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S1. General Methods

All the reagents were obtained from commercial suppliers and used as received unless
otherwise indicated. The solvents and other reagents were of reagent grade and purchased
commercially. 'H NMR spectra were obtained by using Bruker AVANCE I11-400 MHz
spectrometers under 298 K. 'H NMR chemical shifts were reported relative to residual solvent
peaks (2.50 ppm for DMSO-d6). The mass spectra of ligands and complexes were measured with
a Bruker microTOF-Q II ESI-Q-TOF LC/MS/MS spectrometer. Circular Dichroism (CD) spectra
and corresponding ultraviolet absorption spectra were recorded on a J-1500 spectropolarimeter
(Jasco, Japan) at 298 K, using a 3 cm quartz cuvette. X-ray diffractions were recorded on a Bruker

D8 Venture Photon II diffractometer and BL17B macromolecular crystallography beamline.

S2. Synthetic Procedures of Oligourea Ligands
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Scheme S1. Synthetic scheme of preparing tetra-urea chiral ligand L.

1 la: 1,2-Bis-(2-nitrophenyl-urea)-benzene. 1,2-diaminobenzene

43 02 o (1.0 g, 9.2 mmol) dissolved in tetrahydrofuran (THF, 200 mL)

5 Q;Ny_ N‘H H'N_?NAQ was added to a solution of o-nitro-phenylisocyanate (3.3 g, 20.0
6 NO, Hb @ " O,N mmol) in 80 mL THF. The precipitate thus formed was filtered

off and washed several times with toluene and diethyl ether, and then dried over vacuum to get
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pure 1a as a yellow solid, yield: 90 %. '"H NMR (400 MHz, DMSO-d6, ppm): 6 9.75 (s, 1H, Hb),
9.18 (s, 1H, Ha), 8.25 (d, /= 8.4 Hz,1H, H3), 8.06 (d, /= 8.4 Hz, 1H, H6), 7.70 (dd, J = 8.0 Hz,
H4), 7.60 (dd, /= 8.0 Hz, 1H, HS), 7.21 (d, J= 7.6 Hz, 1H, H2), 7.14 (dd, J= 7.6 Hz, 1H, H1).

1 1b: 1,2-Bis-(2-aminophenyl-urea)-benzene. Hydrazine

43 o 2 Q o monohydrate (5.0 mL) was added dropwise to the suspension of

5 Qr\?—N‘H H,N—4N {} 1a (2.2 g, 5.1 mmol) and Pd/C (0.20 g, 10% cat.) in ethanol (200

6 NH \Hb @ H HoN mL) under stirring overnight. Whereafter, the solid was filtered

¢ off via suction filtration and then dissolved in a small amount of

dimethylformamide (DMF) and filtered through Celite to remove Pd/C. Diethyl ether (200 mL)

was poured into the DMF solution after which the obtained precipitate was filtered off, washed

several times with ethanol and diethyl ether and dried over vacuum, and finally to give 1b as a

white solid (1.3 g, 3.5 mmol, 69 %). 'H NMR (400 MHz, DMSO-d6, ppm): J 8.14 (s, 1H, Ha),

8.10 (s, 1H, Hb), 7.57 (dd, /= 6.0 Hz, 1H, H1), 7.32 (d, /= 8.0 Hz, 1H, H2), 7.06 (dd, J=5.2 Hz,

1H, HS), 6.85 (dd, /= 7.2 Hz, 1H, H4), 6.75 (d, /= 8.0 Hz, 1H, H3), 6.57 (d, J= 8.0 Hz, 1H, H6),
4.81 (s, 2H, Hc).

1 Tetra-urea L!: (S)-(-)-o-methylbenzyl isocyanate (367 mg, 2.5
4 s 02 o mmol) was added to a DMF (5 mL) solution of compound 1b
5 QD}_N\H H/N_/<N (376 mg, 1 mmol). After stringing overnight, the resulting
6 N,HH ba : H=N precipitate was filtered off and washed several times with ethanol
C
© N—H d H_N>= ° and diethyl ether. Then, the product was dried under vacuum to
8 "7 d*_ yield L* as a white solid. (584 mg), yield: 87%. 'H NMR (400
9

MHz, DMSO-d6, ppm): 0 8.39 (s, 2H, Hc, Hb), 7.87 (s, 1H, Ha),

7.62 (m, J = 8.0 Hz, 2H, H3, H6), 7.43 (d, J = 8.0 Hz, 1H, H2),
7.32 (m, 4H, H9, H10), 7.22 (m, 1H, H11), 7.10 (m, 4H, Hd, H1, H4, HS), 4.80 (m, 1H, H7), 1.36
(d, J = 7.2 Hz, 3H, HB). 3C NMR (400 MHz, DMSO-d6, ppm): § 154.93 (CO), 154.21 (CO),
145.16 (C), 133.07 (C), 131.40 (C), 129.47 (C), 128.34 (CH), 126.69 (CH), 125.94 (CH), 125.03
(CH), 124.43 (CH), 124.14 (CH), 123.97 (CH), 122.65 (CH), 122.30 (CH), 48.33 (CH), 23.13
(CH3). ESI-MS: m/z, 100%, 693.2959 [M+Na]"; 42%, 709.2638 [M+K]".
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Scheme S2. Synthetic scheme of preparing pentakis-urea chiral ligand L2.

2a: To a solution of 1,3-Bis(2-aminophenyl)urea (1.2 g, 5.0 mmol)

@\ /@ in DMF (15 mL) in N; atmosphere, a solution of o-nitro-

. Y ST phenylisocyanate (1.8 g, 11.5 mmol) in THF (7 mL) was added
b

Hoo

C
7 NO,

8

several times with ethanol and diethyl ether. A yellow solid (2.6 g) was produced as the 2a, yield:
92%. '"H NMR (400 MHz, DMSO-d6, ppm): § 9.75 (s, 1H, NHc), 9.21 (s, 1H, NHb), 9.51 (s, 1H,
NHa), 8.24 (d, J = 8.4 Hz, 1H, HS), 8.05 (d, J = 8.0 Hz, 1H, HYS), 7.73 (d, J = 8.0 Hz, 1H, H4),
7.65 (dd, J=8.0 Hz, 1H, H6), 7.48 (d, /= 7.6 Hz, 1H, H1), 7.16 (m, 2H, H3, H7), 7.07 (dd, J=7.6
Hz, 1H, H2).

H D dropwise at 70 °C. After stirring at the same temperature for 1 h,
O,N

the solvents were evaporated by reduced pressure and washed for

3 2 - 2b: Hydrazine monohydrate (5.0 mL) was added dropwise to the

4 @".‘A".‘Q suspension of 2a (2.2 g, 4.3 mmol) and Pd/C (0.20 g, 10% cat.) in

5 OYN‘H RoH H/NYO ethanol (200 mL) under stirring 2 h. Whereafter, the solid was

6 Y c H'ND filtered off via suction filtration and then dissolved in DMF (20 ml)
! g g et and filtered through Celite to remove Pd/C. Diethyl ether (200 mL)

was poured into the DMF solution after which the obtained precipitate was filtered off, washed
several times with ethanol and diethyl ether and dried over vacuum. Finally, a white solid (1.5 g)

was produced as the 2b, yield: 65%. 'H NMR (400 MHz, DMSO-d6, ppm): 8.45 (s, 1H, NHa),
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8.16 (s, 1H, NHb), 8.15 (s, 1H, NHc), 7.60 (d, /= 6.4 Hz, 1H, H1), 7.55 (d, J= 2.4 Hz, 1H, H4),
7.30 (d, J=5.2 Hz, 1H, H5), 7.06 (m, 2H, H2, H3), 6.84 (dd, /= 7.6 Hz, 1H, H7), 6.73 (d,J=5.6
Hz, 1H, H8), 6.55 (dd, /=4.8 Hz, 1H, H6), 4.82 (s, 2H, NHd).

Pentakis-urea L?: (S)-(-)-a-methylbenzyl isocyanate (367 mg, 2.5

j@jNiN Q mmol) was added to a DMF (5 mL) solution of compound 1b (510

5 OYN‘H 'lia H HfN\(O mg, 1 mmol). After stringing overnight, the resulting precipitate
GQN\H cb H’ND was filtered off and washed several times with ethanol and diethyl
! 80=<N/H d H\N>.=o ether. Then, the product was dried under vacuum to yield LS as a
109" "™ white solid (611 mg), yield: 76%. "H NMR (400 MHz, DMSO-dS,
" b d— ppm): J 8.49 (s, 1H, Hb), 8.42 (br, 2H, Hc, Hd), 7.86 (s, 1H, Ha),

7.61 (m, 3H, H1, H4, H5), 7.40 (d, J = 8.0 Hz, 1H, HS), 7.32 (m,
4H, H11, H12), 7.06 (m, 6H, He, H2, H3, H6, H7, H13), 4.80 (m, 1H, H9), 1.35 (d, J = 7.6 Hz,
3H, H10). '3C NMR (400 MHz, DMSO-d6, ppm): § 154.93 (CO), 154.18 (CO), 154.11 (CO),
145.15 (C), 133.02 (C), 131.57 (C), 131.10 (C), 129.50 (C), 128.33 (CH), 126.68 (CH), 125.93
(CH), 124.95 (CH), 124.41 (CH), 124.35 (CH), 124.07 (CH), 123.98 (CH), 123.87 (CH), 122.68
(CH), 122.36 (CH), 48.82 (CH), 23.13 (CHs). ESI-MS: m/z, 100%, 827.3440 [M+Na]"; 39%,
805.3580 [M+H]".
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Scheme S3. Synthetic scheme of preparing hexa-urea chiral ligand L.
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1 3a: To a solution of 1b (1.9 g, 5.0 mmol) in DMF (25 mL) in N»

2@ o atmosphere, a solution of o-nitro-phenylisocyanate (1.8 g, 11.5

Q )\— HN_QN @ mmol) in THF (7 mL) was added dropwise at 70 °C. After stirring

H : H— at the same temperature for 1 h, the solvents were evaporated by

N— H; reduced pressure and washed for several times with ethanol and

O @ diethyl ether. A yellow solid (3.2 g) was produced as the 3a, yield:
9 10

90%. 'H NMR (400 MHz, DMSO-d6, ppm): 59.74 (s, 1H, NHd),
9.21 (s, 1H, NHc), 8.54 (s, 1H, NHb), 8.47 (s, 1H, NHa), 8.25 (d, /= 8.0 Hz, 1H, H10), 8.07 (d, J
=7.6 Hz, 1H, H7), 7.73 (d, J = 8.0 Hz, 1H, H6), 7.65 (t, J= 8.0 Hz, 1H, H8), 7.57 (d, /= 8.0 Hz,
1H, H3), 7.43 (d, J = 6.8 Hz, 1H, H2), 7.19 (dd, 1H, J = 8.0 Hz, 1H, H9), 7.11, (dd, J = 8.0 Hz,
1H, H4), 7.04 (m, 2H, H1, H5).

1 3b: Hydrazine monohydrate (5.0 mL) was added dropwise to the

43 o Q suspension of 1b (2.2 g, 3.1 mmol) and Pd/C (0.20 g, 10% cat.) in
Q h H @ ethanol (200 mL) under stirring 2 h. Whereafter, the solid was
b2 H— filtered off via suction filtration and then dissolved in DMF (20 ml)

N H d and filtered through Celite to remove Pd/C. Diethyl ether (200 mL)

8 @NHz e @ was poured into the DMF solution after which the obtained

9 10 precipitate was filtered off, washed several times with ethanol and

diethyl ether and dried over vacuum. Finally, a white solid (1.3 g) was produced as the 2b, yield:
65 %. 'H NMR (400 MHz, DMSO-d6, ppm): 6 8.48 (s, 1H, NHa), 8.46 (s, 1H, NHb), 8.15 (s, 1H,
NHc), 8.14 (s, 1H, NHd), 7.59 (m, 2H, H2, H3), 7.52 (d, /= 7.2 Hz, 1H, H6), 7.29 (d, /= 7.2 Hz,
1H, H7), 7.04 (m, 3H, H1, H4, H9), 6.83 (t, /= 6.8 Hz, 1H, H5), 6.72 (d, J= 7.2 Hz, 1H, H10),
6.54 (t,J=17.2 Hz, 1H, HS), 4.78 (s, 2H, NHe).

1 Hexa-urea L3: (S)-(-)-a-methylbenzyl isocyanate (367 mg, 2.5
Q _4 mmol) was added to a DMF (5 mL) solution of compound 3b (645
C}; ,a N:O mg, 1 mmol). After stringing overnight, the resulting precipitate
e b-

8 @[ H,\Nf :@ was filtered off and washed several times with ethanol and diethyl
10 A\ uf " ether. Then, the product was dried under vacuum to yield LS as a
12 Qb @2\ white solid (572 mg), yield: 61%. 'H NMR (400 MHz, DMSO-d6,

15

ppm): 6 8.52 (s, 2H, He), 8.50 (s, 2H, Hd), 8.41 (s, 2H, Hc, Hb),
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7.86 (s, 1H, Ha), 7.63 (m, 4H, H2, H3, H6, H7), 7.41 (d, J= 8.0 Hz, 1H, H10), 7.31 (m, 4H, H13,
H14), 7.21 (m, 1H, H15), 7.12 (m, 6H, Hf, H1, H4, H5, H8, H9), 4.80 (m, 1H, H11), 1.36 (d, J =
6.8 Hz, 3H, H12). '*C NMR (400 MHz, DMSO-d6, ppm): & 154.93 (CO), 154.19 (CO), 154.10
(CO), 145.16 (C), 133.08 (C), 131.58 (C), 131.28 (C), 131.08 (C), 129.47 (C), 128.34 (CH), 126.69
(CH), 125.93 (CH), 125.01 (CH), 124.18 (CH), 124.07 (CH), 124.00 (CH), 123.88 (CH), 122.67
(CH), 122.34 (CH), 48.83 (CH), 21.13 (CHs). ESI-MS: m/z, 100%, 961.3899 [M+Na]*; 30%,
977.3658 [M+K]".

S3. Preparations of Anion Coordination Driven Complexes

Crystal (TEA)[L!+Cl:]: (TEA)CI solution (32 pL, 0.625 mol/L, in acetonitrile) was added to a
suspension of L (6.70 mg, 10 mmol) in chloroform. After stirring overnight at room temperature,
a colorless solution was obtained. Slow vapor diffusion of diethyl ether into this solution provided
colorless crystals of (TEA),[L!+Cl] within two weeks. The crystal was directly mounted on a
diffractometer for data collections.
Crystal (TBA):[L2+Clz]: (TBA)CI solution (20 pL, 0.625 mol/L, in acetonitrile) was added to a
suspension of L? (5 mg, 6.2 mmol) in chloroform. After stirring overnight at room temperature, a
clearly colorless solution was obtained. Slow vapor diffusion of diethyl ether into this solution
provided yellow crystals of (TBA):[L2+Cl:] within two weeks. The crystal was directly mounted
on a diffractometer for data collections.
Crystal (TMA)3;[L'22PO4]: (TMA)3PO4 solution (8 pL, 0.625 mol/L, in water) was added to a
suspension of L! (6.7 mg, 10 mmol) in mixed solution of acetone and acetonitrile. After stirring
overnight at room temperature, a colorless solution was obtained. Slow vapor diffusion of diethyl
ether into this solution provided colorless crystals of (TMA)3[L',2PO4] within one week. The
crystal was directly mounted on a diffractometer for data collections.
Crystal (TMA)3[L3*PO4*(H20)2]: (TMA)3PO4 solution (8.6 uL, 0.625 mol/L, in water) was added
to a suspension of L3 (5 mg, 5.3 mmol) in acetone. After stirring overnight at room temperature, a
colorless solution was obtained. Slow vapor diffusion of diethyl ether into this solution provided
colorless crystals of (TMA)3;[L3+PO4+(H20),] within two weeks.

According to general method of crystal growth, we respectively attempted to synthesize
crystals of supermolecule complex [L3*Cl,]*", [L2*PO4]*>~ and [L2*PO4]*" using the slow vapor

diffusion of poor solvent. Unfortunately, crystals with better diffraction points have never been
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obtained. However, we still used other detection methods ('"H NMR, ESI-MS and CD spectrum)
to prove the assembly configuration and structure information of complexes [L3Cl.]*,

[L2,2PO4]* and [L2PO4]*".

S4. X-ray Diffraction Data

X-ray diffraction data of crystals (TBA)[L2eCl], (TMA)3;[L'2*POs] and
(TMA)3[L3PO4+(H20),] were detected on a Bruker D8 Venture Photon II diffractometer with
graphite-monochromatic Mo Ka radiation (A = 0.71073 A) under 150 K. The diffraction data for
crystal (TEA),[L!*Cl>] were collected at the BL17B macromolecular crystallography beamline in
Shanghai Synchrotron Facility (A = 0.72929 A). An empirical absorption correction using
SADABS was applied for all data. (SADABS v 2018. 1, Bruker AXS, Madison, W1, 2018.) The
structures were solved by the dual methods via SHELXS program. (A short history of SHELX, G.
M. Sheldrick, Acta Cryst.. 2008, A64, 112-122). All structures were solved and refined to
convergence by the full-matrix least-squares on F~ for all independent reflections by the use of the
program SHELXL. Hydrogen atoms were included in idealized positions with thermal parameters
equivalent to 1.2 times those of the atom to which they were attached. Thereinto, because the
structure of crystal (TEA):[L'sCl,] is small and the light source of BL17B macromolecular
crystallography beamline is too strong, the low-angle diffraction points were overexposure, which
leads to the low completeness of the crystal structure. All the crystal structures have been
deposited with the Cambridge Crystallographic Data Centre (CCDC), and their corresponding
CCDC number are shown in Table S1 and S2.
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Table S1. Crystal data and refinement details of complexes 1 and 2

Complexes (TEA)[L!+Cl,] (TBA),[L2+Cl3]
CCDC Number 2130743 2130744
Formula Cs4H78C12N1004 C77H44C12N 1205
M 1002.16 1288.14
Crystal system Monoclinic Monoclinic
Space group 2 P2,
a(A) 20.7990(5) 11.9428(5)
b(A) 14.2717(4) 25.5121(9)
c(A) 20.0159(6) 12.5127(4)
o (deg) 90 90
B (deg) 114.881(1) 92.975(1)
y (deg) 90 90
V(A3 5390.0(3) 3807.3(2)
Z 4 2
T (K) 150 150
F(000) 2152 1328
Deate (g-cm™) 1.235 1.124
R(int) 0.0508 0.0596
Data/restraints/parameters 8941/1/641 13393 /1/875
GOF 1.062 0.732
R1[I>20(])] 0.0393 0.0425
wR2 [I> o(])] 0.1036 0.1156
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Table S2. Crystal data and refinement details of complexes 4 and 6

Complexes (TMA)3[L12+PO4] (TMA)3[L3+PO4+(H20)2]
CCDC Number 2130745 2130746
Formula C198H239N40031P2 Ce7HoeN15013P
M 3737.22 3625.26
Crystal system Triclinic Monoclinic
Space group P1 P2,
a(A) 13.8456(13) 13.0070(12)
b (A) 13.8504(12) 20.8259(16)
c(A) 26.594(2) 13.9625(14)
a (deg) 98.630(3)° 90°
B (deg) 90.112(3)° 106.566(3)°
y (deg) 101.910(3)° 90°
V(A3 4930.7(8) 3625.2(6)
Z 1 2
T (K) 149.98 150
F(000) 1985 1444
Deate (g-cm™) 1.266 1.237
R(int) 0.1269 0.0670
Data/restraints/parameters 35990 /306 /2472 12829 /1/867
GOF 1.001 1.038
R1[I>20(])] 0.0726 0.0954
wR2 [I> o(])] 0.1712 0.2187
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Table S3. Hydrogen bond parameters [A and °] in the crystal structure of (TEA)z2[L'Cl,].

D-H- - A d(D-H) dH - - A) dD:- - - A) Z(DHA)
NI-HI- - - Cll 0.86 2.32 3.170(4) 167
N2-H2- - - Cll 0.86 2.43 3.211(2) 151
N3-H3--- Cll 0.86 2.41 3.235(3) 161
N4-H4- - - Cl1 0.86 2.65 3.431(6) 150
N5-H5- - - CI2 0.86 2.65 3.431(5) 150
N6-H6: - - CI2 0.86 2.42 3.281(4) 161
N7-H7- - - CI2 0.86 2.43 3.213(2) 151
NS8-HS: - - CI2 0.86 2.32 3.172(7) 167

Table S4. Hydrogen bond parameters [A and °] in the crystal structure of (TBA)>[L2+Cl.].

D-H--- A d(D-H) dH---A) d(D:---A) Z(DHA)
NI1-H1-- - Cl1 0.86 243 3.252(3) 161
N2-H2- - - Cl1 0.86 2.36 2.752(3) 108
N3-H3- - - CI2 0.86 2.51 3.318(3) 157
N4-H4- - - CI2 0.86 2.44 3.265(2) 162
N5-HS- - - Cll 0.86 249 3.319(3) 163
N6-H6- - - Cl1 0.86 2.55 3.333(3) 153
N7-H7- - - CI2 0.86 2.69 3.475(3) 153
N§-HS8: - - Cl1 0.86 2.7 3.423(2) 143
N9-H9- - - CI2 0.86 2.73 3.537(3) 158

N10-H10- - - CI2 0.86 2.51 3.332(3) 160

Table S5. Hydrogen bond parameters [A and °] in the crystal structure of (TMA);[L'22PO4].
D-H--- A d(D-H) dH---A) d(D:---A) Z(DHA)

NI1-H1A--- 020 0.88 2.02 2.853(7) 157
N2-H2A--- 020 0.88 2.24 3.021(7) 148
N3-H3A--- 017 0.88 2.11 2.865(7) 144
N4-H4A--- 017 0.88 2.09 2.708(7) 127
N5-HS5A- - - 017 0.88 2.00 2.845(7) 162
N6-H6- - - 019 0.88 1.94 2.784(7) 160
N7-H7A--- 019 0.88 1.96 2.833(7) 169
N8-H8- - - 018 0.88 2.10 2.899(7) 151
N9-H9- - - O18 0.88 2.30 3.023(7) 140
N10-H10- - - O18 0.88 1.90 2.726(7) 157
NI11-HI1A---O18  0.88 2.20 2.986(7) 149
N12-H12A---020  0.88 1.84 2.717(7) 171
N13-H13A---020  0.88 2.17 2.853(7) 135
N14-H14A---019  0.88 1.85 2.717(7) 169
N15-H15--- 019 0.88 2.10 2.951(7) 162
N16-H16- - - O17 0.88 2.02 2.884(7) 168

S11



Table S6. Hydrogen bond parameters [A and °] in the crystal structure of (TMA )3;[L3¢PO4s(H20)2].

D-H--- A d(D-H) d(H - - A) d(D: - - A) Z(DHA)
NI1-H1--- 010 0.88 2.1 2.920(4) 154
N2-H2- - - O7 0.88 1.82 2.694(2) 171
N3-H3- - - 07 0.88 2.04 2.872(1) 157
N4-H4- - - O8 0.88 1.98 2.793(1) 153
N5-H5- - - O8 0.88 1.89 2.755(0) 167
N6-H6- - - 010 0.88 2.05 2.892(2) 159
N7-H7--- 010 0.88 1.8 2.666(2) 166
N8-HS: - - 09 0.88 2.26 3.111(2) 162
N9-H9- - - 09 0.88 1.78 2.656(2) 174

N10-H10---O11  0.88 2.35 2.753(4) 153
N11-HI11---07  0.88 1.96 2.781(1) 155
N12-HI2---07  0.88 2.07 2.836(1) 144

Table S7. Hydrogen bonds (A and deg) involved in chloride binding and CI- - - Cl separations in
the crystal structures of complexes (TEA)2[L'+Cl,] and (TBA)2[L2+Cly].

Cll CI2
H-
H- Average
o bon Average o
Complex l;?lrrll(ll d(ZNNH((:le) ?d d d(N---Cl) andZ cll . Clio
ber | Tegy | mum | (NHOD (A, deg) | SePeretiont ]
cg) ber
(TEA)2[L!+Cl2] 4 3.26, 157 4 3.28, 157 4.21
(TBA)2[L?+Cl;] 5 3.22, 145 5 3.39, 158 3.73

Table S8. Hydrogen bonds (A and deg) involved in phosphate binding in the crystal structures of
complexes (TMA )3[L122PO4] and (TMA)3;[L3*PO4+(H20)2].

Complex H-bond number average d(N- - - O) and £ (NHO)
(TMA)3[L122PO4] 16 2.85, 154
(TMA)3[L3PO4+(H20),] 12 2.81, 160
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-7 ’*
Interaction «
386A )

Figure S1. (a) Double helix structure of phosphate-template [L'2*PO4]*~ complex and (b)
corresponding urea groups and hydrogen bond distribution around phosphate (the left and right

ligands of double helix are shown in green and yellow, respectively). Selected intermolecular
short-contacts (n-m interaction) is shown.

(@) () (d)

P 550 Vs 0 K,
(TEA),[L'-CI,] %&%
(b) 15

(TBA),[L?-CL]  (TMA),[L',sPO,] (TMA),[L3+PO,*(H,0),]

Figure S2. Packing structures of crystals (a) (TEA);[L!sCly], (b) (TBA):[L?Cl:], (c)
(TMA)3[L122PO4] and (d) (TMA)3[L3+PO4+(H20),] (chloride ions are shown as green sphere).
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S5. Studies of CD and UV-vis Experiments
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Figure S3. The corresponding anisotropy factors for the single helix of (a) [L*CL2]*" and (b)
[LePO4]* complexes in acetonitrile ([L] = 30 uM). The anisotropy factor g = AA4/A =
Olmdeg]/(32980%4). (I. Dolamic, S. Knoppe, A. Dass and T. Biirgi, Nat. Commun., 2012, 3, 798.)
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Figure S4. CD spectra of (a) L1, L? and L3 ligands. CD titration of (b) L, (¢) L? and (d) L ([L]
= 30 uM, in 5% v/v DMSO/CH3;CN) by adding 1.2 equivalent of phosphate anions gradually
showing conversion in helical sense.
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Figure S5. (a) CD spectra of [L'sCl,]*" by adding 1 equivalent of phosphate anions gradually
showing conversion in helical sense and (b) changes in CD spectra at wavelength of 244 nm, 258
nm and 280 nm. ([L'] = 30 uM, CH3CN)
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Figure S6. (a) UV-vis titration of L! ([L'] = 30 uM) with CI” in 5% v/v DMSO/CH3CN and (b)
changes in UV-vis spectra at wavelength of 274 nm and 286 nm.
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Figure S7. (a) UV-vis titration of L? ([L?] = 30 uM) with CI" in 5% v/v DMSO/CH3CN and (b)
changes in UV-vis spectra at wavelength of 274 nm and 286 nm.
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Figure S8. (a) UV-vis titration of L3 ([L3] = 30 uM) with CI" in 5% v/v DMSO/CH3CN and (b)
changes in UV-vis spectra at wavelength of 274 nm and 286 nm.
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Figure S9. (a) UV-vis titration of L' ([L!] = 30 uM) with PO4+* in 5% v/v DMSO/CH3CN and
(b) changes in UV-vis spectra at wavelength of 251 nm and 286 nm.
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Figure S10. (a) UV-vis titration of L2 ([L2] = 30 pM) with PO4*" in 5% v/v DMSO/CH3CN and
(b) changes in UV-vis spectra at wavelength of 251 nm and 286 nm.
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Figure S11. (a) UV-vis titration of L2 ([L2] = 30 uM) with PO4*" in 5% v/v DMSO/CH3CN and
(b) changes in UV-vis spectra at wavelength of 251 nm and 286 nm.
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Figure S12. (a) '"H NMR titration (400 MHz, DMSO-ds, 298 K) of L! ([L'] = 0.6 mM) in the
presence of various equiv. of chloride anions and (b) the corresponding binding constants were
obtained from non-linear curve-fitting to a 1:1 binding model via the
http://app.supramolecular.org/bindfit/view/dbcb92af-4e2-4125-8090-3f3debdeb6ds.
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Figure S13. (a) '"H NMR titration (400 MHz, DMSO-ds, 298 K) of L? ([L?] = 0.6 mM) in the
presence of various equiv. of chloride anions and (b) the corresponding binding constants were
obtained from non-linear curve-fitting to a 1:1 binding model via the
http://app.supramolecular.org/bindfit/view/83e¢937a4-7503-4b85-b5e5-82ced3 121f12.
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Figure S14. (a) '"H NMR titration (400 MHz, DMSO-ds, 298 K) of L? ([L?] = 0.6 mM) in the
presence of various equiv. of chloride anions and (b) the corresponding binding constants were
obtained from non-linear curve-fitting to a 1:1 binding model via the
http://app.supramolecular.org/bindfit/view/9¢915224-125e-4066-9fa8-03657d6d3e63.
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Figure S15. Partial 'H NMR (400 MHz, DMSO-ds, 298 K) spectra of L! ([L] = 0.1 mM) in the

presence of various equivalent of PO4>~ (black numbers indicate the equivalent of PO4*~ added;
the signals of MM and P are shown in blue and red, respectively).
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Figure S16. Partial '"H NMR (400 MHz, DMSO-d6, 298 K) spectra of L2 ([L] = 0.1 mM) in the
presence of various equivalent of PO4>" (black numbers indicate the equivalent of PO4>" added; the
signals of [L222PO4]*" and [L2+PO4]*~ complexes are shown in blue and red, respectively).
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Figure S17. Partial '"H NMR (400 MHz, DMSO-d6, 298 K) spectra of L3 ([L] = 0.1 mM) in the
presence of various equivalent of PO4>~ (black numbers indicate the equivalent of PO4*~ added;
the signals of [L3PO4]*~ complex are shown in red).
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Figure S18. Stacked partial '"H NMR spectra (400 MHz, 298 K, DMSO-d;) for the oligourea
ligands with their anion coordination complex of (a) [L2+Cl2]*, (b) [L3*CL]*, (c) [L22°PO4]*-,
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and (d) [L3*PO4]*~, respectively. Tetrabutylammonium chloride and tetramethylammonium

phosphate salts were used.

Table S9. Chemical shift of NH signals for complexes 1-3 in 'H NMR.

NH
Ha Hb Hce Hd He Hf
Complex

1 0.32 0.18 0.16 0.32

2 0.28 0.33 0.1 0.07 0.28

3 0.23 0.25 0.11 0.22 0.06 0.25

Table S10. Chemical shift of NH signals for complexes 4-6 in 'H NMR.
NH
Ha Hb Hc Hd He Hf
Complex

4 2.60 3.30 2.85 1.69

5 1.82 3.29 2.02 1.44 1.87

6 1.61 1.98 1.72 1.84 1.49 2.11
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Figure §19. High-resolution ESI-MS spectrum of (a-c) complexes of oligourea ligands with two
equivalents of chloride anion.
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Figure $20. High-resolution ESI-MS spectrum of the formation of (a) double helix [L'2sPO4]*

and (b) single helix [L'<PO4]>".
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Figure S21. High-resolution ESI-MS spectrum of the formation of (a) [L2+PO4]*" and (b)
[L2PO4]*".
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Figure §22. High-resolution ESI-MS spectrum of the formation of single helix [L3+PO4]*".
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S7. Computational Analysis for the Helicity Bias

Figure $23. Computationally optimized geometry (DFT, B3LYP, 6-31G*) for the single helix of
[L'Cl,]> with (a) left-handed conformation M and (b) right-handed conformation P. The

optimized structure indicates that the right-handed helix is more stable than the left-handed helix.

(b) PP

Figure S24. Computationally optimized geometry (DFT, B3LYP, 6-31G*) for the double helices
of [L'2¢P0O4]*" with (a) left-handed conformation MM and (b) right-handed conformation PP. The
results suggests that the left-handed double helices is more energetically favorable than the right-

handed double helices. And the extra contact of C-Heee1 interaction between the strands of MM

conformations could be driving force for the induced helicity bias.
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S8. 'H and 13C NMR Spectra
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