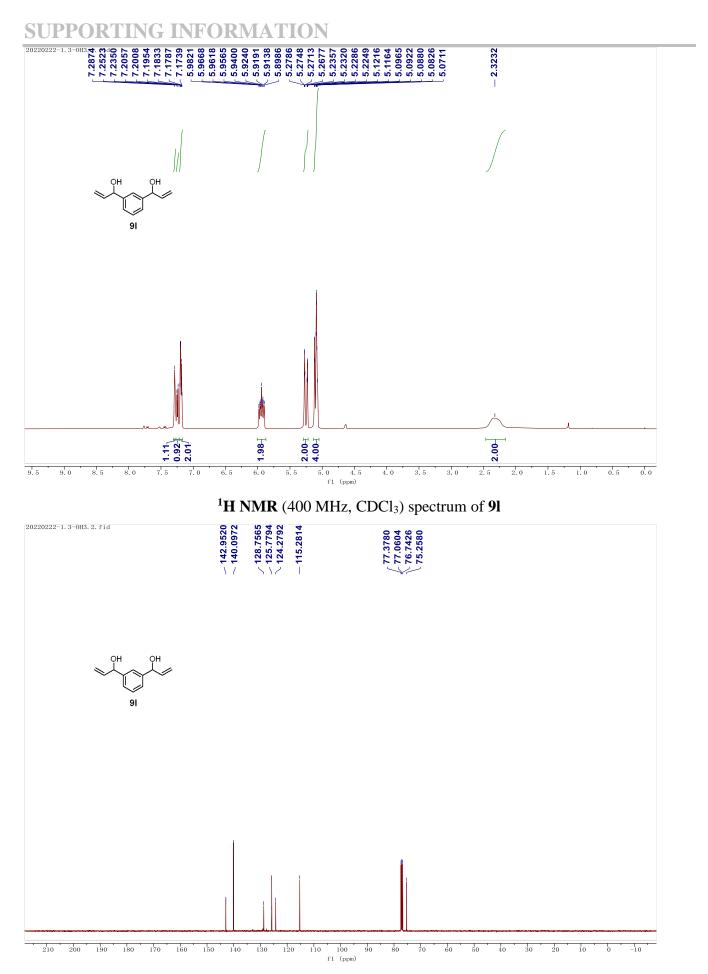




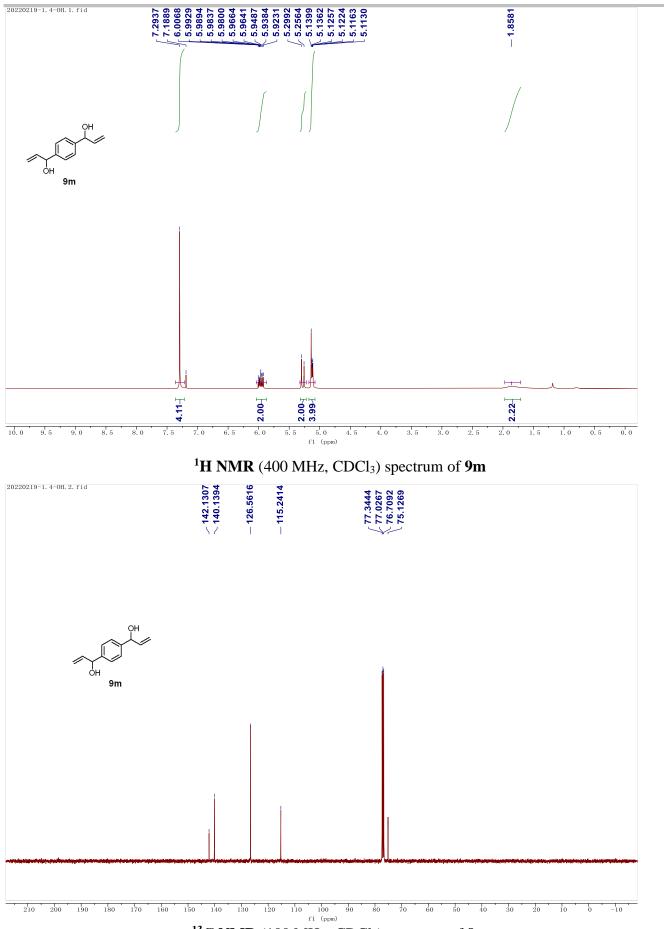




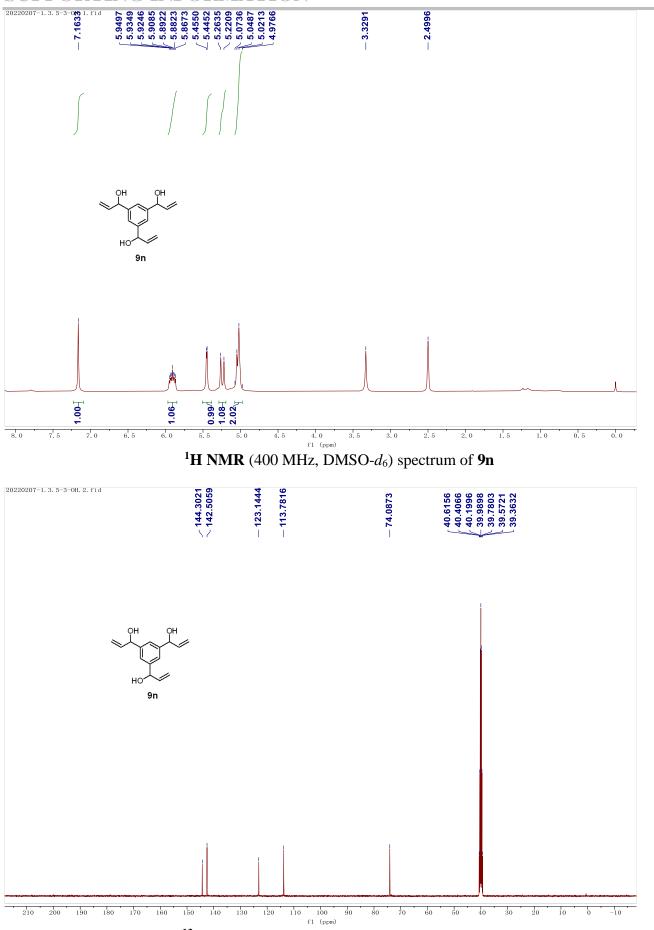


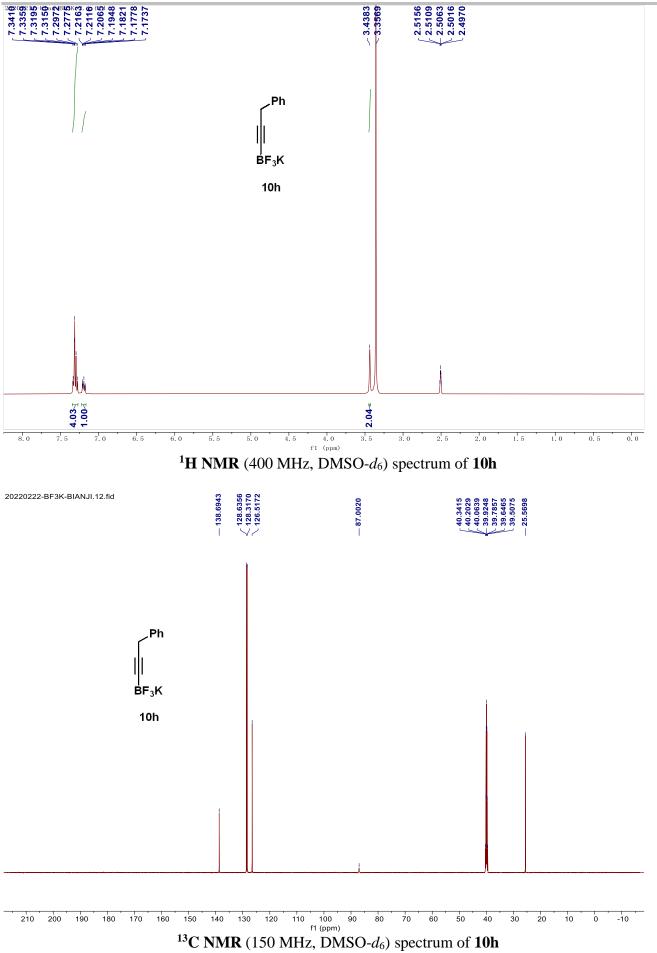


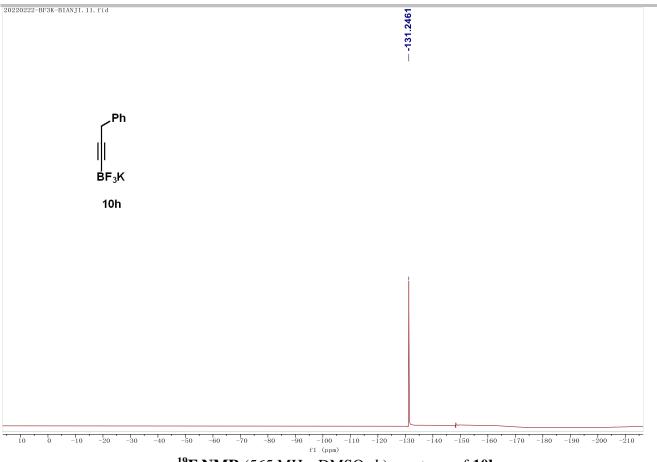
¹³C NMR (100 MHz, CDCl₃) spectrum of (S)-L5

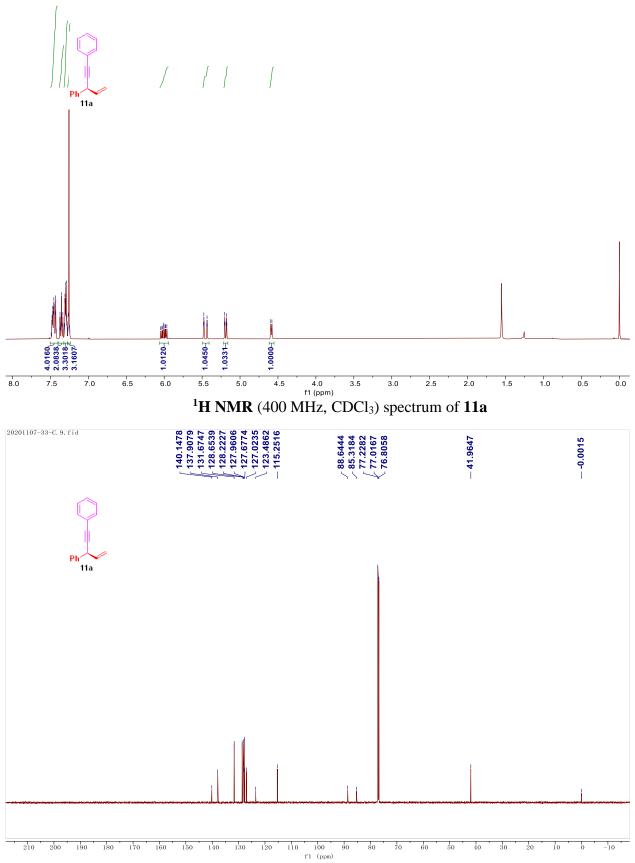


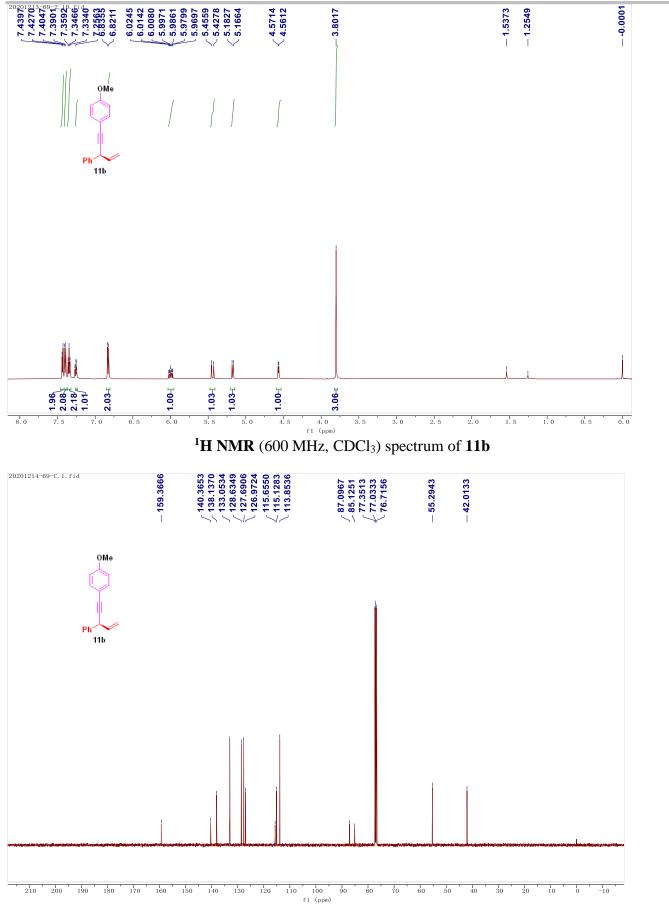
³¹P NMR (162 MHz, CDCl₃) spectrum of (S)-L5


¹³C NMR (100 MHz, CDCl₃) spectrum of 91

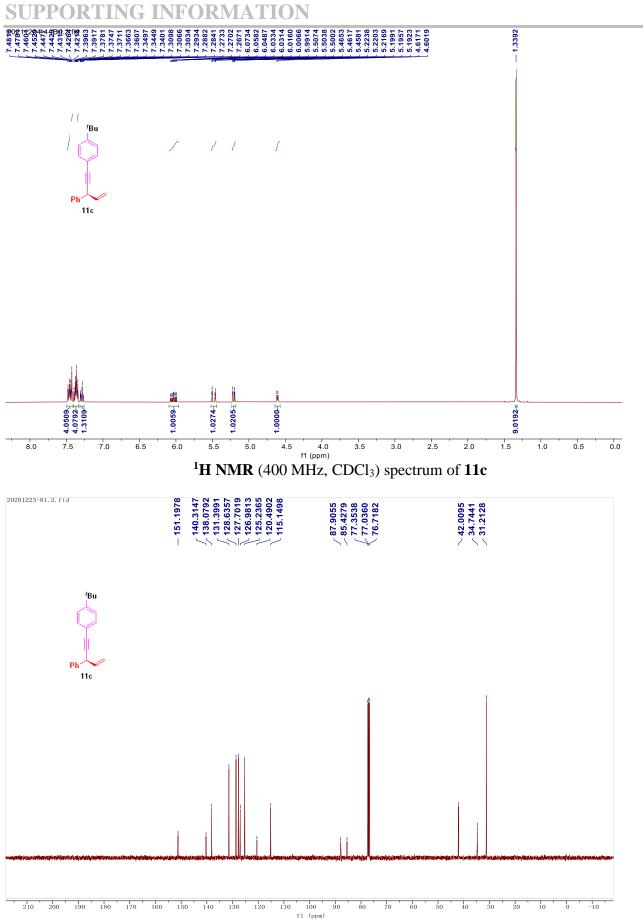


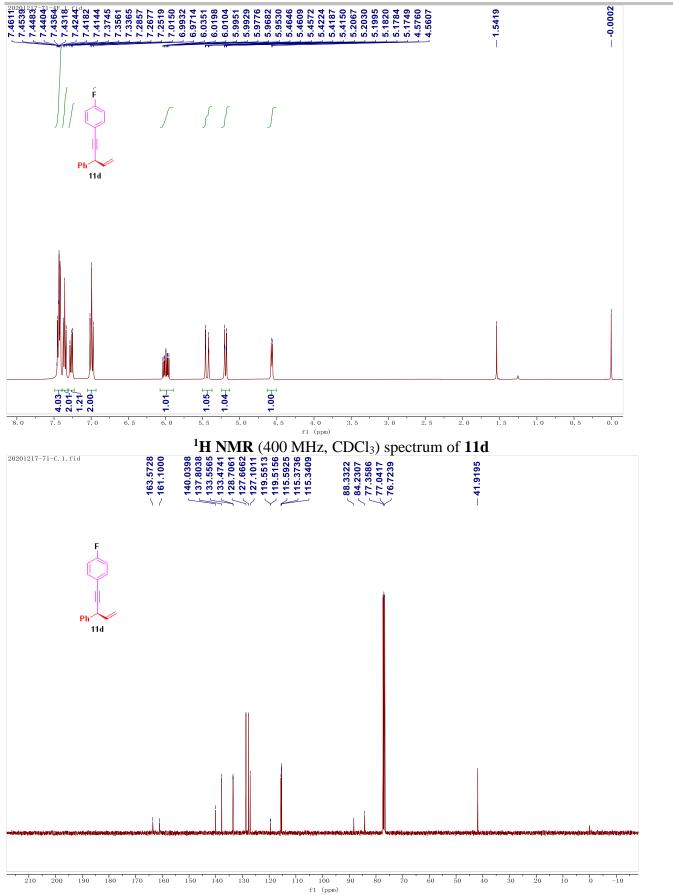

¹³C NMR (100 MHz, CDCl₃) spectrum of 9m

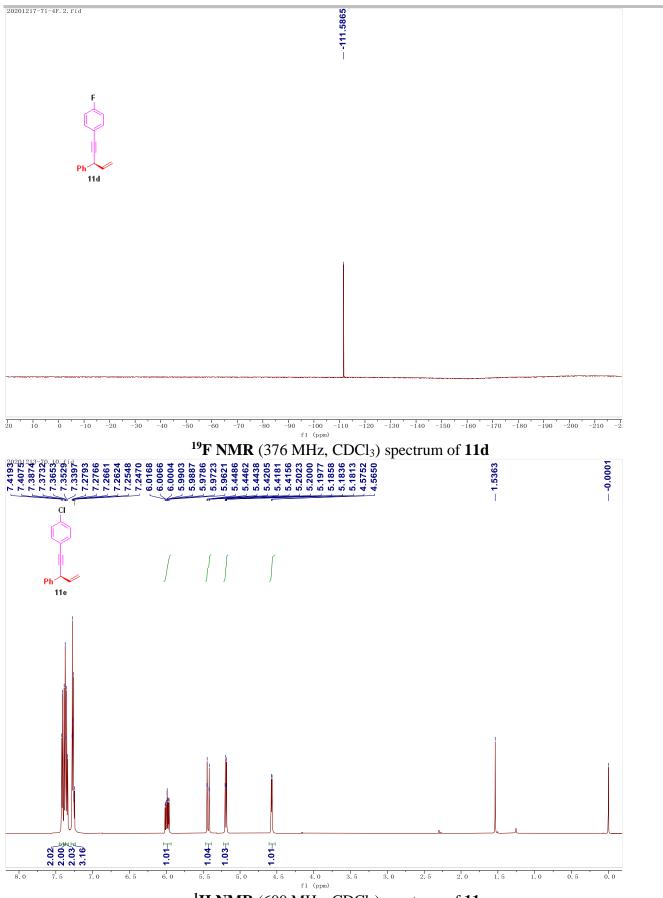


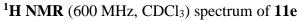


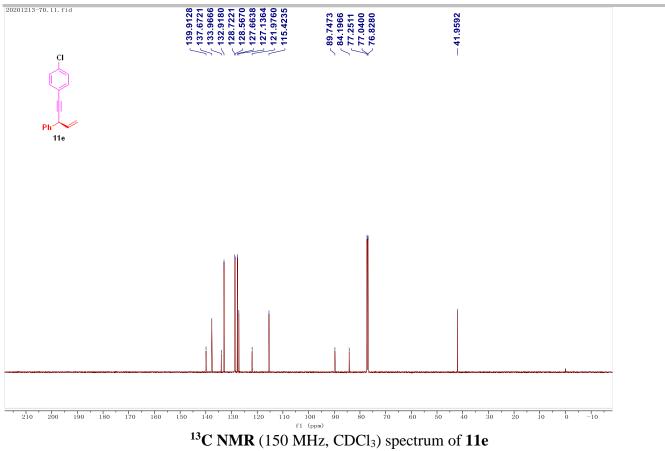
¹⁹F NMR (565 MHz, DMSO-*d*₆) spectrum of **10h**

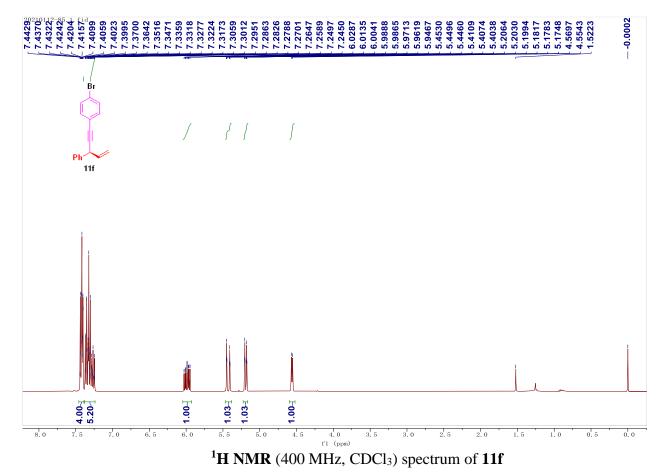


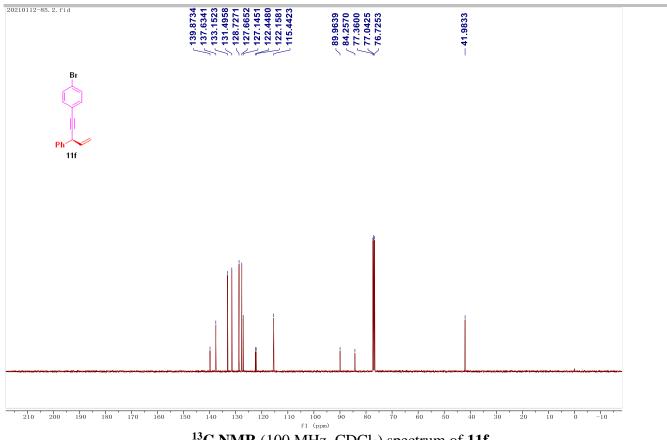

¹³C NMR (150 MHz, CDCl₃) spectrum of **11a**

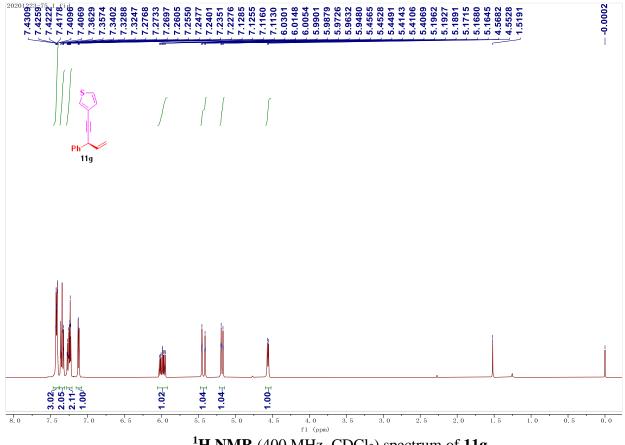

¹³C NMR (100 MHz, CDCl₃) spectrum of **11b**

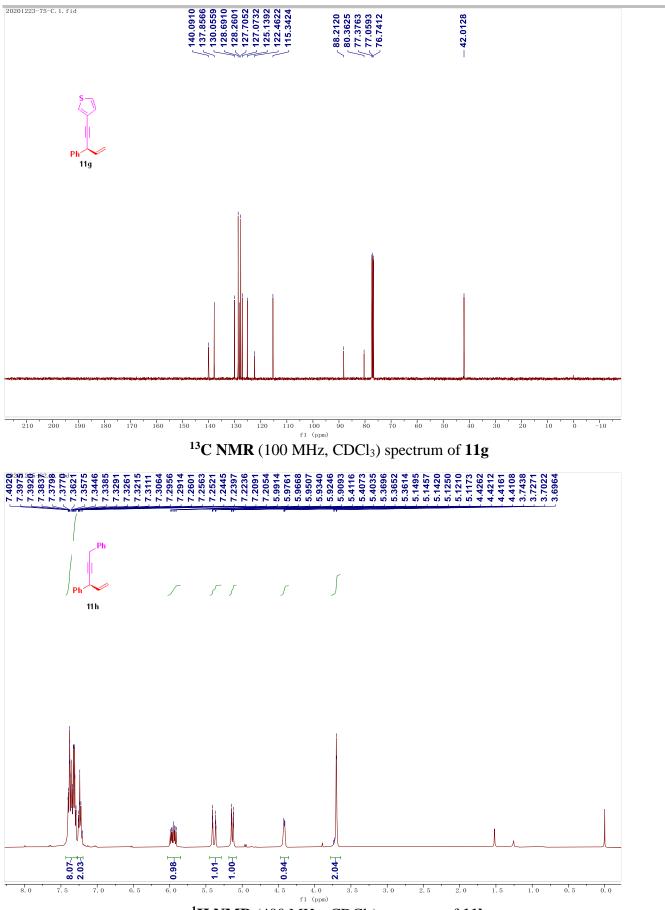


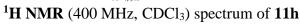

¹³C NMR (100 MHz, CDCl₃) spectrum of **11c**

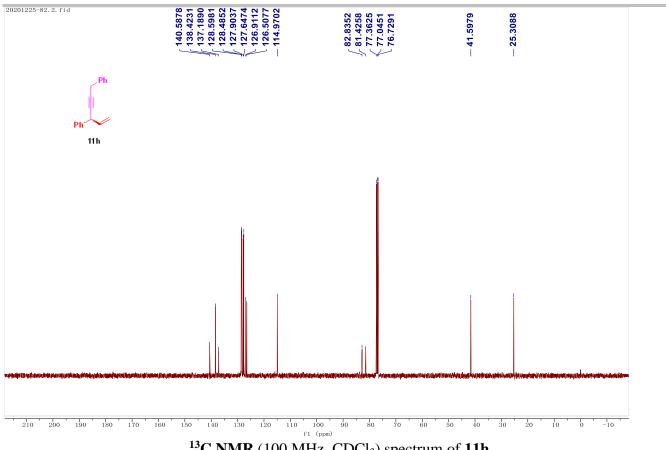


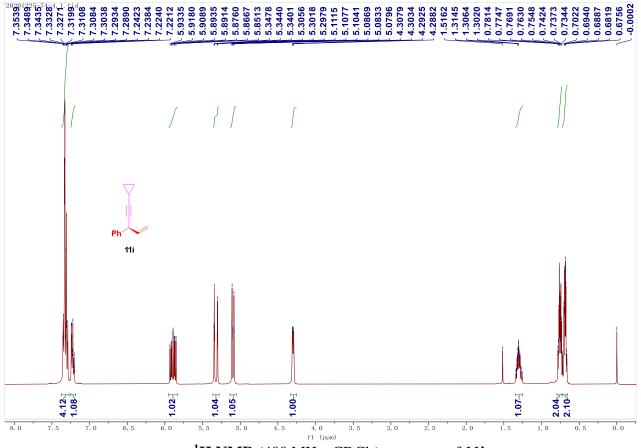

¹³C NMR (100 MHz, CDCl₃) spectrum of 11d

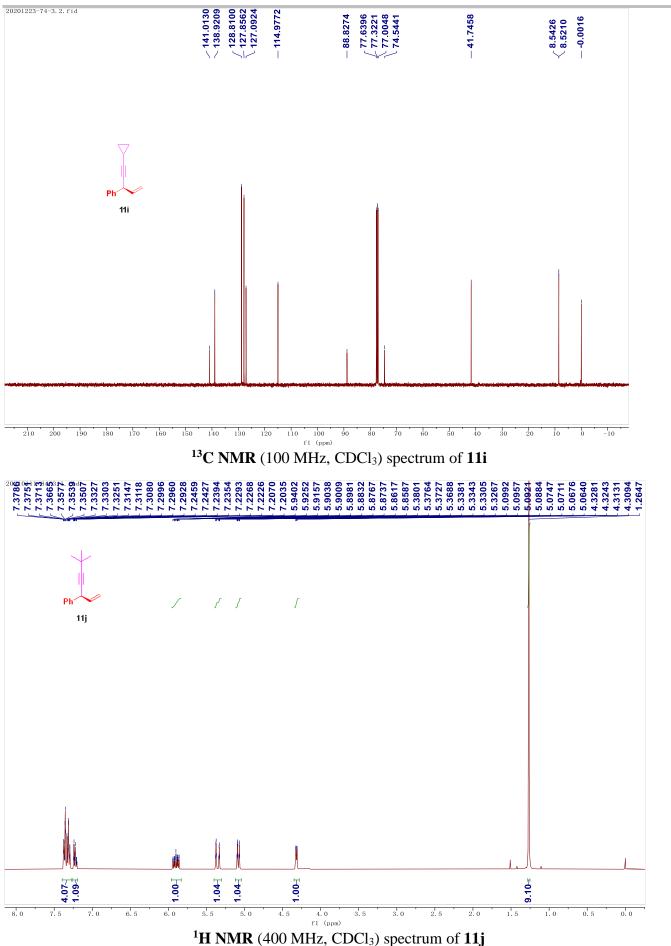







¹³C NMR (100 MHz, CDCl₃) spectrum of 11f


¹H NMR (400 MHz, CDCl₃) spectrum of **11g**



¹³C NMR (100 MHz, CDCl₃) spectrum of 11h

1.00

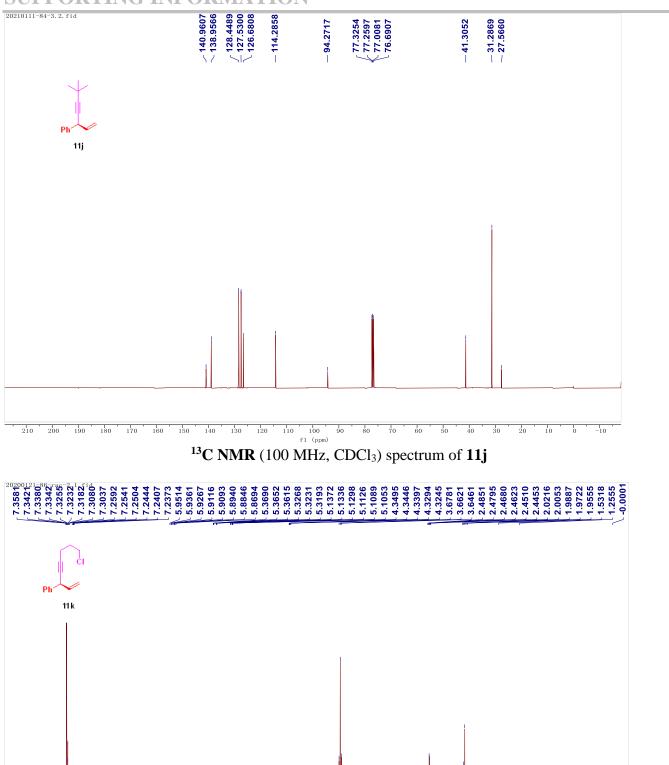
6.5

4.00<u>4</u> 1.11^{.4}

7.0

7.5

8.0


1.03<u>+</u> 1.04<u>+</u>

5.0

5.5

1.00H

4.5

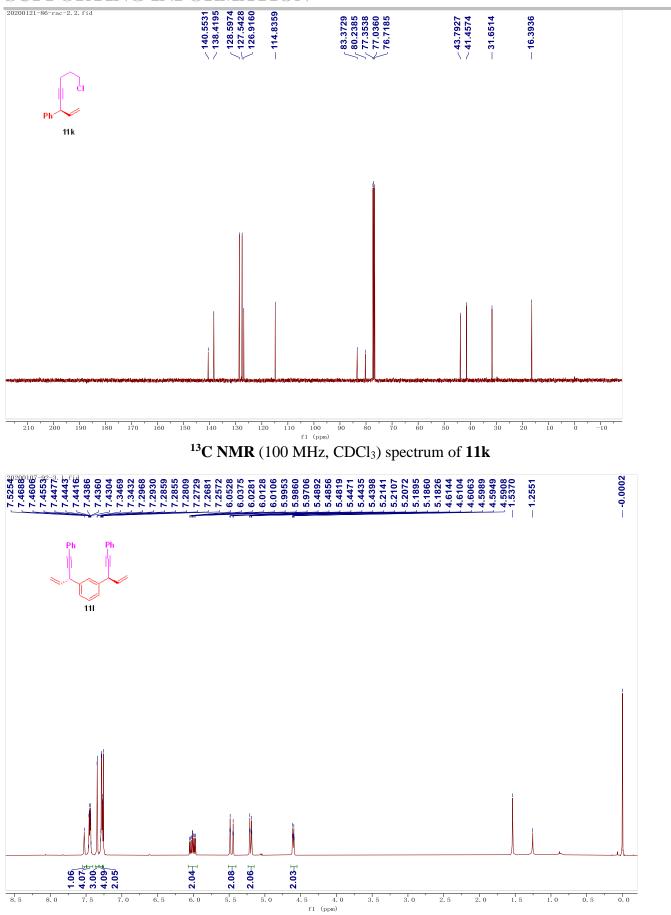
2.06

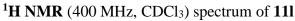
¹H NMR (400 MHz, CDCl₃) spectrum of 11k

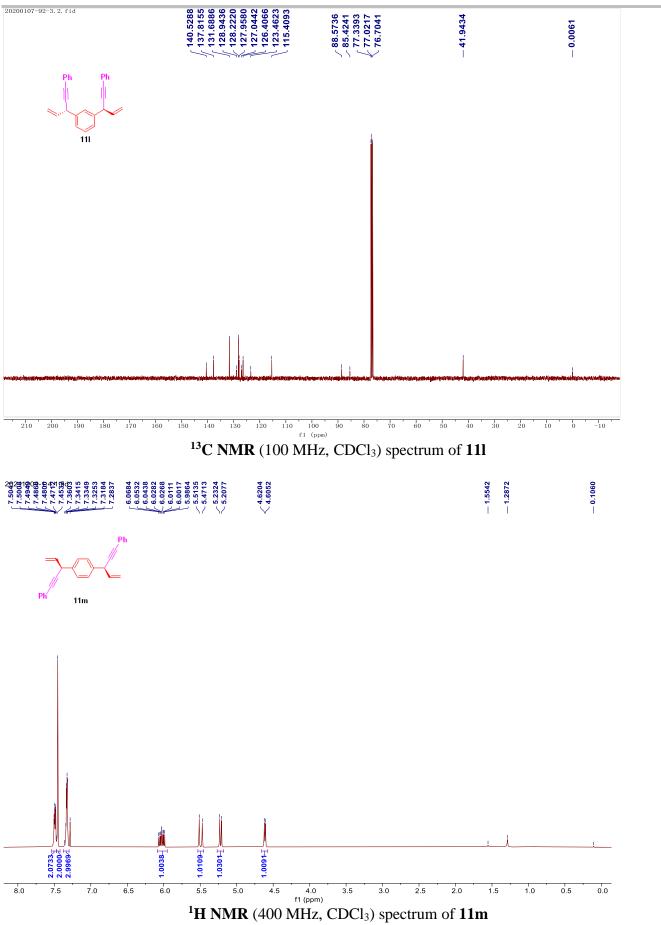
3.5

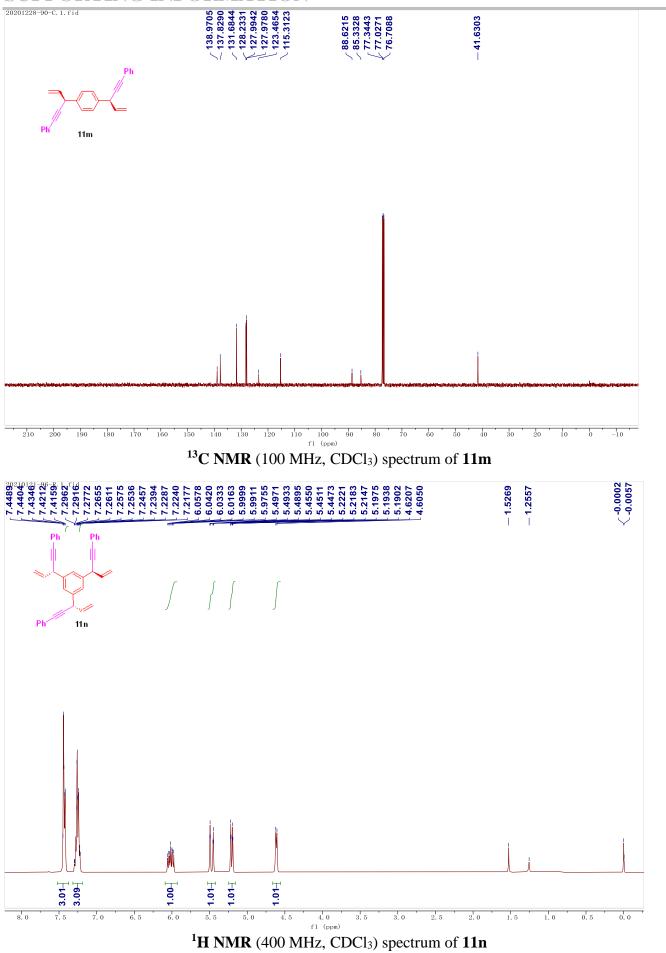
4.0 f1 (ppm) **60.2**

1.5

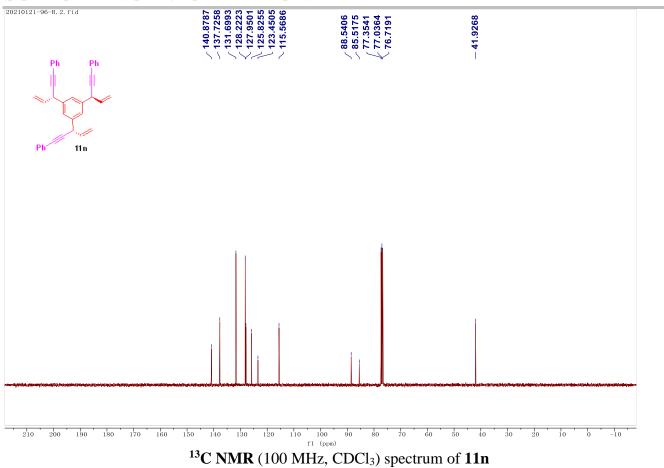

1.0


0.5


0.0


2. 5

3.0



Reference

- 1) S.-J. Chen, G.-P. Lu and C. Cai, Synthesis, 2015, 47, 976-984.
- 2) N. Ahlsten, A. Bartoszewicz, S. Agrawal and B. Martín-Matute, Synthesis, 2011, 2600-2608.
- a) G. A. Molander and K. M. Traister, *Org. Lett.*, **2013**, *15*, 5052-5055; b) J.-F. Wang, X. Meng, C.-H. Zhang, C.-M. Yu and B. Mao, *Org. Lett.*, **2020**, *22*, 7427-7432.
- 4) J. Y. Hamilton, D. Sarlah and E. M. Carreira, Angew. Chem. Int. Ed., 2013, 52, 7532-7535.