Supporting Information

for

Photo-Brook rearrangement of acyl silanes as a strategy for photoaffinity probe design

Annika C. S. Page, ${ }^{+}$Spencer O. Scholz, ${ }^{+}$Katherine N. Keenan, Jessica N. Spradlin, Bridget P. Belcher, Scott M. Brittain, John R. Tallarico, Jeffrey M. McKenna, Markus Schirle, Daniel K. Nomura, and F. Dean Toste*

Abstract

Photoaffinity labeling (PAL) is a powerful tool for the identification of non-covalent small molecule-protein interactions that are critical to drug discovery and medicinal chemistry, but this approach is limited to only a small subset of robust photocrosslinkers. The identification of new photoreactive motifs capable of covalent target capture is therefore highly desirable. Herein, we report the design, synthesis, and evaluation of a new class of PAL warheads based on the UV-triggered 1,2-photo Brook rearrangement of acyl silanes, which hitherto have not been explored for PAL workflows. Irradiation of a series of probes in cell lysate revealed an iPr -substituted acyl silane with superior photolabeling and minimal thermal background labeling compared to other substituted acyl silanes. Further, small molecule (+)-JQ1- and rapamycin-derived iPr acyl silanes were shown to selectively label recombinant BRD4-BD1 and FKBP12, respectively, with minimal background. Together, these data highlight the untapped potential of acyl silanes as a novel, tunable scaffold for photoaffinity labeling.

Table of Contents

Figure S1. Irradiation of acyl silanes 15a-c in MeOH S2
Figure S2. UV-Vis spectra of acyl silanes 15a-c S3
Irradiation of acyl silane $\mathbf{1 5 b}$ in MeOH S4
Figure S3. LCMS analysis of irradiated acyl silane 15b S4
Figure S4. Full gel image of rapamycin PAL probe labeling of FKBP12 S5
Figure S5. Full gel image of (+)-JQ1 PAL probe labeling of BRD4-BD1 S6
Figure S6. Quantitation of in-gel fluorescence for Fig. 3A S7
Figure S7. Quantitation of in-gel fluorescence for Fig. 3B S8
Figure S8. Full gel image for Fig. 5 S9
Figure S9. Full gel image for Fig. 6 S10
Scheme S1. Mechanism of 1,2-Brook rearrangements S11
General Information S12
Synthesis of acyl silane 15a S14
Synthesis of acyl silane 15b S16
Synthesis of acyl silane 15c S19
Synthesis of acyl silane (+)-JQ1 probes S22
Synthesis of diazirine (+)-JQ1 probe S26
Synthesis of acyl silane rapamycin probes S27
References S29
Table S1. NMR assignments of rapamycin probes S30
NMR Spectra S33

Figure S1: Irradiation time course of acyl silanes 15a-c in $\mathrm{CD}_{3} \mathrm{OD}$ at 365 nm using a 6 W hand-held UV lamp at $25^{\circ} \mathrm{C}$. Acyl silane prepared as a stock solution in $\mathrm{CD}_{3} \mathrm{OD}$ was added to an NMR tube with dimethylsulfone as an internal standard for a total volume of 50 $\mu \mathrm{L}$ or 0.024 M . Reactions were run in triplicate and analyzed by ${ }^{1} \mathrm{H}$ NMR ($\mathrm{d} 1=10 \mathrm{~s}$).

Figure S2: UV-Visible spectra of acyl silanes $\mathbf{1 5 a - c}$ in MeOH . Acyl silanes $\mathbf{1 5 a}$, 15b, and $\mathbf{1 5 c}$ show a $\lambda_{\text {max }}=364 \mathrm{~nm}, 370 \mathrm{~nm}$, and 368 nm , respectively, and an $\varepsilon=115.7 \mathrm{M}^{-1} \mathrm{~cm}^{-1}, 236.5 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, and $111.0 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$, respectively, at 5 mM concentration.

Irradiation of probe 15b in $\mathbf{M e O H}$: Product was characterized from the crude reaction mixture. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600.1 \mathrm{MHz}$, DMSO-d6): Aromatic region contains multiple overlapped species. 9.54 (br. s), $7.60-7.54$ (m), $7.50-7.40(\mathrm{~m}), 7.29-7.24$ (m), $7.00-6.95(\mathrm{~m}), 4.77\left(\mathrm{dd}, J=4.5,5.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHOCH}_{3}\right), 4.06(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH} 3), 2.72(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{spC}-H), 2.08(\mathrm{dt}, J=7.1,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2$ or 4 H$)$, overlap with $1.63(\mathrm{dt}, J=4.5,7.6 \mathrm{~Hz}, 2 \mathrm{H}) 1.45(\mathrm{dt}$, $J=14.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29-1.26(\mathrm{~m}, 2 \mathrm{H})$.
HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NO}_{4} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $m / z 510.2071$, found $m / z 510.2065$.

Figure S3. A) LCMS trace ($\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O} 5-95 \%$ with 0.1% formic acid over 12 minutes) of MeOH insertion adduct of $\mathbf{1 5 b}$. Background profile after injection of blank sample is shown in orange. Trace following irradiation of $\mathbf{1 5 b} \mathbf{~ i n ~} \mathrm{MeOH}$ for 30 min at $0^{\circ} \mathrm{C}$ shown in blue, with acetal adduct indicated by arrow. B) Expansion of mass spectrum of acetal. LCMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{29} \mathrm{H}_{33} \mathrm{NNaO}_{4} \mathrm{Si}^{+}\right.$requires $m / z 510.2$, found $m / z 510.2$.

Figure S4: Full gel image of rapamycin PAL probe labeling of FKBP12. FKBP12 ($1.0 \mu \mathrm{~g}$, appx. $1.5 \mu \mathrm{M}$) in pH 7.4 PBS (containing 0.1% Triton X-100) was treated with either DMSO or rapamycin $(100 \mu \mathrm{M})$ and incubated at RT for 30 min . Rapamycin probe $\mathbf{1 8}$ or $\mathbf{1 9}$ was added $(10 \mu \mathrm{M})$, and the samples were incubated for 30 min at RT in the dark. Samples were then irradiated for 30 min at $4^{\circ} \mathrm{C}$ with a 6 W handheld UV lamp. Labeled protein was visualized following Cu click reaction with $\mathrm{Rh}-\mathrm{N}_{3}$.

Figure S5: Full gel image of (+)-JQ1 PAL probe labeling of BRD4-BD1. BRD4-BD1 $(0.6 \mu \mathrm{~g}$, appx. $0.7 \mu \mathrm{M})$ in pH 7.4 PBS was treated with either DMSO or $(+)$-JQ1 $(100 \mu \mathrm{M})$ and incubated at RT for 30 min . (+)-JQ1 probe $\mathbf{1 6}$ or $\mathbf{1 7}$ was added $(10 \mu \mathrm{M})$, and the samples were incubated for 30 min at RT in the dark. Samples were then irradiated for 30 min at $4^{\circ} \mathrm{C}$ with a 6 W handheld UV lamp. Labeled protein was visualized following Cu click reaction with $\mathrm{Rh}-\mathrm{N}_{3}$.

Figure S6. Quantitation of in-gel fluorescence for Figure 3A normalized to protein levels.

15a

15b

15c

Figure S7. Quantitation of in-gel fluorescence for Figure 3B for probes $\mathbf{1 5 a} \mathbf{a} \mathbf{c}$ normalized to protein levels.

Figure S8. Full gel image of (+)-JQ1 probes 16, 16DA, 16Me labeling 231MFP cell lysate (top image). SafeStain gel image confirming protein labeling (bottom image)

| BRD4-BD1 | - | + | - | - | - | + | + | - | + | - | - | - | + | + | - | + | - | - | - | + | + |
| ---: | :--- |
| $(+)-J Q 1$ | - | - | - | - | + | - | + | - | - | - | - | + | - | + | - | - | - | - | + | - | + |
| hv | - | - | + | + | + | + | + | - | - | + | + | + | + | + | - | - | + | + | + | + | + |

Figure S9. Full gel image of (+)-JQ1 PAL probe 16 labeling of 231MFP lysate spiked with BRD4-BD1 visualized by TAMRA- N_{3} (top image). Full gel image of Ag stain (bottom image)

Photochemical 1,2-Brook Rearrangement:

Thermal 1,2-Brook Rearrangement:

Scheme S1. Mechanism of photochemical and thermal 1,2-Brook rearrangements. ${ }^{[1,2]}$

General Information

Unless otherwise noted, all reagents were purchased from commercial suppliers and used without further purification. Tetrahydrofuran, dichloromethane, diethyl ether, toluene, trimethylamine, and N, N-dimethylformamide were purified by passage through an activated alumina column under argon. Thin-layer chromatography (TLC) analysis of reaction mixtures was performed using Merck silica gel 60 F254 TLC plates and visualized under UV or by staining with KMnO_{4} or p anisaldehyde. Column chromatography was performed on Merck Silica Gel $60 \AA 230$ X 400 mesh. Nuclear magnetic resonance (NMR) spectra were recorded using Bruker AV-600, AV-500, DRX-500, Neo-500, AVB-400, AVQ-400, and AV300 spectrometers. These CoC-NMR instruments at UC Berkeley are funded in part by the NIH (S10OD024998). ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ chemical shifts are reported in ppm downfield of tetramethylsilane and referenced to residual solvent peak $\left(\mathrm{CHCl}_{3} ; \delta \mathrm{H}=7.268\right.$ ppm and $\delta \mathrm{C}=77.16 \mathrm{ppm}$). Multiplicities are reported using the following abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, q $=$ quartet, $\mathrm{p}=$ pentet, hept $=$ heptet $/$ septet, $\mathrm{m}=$ multiplet, $\mathrm{br}=\mathrm{broad}, \mathrm{dt}=$ doublet of triplet resonance. Mass spectral data for EMM were obtained from the QB3 mass spectral facility at the University of California, Berkeley on a Thermo LTQ-FTICR (7T, ESI) and in the Center of Catalysis at the University of California, Berkeley. Solvent abbreviations are reported as follows: $\mathrm{EtOAc}=$ ethyl acetate, hex $=$ hexanes, $\mathrm{DCM}=$ dichloromethane, $\mathrm{Et}_{2} \mathrm{O}=$ diethyl ether, $\mathrm{MeOH}=$ methanol, THF $=$ tetrahydrofuran, $\mathrm{DMSO}=$ dimethylsulfoxide, $\mathrm{Et}_{3} \mathrm{~N}=$ trimethylamine, $\mathrm{MeCN}=$ acetonitrile .

Chemicals:

Rapamycin (53123-88-9) and (+)-JQ1 (1268524-70-4) were purchased from MedChemExpress (HY-10219 and HY-13030, respectively.). TAMRA-PEG4-Azide was purchased from Click Chemistry Tools (AZ109). (+)-JQ1-OH was prepared from commercial (+)-JQ1 according to literature precedent without modification. ${ }^{[3]} \mathrm{N}$-boc-2-nitrobenzenesulfonamide (SI-1) was prepared according to literature precedent without modification. ${ }^{[4]}$ 2-(3-(but-3-yn-1-yl)-3H-diazirin-3-yl)ethan-1-amine (SI12) was prepared according to literature precedent. ${ }^{[5]}$

Biological Materials: 231MFP cells were obtained from Benjamin Cravatt and were derived from MDA-MB-231 cells. Pure recombinant BRD4-BD1 and FKBP12 proteins were purchased from Cayman Chemicals and Origene, respectively.

Analysis of small molecule probes by in-gel fluorescence

(+)-JQ1 probes: BRD4-BD1 $(0.6 \mu \mathrm{~g}$, appx. $0.7 \mu \mathrm{M})$ in $\mathrm{pH} 7.4 \mathrm{PBS}(50 \mu \mathrm{~L})$ was treated with a prepared stock solution of $(+)$ JQ1 acyl silane probe in DMSO and incubated in the dark for 30 min at RT. During competition, BRD4-BD1 was treated with a prepared stock solution of $(+)$-JQ1 (10x final concentration of acyl silane) prior to acyl silane addition and incubated at RT for 30 min . Samples were irradiated for 30 min on ice using a 6 W handheld UV lamp at 365 nm . Labeled protein was visualized following Cu-catalyzed click reaction, performed by sequential addition of $\mathrm{CuSO}_{4},(1 \mathrm{mM})$, tris(2-carboxyethyl)phosphine (1 $\mathrm{mM})$, tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine $(34 \mu \mathrm{M})$ and TAMRA azide $(25 \mu \mathrm{M}){ }^{[6]}$ Following click reaction, proteins were denatured by the addition of 4X Laemmli SDS loading buffer ($30 \mu \mathrm{~L}$) and run on a 16 cm Protean II xi 10% resolving SDS-PAGE gel system (Bio-Rad) and scanned using a ChemiDoc MP (Bio-Rad).

Rapamycin probes: FKBP12 (1.0 $\mu \mathrm{g}$, appx. $1.5 \mu \mathrm{M})$ in pH 7.4 PBS $(0.1 \%$ Triton X-100) $(50 \mu \mathrm{~L})$ was treated with a prepared stock solution of rapamycin acyl silane probe in DMSO and incubated in the dark for 30 min at RT. During competition, FKBP12 was treated with a prepared stock solution of rapamycin (10x final concentration of acyl silane) prior to acyl silane addition and incubated at RT for 30 min . Samples were irradiated for 30 min on ice using a 6 W handheld UV lamp at 365 nm . Labeled protein was visualized following Cu -catalyzed click reaction, performed by sequential addition of $\mathrm{CuSO}_{4},(1 \mathrm{mM})$, $\operatorname{tris}(2$-carboxyethyl)phosphine (1 mM), tris[(1-benzyl-1H-1,2,3-triazol-4-yl)methyl]amine ($34 \mu \mathrm{M}$) and TAMRA azide (25 $\mu \mathrm{M}){ }^{[6]}$ Following click reaction, proteins were denatured by the addition of 4X Laemmli SDS loading buffer ($30 \mu \mathrm{~L}$) and run on a 16 cm Protean II xi 10% resolving SDS-PAGE gel system (Bio-Rad) and scanned using a ChemiDoc MP (Bio-Rad).
(+)-JQ1 probes in cellular lysate: 231 MFP cell lysate $(1.0 \mu \mathrm{~g} / \mu \mathrm{L})$ in $\mathrm{pH} 7.4 \mathrm{PBS}(50 \mu \mathrm{~L})$ was treated with a prepared stock solution of $(+)$-JQ1 probe in DMSO and incubated in the dark for 30 min at RT. Samples were irradiated for 30 min on ice using a 6 W handheld UV lamp at 365 nm . Labeled protein was visualized following Cu-catalyzed click reaction, performed by sequential addition of $\mathrm{CuSO}_{4},(1 \mathrm{mM})$, tris(2-carboxyethyl)phosphine (1 mM), tris[(1-benzyl-1H-1,2,3-triazol-4yl)methyl]amine $(34 \mu \mathrm{M})$ and TAMRA azide $(25 \mu \mathrm{M}) \cdot{ }^{[6]}$ Following click reaction, proteins were denatured by the addition of 4X Laemmli SDS loading buffer ($30 \mu \mathrm{~L}$) and run on a 16 cm Protean II xi 10% resolving SDS-PAGE gel system (Bio-Rad) and scanned using a ChemiDoc MP (Bio-Rad).
(+)-JQ1 probes in spiked cellular lysate: 231MFP cell lysate $(1.0 \mu \mathrm{~g} / \mu \mathrm{L})$ in $\mathrm{pH} 7.4 \mathrm{PBS}(50 \mu \mathrm{~L})$ was treated with $0.2 \mu \mathrm{~g}$ of BRD4-BD1 or DMSO control. A prepared stock solution of (+)-JQ1 probe in DMSO was added and incubated in the dark for 30 min at RT. For competition experiments, 231MFP lysate was treated with a prepared stock solution of (+)-JQ1 (100x final concentration of acyl silane) prior to acyl silane addition and incubated at RT for 30 min . Samples were irradiated for 30 min on ice using a 6 W handheld UV lamp at 365 nm . Labeled protein was visualized following Cu-catalyzed click reaction, performed by sequential addition of $\mathrm{CuSO}_{4},(1 \mathrm{mM})$, tris(2-carboxyethyl)phosphine $(1 \mathrm{mM})$, tris[(1-benzyl-1H-1,2,3-triazol4 -yl)methyl]amine $(34 \mu \mathrm{M})$ and TAMRA azide $(25 \mu \mathrm{M}) .{ }^{[6]}$ Following click reaction, proteins were denatured by the addition of 4X Laemmli SDS loading buffer ($30 \mu \mathrm{~L}$) and run on a 16 cm Protean II xi 10% resolving SDS-PAGE gel system (Bio-Rad) and scanned using a ChemiDoc MP (Bio-Rad).

Synthesis of acyl silane 15a

(3-((1,3-dithian-2-yl)dimethylsilyl)propoxy)(tert-butyl)dimethylsilane (11a): To an oven-dried Schlenk flask fitted with a rubber septum and cooled under N_{2} was added platinum(0)-1,3-divinyl 1,1,1,3,3-tetramethyldisiloxane complex solution (Karstedt's catalyst) [0.1 M in vinyl terminated poly(dimethylsiloxane), ca $19 \mu \mathrm{~L}, 0.04 \mathrm{~mol} \%$] and $\mathrm{Me}_{2} \mathrm{SiHCl}$ ($9.3 \mathrm{mmol}, 1.03$ $\mathrm{mL}, 2.0$ equiv.) by syringe drop-wise. After stirring at room temperature for 10 min , (allyloxy)(tert-butyl)dimethylsilane (4.65 $\mathrm{mmol}, 800 \mathrm{mg}, 1.0$ equiv.) was added dropwise over 15 min . After an additional 15 min stirring, the solution was cooled to 0 ${ }^{\circ} \mathrm{C}$ and evacuated under vacuum for 15 min to remove excess $\mathrm{ClSiMe}_{2} \mathrm{H}$. After purging with N_{2} for an additional 15 min , silyl chloride $\mathbf{1 0 a}$ was obtained ($4.14 \mathrm{mmol}, 1.09 \mathrm{~g}, 89 \%$ yield) and used immediately without further purification. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(400.0$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.67-1.58(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.86-0.79(\mathrm{~m}, 2 \mathrm{H}), 0.42(\mathrm{~s}, 6 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) . \mathrm{A}$ flame dried 50 mL round bottom flask cooled under vacuum was charged with 1,3-dithiane ($0.411 \mathrm{~g}, 3.42 \mathrm{mmol}, 1.0$ equiv.) and THF $(9 \mathrm{~mL}, 0.3 \mathrm{M})$. The reaction vessel was cooled to $-30^{\circ} \mathrm{C}$ and a solution of $n \mathrm{BuLi}(2.2 \mathrm{M}$ in hexanes, $1.64 \mathrm{~mL}, 3.59$ mmol, 1.05 equiv.) was added dropwise. The solution was allowed to warm to room temperature and stir for 1 h before cooling to $-78{ }^{\circ} \mathrm{C}$ and adding 10 a (1.2 equiv.) dropwise. The reaction mixture was allowed to warm to room temperature overnight and the resulting orange solution was quenched by addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were washed with saturated brine, dried over MgSO_{4}, and concentrated in vacuo. The residual 1,3-dithiane was removed by Kugelrohr distillation under full vacuum at $70-100^{\circ} \mathrm{C}$ to give $\mathbf{1 1 a}(1.04 \mathrm{~g}, 3.08 \mathrm{mmol}$, 90% yield) as a pale oil.
${ }^{1} \mathbf{H}$ NMR ($400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.73(\mathrm{~s}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.74-2.68(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.08$ $(\mathrm{m}, 1 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$ (overlap with $\mathrm{m}, 2 \mathrm{H}), 0.67-0.61(\mathrm{~m}, 2 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}), 0.05$ (s, 6H). ${ }^{13} \mathbf{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 68.1,66.1,33.7,31.3,27.1,26.4,26.2,18.5,9.3,-4.8,-5.1$ HRMS (ESI): calculated for $\left[\mathrm{C}_{15} \mathrm{H}_{34} \mathrm{OS}_{2} \mathrm{Si}_{2}+\mathrm{H}\right]^{+}$required $m / z 351.1662$, found $m / z 351.1664$.

1) nBuLi (1.1 equiv.), THF (0.2 M)
2) alkyne (1.1 equiv.) $-78^{\circ} \mathrm{C}$ to RT
66% yield

alkyne:
tert-butyl(3-(dimethyl(2-(5-(trimethylsilyl)pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propoxy)dimethylsilane (12a): A flame dried 50 mL round bottom flask cooled under vacuum was charged with 11 a ($840 \mathrm{mg}, 2.5 \mathrm{mmol}, 1.0$ equiv.) and THF (5 mL , 0.2 M) and cooled to $-30^{\circ} \mathrm{C}$, followed by the dropwise addition of $n \mathrm{BuLi}$ ($2.2 \mathrm{M}, 1.2 \mathrm{~mL}, 1.1$ equiv.). After stirring for 45 min at $-30{ }^{\circ} \mathrm{C}$, a solution of (5-bromopent-1-yn-1-yl)trimethylsilane ($539 \mathrm{mg}, 2.63 \mathrm{mmol}, 1.1$ equiv.) in THF (5 mL) was added dropwise. The reaction was then allowed to warm to room temperature and stir overnight. After 16 h , the reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with a $1: 1$ mixture of $\mathrm{Et}_{2} \mathrm{O} /$ hexanes. The combined organics were washed with saturated brine, dried over MgSO_{4}, and concentrated to an oil. Purification of the crude material by flash
column chromatography on silica gel in 95:5 hex/EtOAc yielded the desired product 12a as a clear, colorless oil ($817 \mathrm{mg}, 66 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.57(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.12-3.05(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{dt}, J=14.3,4.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.33(\mathrm{~m}$, $2 \mathrm{H}), 2.30(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.96-1.85(\mathrm{~m}, 1 \mathrm{H}), 1.74-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.52(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H})$, $0.74-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 107.3,85.2,66.2,38.9,36.1$, 27.5, 26.7, 26.1, 25.3, 23.3, 20.2, 18.5, 14.2, 9.3, 0.3, -4.4, -5.1. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{12} \mathrm{H}_{48} \mathrm{OS}_{2} \mathrm{Si}_{3}+\mathrm{H}\right]^{+}$required $m / z 489.2527$, found $m / z 489.2524$.

3-(dimethyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propyl benzoate (13a): To a solution of $\mathbf{1 2 a}$ ($331 \mathrm{mg}, 0.697 \mathrm{mmol}$, 1.0 equiv.) in $\mathrm{MeOH}(1.5 \mathrm{~mL}, 0.5 \mathrm{M})$ was added potassium carbonate ($140 \mathrm{mg}, 1.02 \mathrm{mmol}, 1.5$ equiv.). The reaction was monitored by TLC and after 4 h quenched by addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with sat. aqueous brine, and extracted with $\mathrm{Et}_{2} \mathrm{O}$ three times. The combined organic layers were dried over MgSO_{4}, filtered, and concentrated in vacuo to give a residue that was subsequently added to a solution of camphorsulfonic acid ($15 \mathrm{mg}, 0.068 \mathrm{mmol}, 0.1$ equiv.) in a $1: 1$ mixture of DCM: $\mathrm{MeOH}(0.05 \mathrm{M})$ and stirred at room temperature. After 3 h , the solution was diluted with $1: 1$ hex:EtOAc, washed with sat. aqueous NaHCO_{3} and sat. aqueous brine, dried, filtered, and concentrated to an oil. Purification of the crude material by gradient elution of $10-30 \%$ EtOAc in hex by flash column chromatography gave $\mathbf{1 3 a}$ ($130 \mathrm{mg}, 49 \%$ over two steps) as a clear oil.
${ }^{1} \mathbf{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.56(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.05-2.97(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dt}, J=14.4,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.32-2.28(\mathrm{~m}$, $2 \mathrm{H}), 2.21(\mathrm{td}, J=6.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.04-1.93(\mathrm{~m}, 3 \mathrm{H}), 1.84(\mathrm{ddq}, J=3.2,3.2,12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.61-1.54$ $(\mathrm{m}, 2 \mathrm{H}), 0.75-0.68(\mathrm{~m}, 2 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 84.13,68.80,65.42,38.50,36.20,27.16,26.47$, 25.00, 23.21, 18.69, 9.25, -4.47. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{14} \mathrm{H}_{26} \mathrm{OS}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $\mathrm{m} / \mathrm{z} 325.1087$, found m / z 325.1089 .

3-(dimethyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propyl benzoate (14a): A flame-dried screw-capped culture tube cooled under vacuum was charged with $\mathbf{1 3 a}(161 \mathrm{mg}, 0.532 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{DCM}(2.66 \mathrm{~mL}, 0.2 \mathrm{M})$. Phenylisocyanate ($64 \mathrm{~mL}, 0.585 \mathrm{mmol}, 1.1$ equiv.) and DMAP ($6.5 \mathrm{mg}, 0.053 \mathrm{mmol}, 0.1$ equiv.) were quickly added and the resulting mixture was stirred under N_{2} at room temperature overnight. After 16 h , the resulting cloudy mixture was diluted with DCM, washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give $\mathbf{1 4 a}$ (204 $\mathrm{mg}, 0.483 \mathrm{mmol}, 91 \%$ yield) as a pale yellow oil which was used in the next step without further purification.
${ }^{1} \mathbf{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.3(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{tt}, J=1.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.8$ Hz, 2H), 3.07 (ddd, $J=2.7,12.5,14.7 \mathrm{~Hz}, 2 \mathrm{H}$), 2.44 (ddd, $J=2.72 .7,14.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.38-2.34$ (m $J=3.7,5.0,7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $2.27(\mathrm{ddd}, J=2.7,6.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{ddq}, J=3.3,3.3,12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-$ $1.69(\mathrm{~m}, 4 \mathrm{H}), 0.85-0.80(\mathrm{~m}, 2 \mathrm{H}), 0.21(\mathrm{~s}, 6 \mathrm{H})$.

3-(hex-5-ynoyldimethylsilyl)propyl phenylcarbamate (15a) A flame-dried scintillation vial was charged with $\mathbf{1 4 a}$ (138 mg, 0.328 mmol 1.0 equiv.) and a $5: 1$ solution of MeCN :PBS 7.4 buffer ($0.05 \mathrm{M}, 6 \mathrm{~mL}$). To the rapidly stirred mixture was added PIFA ($169 \mathrm{mg}, 0.393 \mathrm{mmol}, 1.2$ equiv.), and the resulting solution was allowed to stir at room temperature. After 2 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}_{1}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified using flash column chromatography (hex:EtOAc 90:10) to give acyl silane $\mathbf{1 5 a}$ ($80 \mathrm{mg}, 74 \%$ yield) as a colorless clear oil.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.48-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.30(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.12$ $(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.77(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{dt}, J=2.6,6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.93(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{ddd}, J=7.0,7.0,13.9$ $\mathrm{Hz}, 2 \mathrm{H}), 1.73-1.68(\mathrm{~m}, 2 \mathrm{H}), 0.82-0.77(\mathrm{~m}, 2 \mathrm{H}), 0.23(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150.9 MHz, CDCl 3): $\delta 247.3,153.6,138.1,129.2$, 123.5, 118.8, 83.9, 69.1, 67.3, 47.2, 23.4, 20.8, 17.9, 10.0, -4.6. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{3} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $m / z 354.1496$, found $m / z 354.1499$.

Synthesis of acyl silane 15b

(3-((1,3-dithian-2-yl)diphenylsilyl)propoxy)(tert-butyl)dimethylsilane (11b): To an oven-dried Schlenk flask fitted with a rubber septum and cooled under N_{2} was added platinum(0)-1,3-divinyl 1,1,1,3,3-tetramethyldisiloxane complex solution (Karstedt's catalyst) [0.1 M in vinyl terminated poly(dimethylsiloxane), ca $15 \mu \mathrm{~L}, 0.05 \mathrm{~mol} \%$] and $\mathrm{Ph}_{2} \mathrm{SiHCl}$ ($0.6 \mathrm{~mL}, 3.09$ mmol, 1 equiv.) by syringe drop-wise. The resulting solution was stirred for 10 min at room temperature, then (allyloxy)(tertbutyl)dimethylsilane ($0.531 \mathrm{~g}, 3.09 \mathrm{mmol}$, 1 equiv.) was added as a neat liquid by syringe and the solution was heated in an $80^{\circ} \mathrm{C}$ oil bath for 25 min . After cooling to room temperature, the reaction mixture (10b) was used immediately in the next step without further purification. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 7.66-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.47-7.39(\mathrm{~m}, 6 \mathrm{H}), 3.61(\mathrm{t}, J=6.4 \mathrm{~Hz}$, $2 \mathrm{H}), 1.76-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 6 \mathrm{H})$.

A flame dried 50 mL round bottom flask cooled under vacuum was charged with 1,3-dithiane ($0.312 \mathrm{~g}, 2.6 \mathrm{mmol}, 1.0$ equiv.) and THF ($13 \mathrm{~mL}, 0.2 \mathrm{M}$). The reaction vessel was cooled to $-30^{\circ} \mathrm{C}$ and a solution of $n \mathrm{BuLi}(2.99 \mathrm{mmol}, 1.15$ equiv.) was added dropwise. The solution was allowed to warm to room temperature and stir for 1 h before cooling to $-78{ }^{\circ} \mathrm{C}$ and adding $\mathbf{1 0 b}$ (1.2 equiv.) dropwise. The reaction mixture was allowed to warm to room temperature overnight and the resulting orange solution was quenched by addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with EtOAc three times. The combined organic layers were washed with saturated brine, dried over MgSO_{4}, and concentrated in vacuo. The resulting oil was purified using flash column chromatography (hex:EtOAc 95:5) to give 11b ($0.894 \mathrm{~g}, 1.84 \mathrm{mmol}, 71 \%$ over two steps) as an oil.
${ }^{1} \mathbf{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.70-7.63(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.34(\mathrm{~m}, 6 \mathrm{H}), 4.25(\mathrm{~s}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.92(\mathrm{ddd}, J$ $=3.3,11.6,14.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{dt}, J=14.1,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-1.99(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.32-1.23(\mathrm{~m}, 2 \mathrm{H}), 0.89$ ($\mathrm{s}, 9 \mathrm{H}$), 0.03 ($\mathrm{s}, 6 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 135.8,132.5,130.0,127.9,65.8,32.6,31.8,27.1,26.15,26.10,22.15$, 18.5, 7.5, -5.1 HRMS $\left(\mathrm{ESI}^{+}\right)$: calculated for $\left[\mathrm{C}_{25} \mathrm{H}_{38} \mathrm{OS}_{2} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}$required m / z 497.1795, found $m / z 497.1792$.

tert-butyl(3-(diphenyl(2-(5-(trimethylsilyl)pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propoxy)dimethylsilane (12b): A flame dried 50 mL round bottomed flask cooled under vacuum was charged with $\mathbf{1 1 b}(0.500 \mathrm{~g}, 1.05 \mathrm{mmol}, 1.0$ equiv.) and THF $(5.27 \mathrm{~mL}, 0.2 \mathrm{M})$ and cooled to $-78^{\circ} \mathrm{C}$, followed by the dropwise addition of $n \operatorname{BuLi}(2.4 \mathrm{M}, 0.57 \mathrm{~mL}, 1.3$ equiv.). After stirring for 5 min at $-78^{\circ} \mathrm{C}$, the reaction was allowed to warm to room temperature over an hour, then returned to $-78^{\circ} \mathrm{C}$ prior to the dropwise addition of (5-chloropent-1-yn-1-yl) trimethylsilane ($0.239 \mathrm{~g}, 1.37 \mathrm{mmol}, 1.3$ equiv.). The reaction was then allowed to warm to room temperature and stir overnight. After 16 h , the reaction was quenched by the addition of sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with a $1: 1$ mixture of $\mathrm{Et}_{2} \mathrm{O} /$ /hexanes. The combined organics were washed with saturated brine, dried over MgSO_{4}, and concentrated to an oil. Purification of the crude material by flash column chromatography on silica gel in 95:5 hex/EtOAc yielded the desired product 12b as a clear, colorless oil ($0.333 \mathrm{~g}, 50 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl} 3$): $\delta 7.81$ (br.d $\left.J=7 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.46-7.31(\mathrm{~m}, 6 \mathrm{H}), 3.53(\mathrm{t}, J=6.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.05(\mathrm{~m}, 2 \mathrm{H})$, $2.47-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.30-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.09(\mathrm{t}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.48-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.35(\mathrm{~m}$, 2 H), $1.34-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.0(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 136.57,132.52,129.81$, $127.68,107.27,84.89,65.71,39.69,36.44,27.57,26.42,26.09,25.38,24.98,23.93,18.44,7.66,0.27,-5.14$. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{52} \mathrm{OS}_{2} \mathrm{Si}_{3}+\mathrm{H}\right]^{+}$required $m / z 613.2840$, found $m / z 613.2838$.

3-((2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)diphenylsilyl)propan-1-ol (13b): A flame dried scintillation vial was charged with 12b ($0.436 \mathrm{~g}, 0.711 \mathrm{mmol}$, 1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}(146 \mathrm{mg}, 1.06 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{MeOH}(1.5 \mathrm{~mL}, 0.5 \mathrm{M})$ and stirred rapidly. Partial conversion was observed by TLC after workup following 6 h of stirring, at which point the material was charged with an additional batch of $\mathrm{K}_{2} \mathrm{CO}_{3}$ (278 mg , 2.0 equiv) and $\mathrm{MeOH}(3 \mathrm{~mL}$), until full consumption of $\mathbf{1 2 b}$ was observed by TLC, approximately 3 h . The reaction was transferred to a separatory funnel with $\mathrm{Et}_{2} \mathrm{O}$ and hexanes, washed with water, dried over MgSO_{4}, and concentrated. The crude material was then transferred to a scintillation vial charged with p-toluenesulfonic acid ($13 \mathrm{mg}, 0.075 \mathrm{mmol}, 0.1$ equiv.) and a $1: 1$ solution of $\mathrm{DCM}: \mathrm{MeOH}(0.05 \mathrm{M}, 14 \mathrm{~mL})$. After stirring for 4 h , the solution was diluted with EtOAc, washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give $\mathbf{1 3 b}(191 \mathrm{mg}, 0.448 \mathrm{mmol}, 63 \%$ yield over two steps) as a viscous oil.
${ }^{1} \mathbf{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{app} \mathrm{d}, J=7.5 \mathrm{~Hz}, 4 \mathrm{H}), 7.45-7.35(\mathrm{~m}, 6 \mathrm{H}), 3.57(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.07(\mathrm{ddd}, J=$ $3.1,12.0,14.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{dt}, J=14.4,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.30-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.01(\mathrm{~m}, 2 \mathrm{H}), 2.07-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}$, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.64-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.46-1.40(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 136.48$, 132.22, 129.84, 127.68, 84.12, 68.63, 65.51, 39.49, 36.64, 27.56, 26.42, 24.80, 23.94, 18.56, 7.72. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{24} \mathrm{H}_{30} \mathrm{OS}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $m / z 449.1400$, found $m / z 449.1396$.

3-((2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)diphenylsilyl)propyl benzoate (14b): A flame-dried screw-capped culture tube cooled under vacuum was charged with $\mathbf{1 3 b}(156.4 \mathrm{mg}, 0.36 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{DCM}(0.91 \mathrm{~mL}, 0.2 \mathrm{M})$. Phenylisocyanate ($43 \mathrm{~mL}, 0.40 \mathrm{mmol}, 1.1$ equiv.) and DMAP ($4.4 \mathrm{mg}, 0.036 \mathrm{mmol}, 0.1$ equiv.) were quickly added and the resulting mixture was stirred under N_{2} at room temperature overnight. After 16 h , the resulting cloudy mixture was diluted with DCM, washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give 14b $(178.6 \mathrm{mg}, 0.327 \mathrm{mmol}, 90 \%$ yield) as a crude white solid which was used in the next step without further purification.
${ }^{1} H$ NMR ($400.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.80(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}), 7.48-7.28(\mathrm{~m}, 10 \mathrm{H}), 7.09-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.10(\mathrm{t}$, $J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.14-3.02(\mathrm{~m}, 2 \mathrm{H}), 2.48(\mathrm{dt}, J=14.1,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.34-2.26(\mathrm{~m}, 2 \mathrm{H}), 2.08-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=2.7$ $\mathrm{Hz}, 1 \mathrm{H}), 1.70-1.54(\mathrm{~m}, 6 \mathrm{H}), 1.50-1.44(\mathrm{~m}, 2 \mathrm{H})$.

3-(hex-5-ynoyldiphenylsilyl)propyl phenylcarbamate (15b): A flame-dried scintillation vial was charged with $\mathbf{1 4 b}$ (17 mg , 0.037 mmol 1.0 equiv.), $\mathrm{NaHCO}_{3}\left(6.2 \mathrm{mg}, 0.075 \mathrm{mmol}, 2.0\right.$ equiv.), and $9: 1$ solution of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(700: 75 \mathrm{uL}, 0.05 \mathrm{M})$. To the rapidly stirred mixture was added PIFA ($19 \mathrm{mg}, 0.045 \mathrm{mmol}, 1.2$ equiv.), and the resulting orange solution was allowed to stir at room temperature. After 2 h , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}_{1} \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified using flash column chromatography (hex:EtOAc 95:5) to give 15b ($13 \mathrm{mg}, 76 \%$ yield) as a pale yellow oil.
${ }^{1} \mathbf{H}$ NMR ($600.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.58$ (br. d, $J=7.0 \mathrm{~Hz}, 4 \mathrm{H}$), 7.46 (tt, $J=6.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}$), 7.40 (app. t, $J=7.5 \mathrm{~Hz}, 4 \mathrm{H}$), 7.35 (br. d, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{tt}, J=7.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.54(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.78$ $(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.12(\mathrm{td}, J=7.0,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.87(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 2 \mathrm{H}), 1.71(\mathrm{ddd}, J=13.9,7.0,7.0$ $\mathrm{Hz}, 2 \mathrm{H}$), and $1.38-1.33(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150.9 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 243.76,187.88,137.58,135.38,131.35,130.34,129.04$, 128.37, 123.38, 83.67, 68.94, 48.23, 29.72, 23.12, 20.81, 17.70, and 7.83. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{NO}_{3} \mathrm{Si}^{+}+\mathrm{Na}\right]^{+}$ required $m / z 478.1809$, found $m / z 478.1819$.

Synthesis of acyl silane 15c

(1,3-dithian-2-yl)diisopropyl(3-((4-methoxybenzyl)oxy)propyl)silane (11c): To an oven-dried Schlenk flask fitted with a rubber septum and cooled under N_{2} was added platinum(0)-1,3-divinyl 1,1,1,3,3-tetramethyldisiloxane complex solution (Karstedt's catalyst) [0.1 M in vinyl terminated poly(dimethylsiloxane), ca $150 \mu \mathrm{~L}, 0.05 \mathrm{~mol} \%$] and $i \operatorname{Pr} 2 \mathrm{SiHCl}$ ($4.5 \mathrm{~g}, 30 \mathrm{mmol}$, 1.0 equiv.) by syringe dropwise. The resulting yellow solution was stirred for 10 min at room temperature, then 1-((allyloxy)methyl)-4-methoxybenzene ($9 \mathrm{c}, 4.92 \mathrm{~g}, 30 \mathrm{mmol}, 1.0$ equiv.) was added as a neat liquid by syringe. The vessel was heated to $80^{\circ} \mathrm{C}$ in an oil bath for 16 h . After cooling to room temperature, the reaction mixture ($\mathbf{1 0 c}$) was used immediately in the next step without further purification. ${ }^{1} \mathbf{H}$ NMR: $\left(300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.27(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz}), 6.90(\mathrm{~d}, 2 \mathrm{H}, J=8.7 \mathrm{~Hz})$, $4.45(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.44(\mathrm{t}, 2 \mathrm{H}, J=6.7 \mathrm{~Hz}), 1.79-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.11-1.06(\mathrm{~m}, 14 \mathrm{H}), 0.89-0.83(\mathrm{~m}, 2 \mathrm{H})$. A flame dried 250 mL round bottom flask cooled under vacuum was charged with 1,3-dithiane ($2.57 \mathrm{~g}, 21.4 \mathrm{mmol}, 1.0$ equiv.) and THF ($70 \mathrm{~mL}, 0.3 \mathrm{M}$). The reaction vessel was cooled to $-30{ }^{\circ} \mathrm{C}$ and a solution of $n \mathrm{BuLi}(2.4 \mathrm{M}$ in hexanes, $9.83 \mathrm{~mL}, 23.6$ mmol, 1.1 equiv.) was added dropwise resulting in a persistent, but faint yellow color. The solution was maintained at $-30^{\circ} \mathrm{C}$ for 1 h before cooling to $-78{ }^{\circ} \mathrm{C}$ and adding 10c (1.2 equiv.) as a solution in THF (10 mL) dropwise. The reaction mixture was allowed to warm to room temperature overnight and then quenched by addition of 200 mL sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with a $1: 1$ mixture of $E t_{2} \mathrm{O} / \mathrm{hex}(3 \mathrm{x}, 100 \mathrm{~mL})$. The combined organic layers were washed with saturated brine, dried over MgSO_{4}, and concentrated in vacuo. The resulting residue was purified by flash column chromatography on silica gel in 95:5 hex/EtOAc to yield a clear, colorless oil ($4.84 \mathrm{~g}, 55 \%$ yield).
${ }^{1}$ H NMR: $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.29(\mathrm{~d}, J=8.5 \mathrm{~Hz} 2 \mathrm{H}), 6.89(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.91(\mathrm{~s}, 1 \mathrm{H}) 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.44$ (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.90(\mathrm{ddd}, J=14.7,12.2,2.8,2 \mathrm{H}), 2.71(\mathrm{dt}, J=13.8,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.16-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.83-1.76(\mathrm{~m}$, $2 \mathrm{H}), 1.26-1.17(\mathrm{~m}, 2 \mathrm{H}), 1.14(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.77-0.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 MHz) δ 159.1, 130.8, 129.3, 113.8, 73.3, 72.5, 55.3, 32.1, 31.9, 26.6, 24.2, 18.59, 18.56, 11.0, 5.1. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $m / z 435.1823$, found $m / z 435.1829$.

alkyne:
(5-(2-(diisopropyl(3-((4-methoxybenzyl)oxy)propyl)silyl)-1,3-dithian-2-yl)pent-1-yn-1-yl)trimethylsilane (12c): A flame dried 100 mL round bottom flask cooled under vacuum was charged with $\mathbf{1 1 c}(1.95 \mathrm{~g}, 4.73 \mathrm{mmol}, 1.0$ equiv.) and THF (24 $\mathrm{mL}, 0.2 \mathrm{M})$ and cooled to $-78^{\circ} \mathrm{C}$, followed by the dropwise addition of $n \mathrm{BuLi}(2.4 \mathrm{M}, 2.27 \mathrm{~mL}, 1.1$ equiv.). After stirring for 5 min at $-78{ }^{\circ} \mathrm{C}$, the reaction was allowed to warm to room temperature over an hour, resulting in an orange solution that was then returned to $-78{ }^{\circ} \mathrm{C}$ prior to the addition of anhydrous DMPU ($2.7 \mathrm{~mL}, 23.7 \mathrm{mmol}, 5$ equiv.) and (5-bromopent-1-yn-1-yl) trimethylsilane ($1.24 \mathrm{~g}, 5.66 \mathrm{mmol}, 1.2$ equiv.). The reaction was then allowed to warm to room temperature and stir overnight.

After 16 h , the reaction was quenched by the addition of 100 mL sat. $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with a $1: 1$ mixture of $\mathrm{Et}_{2} \mathrm{O} / \mathrm{hexanes}$ $(3 \times 50 \mathrm{~mL})$. The combined organics were washed with saturated brine, dried over MgSO_{4}, filtered, and concentrated to an oil. Purification of the crude material by flash column chromatography on silica gel in $95: 5$ hex/EtOAc yielded the desired product as a clear, colorless oil ($1.29 \mathrm{~g}, 49 \%$ yield $)$.
${ }^{1} \mathbf{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.28(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 3.14$ (ddd, $J=14.3,11.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.49-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dt}, J=14.1,3.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H})$, $2.07-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.80(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.37$ (hept, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.19(\mathrm{~d}, J=$ $7.2,6 \mathrm{H}), 1.18(\mathrm{~d}, J=7.5,6 \mathrm{H}), 0.16(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,131.0,129.4,113.9,107.3,85.2,73.5$, $72.5,55.4,40.5,36.9,26.9,25.2,25.0,23.8,20.2,19.8,19.8,12.3,6.4,0.3$. HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{29} \mathrm{H}_{50} \mathrm{O}_{2} \mathrm{~S}_{2} \mathrm{Si}_{2}+\mathrm{Na}\right]^{+}$ required $m / z 573.2683$, found $m / z 573.2686$.

3-(diisopropyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propan-1-ol (13c): A flame dried 25 mL round bottom flask was charged with 5 ($1.29 \mathrm{~g}, 2.24 \mathrm{mmol}$, 1 equiv.), $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($464 \mathrm{mg}, 3.36 \mathrm{mmol}, 1.5$ equiv.) and $\mathrm{MeOH}(5 \mathrm{~mL}, 0.5 \mathrm{M})$ and stirred rapidly until full consumption of $\mathbf{5 c}$ was observed by TLC, approximately 1.5 h . The reaction was transferred to a separatory funnel with $\mathrm{Et}_{2} \mathrm{O}$, washed with water, dried over MgSO_{4}, and concentrated. The crude product was transferred to a 25 mL round bottom flask and dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{H}_{2} \mathrm{O}(19: 1,12 \mathrm{~mL})$. To the stirred solution was added DDQ (497 mg, $2.19 \mathrm{mmol}, 1.05$ equiv.) resulting in a dark purple color. After stirring for 45 min , the reaction was quenched by the addition of sat. NaHCO_{3} sol. and filtered through a short pad of Celite washing with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The filtrate was washed with water, brine, dried over MgSO_{4}, and concentrated to a colored oil. The crude material was purified by a gradient column (9:1 to $8: 2$ hex:EtOAc) to yield the desired product as a clear, colorless oil ($735 \mathrm{mg}, 99 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($300.1 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 3.60(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.09(\mathrm{ddd}, 14.9,12.7,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.45-2.42(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dt}, J$ $=14.3,3.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{td}, J=6.74,2.70,2 \mathrm{H}), 2.05-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{t}, J=2.63 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.82-$ $1.75(\mathrm{~m}, 4 \mathrm{H}), 1.67\left(\right.$ br. s, 1H) $1.39-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.18-1.16(\mathrm{~m}, 12 \mathrm{H}), 0.85-0.82(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}\right):$ $\left.\delta 84.3,69.0,66.1,40.4,37.2,28.0,27.0,25.1,23.9,19.8,19.7,18.8,12.3,6.1 . H R M S_{(E S I}{ }^{+}\right)$calculated for $\left[\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OS}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $m / z 381.1740$, found $m / z 381.1712$.

3-(diisopropyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propyl phenylcarbamate (14c): A flame-dried culture tube cooled under vacuum was charged with $\mathbf{1 3 c}(65 \mathrm{mg}, 0.18 \mathrm{mmol}, 1.0$ equiv.) and DCM ($0.91 \mathrm{~mL}, 0.2 \mathrm{M}$). Phenylisocyanate (22 mL , $0.20 \mathrm{mmol}, 1.1$ equiv.) and DMAP ($2.2 \mathrm{mg}, 0.018 \mathrm{mmol}, 0.1$ equiv.) were quickly added and the resulting mixture was stirred under N_{2} at room temperature overnight. After 16 h , the resulting cloudy mixture was diluted with DCM , washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo to give $\mathbf{1 4 c}(74.2 \mathrm{mg}, 0.155$ $\mathrm{mmol}, 86 \%$ yield) as a crude white solid which was used in the next step without further purification.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(400.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.61(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=6.7$ $\mathrm{Hz}, 2 \mathrm{H}$), $3.15-3.05(\mathrm{~m}, 2 \mathrm{H}), 2.49-2.35(\mathrm{~m}, 4 \mathrm{H}), 2.29(\mathrm{dt}, J=2.7,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.88(\mathrm{~m}, 2 \mathrm{H})$, $1.84-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.16(\mathrm{~m}, 12 \mathrm{H}), 0.92-0.85(\mathrm{~m}, 2 \mathrm{H})$.

3-(hex-5-ynoyldiisopropylsilyl)propyl phenylcarbamate (15c): A flame-dried scintillation vial was charged with $\mathbf{1 4 c}$ (9 mg , 0.023 mmol , 1.0 equiv.), NaHCO_{3} ($3.9 \mathrm{mg}, 0.047 \mathrm{mmol}$, 2.0 equiv.), and a solution of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(9: 1,0.05 \mathrm{M}, 0.5 \mathrm{~mL}$). To the rapidly stirred mixture was added PIFA ($12 \mathrm{mg}, 0.028 \mathrm{mmol}, 1.2$ equiv.), and the resulting yellow solution was allowed to stir at room temperature. After 30 min , the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$, washed sequentially with sat. aqueous $\mathrm{NH}_{4} \mathrm{Cl}_{1}, \mathrm{H}_{2} \mathrm{O}$, and brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude material was purified using flash column chromatography (hex:EtOAc 95:5) to give acylsilane 15 c ($6.7 \mathrm{mg}, 0.017 \mathrm{mmol}, 74 \%$ yield) as a clear solid.
${ }^{1} \mathbf{H}$ NMR ($500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $7.42-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.06(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.62(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 4.14(\mathrm{t}, J=$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.20(\mathrm{dt}, J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.95(\mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.80-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.17$ (m, 2H (overlap with EtOAc)), $1.09-1.04(\mathrm{~m}, 12 \mathrm{H}), 0.88-0.83(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 MHz, CDCl_{3}): 137.9, 135.4, 129.1, 128.4, 123.4, 83.7, 69.0, 67.6, 49.3, 23.5, 20.4, 18.2, 18.1, 17.8, 10.6, 4.7. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{22} \mathrm{H}_{33} \mathrm{NO}_{3} \mathrm{Si}^{+}+\mathrm{Na}\right]^{+}$ required $m / z 410.2122$, found $m / z 410.2126$.

Synthesis of acyl silane (+)-JQ1 probes

tert-butyl (3-(diisopropyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propyl)carbamate (SI-2): A 10 mL flame dried round bottom flask cooled under vacuum was charged with $\mathbf{1 3 c}$ ($100 \mathrm{mg}, 0.280 \mathrm{mmol}, 1$ equiv.), N -boc-2-nitrobenzenesulfonamide (SI-1, $100 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.15$ equiv., prepared according to Fukumaya, T.; Cheung, M.; Kan, T. Synlett 1999, 1301-1303), triphenyl phosphine ($84 \mathrm{mg}, 0.32 \mathrm{mmol}, 1.15$ equiv.), and DIAD ($63 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 1.15$ equiv.) in THF (0.1 M). The mixture was stirred for 16 h before the addition of thiophenol ($60 \mu \mathrm{~L}, 0.588 \mathrm{mmol}, 2.1$ equiv.) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(340 \mathrm{mg}, 1.05 \mathrm{mmol}, 3.75$ equiv.). The reaction was heated to $50^{\circ} \mathrm{C}$ and vigorously stirred for 4 h before cooling to room temperature. The reaction was quenched by the addition of $5 \mathrm{~mL} 0.5 \mathrm{M} \mathrm{NaOH}(5 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic layers were washed with brine, dried over MgSO_{4} before concentrating to an oil. Purification of the crude product by flash chromatography by gradient elution of 9:1 to $8: 2 \mathrm{hex}: E t O A c$ yield the N-Boc protected amine ($115 \mathrm{mg}, 91 \%$ yield). The product appears faintly on TLC under UV, but presents as a significant dark band upon heating in p-anisaldehyde stain.
${ }^{1} H$ NMR: $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.64(\mathrm{bs}, 1 \mathrm{H}), 3.10$ (apparent $\left.\mathrm{t}, J=13.2 \mathrm{~Hz}, 2 \mathrm{H}\right) 2.45-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{dt}, J=14.3$, $3.74 \mathrm{~Hz}, 2 \mathrm{H}$,), $2.28(\mathrm{td}, J=6.7,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{t}, J=2.34 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.75$ (m, 2H), $1.74-1.67(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), 1.34(\mathrm{hept}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}) 1.17(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 6 \mathrm{H}), 1.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.83$
$-0.79(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 156.1,84.3,79.0,69.1,44.1,40.3,37.3,28.6,27.0,25.1,23.9,19.8,19.7$, 18.9, 12.3, 7.5. HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{NO}_{2} \mathrm{~S}_{2} \mathrm{Si}+\mathrm{H}\right]^{+}$required m / z 458.2577, found $m / z 458.2609$.

Amine linker SI-4: N-Boc protected amine SI-3 ($91 \mathrm{mg}, 0.200 \mathrm{mmol}, 1$ equiv.) was dissolved in DCM ($1 \mathrm{~mL}, 0.2 \mathrm{M}$) and cooled to $4^{\circ} \mathrm{C}$ before adding TFA $(0.25 \mathrm{~mL})$. After 1 h , the reaction was complete by TLC and concentrated, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with 1 N NaOH . The organic layer was concentrated to a yellow oil and immediately used in the next reaction without further purification (crude mass 70 mg , crude yield 98%).

13c

SI-4
N-Boc protected amine linker SI-4: A 1 dram vial was charged with $\mathbf{1 3 c}$ ($50 \mathrm{mg}, 0.140 \mathrm{mmol}, 1.0$ equiv.), THF ($0.7 \mathrm{~mL}, 0.2$ M), and CDI ($45 \mathrm{mg}, 0.280 \mathrm{mmol}, 2.0$ equiv) and stirred at ambient temperature for 1 h . Subsequently, N -boc-ethylenediamine ($67 \mathrm{mg}, 0.420 \mathrm{mmol}, 3.0$ equiv.) and DMAP ($51 \mathrm{mg}, 0.420 \mathrm{mmol}, 3.0$ equiv.) were added. The reaction was stirred overnight before diluting with water and extracting the mixture with EtOAc. The organic extract was washed with brine, dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude residue was purified by flash chromatography of EtOAc in hexanes to yield SI-4 ($67 \mathrm{mg}, 88 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.11(\mathrm{~s}, 1 \mathrm{H}), 4.93(\mathrm{~s}, 1 \mathrm{H}), 4.00(\mathrm{t}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}) 3.26-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.09(\mathrm{td}, J=14.9$, 12.8, 2.7 Hz, 2H), $2.45-2.40(\mathrm{~m}, 2 \mathrm{H}) 2.38(\mathrm{dt}, J=14.2,3.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.28(\mathrm{td}, J=6.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.95-$ $1.76(\mathrm{~m}, 5 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}), 1.35$ (hept, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 6 \mathrm{H}), 1.16(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.88-0.77(\mathrm{~m}, 2 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR (125.7 MHz, CDCl_{3}) $\delta 157.2,156.5,84.3,79.6,69.1,67.9,41.4,40.8,40.3,37.3,28.5,27.0,25.0,24.4,23.9,19.8$, 19.7, 18.9, 12.3, 6.3. HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{~S}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required $m / z 567.2717$, found $m / z 567.2718$.

Amine linker SI-5: A 1 dram vial was charged with SI-4 ($67 \mathrm{mg}, 0.123 \mathrm{mmol}$) and DCM ($1.4 \mathrm{~mL}, 0.09 \mathrm{M}$) and cooled in an ice bath. Subsequently, TFA ($0.11 \mathrm{~mL}, 1.4 \mathrm{mmol}, 11.3$ equiv.) was added and stirred until complete by TLC. The reaction was concentrated, diluted with $\mathrm{Et}_{2} \mathrm{O}$ and washed with 1 N NaOH . The organic layer was concentrated to a 84 mg of a yellow oil and immediately used in the next reaction without further purification.

Acyl silane dithiane precursor to 16 (SI-6): To a solution of (+)-JQ1-OH ($50 \mathrm{mg}, 0.125 \mathrm{mmol}, 1.0$ equiv.) in a 2 dram vial was added DMF ($1.25 \mathrm{~mL}, 0.1 \mathrm{M}$), HATU ($50 \mathrm{mg}, 0.131 \mathrm{mmol}$, 1.05 equiv.), and $i-\mathrm{PrNEt}_{2}(65 \mu \mathrm{~L}, 0.575 \mathrm{mmol}, 4.5$ equiv.). After 10 min , freshly prepared SI-3 was added ($46 \mathrm{mg}, 0.138 \mathrm{mmol}, 1.05$ equiv.) and the reaction was allowed to stir for 16 h before removing the DMF in vacuo and purifying by silica gel chromatography using a gradient elution of 99.5:0.05-96:4 $\mathrm{DCM} / \mathrm{MeOH}$. The product was isolated as a white solid ($50 \mathrm{mg}, 55 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.39(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.70(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{t}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}$), 3.71 (hept, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.51(\mathrm{dd}, J=14.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.37-3.29(\mathrm{~m}, 2 \mathrm{H}), 3.25-3.14(\mathrm{~m}, 2 \mathrm{H}), 3.08(\mathrm{ddd}, J=$ $15.2,12.8,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.65(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 4 \mathrm{H}), 2.35(\mathrm{dt}, J=14.0,3.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.27(\mathrm{td}, J=6.7,2.7$ $\mathrm{Hz}, 2 \mathrm{H}), 2.03-1.99(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{~s}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.98-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.72(\mathrm{~m}, 4 \mathrm{H}), 1.36-1.29(\mathrm{~m}, 1 \mathrm{H}), 1.18-$ $1.10(\mathrm{~m}, 12 \mathrm{H}), 0.84-0.78(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.4,164.0,155.8,150.0,136.8,136.7,132.2,131.0$, $130.5,129.9,128.8,84.3,69.1,54.5,43.7,43.3,40.3,39.4,37.2,26.9,25.0,24.8,23.9,19.8,19.8,19.7,18.8,14.4,13.2$, 12.22, 12.21, 11.9, 7.7. HRMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{37} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{OClS}_{3} \mathrm{Si}+\mathrm{H}\right]^{+}$required $m / z 740.2714$, found $m / z 740.2708$.

Acyl silane 16: To a solution of SI-6 ($48 \mathrm{mg}, 0.0649 \mathrm{mmol}, 1$ equiv.) and $\mathrm{CaCO}_{3}(64.9 \mathrm{mg}, 0.649 \mathrm{mmol}, 10$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}\left(9: 1,0.05 \mathrm{M}, 1.4 \mathrm{~mL}\right.$) cooled in an ice bath to $4{ }^{\circ} \mathrm{C}$ was added PIFA ($29.3 \mathrm{mg}, 0.0681 \mathrm{mmol}, 1.05$ equiv.) dropwise in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{~mL})$. The solution was stirred for 30 min in the ice bath before dilution with EtOAc. The resulting mixture was washed with sat. aqueous NaHCO_{3}, brine, and dried over MgSO_{4} before concentrating in vacuo. The crude material was purified by flash column chromatography using a gradient elution of 99.5:0.05-96:4 DCM/MeOH to give $\mathbf{1 6}$ as a white solid ($34 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.26(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.76(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=14.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=14.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{p}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 2.12(\mathrm{td}, J=6.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.90(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.67(\mathrm{p}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}), 1.60(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{hept}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.00-0.92(\mathrm{~m}, 12 \mathrm{H}), 0.74-0.68(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 246.6,170.2,164.7,155.4,150.2,137.5,135.9,132.2,131.7,131.3,130.5,130.2,128.9,84.0,69.1,54.3,49.5$, $43.0,38.8,24.1,20.6,18.3,18.2,17.9,14.5,13.3,11.8,10.7,5.9$ HRMS (ESI^{+}) calculated for $\left[\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{ClSSi}^{+} \mathrm{H}\right]^{+}$ required $m / z 650.2752$, found $m / z 650.2744$.

Acyl silane dithiane precursor to 17 SI-7: To a solution of (+)-JQ1-OH ($30 \mathrm{mg}, 0.075 \mathrm{mmol}, 1.0$ equiv.) in a 2 dram vial was added DMF ($0.75 \mathrm{~mL}, 0.1 \mathrm{M}$), HATU ($31 \mathrm{mg}, 0.0825 \mathrm{mmol}, 1.1$ equiv.), and $i-\operatorname{PrNEt} 2$ ($52 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 4.0$ equiv.). After 10 min , freshly prepared SI-5 was added ($36 \mathrm{mg}, 0.0825 \mathrm{mmol}, 1.1$ equiv.) and the reaction was allowed to stir for 16 h before removing the DMF in vacuo and purifying by silica gel chromatography using a gradient elution of 99.5:0.05 - 96:4 $\mathrm{DCM} / \mathrm{MeOH}$. The product was isolated as a white solid ($32 \mathrm{mg}, 52 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.72(\mathrm{br} . \mathrm{s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.03(\mathrm{~m}, 1 \mathrm{H}), 4.69(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.93(\mathrm{~m}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=14.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=14.6,5.9, \mathrm{~Hz}, 1 \mathrm{H}), 3.40-$ $3.25(\mathrm{~m}, 3 \mathrm{H}), 3.08(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.30-2.22(\mathrm{~m}, 2 \mathrm{H}), 2.06-1.99(\mathrm{~m}$, $2 \mathrm{H}), 1.97-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.73(\mathrm{~m}, 4 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.35(\mathrm{hept}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 12 \mathrm{H}), 0.85-0.78(\mathrm{~m}$, $2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(125.7 \mathrm{MHz}^{2} \mathrm{CDCl}_{3}\right) \delta 171.2,164.1,157.2,155.9,150.1,136.9,136.6,132.1,131.1,131.0,130.7,130.0,128.9$, $84.3,69.1,67.9,54.4,53.6,41.2,40.3,39.9,39.0,37.3,26.9,25.1,24.5,23.9,19.8,19.7,18.9,14.5,13.2,12.3,11.9,6.2$. HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{6} \mathrm{O}_{3} \mathrm{ClS}_{3} \mathrm{Si}+\mathrm{H}\right]^{+}$required $\mathrm{m} / \mathrm{z} 827.3034$, found $\mathrm{m} / \mathrm{z} 827.3034$.

Acyl silane 17: To a solution of SI-7 ($32 \mathrm{mg}, 0.0387 \mathrm{mmol}, 1$ equiv.) and CaCO_{3} ($38.7 \mathrm{mg}, 0.387 \mathrm{mmol}, 10$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}\left(9: 1,0.05 \mathrm{M}, 0.8 \mathrm{~mL}\right.$) cooled in an ice bath to $4{ }^{\circ} \mathrm{C}$ was added PIFA ($17.5 \mathrm{mg}, 0.0407 \mathrm{mmol}, 1.05$ equiv.) dropwise in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{~mL})$. The solution was stirred for 30 min in the ice bath before dilution with EtOAc. The resulting mixture was washed with sat. aqueous NaHCO_{3}, brine, and dried over MgSO_{4} before concentrating in vacuo. The crude material was purified by flash column chromatography using a gradient elution of 99.5:0.05-96:4 DCM/MeOH to give $\mathbf{1 7}$ as a white solid ($23 \mathrm{mg}, 81 \%$ yield).
${ }^{1} \mathbf{H}$ NMR $\left(500.0 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.91(\mathrm{t}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 4.70(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 2 \mathrm{H}), 3.59(\mathrm{dd}, J=14.7,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.46(\mathrm{~m}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=14.7$, $6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.40-3.25(\mathrm{~m}, 3 \mathrm{H}), 2.71(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.69(\mathrm{~s}, 3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{td}, J=6.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.96(\mathrm{t}, J$ $=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.73(\mathrm{p}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 1.20(\mathrm{~m}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 7 \mathrm{H}), 1.03(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 6 \mathrm{H}), 0.82-$ $0.75(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($125.7 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 246.6,170.8,165.1,157.1,155.3,150.3,137.7,135.5,132.5,131.8,130.4$, $128.9,84.0,69.1,67.4,54.1,49.5,41.1,40.0,38.4,23.7,20.6,18.3,18.2,17.9,14.6,13.3,11.9,10.7,4.6$. HRMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{ClSSi}+\mathrm{H}\right]^{+}$required $m / z 737.3072$, found $m / z 737.3075$.

(3-azidopropyl)dimethyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silane (20): To a solution of triphenylphosphine (0.393 g, 1.5 mmol, 1.5 equiv.) in THF (6 mL) at $0^{\circ} \mathrm{C}$ was added DIAD ($0.316 \mathrm{~mL}, 1.6 \mathrm{mmol}, 1.6$ equiv.). After stirring for 10 minutes,
alcohol 13a ($0.302 \mathrm{~g}, 1.00 \mathrm{mmol}, 1.0$ equiv.) was added to the cloudy white suspension and allowed to stir at $0{ }^{\circ} \mathrm{C}$ for 30 minutes, at which point diphenylphosphoylazide ($0.346 \mathrm{~mL}, 1.6 \mathrm{mmol}, 1.6$ equiv.) was added dropwise and the reaction was allowed to stir overnight. After 16 h, the reaction was quenched by addition of $\mathrm{H}_{2} \mathrm{O}$, extracted thrice with EtOAc, and concentrated to an oil. The crude residue was purified by flash column chromatography (hex: $\mathrm{EtOAc}=93: 7$) to give 20 (220 $\mathrm{mg}, 67 \%$ yield) as a clear oil which contained 92% product by mass.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.26(\mathrm{td}, J=7.0,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.11-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.39(\mathrm{~m}, 2 \mathrm{H}), 2.38-2.29(\mathrm{~m}, 2 \mathrm{H})$, 2.05 (dddt, $J=12.9,4.5,3.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{td}, J=2.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.96-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.76-1.64(\mathrm{~m}, 4 \mathrm{H}), 0.85-0.76$ $(\mathrm{m}, 2 \mathrm{H}), 0.19(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 MHz, $\left.\mathrm{CDCl}_{3}\right): \delta 84.17,68.85,54.43,38.46,36.38,26.59,25.06,23.89$, 23.35, 18.79, 11.07, -4.37. HRMS $\left(\mathrm{EI}^{+}\right)$calculated for $\left[\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{~N}_{6} \mathrm{O}_{4} \mathrm{ClSSi}+\mathrm{H}\right]^{+}$required $m / z 327.1259$, found $m / z 327.1259$.

20

$16 \mathrm{~h}, 80 \%$ yield

3-(dimethyl(2-(pent-4-yn-1-yl)-1,3-dithian-2-yl)silyl)propan-1-amine (21) To a solution of $\mathbf{2 0}$ ($110 \mathrm{mg}, 0.336 \mathrm{mmol}, 1.0$ equiv.) in THF (1 mL) cooled to $0^{\circ} \mathrm{C}$ was added triphenylphosphine ($132 \mathrm{mg}, 0.505 \mathrm{mmol}, 1.5$ equiv.) and the mixture was allowed to stir for 1 h at room temperature before adding $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{uL}, 0.672 \mathrm{mmol}, 2.0$ equiv. $)$ and the reaction was allowed to stir for 16 h . The mixture was concentrated and purified by flash column chromatography using a gradient elution of 98:2 to 8:2 DCM/MeOH to give 21 ($88 \mathrm{mg}, 80 \%$ yield) as a clear oil.
${ }^{1} \mathbf{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.06(\mathrm{ddd}, J=14.8,12.6,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.76-2.70(\mathrm{~m}, 2 \mathrm{H}), 2.43(\mathrm{dt}, J=14.2,3.8 \mathrm{~Hz}, 2 \mathrm{H})$, $2.38-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.26(\mathrm{td}, J=6.7,2.7 \mathrm{~Hz}, 5 \mathrm{H}), 2.10-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.99(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{qt}, J=13.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71(\mathrm{dq}, J=11.8,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 1.54(\mathrm{ddd}, J=16.6,11.1,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 0.80-0.73(\mathrm{~m}, 2 \mathrm{H}), 0.18(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (125.7 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) : $\delta 84.24,68.83,45.09,38.60,36.34,27.49,26.59,25.10,23.33,18.80,10.68,-4.37 . \mathbf{H R M S}^{\left(\mathrm{ESI}^{+}\right) \text {calculated }}$ for $\left[\mathrm{C}_{14} \mathrm{H}_{27} \mathrm{NS}_{2} \mathrm{Si}+\mathrm{H}\right]^{+}$required m / z 302.1247, found m / z 302.1243.

Dithiane precursor to acylsilane 16Me SI-8. To a solution of (+)-JQ1-OH ($26 \mathrm{mg}, 0.0625 \mathrm{mmol}, 1.0$ equiv.) in a 2 dram vial was added DMF ($0.625 \mathrm{~mL}, 0.1 \mathrm{M}$), HATU ($35.6 \mathrm{mg}, 0.0938 \mathrm{mmol}$, 1.5 equiv.) , and $i-\operatorname{PrNEt}_{2}(16 \mu \mathrm{~L}, 0.0938 \mathrm{mmol}, 1.5$ equiv.). After $10 \mathrm{~min}, \mathbf{2 1}$ was added ($19.7 \mathrm{mg}, 0.0656 \mathrm{mmol}, 1.05$ equiv.) and the reaction was allowed to stir for 16 h before removing the DMF in vacuo and purifying by silica gel chromatography using a gradient elution of 99:1-96:4 DCM/MeOH. The product was isolated as a white solid ($33 \mathrm{mg}, 76 \%$ yield).
${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{dd}, J=8.7,3.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{t}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.71(\mathrm{pd}, J=6.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56-3.49(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{dt}, J=13.1,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.22(\mathrm{dt}, J=12.7,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.17(\mathrm{qd}, J=7.4,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.09-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.66(\mathrm{~s}, 3 \mathrm{H}), 2.45-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.26$ (td, $J=6.7,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.08-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.01(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{qt}, J=12.7,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.67(\mathrm{~m}, 2 \mathrm{H})$, $1.66(\mathrm{~s}, 3 \mathrm{H}), 1.65-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.41(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.80-0.72(\mathrm{~m}, 2 \mathrm{H}), 0.17(\mathrm{~d}, J=1.6 \mathrm{~Hz}$, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 170.48,164.06,155.80,150.02,136.94,136.73,132.25,131.07,131.01,130.61,129.96$, $128.87,84.35,69.02,55.63,54.60,43.62,42.91,39.52,38.70,36.47,28.29,26.70,25.20,24.44,23.46,18.90,18.72,17.33$,
14.50, 13.21, 12.63, 11.94, 11.16, -4.21 (2 extraneous peaks). HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{ClN}_{5} \mathrm{OS} 3 \mathrm{Si}+\mathrm{H}\right]^{+}$required $m / z 684.2082$, found $m / z 684.2094$.

Acyl silane 16Me. To a solution of SI-8 ($5 \mathrm{mg}, 0.00714 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{NaHCO}_{3}(1.2 \mathrm{mg}, 0.0413 \mathrm{mmol}, 2.0$ equiv.) in a solution of $\mathrm{MeCN}: \mathrm{H}_{2} \mathrm{O}(0.025 \mathrm{M}, 270 \mathrm{uL}: 30 \mathrm{uL})$ was added PIFA ($3.7 \mathrm{mg}, 0.00857 \mathrm{mmol}, 1.2$ equiv.) and the resulting yellow solution was allowed to stir for 30 minutes, at which point the solvent was removed in vacuo and the residue was purified by flash column chromatography using a gradient elution of $99: 1$ to $97: 3 \mathrm{DCM}: \mathrm{MeOH}$ to give $\mathbf{1 6 M e}$ ($3.7 \mathrm{mg}, 85 \%$ yield) as a white powder.
${ }^{1} \mathbf{H}^{\text {NMR }}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.62(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{dd}, J=7.9$, $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=14.1,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.36-3.19(\mathrm{~m}, 3 \mathrm{H}), 2.74(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.67(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 2.19(\mathrm{td}$, $J=6.9,2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.97(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74(\mathrm{p}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.48(\mathrm{~m}, 2 \mathrm{H}), 0.72-0.65(\mathrm{~m}, 2 \mathrm{H}), 0.19(\mathrm{~d}, J=$ $4.6 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 247.08,170.54,164.04,155.75,150.02,136.94,136.71,132.23,131.03,130.97$, $130.61,129.92,128.86,83.90,69.13,54.68,47.27,42.50,39.66,29.80,23.84,22.79$?, 20.75, 17.89, 14.47, 13.19, 11.91, 10.71, -4.74. HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{ClN}_{5} \mathrm{O}_{2} \mathrm{SSi}+\mathrm{H}\right]^{+}$required m / z 594.2121, found m / z 594.2127.

Synthesis of diazirine (+)-JQ1 probe

Diazirine 16-DA. To a solution of (+)-JQ1-OH ($14.6 \mathrm{mg}, 0.0365 \mathrm{mmol}, 1.0$ equiv.) in a 2 dram vial was added DMF (0.2 mL), HOBT ($5.4 \mathrm{mg}, 0.0402 \mathrm{mmol}, 1.1$ equiv.), EDCI ($6.2 \mathrm{mg}, 0.0402 \mathrm{mmol}, 1.1$ equiv.), and $\mathrm{NEt}_{3}(9.1 \mathrm{mg}, 0.0657 \mathrm{mmol}$, 1.8 equiv.). After $10 \mathrm{~min}, 2$-(3-(but-3-yn-1-yl)-3H-diazirin-3-yl)ethan-1-amine (SI-12) was added ($5.0 \mathrm{mg}, 0.0365 \mathrm{mmol}, 1.0$ equiv.) in DMF (0.6 mL) and the reaction was allowed to stir for 12 h at which point the solution was diluted with $\mathrm{H}_{2} \mathrm{O}$ extracted 5 times with EtOAc, and the combined organic layers were passed through a short silica plug with EtOAc and concentrated. The material was purified by silica gel chromatography using a gradient elution of 99:1-95:5 DCM:MeOH. The product was isolated as a white solid ($13.7 \mathrm{mg}, 73 \%$ yield).
${ }^{1} H$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.89(\mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=7.8$, $6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=14.3,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{ddt}, J=16.8,13.9,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{~s}$, $3 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 3 \mathrm{H}), 1.68(\mathrm{~s}, 3 \mathrm{H}), 1.72-1.58(\mathrm{~m}, 4 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (126 MHz, CDCl ${ }_{3}$) δ 170.62, 164.15, $137.05,136.55,131.11,131.09,130.62,130.00,128.87,82.86,69.51,54.58,39.43,34.57,32.77,32.14,31.71,26.89,22.78$, 14.52, 14.25, 13.36, 13.23, 11.93, 1.14. HRMS (ESI ${ }^{+}$): calculated for $\left[\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{ClN}_{7} \mathrm{OS}+\mathrm{Na}\right]^{+}$: required $m / z 542.1500$, found m / z 542.1502 .

Synthesis of rapamycin acyl silane probes

Rapamycin p-nitrophenyl carbonate (SI-9): A two-dram vial was charged with rapamycin ($35 \mathrm{mg}, 0.0385 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ followed by pyridine ($31 \mu \mathrm{~L}, 0.385 \mathrm{mmol}, 10$ equiv.). A solution of p-nitrophenylchloroformate (31 mg , 0.155 mmol , 4.0 equiv.) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.4 \mathrm{~mL})$ was added dropwise. After complete addition, the reaction was stirred for 30 min before diluting with EtOAc and washing with 0.5 M HCl cooled in an ice bath. The organic layer was concentrated and the crude material was purified by flash column chromatography using a gradient of $99: 1$ to $96: 4 \mathrm{DCM} / \mathrm{MeOH}$. The product was isolated as a white crystalline solid ($37 \mathrm{mg}, 89 \%$ yield). For NMR data see Table S1.
HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{58} \mathrm{H}_{82} \mathrm{~N}_{2} \mathrm{O}_{17}+\mathrm{Na}\right]^{+}$required m / z 1101.5511, found m / z 1101.5491.

Dithiane rapamycin precursor (SI-10): A two-dram vial was charged with SI-9 ($32 \mathrm{mg}, 0.0300 \mathrm{mmol}, 1$ equiv.), freshly prepared SI-4 ($14 \mathrm{mg}, 0.0306 \mathrm{mmol}, 1.3$ equiv.), $i-\operatorname{Pr}_{2} \mathrm{NEt}\left(10.4 \mu \mathrm{~L}, 0.0600 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(0.6 \mathrm{~mL}, 0.05 \mathrm{M})$. The reaction was stirred for 16 h before diluted with EtOAc. The solution was washed with 0.5 M HCl cooled in an ice bath and brine, before drying over NaSO_{4} and concentrating in vacuo. The crude material was purified by flash column chromatography using a gradient of $99: 1$ to $96: 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$. The product was isolated as a white solid ($20 \mathrm{mg}, 53 \%$ yield). For NMR data see Table S1.

HRMS $\left(\mathrm{ESI}^{+}\right)$calculated for $\left[\mathrm{C}_{70} \mathrm{H}_{112} \mathrm{~N}_{2} \mathrm{O}_{14} \mathrm{~S}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required m / z 1319.7222, found m / z 1319.7217.

Rapamycin acyl silane (18): To a solution of SI-10 (20 mg, $0.0154 \mathrm{mmol}, 1$ equiv.) and $\mathrm{CaCO}_{3}(16 \mathrm{mg}, 0.154 \mathrm{mmol}, 10$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(9: 1,0.025 \mathrm{M}, 0.62 \mathrm{~mL})$ cooled in an ice bath to $4{ }^{\circ} \mathrm{C}$ was added PIFA ($7.0 \mathrm{mg}, 0.0163 \mathrm{mmol}, 1.06$ equiv.) dropwise in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{~mL})$. The solution was stirred for 30 min in the ice bath before dilution with EtOAc. The resulting mixture was washed with sat. aqueous NaHCO_{3}, brine, and dried over MgSO_{4} before concentrating in vacuo. The crude material was purified by flash column chromatography using a gradient elution of 99:1-96:4 $\mathrm{DCM} / \mathrm{MeOH}$ to give $\mathbf{1 8}$ as a white solid ($17 \mathrm{mg}, 91 \%$ yield). For NMR data see Table S1.
HRMS (ESI^{+}) calculated for $\left[\mathrm{C}_{67} \mathrm{H}_{106} \mathrm{~N}_{2} \mathrm{O}_{15} \mathrm{Si}+\mathrm{Na}\right]^{+}$required m / z 1229.7260, found m / z 1229.7241.

Dithiane rapamycin precursor (SI-11): A two-dram vial was charged with SI-9 ($50 \mathrm{mg}, 0.0463 \mathrm{mmol}, 1$ equiv), freshly prepared SI-6 ($22.2 \mathrm{mg}, 0.0510 \mathrm{mmol}, 1.1$ equiv.), $i-\operatorname{Pr}_{2} \mathrm{NEt}\left(16.2 \mu \mathrm{~L}, 0.0930 \mathrm{mmol}, 2.0\right.$ equiv.) and $\mathrm{CH}_{3} \mathrm{CN}(1.85 \mathrm{~mL}, 0.025$ M). The reaction was stirred for 16 h before diluted with EtOAc. The solution was washed with 0.5 M HCl cooled in an ice bath and brine, before drying over NaSO_{4} and concentrating in vacuo. The crude material was purified by flash column chromatography using a gradient of $99: 1$ to $96: 4 \mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$. The product was isolated as a white solid ($22 \mathrm{mg}, 34 \%$ yield). For NMR data see Table S1.

HRMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{73} \mathrm{H}_{117} \mathrm{~N}_{3} \mathrm{O}_{16} \mathrm{~S}_{2} \mathrm{Si}+\mathrm{Na}\right]^{+}$required m / z 1406.7542, found m / z 1406.7537.

Rapamycin acyl silane (19): To a solution of SI-11 ($22 \mathrm{mg}, 0.0152 \mathrm{mmol}, 1$ equiv.) and $\mathrm{CaCO}_{3}(15.2 \mathrm{mg}, 0.152 \mathrm{mmol}, 10$ equiv.) in $\mathrm{CH}_{3} \mathrm{CN}: \mathrm{H}_{2} \mathrm{O}(9: 1,0.05 \mathrm{M}, 0.3 \mathrm{~mL})$ cooled in an ice bath to $4^{\circ} \mathrm{C}$ was added PIFA ($6.8 \mathrm{mg}, 0.0159 \mathrm{mmol}, 1.05$ equiv.) dropwise in $\mathrm{CH}_{3} \mathrm{CN}(0.1 \mathrm{~mL})$. The solution was stirred for 30 min in the ice bath before dilution with EtOAc. The resulting mixture was washed with sat. aqueous NaHCO_{3}, brine, and dried over MgSO_{4} before concentrating in vacuo. The crude material was purified by flash column chromatography using a gradient elution of 99:1-96:4 $\mathrm{DCM} / \mathrm{MeOH}$ to give 19 as a white solid ($17 \mathrm{mg}, 92 \%$ yield). For NMR data see Table S1.

HRMS (ESI ${ }^{+}$) calculated for $\left[\mathrm{C}_{71} \mathrm{H}_{114} \mathrm{~N}_{3} \mathrm{O}_{17} \mathrm{Si}+\mathrm{Na}\right]^{+}$required m / z 1316.7580, found m / z 1316.7569.

References:

[1] J. -H. Ye, L. Quach, T. Paulisch, F. Glorius, J. Am. Chem. Soc. 2019, 141, 16227-16231.
[2] A. G. Brook, Z. Yu, Organometallics 2000, 19, 1859.
[3] S. A. Kim, A. Go, S. -H. Jo, S. Park, Y. -U. Jeon, J. E. Kim, H. K. Park, C.-O. Lee, S. G. Park, P. Kim, B. C. Park, S. Y. Cho, S. Ki, J. D. Ha, J. -H. Kim, J. Y. Hwang, Eur. J. Med. Chem. 2019, 166, 65-74.
[4] T. Fukumaya, M. Cheung, T. Kan, Synlett 1999, 1301-1303.
[5] Z. Li, P. Hao, L. Li, C. Y. J. Tan, X. Cheng, G. Y. J. Chen, S. Kwan Sze, H. -M. Shen, S. Q. Yao, Angew. Chem. Int. Ed. 2013, 52, 8551.
[6] W. Weerpana, C. Wang, G. M. Simon, F. Richter, S. Khare, M. B. D. Dillon, D. A. Bachovchin, K. Mowen, D. Baker, B. F. Cravatt, Nature 2010, 790-795.

Table S1. Structural assignment for rapamycin probes:

Carbon \#	SI-9		Dithiane precursor SI-10		Acyl silane 18	
	Major Carbon (δ)	Major Proton (δ)	Major Carbon (δ)	Major Proton (δ)	Major Carbon (δ)	Major Proton (δ)
1	169.3		169.3		169.4	
2	51.3	5.26	51.4	5.27	51.4	5.28
3	27.0	2.32	27.2	2.32	27.2	2.35
4	20.7		20.8		20.8	
6		3.63, 3.54		3.65, 3.56		3.66, 3.57
8	166.8		166.9		166.9	
9	192.8		192.7		192.6	
10	98.5		98.6		98.6	
11	??	1.95				
14	67.2	3.86	67.3	3.86	67.3	3.86
15		1.85		1.85		1.85
16	84.3	3.65	84.3	3.68	84.5	3.68
17	135.9		135.7		135.7	
18	129.4	5.94	129.7	5.96	129.7	5.97
19		6.36		6.38		6.39
20	133.5	6.27	133.7	6.30	133.8	6.31
21	130.3	6.11	130.3	6.13	130.3	6.14
22	140.0	5.50	140.2	5.54	140.3	5.55
26	215.1		215.4		215.6	
27	84.7	3.74	84.9	3.74	84.9	3.74
28		4.17		4.18		4.18
29	136.1		136.1		136.2	
30		5.38		5.41		5.42
31	46.6		46.7		46.8	
32	208.2		208.4		208.4	
33						
34	75.7	5.17	75.6	5.16	75.6	5.17
40		3.27				
44		1.62		1.65		1.65
47		1.74		1.75		1.75
50	55.9	3.10	56.0	3.13	56.0	3.14
51	59.2	3.30	59.4	3.32	59.5	3.33
52		3.41		3.37		3.38
1a	155.7		156.3		156.3	
2 a	125.3	7.34				
3a	121.8	8.26				
4 a			19.8	1.16	18.3	1.06
5a			19.7	1.15	18.2	1.04
6a			7.5		5.7	0.78
7 a				2.28		2.20
8a			69.1		69.1	
9 a			84.4	2.02	84.0	1.96
10a					246.6	

Carbon \#	SI-9		Dithiane precursor SI-11		Acyl silane 19	
	Major Carbon (δ)	Major Proton (δ)	$\begin{gathered} \text { Major } \\ \text { Carbon }(\delta) \end{gathered}$	Major Proton (δ)	Major Carbon (δ)	$\begin{gathered} \text { Major } \\ \text { Proton }(\delta) \end{gathered}$
1	169.3		169.4		169.4	
2	51.3	5.26	51.4	5.27	51.4	5.28
3	27.0	2.32	27.2	2.32	27.2	2.35
4	20.7		20.8		20.8	
6		3.63, 3.54		3.66, 3.57		3.66, 3.57
8	166.8		166.9		166.9	
9	192.8		192.6		192.7	
10	98.5		98.6		98.6	
11		1.95				
14	67.2	3.86	67.3	3.86	67.3	3.86
15		1.83		1.85		1.85
16	84.3	3.65	84.5	3.68	84.5	3.68
17	135.9		135.7		135.7	
18	129.4	5.94	129.7	5.96	129.7	5.97
19		6.36		6.38		6.38
20	133.5	6.27	133.7	6.31	133.8	6.31
21	130.3	6.11	130.3	6.14	130.3	6.14
22	140.0	5.50	140.3	5.55	140.3	5.55
26	215.1		215.5		215.5	
27	84.7	3.74	84.9	3.73	84.9	3.73
28		4.17		4.18		4.19
29	136.1		136.2		136.2	
30		5.38		5.41		5.41
31	46.6		46.8		46.8	
32	208.2		208.4		208.4	
33						
34	75.4	5.17	75.6	5.16	75.6	5.17
40		3.27				
44		1.62		1.65		1.65
47		1.73		1.75		1.75
50	55.9	3.10	56.0	3.14	56.0	3.14
51	59.2	3.30	59.5	3.33	59.5	3.33
52		3.41		3.37		3.38
1b	155.7		156.7		156.7	
2b	125.3	7.34				
3b	121.8	8.26				
4b			19.8	1.18	18.3	1.05
5b			19.7	1.17	18.2	1.04
6b			157.3		157.2	
7b			6.4		4.7	0.78
8b				2.29		2.20
9 b			69.1		69.1	
10b			84.3	2.02	84.0	1.96
11b					246.5	

10a
غIכHว 9でく－

> 10a
> $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

11a

12a

(

13a

우ㅍㅜㅜ

$600 \mathrm{MHz}, \mathrm{CDCl}_{3}$

$$
13 \mathrm{Cl}
$$

14a

[^0]

11b

11b

12b

12b

13b
쓴 운 운운
욲욲

13b

[^1]

12c

SI-6

16

∞
$\stackrel{1}{\sim}$
$\stackrel{1}{\mid}$

(

 f1 (ppm)

SI-7

の~~N

17

$$
\begin{aligned}
& \text { ヘヘNべN }
\end{aligned}
$$

[^2]
20

																	$\begin{aligned} & \stackrel{1}{8} \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$		
0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{aligned} & 4.0 \\ & (\mathrm{ppm}) \end{aligned}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

\square

										Qo							$\begin{aligned} & \stackrel{\uparrow}{1} \\ & \stackrel{\infty}{+} \\ & \stackrel{+}{n} \\ & \hline \end{aligned}$	
8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	$\begin{gathered} 4.0 \\ \mathrm{f} 1 \text { (ppm) } \end{gathered}$	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0.5

21

SI-8

SI-8

$16-\mathrm{Me}$

$16-\mathrm{Me}$

[^3]16-DA

16-DA

. 0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	5.0	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.1

18

| 0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1 |
| :--- |
| $\mathrm{f1}(\mathrm{ppm})$ | |

SI-11

| 0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0.5 | -1 |
| :--- |

\square

19

[^0]: f1 (ppm)

[^1]: f1 (ppm)

[^2]: f1 (ppm)

[^3]:

