Arsolyl-Supported Intermetallic Dative Bonding

Ryan M. Kirk and Anthony F. Hill*

Abstract: The first examples of late transition metal η^{5}-arsolyls serve as ditopic donors to extraneous metal centres $\left(M=\mathrm{Pt}^{\prime \prime}, \mathrm{Au}^{\prime}, \mathrm{Hg}^{\prime \prime}\right)$ through both conventional $\mathrm{As} \rightarrow \mathrm{M}$ and polar-covalent (dative) $\mathrm{Co} \rightarrow \mathrm{M}$ interactions.

Table of Contents

. General Considerations and Instrumentation Computational Details
Additional Tables and Figures
Synthetic Procedures and Spectroscopic and Crystallographic Data
5. Selected Spectra

Author Contributions
References

Experimental Procedures

1. General Considerations

NMR data were collected on a Bruker Avance $400\left({ }^{1} \mathrm{H}\right.$ at 400.1 MHz, ${ }^{19} \mathrm{~F}$ at $376.5 \mathrm{MHz},{ }^{31} \mathrm{P}$ at 161.9 MHz) or Bruker Avance $700\left({ }^{13} \mathrm{C}\right.$ at $176.1 \mathrm{MHz},{ }^{195} \mathrm{Pt}$ at 149.8 MHz$)$ spectrometers at the temperature indicated; chemical shifts (δ) are given in ppm with coupling constants in Hz and are referenced to the residual protio-solvent impurity signal (for ${ }^{1} \mathrm{H}$), the solvent signal itself (for $\left.{ }^{13} \mathrm{C}\right)$ or an external reference $\left(\mathrm{CFCl}_{3}\right.$ for ${ }^{19} \mathrm{~F}, 85 \% \mathrm{H}_{3} \mathrm{PO}_{4}$ for ${ }^{31} \mathrm{P}, 1.2 \mathrm{M} \mathrm{Na} 2 \mathrm{PtCl}_{6}\left(\delta_{\mathrm{Pt}}=0\right)$ for ${ }^{195} \mathrm{Pt}$). Spectra provided generally correspond to samples obtained directly from chromatography and occasionally contain residual solvent signals. Phosphorus-31 resonances were somewhat broadened due to coupling to quadrupolar ($I={ }^{7} / 2$) ${ }^{59} \mathrm{Co}$ nuclei. The multiplicities of NMR resonances are denoted by the abbreviations s (singlet), d (doublet), t (triplet), m (multiplet), br (broad) and combinations thereof for more highly coupled systems; we thank Dr Doug Lawes for assistance and helpful discussion. Solution infrared spectra were collected using a PerkinElmer Spectrum One FT-IR spectrometer with 1 mm cell pathlength and KBr windows. Elemental microanalytical data were provided by Elemental Microanalysis Service at Macquarie University. High-resolution electron ionisation (EI) and electrospray ionisation (ESI, +ve ion) mass spectrometry were performed by Mrs Anitha Jeyasingham at the ANU Research School of Chemistry mass spectrometry service with acetonitrile matrices. X-ray crystallography was performed on an Agilent Technologies Supernova EosS2-CCD diffractometer and specific details for each crystalline specimen are given below; we thank Dr Michael Gardiner for assistance and helpful discussion.

Unless otherwise stated, all operations were performed under an atmosphere of commercially purified nitrogen or argon using standard Schlenk techniques, or inside an argonfilled glovebox $\left(\left[\mathrm{O}_{2}\right]<5 \mathrm{ppm},\left[\mathrm{H}_{2} \mathrm{O}\right]<1 \mathrm{ppm}\right)$; all compounds described herein are air-sensitive though some (unless otherwise stated) appear immune to adventitious moisture. Caution should be exercised when handling the organoarsenic compounds described herein - their toxicological properties are presently unknown, and they should be regarded as extremely toxic materials. The hazardous toxicological properties of $\mathrm{PhAsCl}_{2}, \mathrm{AsCl}_{3}, \mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ and HgCl_{2} are well known, and they too should be handled with respect by trained persons equipped with appropriate safety equipment. Benzene
(including $\mathrm{C}_{6} \mathrm{D}_{6}$) is a potent carcinogen and should only be used in a well-ventilated fumehood in quantities as small as is reasonably possible. Residues containing heavy metals or metalloids should be disposed of appropriately with consideration given to the ecological impact of these elements. Care should also be exercised when storing solvents over alkali metal surfaces for their extreme flammability. HPLCgrade solvents were obtained from Merck; THF, benzene, toluene and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium-benzophenone ketyl under nitrogen and stored over sodium (THF, Et $t_{2} \mathrm{O}$) or potassium (benzene, toluene) mirrors. $\mathrm{C}_{6} \mathrm{D}_{6}$ (Cambridge Isotope Laboratories) was degassed with argon and stored over potassium mirror. CDCl_{3} and $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ (Cambridge Isotope Laboratories) were distilled from anhydrous CaSO_{4} under argon and stored over $4 \AA$ molecular sieves. n-hexane and n pentane (except for air-free chromatography, vide infra) were distilled from CaH_{2} under nitrogen and stored over potassium mirrors. Acetonitrile, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and SiMe_{4} were distilled from CaH_{2} under nitrogen and stored over $4 \AA$ molecular sieves. Acetone was distilled from anhydrous CaSO_{4} under nitrogen and stored over 4 Å molecular sieves.

The arsoles 1a $\left(\mathrm{PhAsC}_{4} \mathrm{Ph}_{4}\right)$, 1b $\left(\mathrm{PhAsC}_{4} \mathrm{Ph}_{2} \mathrm{H}_{2}\right)$, 1c ($\mathrm{PhAsC}_{4} \mathrm{Me}_{4}$), 1d ($\mathrm{PhAsC}_{4} \mathrm{Et}_{4}$) and 1e $\left(\mathrm{ClAsC}_{4}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Me}_{2}\right)$ were synthesised from the corresponding zirconacyclopentadiene in THF (1a, 1b, with catalytic CuCl) or hydrocarbon ($\mathbf{2 c}, \mathbf{2 d}, \mathbf{2 e}$) solution; spectra were in agreement with those reported. ${ }^{1}$ Arsoles 1a and 1b are air-stable crystalline yellow solids whilst 1c, 1d and 1e are air-sensitive pale-yellow liquids. The air- and moisture-sensitive As-chloro analogues of 1c and 1d were obtained by use of AsCl_{3} instead of PhAsCl_{2}. Note: $\mathrm{ClAsC}_{4} \mathrm{Me}_{4}$ gradually decomposes at ambient temperature and should ideally be used the same day as it is prepared. It is thus advisable to carry out addition of AsCl_{3} to $\mathrm{Cp}_{2} \mathrm{ZrC}_{4} \mathrm{Me}_{4}$ in hydrocarbon solution at $-40{ }^{\circ} \mathrm{C}$ and perform workup in a timely manner. This decomposition was not observed for $\mathrm{CIAsC}_{4} \mathrm{Et}_{4}$ and $\mathrm{CIAsC}_{4}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Me}_{2}$ and these could be stored at $-30^{\circ} \mathrm{C}$ for several weeks without noticeable diminution in quality. The known As-chloro analogue of $1 \mathrm{a}^{2}$ was prepared by a new method from $\mathrm{Bu}_{2} \mathrm{SnC}_{4} \mathrm{Ph}_{4}$ (itself prepared from the zirconacyclopentadiene and $\mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ with catalytic CuCl in THF, isolated as a reasonably air-, moisture-, and alumina-stable viscous yellow liquid) and stoichiometric AsCl_{3} in n-hexane solution over 48 h from which the product precipitates in good yield as a yellow solid - is it indefinitely stable under inert atmosphere at ambient temperature though it is rather air- and moisture-sensitive. Spectroscopic data for CIAsC4Ph4: NMR ($\left.\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right),{ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 7.19 — 7.15$ $\left(\mathrm{m}, 10 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 7.10-7.04\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.88-6.85(\mathrm{~m}, 4 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 152.0\left(\mathrm{C}_{\alpha}\right), 149.5\left(\mathrm{C}_{\beta}\right), 139.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $137.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 129.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.0$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.4\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ - some aromatic ${ }^{13} \mathrm{C}$ resonances appear to be isochronous hence fewer signals are observed than expected; HR-MS (EI, MeCN) found m / z 466.0462 (calc. for $\mathrm{C}_{28} \mathrm{H}_{20}{ }^{75} \mathrm{As}_{1}{ }^{35} \mathrm{Cl}_{1}[M]^{+}$: 466.0469). The crystal structure of $\mathrm{ClAsC}_{4} \mathrm{Ph}_{4}$ has been determined and will be reported separately in a forthcoming article. $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})$ and $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}\right)$ were prepared from $\mathrm{AuCl}(\mathrm{THT})$ and $\mathrm{PtCl}_{2}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}\right)$ by addition of $\left.\mathrm{Li}_{6} \mathrm{C}_{6} \mathrm{~F}_{5}\right]$ in $\mathrm{Et}_{2} \mathrm{O}$ (slight excess, prepared in-situ from $\mathrm{C}_{6} \mathrm{~F}_{5} \mathrm{Br}$ and n - BuLi) at $-78^{\circ} \mathrm{C}$ and purified by flash chromatography (neutral alumina, $\mathrm{Et}_{2} \mathrm{O}$) and recrystallisation from $\mathrm{Et}_{2} \mathrm{O} / n$-hexane as white (Au) or cream (Pt) solids; both are air- and moisture-stable $\left({ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}(376 \mathrm{MHz})\right.$,
$\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}: \mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT}) \delta-116.1$ (m, 2F), -159.6 (m, 1F), -162.4 (m, 2F); Pt $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\eta^{4}-\mathrm{C}_{6} \mathrm{H}_{10}\right) \delta-120.4$ (m, 2F), -160.2 (m, 1F), -165.3 ($\mathrm{m}, 2 \mathrm{~F}$)). PhAsCl_{2} was prepared by addition of $\mathrm{PhMgCl}\left(2 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)$ to AsCl_{3} (caution - vesicant and poison) in $\mathrm{Et}_{2} \mathrm{O}$ at $0{ }^{\circ} \mathrm{C}$ and purified by short-path vacuum distillation, isolated as an air-sensitive colourless liquid (caution - vesicant and poison). Other reagents were obtained from commercial suppliers and used without further purification: $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ and $\mathrm{Co}_{2}(\mathrm{CO})_{8}$ (Strem); phenylacetylene, 2-butyne and 3-hexyne (Alfa Aesar); diphenylacetylene, 1-(trimethylsilyl)prop-1-yne, anhydrous $\mathrm{HgCl}_{2}, \mathrm{AsCl}_{3}, \mathrm{Bu}_{2} \mathrm{SnCl}_{2}$ and $\mathrm{P}(\mathrm{OMe})_{3}$ (Sigma Aldrich).

General procedure for anaerobic chromatography: Silica gel (230-400 mesh; Merck), neutral alumina (activity I, 70230 mesh; Merck) and Florisil® (magnesium silicate, 60-100 mesh; Merck) were permanently stored in a $100^{\circ} \mathrm{C}$ oven; n pentane for chromatography need not be stringently anhydrous for the work below, and permanent storage over $4 \AA$ molecular sieves or sodium wire was sufficient - it should, however, be thoroughly degassed with nitrogen prior to use. Anaerobic chromatography was carried out in either $40 \times 2.5 \mathrm{~cm}$ or $30 \times$ 1 cm water-jacketed (water temp. typically ca. 8-10 ${ }^{\circ} \mathrm{C}$) Schlenk columns with 250 mL or 100 mL reservoir bulbs, respectively. Columns were charged with the desired quantity of oven-dried chromatography material and the entire apparatus held under vacuum for 30 minutes (twice), before being flushed with a gentle flow of nitrogen for 15-30 minutes. Degassed n-pentane is then admitted via cannula and allowed to run down the column under a positive pressure of nitrogen until the solid phase is sufficiently packed (gentle and careful external agitation of the apparatus may be required to help material settle). Following this, the mixture to be chromatographed is added via syringe to the column. Alternatively, the mixture to be chromatographed may be adsorbed onto a small amount of oven-dried silica gel/alumina/Florisil® by evaporation of solvent, and this material can be transferred to the top of the column under gentle counter-flow of nitrogen. The procedure commences under a slight positive pressure of nitrogen with the external water jacket in current. Eluent mixtures are prepared in a separate 100 mL or 250 mL Schlenk flask under nitrogen by means of volumetric syringes and proportions given herein are therefore only approximate. Collection of bands/fractions from the column is achieved by exchanging receiving Schlenk flasks under stream of nitrogen by careful manipulation of the apparatus - the receiving flask is connected to a three-way tap leading to a supply of nitrogen and exiting to an oil bubbler. Caution - the solid phase for chromatography is likely contaminated with arsenic and should be disposed of appropriately.

2. Computational Details

Computational studies were performed by using the SPARTAN20® suite of programs. ${ }^{3}$ Geometry optimisation (gas phase) was performed at the DFT level of theory using the exchange functional (ω B97X-D) of Head-Gordon. ${ }^{4}$ The Los Alamos effective core potential type basis set (LANL2D ζ) of Hay and Wadt ${ }^{5}$ was used for Hg , Pt and Au; the Pople 6-31G* basis sets ${ }^{6}$ were used for all other atoms. Geometry
optimisations were performed at the ω B97X-D/631G*/LANL2D ζ level and frequency calculations were performed to confirm that the optimized structures were minima and to identify vibrational modes of interest.

The singular vibrational scaling factor for the ω BP97X-D/6$31 G^{*}$ combination is given as 0.949 by the National Institute of Standards and Technology (NIST). Thermodynamic properties provided are based on 0.942 as implemented in Spartan20. For complexes of the form encountered here, comparison of data in the $v C O$ region of the infrared spectrum with experimentally determined data, a dual scaling factor ($v>$ $1800 \mathrm{~cm}^{-1}$: 0.9382) based on measured and calculated frequencies for the A^{\prime} mode of $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta-\mathrm{C}_{5} \mathrm{H}_{5}\right)$ is more prudent.

2.1 $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{H}_{4}\right)\left(2^{\prime}{ }^{\prime} \mathrm{cH}\right)$

Figure S1. Optimised geometry for $\mathbf{2 '}^{\prime}{ }^{\prime}$ (ω B97X-D/6-31G*/LANL2D ζ)

Table S1. Cartesian Coordinates for $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\left(\mathbf{2}^{\prime}{ }_{\mathrm{As}}\right)$			
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
Co	0.006427	-0.003356	0.828018
H	2.280452	-0.309540	-1.007189
C	1.209109	-0.156541	-0.871347
C	0.534560	1.133077	-0.895257
H	0.412767	-2.280170	-1.082649
C	-0.893015	0.851358	-0.850291
H	-1.684917	1.592318	-0.967668
C	-1.094414	-0.600434	-0.907309
H	-2.053891	-1.097393	-1.058739
C	0.202238	-1.222057	-0.919938
C	-1.128456	0.540352	2.045034
O	-1.897730	0.917878	2.831517
C	1.159815	-0.558812	2.022195
O	1.947431	-0.930486	2.793191
H	0.999102	2.104206	-1.064948

Thermodynamic properties (298.15 K, ω B97X-D/6-
31G*/LANL2D ζ)
Zero Point Energy : $254.64 \mathrm{kJmol}^{-1}$ (ZPE)
Temperature Correction: $24.54 \mathrm{kJmol}^{-1}$
(vibration + gas law +rotation + translation)
Enthalpy Correction: $279.19 \mathrm{kJmol}^{-1}$
(ZPE + temperature correction)
Enthalpy: -1802.615551 au
(Electronic Energy + Enthalpy Correction)
Entropy : $376.46 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

2.4 $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\left(\mathbf{2}^{\prime}{ }_{\mathrm{As}}\right)$

Figure S4. Optimised geometry for $\mathbf{2}^{\prime}{ }_{\text {As }}(\omega$ B97X-D/6-31G*/LANL2D ζ) with electrostatic potential surface.

Table S4. Cartesian Coordinates for $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\left(\mathbf{2}^{\prime}{ }_{\mathrm{As}}\right)$				
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	
Co	-0.312453	-0.000000	0.634260	
H	-0.509732	-2.327633	-0.951731	
C	-0.346643	-1.256387	-1.001630	
C	0.955365	-0.705103	-0.843373	
H	1.844237	-1.306180	-0.691193	
C	0.955365	0.705103	-0.843373	
H	1.844237	1.306180	-0.691193	
C	-0.346642	1.256387	-1.001630	
H	-0.509732	2.327633	-0.951731	
As	-1.731476	0.000000	-1.332927	
C	-0.425676	-1.280204	1.808756	
O	-0.495720	-2.156279	2.547009	
C	-0.425676	1.280204	1.808756	
O	-0.495721	2.156279	2.547009	

Thermodynamic properties (298.15 K, ω B97X-D/631G*/LANL2D ζ)
Zero Point Energy: $213.44 \mathrm{kJmol}^{-1}$ (ZPE)
Temperature Correction: $26.03 \mathrm{kJmol}^{-1}$
(vibration + gas law + rotation + translation)
Enthalpy Correction: $239.47 \mathrm{kJmol}^{-1}$
(ZPE + temperature correction)
Enthalpy: -3999.596750 au
(Electronic Energy + Enthalpy Correction)
Entropy: $394.13 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Gibbs Energy: -3999.641507 au (Enthalpy - T*Entropy) Cv: $154.78 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Table S5. Atomic charges and condensed Fukui indices for $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\left(\mathbf{2}^{\prime}{ }_{\mathrm{As}}\right)$ and $\left[\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right]^{+}\left[\mathbf{2}^{\prime}{ }_{\mathrm{As}}\right]^{+}$

Atom $\mathbf{2}^{\prime} \mathbf{A s}$	Mulliken	Natural	f (Mulliken) f (Natural)	
Co	0.076	0.806		
As	0.142	0.579		
[2'As $^{+}$				
Co	0.216	0.919	0.140	0.113
As	0.366	0.830	0.224	0.251

$2.5 \mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{SbC}_{4} \mathrm{H}_{4}\right)(2$ sb $)$

Figure S5. Optimised geometry for $\mathbf{2 ' s}_{\text {sb }}(\omega$ B97X-D/6-31G*/LANL2D ζ)

Table S6. Cartesian Coordinates for $\mathrm{Co}\left(\mathrm{CO}_{2}\left(\eta^{5}-\mathrm{SbC}_{4} \mathrm{H}_{4}\right)\left(\mathbf{2}^{\prime} \mathrm{sb}\right)\right.$			
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
Co	-0.303012	0.000892	0.623747
H	-0.417529	-2.383759	-0.900860
C	-0.325480	-1.305736	-0.988406
C	0.954492	-0.705879	-0.853919
H	1.859496	-1.282840	-0.695149
C	0.953880	0.707765	-0.854387
H	1.858850	1.284606	-0.694972
C	-0.326598	1.305080	-0.991299
H	-0.422831	2.382845	-0.905798
Sb	-1.918670	-0.001351	-1.399199
C	-0.417470	-1.285372	1.794989
O	-0.497208	-2.159073	2.535243
C	-0.413396	1.285509	1.797281
O	-0.489592	2.157375	2.540010

Thermodynamic properties (298.15 K, ω B97X-D/631G*/LANL2Dz)

Zero Point Energy: $211.22 \mathrm{kJmol}^{-1}$ (ZPE)
Temperature Correction: $26.51 \mathrm{kJmol}{ }^{-1}$
(vibration + gas law + rotation + translation)
Enthalpy Correction: $237.73 \mathrm{kJmol}^{-1}$
(ZPE + temperature correction)
Enthalpy: -1769.337270 au
(Electronic Energy + Enthalpy Correction)
Entropy: $401.29 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Gibbs Energy: -1769.382840 au (Enthalpy - T*Entropy) Cv: $157.18 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Table S6. Calculated Natural Atomic Charges and Infrared Data ${ }^{a}$ for $\left[\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AC}_{4} \mathrm{H}_{4}\right)\right]^{+} \mathbf{2}^{\prime}{ }_{\mathrm{A}}$

$A=$	Charge (A)	Charge (Co)	$\mathrm{Vco}\left(\mathrm{A}^{\prime}\right)$	Vco($A^{\prime \prime}$)	$k_{\text {co }}$
$\mathrm{CH}^{\text {b }}$			2033	1972	16.17
CH	$-0.374^{\text {c }}$	0.821	2033	1989	16.31
N	-0.517	0.816	2047	2003	16.54
P	0.530	0.807	2048	2009	16.59
As	0.579	0.806	2043	2007	16.54
Sb	0.766	0.796	2041	2007	16.52
${ }^{a} \omega \mathrm{~B} 97 \mathrm{X}-\mathrm{D} / 6-31 \mathrm{G} * /$ gas phase; scaling factor $0.9382 .{ }^{b}$ Experimental data from cyclohexane solution. ${ }^{[7]]}$ c Charge on carbon (charge on $\mathrm{H}=0.275$).					

Observations

(i) The net donicity towards cobalt of the $\eta^{5}-\mathrm{AC}_{4} \mathrm{H}_{4}$ ligand is somewhat invariant across the series, as inferred from both the natural charges on cobalt and the vco values (ii) Within the rings, the pyrrolyl ligand is anomalous in that the high electronegativity of nitrogen polarises the $\mathrm{C}-\mathrm{N}$ bonds resulting in a large negative natural charge on nitrogen and a decrease in the negative charge on the α carbons (-0.158).
(iii) The significant increase in charge on moving from $A=$ As to $A=S b$ is noteworthy (Bi is not implemented at this level of theory) making such compounds of interest for isolation and further studies.

$2.6 \mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)(2 \mathrm{c})$

Figure S6. Optimised geometry for 2c (ω B97X-D/6-31G*/LANL2D ζ)

Table S7. Cartesian Coordinates for $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)(\mathbf{2 c})$			
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
Co	-0.663811	-0.000146	1.094550
C	-0.827312	-1.271121	-0.534552
C	0.486981	-0.711134	-0.477098
C	0.486603	0.711508	-0.477719
C	-0.827615	1.272033	-0.533521
As	-2.219568	0.000483	-0.771228
C	-0.677199	-1.289701	2.260238
O	-0.668757	-2.180739	2.986893
C	-0.677369	1.287597	2.262118
O	-0.669191	2.177699	2.989893
C	-1.078420	2.758028	-0.539355
H	-0.520555	3.282956	0.243474
H	-2.138164	2.981865	-0.390344
H	-0.776911	3.184626	-1.503020
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
C	1.733156	1.552432	-0.465722
H	2.553262	1.063954	0.065690
H	1.559635	2.518994	0.013584
H	2.065266	1.747178	-1.492769
C	1.733605	-1.552240	-0.461647
H	2.552128	-1.064187	0.072502
H	2.068406	-1.746920	-1.487835
H	1.559086	-2.518937	0.017046
C	-1.078391	-2.757151	-0.539817
H	-0.521926	-3.281733	0.244246
H	-0.775726	-3.184556	-1.502726
H	-2.138414	-2.980777	-0.392362

Thermodynamic properties (298.15 K, ω B97X-D/6-

 31G*/LANL2Dz):Zero Point Energy: 491.30kJmol ${ }^{-1}$ (ZPE)
Temperature Correction: $40.96 \mathrm{kJmol}^{-1}$
(vibration + gas law + rotation + translation)
Enthalpy Correction: $532.25 \mathrm{kJmol}^{-1}$
(ZPE + temperature correction)
Enthalpy: -4156.718029 au
(Electronic Energy + Enthalpy Correction)
Entropy: $495.64 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Gibbs Energy: -4156.774313 au
(Enthalpy - T*Entropy)
CV: $258.58 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

$2.7\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right\} \mathrm{Pt}\left(\mathrm{CO}^{2}\right)\left(\mathrm{CF}_{3}\right)_{2}\right]\left(4^{\prime}\right)$

Figure S7. Optimised geometry for 4' (ω B97X-D/6-31G*/LANL2D ${ }^{*}$)

TableS8.	Cartesian	Coordinates	for	$\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\right.\right.\right.$
AsC $\left.\left.\left._{4} \mathrm{H}_{4}\right)\right\} \mathrm{Pt}(\mathrm{CO})\left(\mathrm{CF}_{3}\right)_{2}\right]\left(4^{\prime}\right)$				
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}	
Pt	-0.616890	-0.152698	1.397446	
As	1.507251	1.244471	0.595875	
Co	0.674390	-0.192740	-1.253926	
O	1.181653	-2.538751	2.183295	
O	-1.945699	0.239003	-2.440507	
C	2.679830	0.086139	-1.689938	
C	0.536144	-1.945969	-1.302839	
O	0.485412	-3.087673	-1.338622	
C	1.923889	1.175983	-2.190697	
C	0.506576	-1.667799	1.893920	
C	1.140072	1.800569	-1.202007	
C	2.504994	-0.122155	-0.305438	
C	-0.931086	0.064899	-1.951633	
H	2.976623	-0.958640	0.198943	
H	3.283944	-0.555021	-2.322437	
H	1.900408	1.450049	-3.239458	
H	0.449770	2.600196	-1.434964	
C	-1.869697	1.435317	0.995672	
C	-2.171320	-0.948002	2.480018	
F	-1.441798	2.259601	-0.023462	
F	-3.121603	1.084126	0.634784	
F	-1.985933	2.255460	2.062994	
F	-2.832888	-0.065561	3.245814	
F	-3.083576	-1.532698	1.675743	
F	-1.750468	-1.928107	3.331423	

Thermodynamic properties (298.15 K, ω B97X-D/631G*/LANL2Dz)

Zero Point Energy: $306.68 \mathrm{kJmol}^{-1}$ (ZPE)
Temperature Correction : $52.72 \mathrm{kJmol}^{-1}$
(vibration + gas law + rotation + translation)
Enthalpy Correction: $359.40 \mathrm{kJmol}^{-1}$
(ZPE + temperature correction)
Enthalpy: -4907.134806 au
(Electronic Energy + Enthalpy Correction)
Entropy: $584.18 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Gibbs Energy: -4907.201145 au (Enthalpy - T*Entropy)
$\mathrm{Cv}: 342.92 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

$2.8\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\} \mathrm{Pt}\left(\mathrm{CO}^{2}\right)\left(\mathrm{CF}_{3}\right)_{2}\right]\left(4^{\prime \prime}\right)$

Figure S8. Optimised geometry for 4" (ω B97X-D/6-31G*/LANL2D ζ)

Table	S9.	Cartesian	Coordinates	for	[\{Co $(\mathrm{CO})_{2}\left(\eta^{5}-\right.$
AsC $\left.\left.\left._{4} \mathrm{Me}_{4}\right)\right\} \mathrm{Pt}(\mathrm{CO})\left(\mathrm{CF}_{3}\right)_{2}\right]\left(4^{\prime \prime}\right)$					
Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}		
Pt	-1.348825	-0.370678	2.130822		
As	0.775567	0.961807	1.236657		
Co	-0.104981	-0.443168	-0.611271		
O	0.143054	-2.989000	2.773076		
O	-2.697031	-0.053062	-1.856409		
C	1.895095	-0.136212	-1.098496		
C	-0.195032	-2.191259	-0.656452		
O	-0.182750	-3.335946	-0.706224		
C	1.102554	0.962629	-1.556759		
C	-0.400101	-2.023238	2.504479		
C	0.325561	1.573509	-0.541096		
C	1.765674	-0.384386	0.288288		
C	-1.699645	-0.212750	-1.323604		
C	-2.416075	1.382567	1.938298		
C	-3.021931	-1.187441	2.995700		
F	-1.609437	2.489894	2.112828		
F	-2.963554	1.543905	0.699714		
F	-3.423869	1.573090	2.807392		
F	-4.135387	-0.958910	2.270591		
F	-2.936921	-2.547731	3.098293		
F	-3.263648	-0.743791	4.242416		
C	2.537850	-1.468600	0.990739		
H	3.612405	-1.278710	0.892323		
H	2.339124	-2.465089	0.581914		
H	2.310234	-1.499629	2.057862		
C	1.109933	1.427712	-2.985768		
H	1.994920	2.047974	-3.170658		
H	0.229005	2.028880	-3.217325		
H	1.136889	0.590077	-3.686808		

Figure S9. Topology of HOMO-7 for 4' (ω B97X-D/6-31G*/LANL2D) consistent with Co-Pt σ-bonding.

$2.9\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}\left(5^{\prime}\right)$

Figure S10. Optimised geometry for 5' (ω B97X-D/6-31G*/LANL2D ${ }^{*}$)

Table S12. Cartesian Coordinates for $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}\left(5^{\prime}\right)$

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
Co	-0.187757	-0.034150	2.705172
H	1.366466	-2.394746	2.726482
C	1.406843	-1.322908	2.884705
C	1.116700	-0.747622	4.140426
H	0.844412	-1.325906	5.016223
C	1.142936	0.669357	4.122944
H	0.891654	1.278305	4.984082
C	1.453568	1.202711	2.853946
H	1.451704	2.271086	2.669668
As	2.062209	-0.086685	1.575317
Au	0.001947	-0.059929	0.000097
C	-1.364464	1.283019	2.588486
O	-2.104957	2.147308	2.522648
C	-1.408250	-1.312890	2.618702
O	-2.178330	-2.152188	2.574741
Co	0.190535	0.043653	-2.703914
H	-1.312410	-2.347986	-2.794882
C	-1.375396	-1.273032	-2.921043
C	-1.099030	-0.654809	-4.159289
H	-0.815299	-1.200981	-5.051895

Atom		\mathbf{x}	\mathbf{y}
C	-1.156841	0.760111	-4.100318
H	-0.919758	1.399448	-4.943236
C	-1.477495	1.248505	-2.815870
H	-1.499180	2.310720	-2.599892
As	-2.057362	-0.090878	-1.575996
C	1.336712	1.383918	-2.552139
O	2.048454	2.270421	-2.467780
C	1.433469	-1.214250	-2.655753
O	2.208920	-2.049602	-2.641632

Thermodynamic properties (298.15 K, ω B97X-D/631G*/LANL2Dz):
Zero Point Energy: $433.25 \mathrm{kJmol}^{-1}$ (ZPE)
Temperature Correction: $53.34 \mathrm{kJmol}^{-1}$ (vibration + gas law + rotation + translation) Enthalpy Correction: $486.58 \mathrm{kJmol}^{-1}$ (ZPE + temperature correction)
Enthalpy: -8134.527779 au
(Electronic Energy + Enthalpy Correction)
Entropy: $590.58 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Gibbs Energy: -8134.594845 au (Enthalpy - T*Entropy) Cv: $357.97 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
$2.10\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}\left(5^{\prime \prime}\right)$

Figure S11. Optimised geometry for 5" (ω B97X-D/6-31G*/LANL2D ζ)

Atom	\mathbf{x}	\mathbf{y}	\mathbf{z}
C	2.812379	1.418070	1.236580
As	1.634603	2.002028	-0.164978
C	2.482573	-1.363856	1.387694
O	2.345944	-2.050653	2.290933
C	2.675086	-1.510618	-1.202260
O	2.671704	-2.294611	-2.033306
C	5.498921	0.677114	-1.352009
H	6.037383	-0.137312	-0.861462
H	6.150842	1.558178	-1.349246
H	5.332143	0.392604	-2.392114
C	2.819257	1.243767	-2.810250
H	3.315406	0.384893	-3.272120
H	3.244448	2.150633	-3.253577
H	1.762053	1.200685	-3.086024
C	5.285636	0.848595	1.687866
H	5.895713	0.004499	1.358187
H	4.971505	0.656345	2.715048
H	5.924768	1.738922	1.697686
C	2.432922	1.547578	2.686878
H	2.846911	0.743455	3.302661
H	1.346817	1.534004	2.813713
H	2.804949	2.496714	3.087471
C	-2.739125	-1.294736	-2.868376
H	-3.157360	-2.206640	-3.307988
H	-1.674864	-1.261048	-3.116987
H	-3.218381	-0.440640	-3.356519
C	-5.458949	-0.712567	-1.492723
H	-6.111259	-1.593241	-1.481895
H	-5.267410	-0.456360	-2.535887
H	-6.008087	0.114539	-1.036543
C	-5.328386	-0.822101	1.547757
H	-5.978471	-1.704464	1.537144
H	-5.915605	0.028664	1.194050
H	-5.048080	-0.631112	2.584784
C	-2.501637	-1.492101	2.640644
H	-2.887617	-2.430416	3.053334
H	-2.931027	-0.671384	3.223469
H	-1.419640	-1.477091	2.798600

Thermodynamic properties (298.15 K, ω B97X-D/631G*/LANL2Dz):
 Zero Point Energy: $990.01 \mathrm{kJmol}^{-1}$ (ZPE)
 Temperature Correction: $82.94 \mathrm{kJmol}^{-1}$
 (vibration + gas law + rotation + translation)
 Enthalpy Correction: $1072.95 \mathrm{kJmol}^{-1}$

(ZPE + temperature correction)
Enthalpy: -8448.795549 au
(Electronic Energy + Enthalpy Correction)
Entropy: $781.23 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$
Gibbs Energy: -8448.884265 au (Enthalpy - T*Entropy)
Cv: $556.99 \mathrm{Jmol}^{-1} \mathrm{~K}^{-1}$

Table S14. Comparison of Infrared Data for $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}$ (5^{\prime}) and $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}(5)$

Complex		vco $\left[\mathrm{cm}^{-1}\right]$		
$\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+} 5^{\prime}$,	Calculated 2	2086	2059	
	Uncorrected	2223	2195	
$\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsCC}_{4} \mathrm{Me}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+} \mathrm{Me}_{8} 5^{\prime}$	Calculated $^{\text {a }}$	2071	2041	
$\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+} \mathbf{5}$	Uncorrected 2	2207	2176	
	Measured b	2062	2051	2009

${ }^{a} \omega$ B97X-D/6-31G*/LANL2D $\zeta /$ gas phase, scaling factor $0.9382 .{ }^{6} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution, as $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{-}$salt, variance with calculated values may suggest a

Table S15. Comparison of Geometrical Data for $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\right.\right.\right.$ $\left.\left.\left.\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}\left(5^{\prime}\right)$ and $\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\}_{2} \mathrm{Au}\right]^{+}(5)$

Complex		Co-Au	Co-As	Au-As	As-Au-Co
		$[\AA]$	$[\AA]$	$[\AA]$	$\left[{ }^{\circ}\right]$
5^{\prime}	Calculated a	2.713	2.519	2.594	56.62
5	Measured b	2.664	2.520	2.526	58.13

${ }^{a} \omega \mathrm{~B} 97 \mathrm{X}-\mathrm{D} / 6-31 \mathrm{G} * / \mathrm{LANL} 2 \mathrm{D} \zeta /$ gas phase. ${ }^{b} \mathrm{X}$-ray diffraction of $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{-}$ salt, mean values for crystallographically unique parameters.

Figure S12. Orbitals associated with Co-Au σ-bonding for 5': (a) HOMO-16 (b) HOMO-17,

Figure S13. Topology of HOMO-16 (Slice) for 5' (ω B97X-D/631G*/LANL2D ζ) consistent with Co-Au σ-bonding.

Figure S14. Topology of HOMO-19 (slice) for 5' (ω B97X-D/631G*/LANL2D ζ) consistent with As-Au π-bonding.
(a)

(b)

Figure S15. (a) LUMO Map (Isovalue: 0.002 e. au^{-3}) indicating likely interaction sites (As, blue) for $\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right]^{-}$association and (b) LUMO topology (Slice) for 5^{5}.

Complex	Co-As	Co-M	As-M
$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{AsC}_{4} \mathrm{H}_{4}\right)\left(2 \mathrm{Ass}^{\prime}\right)$	0.702	-	-
$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\left(\mathrm{Me}_{4}-2 \mathrm{As}^{\prime}{ }^{\prime}\right)$	0.698		
$\left(2_{\text {As }}{ }^{\prime} \mathrm{Pt}\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{CO})\left(4^{\prime}\right)\right.$	0.470	0.421	0.736
($\mathrm{Me}_{4}-\mathbf{2 A s s}^{\prime}$) $\mathrm{Pt}\left(\mathrm{CF}_{3}\right)_{2}(\mathrm{CO})$	0.469	0.383	0.753
($\left.2 \mathrm{As}^{\prime}\right)_{2} \mathrm{Au}^{+}\left(5^{\prime}\right)$	0.448	0.559	0.780
($\left.\mathrm{Me}_{4}-\mathrm{2}_{\mathrm{As}}{ }^{\prime}\right)_{2} \mathrm{Au}^{+}$	0.454	0.544	0.808

Observations:

(i) In all cases, coordination of the arsenic to an extraneous metal (Au or Pt) results in a decrease in the Co-As bond order;
(ii) Permethylation of the arsolyl ligand results in a negligible of the Co-As bond order for the 'free' metalla-ligands;
(iii) Permethylation of the arsolyl ligand results in a modest (5') or significant (Pt) decrease in the Co-M bond order, most likely due steric impacts.

3. Additional Tables and Figures

Table S17. Selected spectroscopic data for complexes prepared in this work, and some previously reported complexes for comparison.

Entry	Complex	${ }^{13} \mathrm{C} \delta_{\mathrm{C}-\alpha^{[a]}}$	${ }^{13} \mathrm{C} \delta_{C-\beta}{ }^{[a]}$	${ }^{13} \mathrm{C} \delta_{\mathrm{co}}{ }^{[\mathrm{a}]}$	$\mathbf{V}_{\text {co }}(\mathbf{s y m})^{[\mathrm{b}]}$	$\mathrm{V}_{\text {co }}(\text { asym) })^{[b]}$	$k^{[c]}$
2a	$\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Ph}_{4}\right)$	137.2	135.1	203.8	2026	1978, 1970 ${ }^{[d]}$	16.13
2b	$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Ph}_{2} \mathrm{H}_{2}\right)$	138.1	94.9	203.0	2032	1985, 1976 ${ }^{[d]}$	16.23
2c	$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)$	$118.9^{\text {[e] }}$	$113.1{ }^{\text {[e] }}$	$205.1^{\text {[e] }}$	2019	1967	16.02
2d	$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Et}_{4}\right)$	$128.4{ }^{[\mathrm{e}]}$	$118.8{ }^{\text {[e] }}$	$205.3^{[\mathrm{e}]}$	2017	1965	15.99
2 e	$\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{TMS}_{2} \mathrm{Me}_{2}\right)$	$122.2{ }^{\text {[e] }}$	$119.8{ }^{\text {[e] }}$	$204.5{ }^{\text {[e] }}$	2015	1962	15.95
2 f	$\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)$	114.3	109.8	206.8			15.39
2 g	$\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\mathrm{\eta}^{5}-\mathrm{AsC}_{4} \mathrm{Et}_{4}\right)$	124.4	115.3	207.3			15.36
2h	$\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{TMS}_{2} \mathrm{Me}_{2}\right)$	118.7	116.1	205.5			15.30
$R e f .{ }^{[7]}$	$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{C}_{5} \mathrm{H}_{5}\right)$		$84.5{ }^{\text {[e] }}$	$205.6{ }^{\text {[e] }}$	$2033{ }^{[f]}$	$1972{ }^{[f]}$	16.17
Ref. ${ }^{[7]}$	$\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{C}_{5} \mathrm{Me}_{5}\right)$		$96.7{ }^{\text {[e] }}$	$207.9^{\text {[e] }}$	2011	1949	15.81
Ref. ${ }^{[8]}$	$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{C}_{5} \mathrm{Ph}_{5}\right)$		No data reported		2000	1945	15.69
$R e f .{ }^{[8]}$	$\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{C}_{5}\left\{\mathrm{CH}_{2} \mathrm{Ph}\right\}_{5}\right)$		No data reported		2020	1960	15.97
$R e f .{ }^{[9]}$	$\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{PC}_{4} \mathrm{Ph}_{2} \mathrm{H}_{2}\right)$		No data reported		2030	1980	16.21
Ref. ${ }^{[10]}$	$\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{PC}_{4}{ }^{\text {t }} \mathrm{Bu}_{2} \mathrm{H}_{2}\right)$	136.2	91.9	204.0	2023	1968	16.06
Ref. ${ }^{[10]}$	$\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{5}-\mathrm{PC}_{4} \mathrm{BHu}_{2} \mathrm{H}_{2}\right)$	134.7	90.5	208.0	No data reported		-

[a] $\mathrm{C}_{6} \mathrm{D}_{6}$ solution unless otherwise stated, ppm downfield from $\mathrm{SiMe}_{4}, 25^{\circ} \mathrm{C}$; the labels α and β refer to ring-carbon positions with respect to the heteroatom (where applicable). [b] n-hexane solution unless otherwise stated, $\mathrm{cm}^{-1}, 25^{\circ} \mathrm{C}$. [c] Cotton-Kraihanzel force constant in Ncm^{-1}. [d] resolution of the doubly degenerate E vibrational mode is observed in n-hexane for these complexes c.f., $\mathrm{v}_{\mathrm{co}}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \mathbf{2 a} 2022,1963 \mathrm{~cm}^{-1} ; \mathbf{2 b} 2027,1972 \mathrm{~cm}^{-1}$. [e] CDCl_{3} solution, $25^{\circ} \mathrm{C}$. [f] Cyclohexane solution.

4. Synthetic Procedures and Spectroscopic and Crystallographic Data

4.1 $\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Ph}_{4}\right)(2 \mathrm{a}):$

A 250 mL three-necked round bottom flask fitted with a watercooled reflux condenser was charged $600 \mathrm{mg} \mathrm{Co} 2(\mathrm{CO})_{8}(1.75$ mmol) and $800 \mathrm{mg} \mathrm{PhAsC} 4 \mathrm{Ph}_{4}(1.5 \mathrm{mmol})$ or $700 \mathrm{mg} \mathrm{ClAsC} 4 \mathrm{Ph}_{4}$ (1.5 mmol); 80 mL THF was admitted, and the mixture was brought to reflux under argon for 6 hours. After this time, volatiles were removed under reduced pressure and the residue was take up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through a short Celite® plug and adsorbed onto a small quantity of oven-dried, degassed silica gel by evaporation of the solvent. This was transferred to a water-jacketed column of
oven dried silica gel ($30 \times 2.5 \mathrm{~cm}$) prepared by loading with n pentane under nitrogen. Eluting with 4:1 n-pentane/benzene (caution - carcinogen) provided a bright orange band which was collected under nitrogen and taken to dryness. The product was re-crystallised from the minimum amount of hot n-hexane/benzene (ca. 9:1 v/v) cooled to $-20^{\circ} \mathrm{C}$ overnight providing 230 mg of the title compound as an orange-brown crystalline solid in 28 \% isolated yield (based on $\mathrm{CIAsC}_{4} \mathrm{Ph}_{4}$; a 20% yield was obtained with $\mathrm{PhAsC} 4 \mathrm{Ph}_{4}$). The product is readily soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, THF, acetonitrile, acetone, benzene and toluene, somewhat soluble in $\mathrm{Et}_{2} \mathrm{O}$ and less-so in n-hexane and n-pentane. NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 7.78-7.15\left(\mathrm{~m}, 8 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.85-6.77(\mathrm{~m}, 12 \mathrm{H}$, $\left.\mathrm{C}_{6} \mathrm{H}_{5}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 203.8(\mathrm{CO}), 137.2\left(\mathrm{C}_{\mathrm{a}}\right), 135.1\left(\mathrm{C}_{\beta}\right)$, $133.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 132.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 130.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.9$ $\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.7\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$; some aromatic carbon resonances are partially obscured by the $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal, however a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum in CDCl_{3} finds $\delta 203.2$ (CO), $136.9\left(C_{\alpha}\right), 134.6\left(C_{\beta}\right), 136.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 134.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 132.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $130.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.6\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.4$
$\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 119.1\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$; IR (n-hexane) $v_{c o}=2026(\mathrm{vs})$, 1978(vs), 1970(vs) cm^{-1}; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) $\mathrm{vco}_{\mathrm{co}}=2022(\mathrm{vs}), 1963(\mathrm{vs}) \mathrm{cm}^{-}$ ${ }^{1}$; HR-MS (El, MeCN) found m/z 546.0014 (calc. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{2}{ }^{75} \mathrm{As}^{59} \mathrm{Co}[M]^{+}: 546.0011$). Analysis found: C, 65.91 ; H, 3.61%; calc. for $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{O}_{2}$ AsCo: C, 65.95 ; H, 3.69\%.

Single crystals of 2a suitable for X-ray diffraction were grown from benzene $/ n$-hexane at $-20^{\circ} \mathrm{C}$. A suitable crystal was selected and mounted in oil on a Micromount ${ }^{\text {TM }}$ mylar loop and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated Cu-K ${ }_{\alpha}$ radiation ($\lambda=1.54184 \AA$) at $150.0(1) \mathrm{K}$. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and a Gaussian absorption correction was applied ($T_{\text {min }} / T_{\text {max }}=0.219 / 1.000$). The structure was solved within Olex ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with the SHELXL ${ }^{14}$ refinement package using Least-Squares against F^{2} in an anisotropic (for non-hydrogen atoms) approximation. Aromatic hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.2 U_{\text {eq }}(\mathrm{C})$, where $U_{\text {eq }}(C)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Principal crystallographic data and refinement parameters are as follows: $\mathrm{C}_{30} \mathrm{H}_{20} \mathrm{AsCoO}_{2}\left(M_{\mathrm{w}}=546.31 \mathrm{gmol}^{-1}\right)$: orange plate $0.298 \times 0.110 \times$ 0.083 mm , triclinic, space group $P-1$ (no. 2), $a=9.0514(4) \AA, b=$ 10.5907(5) $\AA, c=12.8357(6) \AA, \alpha=76.116(4)^{\circ}, \beta=84.418(4)^{\circ}, \gamma$ $=78.076(4)^{\circ}, V=1167.24(10) \AA^{3}, Z=2, \mu\left(C u-K_{\alpha}\right)=7.541 \mathrm{~mm}^{-1}$, $\rho_{\text {calc }}=1.554 \mathrm{Mgm}^{-3}, 11946$ reflections measured $\left(7.104^{\circ} \leq 2 \Theta \leq\right.$ 147.544°), 4691 unique ($R_{\text {int }}=0.0239, R_{\text {sigma }}=0.0282$) which were used in all calculations, GOF $=1.037, D_{\min } / D_{\max }=-0.64 / 0.44 \mathrm{e} / \AA^{3}$. The final R_{1} was $0.0336(I>2 \sigma(I))$ and $w R_{2}$ was 0.0887 (all data). CCDC number 2130783.

Figure S16. Molecular structure of 2a (50\% displacement ellipsoids, arsenolyl ring substituents simplified). Selected distances $[\AA]$ and angles [${ }^{\circ}$]:As1-Co1 2.427(4), As1-C3 1.900(2), C3-C4 1.443(3), C4-C5 1.427(3), C5-C6 1.439(3), C6-As1 1.915(2), Co1-C1 1.746(3), Co1-C2 1.747(3), C3-As1-C6 84.52(8), As1-C3-C4 114.32(1), C3-C4-C5 113.65(2), C4-C5-C6 112.84(2), C5-C6-As1 114.38(1), C1-Co1-C2 90.82(1).

4.2 $\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Ph}_{2} \mathrm{H}_{2}\right)(2 \mathrm{~b}):$

Prepared as above. Quantities: $500 \mathrm{mg} \mathrm{Co}_{2}(\mathrm{CO})_{8}(1.5 \mathrm{mmol}), 450$ $\mathrm{mg} \mathrm{PhAsC} 4{ }_{4} \mathrm{P}_{2} \mathrm{H}_{2}(1.25 \mathrm{mmol})$. Chromatographed on silica gel (30 $\times 2.5 \mathrm{~cm}$) under nitrogen with 9:1 n-pentane/benzene providing a bright orange band. Re-crystallised from the minimum amount of hot n-hexane/benzene (ca. 9:1 v/v) cooled to $-20^{\circ} \mathrm{C}$ overnight, isolated yield of orange-brown crystalline solid: 105 mg (21% based on arsenic). Solubility properties are similar to $\mathbf{2 a}$ above. NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 7.27\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right), 6.99(\mathrm{~m}$, $\left.6 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right) 5.93$ (s, 2H, $\beta-\mathrm{CH}$); ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 203.2$ (CO), $138.1\left(\mathrm{C}_{\alpha}\right), 128.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.5\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$, $94.9\left(C_{\beta}\right)$; some aromatic carbon resonances are partially obscured by the $\mathrm{C}_{6} \mathrm{D}_{6}$ solvent signal, however a ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ spectrum in CDCl_{3} finds $\delta 202.7(\mathrm{CO}), 137.9\left(\mathrm{C}_{\mathrm{a}}\right), 128.9\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 128.8\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)$ $128.3\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 127.2\left(\mathrm{C}_{6} \mathrm{H}_{5}\right), 94.7\left(C_{\beta}\right) ;$ IR (n-hexane) vco $=2032(\mathrm{vs})$, 1985(vs), 1976(vs) cm ${ }^{-1}$; IR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$) vco $=2027(\mathrm{vs}), 1974(\mathrm{vs}) \mathrm{cm}^{-}$ ${ }^{1}$; HR-MS (EI, MeCN) found m/z 393.9383 (calc. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2}{ }^{75} \mathrm{As}^{59} \mathrm{Co}[M]^{+}$: 393.9385). Analysis found: C, $54.86 ; \mathrm{H}$, 2.93%; calc. for $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{O}_{2} \mathrm{AsCo}$: C, 54.85 ; H, 3.07\%.

Single crystals of 2b suitable for X-ray diffraction were grown from benzene/n-hexane at $-20^{\circ} \mathrm{C}$. A suitable crystal was selected and mounted in oil on a Micromount ${ }^{\text {TM }}$ mylar loop and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated Cu-K radiation $(\lambda=1.54184 \AA$) at 150.0 (1) K. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and Multi-scan absorption correction was applied ($T_{\min } / T_{\max }=0.56452 / 1.00000$). The structure was solved within Olex2 ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with the SHELXL ${ }^{14}$ refinement package using Least-Squares against F^{2} in an anisotropic (for non-hydrogen atoms) approximation. Aromatic hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.2 U_{\text {eq }}(C)$, where $U_{\text {eq }}(C)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Atom C5 (see Fig. S2) exhibited a belligerent thermal ellipsoid which could be indicative of some rotational disorder of the η^{5}-arsolyl group however this could not be modelled satisfactory - this effect was present across three separate crystal specimens and did not appear to affect data quality. Principal crystallographic data and refinement parameters are as follows: $\mathrm{C}_{18} \mathrm{H}_{12} \mathrm{AsCoO}_{2}\left(M_{w}=394.13 \mathrm{gmol}^{-1}\right)$: orange needle, 0.109×0.061 $\times 0.029 \mathrm{~mm}$, orthorhombic, space group Pna2 (no. 33), a $=$ $11.23470(10) \AA, b=17.27710(10) \AA, c=7.83560(10) \AA, V=$ $1520.91(3) \AA^{3}, Z=4, \mu\left(C u-K_{\alpha}\right)=11.289 \mathrm{~mm}^{-1}, \rho_{\text {calc }}=1.721 \mathrm{Mgm}^{-3}$, 27398 reflections measured $\left(9.39^{\circ} \leq 2 \Theta \leq 147.908^{\circ}\right)$, 3057 unique $\left(R_{\text {int }}=0.0453, R_{\text {sigma }}=0.0224\right)$ which were used in all calculations, GOF $=1.085, D_{\min } / D_{\max }=-0.65 / 0.97 \mathrm{e}^{-3}$. The final R_{1} was 0.0386 $(I>2 \sigma(I))$ and $w R_{2}$ was 0.0936 (all data) for 193 parameters and one restraint. CCDC number 2130784.

Figure S17. Molecular structures of 2b (50\% displacement ellipsoids, arsenolyl ring substituents simplified). Selected distances [\AA] and angles [${ }^{\circ}$]: As1-Co1 2.393(1), As1-C3 1.933(7), C3-C4 1.389(9), C4-C5 1.365(1), C5C6 1.357(9), C6-As1 1.915(6), Co1-C1 1.735(8), Co1-C2 1.734(7), C3-As1C6 87.37(3), As1-C3-C4 111.12(5), C3-C4-C5 110.23(6), C4-C5-C6 126.02(6), C5-C6-As1 104.64(5), C1-Co1-C2 94.45(3).

4.3 $\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)(2 \mathrm{c}):$

Prepared as above with the modification of heating to reflux in 50 $\mathrm{mL} n$-hexane for 6 hours. Typical quantities: $720 \mathrm{mg} \mathrm{Co}_{2}(\mathrm{CO})_{8}(2.1$ mmol) and 430 mg freshly prepared $\mathrm{ClAsC}_{4} \mathrm{Me}_{4}$ (2 mmol). Chromatography on neutral alumina ($25 \times 2.5 \mathrm{~cm}$) under nitrogen with n-pentane provided an orange-red band, which was collected under nitrogen and taken to dryness providing between ca. 80190 mg of the product as a dark orange-red liquid in an average isolated yield of $\sim 19 \%$ (based on $\mathrm{ClAsC}_{4} \mathrm{Me}_{4}$ across 6 separate preparations; a $\sim 15 \%$ average isolated yield was obtained with $\mathrm{PhAsC}_{4} \mathrm{Me}_{4}$ across 3 separate preparations). The product is readily soluble most common organic solvents, though was difficult to completely free from solvents with which it had previously been dissolved despite being held under reduced pressure for extended periods of time, as evidenced by NMR spectroscopy. The product is readily soluble in most common organic solvents. NMR $\left(\mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 2.12\left(\mathrm{~s}, 6 \mathrm{H}, \alpha-\mathrm{CH}_{3}\right), 1.85\left(\mathrm{~s}, 6 \mathrm{H}, \beta-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 205.8(\mathrm{CO}), 118.9\left(\mathrm{C}_{\alpha}\right), 113.1\left(\mathrm{C}_{\beta}\right), 17.1(\alpha-$ $\left.\mathrm{CH}_{3}\right), 14.5\left(\beta-\mathrm{CH}_{3}\right)$; IR (n-hexane) $v \mathrm{co}=2019(\mathrm{vs}), 1967(\mathrm{vs}) \mathrm{cm}^{-1}$; HR-MS (EI, MeCN) found m/z 297.9389 (calc. for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{O}_{4}{ }^{75} \mathrm{As}^{59} \mathrm{Co} \quad[M]^{+}$: 297.9385); satisfactory elemental microanalysis could not be obtained due to entrained solvent.

4.4 $\mathrm{Co}(\mathrm{CO})_{2}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Et}_{4}\right)(2 \mathrm{~d}):$

Prepared as above. Quantities: $480 \mathrm{mg} \mathrm{Co}_{2}(\mathrm{CO})_{8}(1.4 \mathrm{mmol})$ and $350 \mathrm{mg} \mathrm{CIAsC} 44_{4} \mathrm{Et}_{4}$, (1.25 mmol). Chromatography on neutral alumina ($25 \times 2.5 \mathrm{~cm}$) under nitrogen with n-pentane provided an orange-red band, which was collected under nitrogen and taken to dryness under reduced pressure giving $105-130 \mathrm{mg}$ of the product as a dark orange-red liquid in an average isolated yield of 25 \% (based on arsenic from 2 separate preparations; a 16 \% yield was obtained with $\mathrm{PhAsC}_{4} \mathrm{Et}_{4}$ from one preparation). The product is readily soluble in most common organic solvents. NMR $\left(\mathrm{CDCl}_{3}\right.$, $\left.25^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}(400 \mathrm{MHz}$; NB: diastereotpic methylene protons on each Et groups) $\delta 2.54$ (dt, $J=15,7,7 \mathrm{~Hz}, 2 \mathrm{H}, \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.41 (dt, $J=$ $15,7,7 \mathrm{~Hz}, 2 \mathrm{H}, \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}$), $2.26(\mathrm{dt}, J=15,7,7 \mathrm{~Hz}, 2 \mathrm{H}, \beta-$ $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 2.07 (dt, $J=15,7,7 \mathrm{~Hz}, 2 \mathrm{H}, \beta-\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.19 (td, $J=7$, $\left.7,3 \mathrm{~Hz}, 12 \mathrm{H}, \alpha-\& \beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 205.3(\mathrm{CO})$,
$128.4\left(C_{\alpha}\right), 118.8\left(C_{\beta}\right), 24.4\left(\alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 21.2\left(\beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.9(\alpha-$ $\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$, $16.6\left(\beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right)$; these data are consistent with methyl groups syn or anti to the cobalt not interconverting on the ${ }^{13} \mathrm{C}$ NMR timescale. IR (n-hexane) $\mathrm{v}_{\mathrm{co}}=2017$ (vs), 1965(vs) cm ${ }^{-1}$; HR-MS (EI, MeCN) found $m / z 354.0011$ (calc. for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}{ }^{59} \mathrm{Co}_{1}{ }^{75} \mathrm{As}_{1}[M]^{+}$: 354.0010); Satisfactory elemental microanalytical data were not be obtained for this oil.

4.5 $\mathrm{Co}(\mathrm{CO})_{2}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Me}_{2}\right)(2 \mathrm{e}):$

Prepared as above. Quantities: $450 \mathrm{mg} \mathrm{Co} 2(\mathrm{CO})_{8}(1.3 \mathrm{mmol})$ and 400 mg CIAsC $4_{4} \mathrm{TMS}_{2} \mathrm{Me}_{2}$ (1.2 mmol) Chromatography on alumina $(25 \times 2.5 \mathrm{~cm})$ with n-pentane provides an orange band which is collected under nitrogen and taken to dryness, giving 130 mg of the product as a dark orange liquid in 26% isolated yield (based on arsenic). The product is readily soluble in most common organic solvents. NMR $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right){ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 2.21\left(\mathrm{~s}, 6 \mathrm{H}, \beta-\mathrm{CH}_{3}\right)$, 0.23 (s, 18H, $\left.\alpha-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 204.5(\mathrm{CO}), 122.2$ $\left(C_{\alpha}\right), 119.8\left(C_{\beta}\right), 18.4\left(\beta-\mathrm{CH}_{3}\right), 1.3\left(\alpha-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right)$; IR (n-hexane) vco = 2015(vs), 1963(vs) cm ${ }^{-1}$; HR-MS (EI, MeCN) found $\mathrm{m} / \mathrm{z} 413.9851$ (calc. for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2}{ }^{28} \mathrm{Si}_{2}^{59} \mathrm{Co}^{75} \mathrm{As}[M]^{+}$: 413.9863). Satisfactory elemental microanalytical data were not be obtained for this oil.

4.6-8 $\quad \mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{R}_{4}\right)(2 \mathrm{f}-\mathrm{h})$

To a solution of $\mathbf{2 c}(120 \mathrm{mg}, 0.30 \mathrm{mmol}), \mathbf{2 d}(110 \mathrm{mg}, 0.31 \mathrm{mmol})$ or $\mathbf{2 e}(110 \mathrm{mg}, 0.27 \mathrm{mmol})$ in 10 mL toluene was added $\sim 0.1 \mathrm{~mL}$ neat $\mathrm{P}(\mathrm{OMe})_{3}$ (excess) and the mixture warmed to $100^{\circ} \mathrm{C}$ - the dark orange-red colour discharged to a bright orange over the course of ca. 30 minutes, and heating was continued for a total of 2 hours. After this time, the mixture was transferred via syringe to a column of oven-dried neutral alumina ($20 \times 2.5 \mathrm{~cm}$) made up in n-pentane under nitrogen. Eluting with n-pentane, followed by $4: 1$ n-pentane/Et $\mathrm{t}_{2} \mathrm{O}$ provided a bright orange band which was collected under nitrogen and taken to dryness under reduced pressure. No unreacted starting materials were observed during chromatography although a minor green-brown band remined immobile atop the alumina. The complexes $\mathbf{2 f}$ and $\mathbf{2 h}$ were obtained as bright orange solids after re-crystallisation from SiMe_{4} whereas $\mathbf{2 g}$ is an orange liquid which eventually solidified upon prolonged storage at $-30^{\circ} \mathrm{C}$. Isolated yields: $\mathbf{2 f} 100 \mathrm{mg}(85 \%), \mathbf{2 g}$ 110 mg (80%), and $\mathbf{2 h} 115 \mathrm{mg}$ (83%). All were found to decompose upon contact with air, either neat or in solution, and appear to react with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and CDCl_{3} to precipitate unknown paramagnetic materials. All are readily soluble in common organic solvents.

4.6 $\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\mathrm{n}^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)(2 \mathrm{f})$

2f: NMR ($\left.\mathrm{C}_{6} \mathrm{D}_{6}, 25{ }^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 3.36\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=12 \mathrm{~Hz}, 9 \mathrm{H}\right.$, POCH_{3}), 1.94 (s, 6H, $\alpha-\mathrm{CH}_{3}$), $1.83\left(\mathrm{~s}, 6 \mathrm{H}, \beta-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176$ $\mathrm{MHz}) \delta 206.8(\mathrm{CO}), 114.3\left(\mathrm{C}_{\alpha}\right), 109.8\left(\mathrm{C}_{\beta}\right), 51.0\left(\mathrm{POCH}_{3}\right), 16.9(\alpha-$ CH_{3}), $14.4\left(\beta-\mathrm{CH}_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(161 \mathrm{MHz}) \delta 3.3$ (s, broad); IR (n hexane) $v_{c o}=1947 \mathrm{~cm}^{-1}$; HR-MS (EI, MeCN) found $\mathrm{m} / \mathrm{z} 393.9725$
(calc. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4}{ }^{75} \mathrm{As}^{59} \mathrm{CoP}[M]^{+}: 393.9725$). Analysis found: C , 36.60 ; H, 5.16%; calc. for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{AsCoP}: 36.57 \mathrm{C}, 5.37 \mathrm{H} \%$.

Single crystals of $\mathbf{2 f}$ suitable for X-ray diffraction were grown by evaporation of SiMe_{4} solution at $-30^{\circ} \mathrm{C}$. A suitable crystal was selected and mounted in oil on a Micromount ${ }^{\text {TM }}$ mylar loop and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation $(\lambda=1.54184 \AA$) at 150.0(1) K. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and a Gaussian absorption correction was applied ($T_{\text {min }} / T_{\text {max }}=0.29678 / 0.37651$). The structure was solved within Olex2 ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with SHELXL ${ }^{14}$ refinement package using Least-Squares against F^{2} in an anisotropic (for non-hydrogen atoms) approximation. Aliphatic hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.5 U_{\text {eq }}(\mathrm{C})$, where $U_{\text {eq }}(\mathrm{C})$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Two independent molecules of $\mathbf{2 f}$ were found in the unit cell. Principal crystallographic data and refinement parameters are as follows: $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{AsCoO} 4 \mathrm{P}\left(M_{w}=394.11 \mathrm{gmol}^{-1}\right)$: orange plate, $0.235 \times 0.176 \times 0.075 \mathrm{~mm}$, monoclinic, space group $P 21 / n$ (no. 14), $a=8.19800(10) ~ \AA, b=14.8986(2) \AA, c=26.2475(3)$ $\AA, \beta=97.0710(10)^{\circ}, V=3181.45(7) \AA^{3}, Z=8, \mu\left(C u-K_{\alpha}\right)=11.788$ mm^{-1}, $\rho_{\text {calc }}=1.646 \mathrm{Mgm}^{-3}, 42721$ reflections measured ($6.786^{\circ} \leq$ $\left.2 \Theta \leq 148.738^{\circ}\right), 6425$ unique ($R_{\text {int }}=0.0382, R_{\text {sigma }}=0.0223$) which were used in all calculations, $\mathrm{GOF}=1.065, D_{\text {min }} / D_{\text {max }}=-0.89 /$ $1.46 \mathrm{e} \AA^{-3}$. The final R_{1} was $0.0360(I>2 \sigma(I))$ and $w R_{2}$ was 0.0875 (all data). CCDC number 2130785.

Figure S18 Molecular structure of $\mathbf{2 f}$ (50% displacement ellipsoids, arsenolyl ring and phosphite substituents simplified). Selected distances $[\AA]$ and angles [${ }^{\circ}$]: As1-Co1 2.408(5), As1-C5 1.910(3), C5-C6 1.430(4), C6-C7 1.423(4), C7-C8 1.427(5), C8-As1 1.903(3), Co1-C1 1.719(3), Co1-P1 2.097(9), C5-As1-C8 84.12(1), As1-C5-C6 114.25(2), C5-C6-C7 113.30(3), C6-C7-C8 113.47(3), C7-C8-As1 114.56(2), C1-Co1-P1 93.49(1).

4.7 $\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{5}-\mathrm{AsC}_{4} \mathrm{Et}_{4}\right)(2 \mathrm{~g})$

2g: NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 3.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\text {PH }}=12 \mathrm{~Hz}, 9 \mathrm{H}\right.$, POCH_{3}), $2.45\left(\mathrm{~m}, 4 \mathrm{H}, \alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 2.19\left(\mathrm{~m}, 4 \mathrm{H}, \beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.23(\mathrm{t}$, $\left.{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7 \mathrm{~Hz}, 6 \mathrm{H}, \alpha-\mathrm{CH}_{3}\right), 1.13\left(\mathrm{t},{ }^{3} \mathrm{JHH}=7 \mathrm{~Hz}, 6 \mathrm{H}, \beta-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $(176 \mathrm{MHz}) \delta 207.4(\mathrm{CO}), 124.4\left(\mathrm{C}_{\alpha}\right), 115.3\left(\mathrm{C}_{\beta}\right), 51.3\left(\mathrm{POCH}_{3}\right)$, $24.7\left(\alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 22.0\left(\beta-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 17.8\left(\alpha-\mathrm{CH}_{2} \mathrm{CH}_{3}\right), 16.6(\beta-$ $\left.\left.\mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{31}{ }^{\mathrm{P}}{ }^{1} \mathrm{H}\right\}(161 \mathrm{MHz}) \delta 3.4$ (s, broad); IR (n-hexane) $\mathrm{vco}=$ $1945 \mathrm{~cm}^{-1}$; HR-MS (El, MeCN) found m/z 450.0351 (calc. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4}{ }^{75} \mathrm{AsCoP}[M]^{+}: 450.0352$). Analysis found: C, $42.73 ; \mathrm{H}$, 6.31%; calc. for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{O}_{4} \mathrm{AsCoP}: \mathrm{C}, 42.68$; $\mathrm{H}, 6.49 \%$. Single crystals suitable for X -ray diffraction were not obtained.

4.8 $\mathrm{Co}(\mathrm{CO})\left\{\mathrm{P}(\mathrm{OMe})_{3}\right\}\left(\eta^{5}-\mathrm{AsC}_{4}\left(\mathrm{SiMe}_{3}\right)_{2} \mathrm{Me}_{2}\right)(2 \mathrm{~h})$

2h: NMR ($\mathrm{C}_{6} \mathrm{D}_{6}, 25^{\circ} \mathrm{C}$): ${ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 3.40\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{PH}}=12 \mathrm{~Hz}, 9 \mathrm{H}\right.$, POCH_{3}), 2.15 (s, $6 \mathrm{H}, \beta-\mathrm{CH}_{3}$), 0.32 (s, $\left.18 \mathrm{H}, \alpha-\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ $(176 \mathrm{MHz}) \delta 205.6(\mathrm{CO}), 118.7\left(\mathrm{C}_{\alpha}\right), 116.0\left(\mathrm{C}_{\beta}\right), 51.5\left(\mathrm{POCH}_{3}\right)$, $18.7\left(\beta-\mathrm{CH}_{3}\right), 1.6\left(\mathrm{Si}\left(\mathrm{CH}_{3}\right)_{3}\right) ;{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}(161 \mathrm{MHz}) \delta 3.8(\mathrm{~s}$, broad); IR (n-hexane) vco $=1941 \mathrm{~cm}^{-1}$; HR-MS (EI, MeCN) found m / z 510.0199 (calc. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4}{ }^{75} \mathrm{AsCo}_{1} \mathrm{P}_{1}{ }^{29} \mathrm{Si}_{2}\left[M^{+}\right.$: 510.0203). Analysis found: $\mathrm{C}, 37.55 ; \mathrm{H}, 6.32 \%$; calc. for $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{O}_{4} \mathrm{AsCoPSi}_{2}: \mathrm{C}$, 37.65 ; H, 6.52\%.

Single crystals of $\mathbf{2 h}$ suitable for X-ray diffraction were grown by evaporation of SiMe_{4} solution at $-30^{\circ} \mathrm{C}$. A suitable crystal was selected and mounted in oil on a Micromount ${ }^{\text {TM }}$ mylar loop and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation ($\lambda=1.54184 \AA$) at 150.0(1) K. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and a Gaussian absorption correction was applied ($T_{\text {min }} / T_{\text {max }}=0.178 / 0.672$). The structure was solved within Olex2 ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with the SHELXL ${ }^{14}$ refinement package using Least-Squares against F^{2} in an anisotropic (for non-hydrogen atoms) approximation. Aliphatic hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.5 U_{\text {eq }}(C)$, where $U_{\text {eq }}(C)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Principal crystallographic data and refinement parameters are as follows: $\mathrm{C}_{16} \mathrm{H}_{33} \mathrm{AsCoO}_{4} \mathrm{PSi}_{2}\left(M_{w}=510.42 \mathrm{gmol}^{-}\right.$ ${ }^{1}$): orange needle, $0.554 \times 0.091 \times 0.042 \mathrm{~mm}$, monoclinic, space group $C c$ (no. 9), $a=7.93850(10) \AA, b=19.9045(2) \AA, c=$ $15.36370(10) \AA, \beta=90.3000(10)^{\circ}, V=2427.61(4) \AA^{3}, Z=4, \mu(C u-$ $\left.\mathrm{K}_{\mathrm{a}}\right)=8.764 \mathrm{~mm}^{-1}, \rho_{\text {calc }}=1.397 \mathrm{Mgm}^{-3}, 23360$ reflections measured $\left(8.886^{\circ} \leq 2 \Theta \leq 147.518^{\circ}\right)$, 4232 unique ($R_{\text {int }}=0.0252, R_{\text {sigma }}=$ 0.0181) which were used in all calculations, GOF $=1.030, D_{\text {min }} /$ $D_{\text {max }}=-0.32 / 0.31 \mathrm{e}^{-3}$.. The final R_{1} was $0.0219(1>2 \sigma(\mathrm{l}))$ and $w R_{2}$ was 0.0564 (all data). CCDC number 2130786.

Figure S19. Molecular structure 2h (50\% displacement ellipsoids, arsolyl ring and phosphite substituents simplified). Selected distances $[\AA$] and angles [${ }^{\circ}$]: As1-Co1 2.3957(6), As1-C5 1.942(3), C5-C6 1.408(4), C6-C7 1.451(4), C7-C8 1.424(4), C8-As1 1.893(3), Co1-C1 1.712(4), Co1-P1 2.094(1), C5-As1-C8 87.48(1), As1-C5-C6 111.19(2), C5-C6-C7 114.09(3), C6-C7-C8 116.06(3), C7-C8-As1 111.06(2), C1-Co1-P1 91.14(2).

$4.9\left[\mathrm{Co}(\mathrm{CO})_{2}\left(\sigma: \eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right) \cdot \mathrm{HgCl}(\mu-\mathrm{Cl})\right]_{2}(3)$

To a stirred solution of $\mathbf{2 c}(150 \mathrm{mg}, 0.50 \mathrm{mmol})$ in 3 mL acetone was added a solution of $\mathrm{HgCl}_{2}(125 \mathrm{mg}, 0.46 \mathrm{mmol})$ in 3 mL of the same solvent. After a brief while a bright yellow precipitate began to form, and the mixture was stirred for a further 60 minutes. After this time, the almost colourless supernatant was decanted, and the solids washed further with acetone ($3 \times 3 \mathrm{~mL}$ portions) and $\mathrm{Et}_{2} \mathrm{O}$ (3 $x 3 \mathrm{~mL}$ portions) and dried under vacuum. The isolated yield was 230 mg (91% based on Hg). The product may be handled in air for some time as a solid however gains a brown cast overnight. The product was poorly soluble in virtually all available solvents and only partially dissolved in acetonitrile with prolonged trituration. Satisfactory NMR spectra could, regrettably, not be obtained due to extensive precipitation before or during acquisition. As indicated by $I R$, the bulk sample obtained from this preparation is exclusively the anti-isomer. IR (MeCN) vco = 2072(vs), 2036(vs) cm${ }^{-1}$; HR-MS (ESI, MeCN) found m/z 1104.7222 (calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}{ }^{75} \mathrm{As}_{2}{ }^{35} \mathrm{Cl}_{3} \mathrm{Co}_{2}{ }^{202} \mathrm{Hg}_{2}\left[\mathrm{M}-\mathrm{Cl}^{+}\right.$: 1104.7216). Analysis found: C, 21.11; $\mathrm{H}, 1.98 \%$; calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{As}_{2} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{Hg}_{2}$: C, 21.09 ; H , 2.12\%.

Single crystals of anti-3 and syn-3 suitable for X-ray diffraction were grown by layering an acetone solution of $\mathbf{2 c}$ with an acetone solution of HgCl_{2} at $-30^{\circ} \mathrm{C}$. Suitable crystals were selected and mounted in oil on Micromount ${ }^{\text {TM }}$ mylar loops and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation ($\lambda=1.54184 \AA$) at 150.00 (10) K. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and spherical absorption corrections were applied (anti-3: $T_{\min } / T_{\text {max }}=0.07271 / 0.17197$. syn-3: $T_{\text {min }} / T_{\text {max }}=$ 0.02226 / 0.10591). The structures were solved within Olex2 ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with the SHELXL ${ }^{14}$ refinement package using Least-Squares against F^{2} in an anisotropic (for non-hydrogen atoms) approximation. Aliphatic hydrogen atom positions were refined in isotropic approximation in
a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.5 U_{\text {eq }}(\mathrm{C})$, where $U_{\text {eq }}(C)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Principal crystallographic data and refinement parameters are as follows: anti- $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{As}_{2} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{Hg}_{2} \mathrm{O}_{4}\left(M_{\mathrm{w}}=1139.07 \mathrm{gmol}^{-1}\right)$: yellow needle, $0.51 \times 0.074 \times 0.046 \mathrm{~mm}$, monoclinic, space group $P 2_{1} / n$ (no. 14), $a=8.83040(10) \AA, b=14.2969(2) \AA, c=11.8460(2) \AA, \beta=$ $94.2220(10)^{\circ}, V=1491.47(4) \AA^{3}, Z=2, \mu\left(C u-K_{\alpha}\right)=32.581 \mathrm{~mm}^{-1}$, $\rho_{\text {calc }}=2.536 \mathrm{Mgm}^{-3}, 8025$ reflections measured $\left(9.712^{\circ} \leq 2 \Theta \leq\right.$ $\left.147.534^{\circ}\right), 3000$ unique $\left(R_{\text {int }}=0.0307, R_{\text {sigma }}=0.0342\right)$ which were used in all calculations, GOF $=1.074, D_{\min } / D_{\max }=-1.34 / 1.32 \mathrm{e} / \AA^{3}$. The final R_{1} was $0.0415\left(\mathrm{I}>2 \sigma(\mathrm{I})\right.$) and $w R_{2}$ was 0.1021 (all data). CCDC number 2130789; syn- $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{As}_{2} \mathrm{Cl}_{4} \mathrm{Co}_{2} \mathrm{Hg}_{2} \mathrm{O}_{4} \quad\left(M_{\mathrm{w}}=\right.$ $1139.07 \mathrm{gmol}^{-1}$): orange prism, $0.426 \times 0.151 \times 0.118 \mathrm{~mm}$, monoclinic, space group $C 2 / c$ (no. 15), $a=14.1928(3) \AA, b=$ 14.4745(3) $\AA, c=14.7169(3) \AA, \beta=99.340(2)^{\circ}, V=2983.26(11)$ $\AA^{3}, Z=4, \mu\left(C u-K_{\alpha}\right)=32.578 \mathrm{~mm}^{-1}, \rho_{\text {calc }}=2.536 \mathrm{Mgm}^{-3}, 8233$ reflections measured $\left(8.786^{\circ} \leq 2 \Theta \leq 147.722^{\circ}\right), 3020$ unique ($R_{\text {int }}$ $\left.=0.0468, R_{\text {sigma }}=0.0454\right)$ which were used in all calculations, GOF $=1.109, D_{\min } / D_{\max }=-2.61 / 4.25 \mathrm{e}^{-3}$. The final R_{1} was $0.0660(\mathrm{I}$ $>2 \sigma(\mathrm{I}))$ and $w R_{2}$ was 0.1782 (all data). CCDC number 2130788 .

Figure S20. The molecular structure of syn-3 (Methyl groups simplified, 50\% displacement ellipsoids). Selected distances $\left[\AA \AA\right.$] and angles [${ }^{\circ}$]: (a) syn-3 As1-Hg1 2.7268(9), Co1-Hg1 2.620(1), Hg1-Cl1 2.491(2), Hg1-Cl2 2.598(2), $\mathrm{Hg} 1-\mathrm{Cl} 2$ ' $2.708(2), \mathrm{As} 1-\mathrm{Hg} 1-\mathrm{Co} 155.86(3), \mathrm{Hg} 1-\mathrm{Cl} 2-\mathrm{Hg} 1$ ' $91.87(6), \mathrm{Cl} 2-\mathrm{Hg} 1-$ Cl2' 87.62(6), CI1-Hg1-Cl2 100.71(6).

Figure S21. The molecular structures of anti-3 (Methyl groups simplified, 50% displacement ellipsoids). Selected distances [\AA]] and angles [${ }^{\circ}$]:As1Hg1 2.6334(6), Co1-Hg1 2.6702(9), Hg1-Cl1 2.390(1), Hg1-Cl2 2.778(1), Hg1-Cl2' 2.777(1) As1-Hg1-Co1 56.27(2), Hg1-Cl2-Hg1' 84.37(4), Cl2-Hg1$\mathrm{Cl}^{\prime} 95.63(4), \mathrm{Cl} 1-\mathrm{Hg} 1-\mathrm{Cl} 2,100.59(5) . i=$ crystallographic inversion centre.

4.10 cis-[\{Co(CO) $\left.\left.)_{2}\left(\mu: \sigma, \eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\} \mathrm{Pt}(\mathrm{CO})\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](4)$

To a solution of $\mathbf{2 c}(110 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $5 \mathrm{mLCH} \mathrm{Cl}_{2}$ was added solid $\mathrm{Pt}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\left(\mathrm{n}^{4}-\mathrm{C}_{6} \mathrm{H}_{10}\right)(145 \mathrm{mg}, 0.27 \mathrm{mmol})$. Over the course of about 60 minutes the orange colour discharged to a dark yellowbrown; the reaction was monitored by IR and was deemed complete after a further 60 minutes when 2c was no longer observed. Volatiles were removed under reduced pressure and the residue extracted with the minimum amount of $\mathrm{Et}_{2} \mathrm{O}$ and transferred via syringe to a water-jacketed column of oven-dried Florisil $®(15 \times 1 \mathrm{~cm})$ made up in n-pentane under nitrogen. Eluting with n-pentane, followed by $3: 1 n$-pentane/Et $\mathrm{t}_{2} \mathrm{O}$ provided an orange band which was collected under nitrogen and taken to dryness under reduced pressure. The orange residue was crystallised from the minimum amount of benzene overnight giving 95 mg of the product as a dark orange solid in 45% yield (based on Pt). The product is readily soluble in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{CHCl}_{3}$, acetone, acetonitrile, $\mathrm{Et}_{2} \mathrm{O}$ and THF, somewhat soluble in benzene and toluene and less-so in n-hexane or n-pentane. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $\left.25{ }^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 2.30\left(\mathrm{~s}, 6 \mathrm{H}: \alpha-\mathrm{CH}_{3}\right), 1.48\left(\mathrm{~s}, 6 \mathrm{H}: \beta-\mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 198.0(\mathrm{Co}-\mathrm{CO}), 177.17$ (Pt-CO), $146.7(\mathrm{~m}$, $C_{6} F_{5}$), 139.6 (m, $C_{6} F_{5}$), $138.7\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 138.2\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 137.0(\mathrm{~m}$, $\left.C_{6} F_{5}\right), 126.2\left(C_{\alpha}\right), 124.3\left(C_{\beta}\right), 17.3\left(\alpha-\mathrm{CH}_{3}\right), 15.1\left(\beta-\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ $(376 \mathrm{MHz}) \delta_{F}-112.47\left[\mathrm{~d}+\mathrm{dd}, 2 \mathrm{~F}, \mathrm{~F}^{2,6}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{3} J_{\mathrm{FF}}=23,{ }^{3} J_{\mathrm{PtF}}=358\right.$ Hz], -119.77 [d+dd, $\left.2 \mathrm{~F}, \mathrm{~F}^{2,6}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{3} \mathrm{~J}_{\mathrm{FF}}=23,{ }^{3} \mathrm{~J}_{\mathrm{PtF}}=354 \mathrm{~Hz}\right]$, $159.87\left[t, 1 \mathrm{~F}, \mathrm{~F}^{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{3} \mathrm{~J}_{\mathrm{FF}}=19 \mathrm{~Hz}\right],-160.44\left[\mathrm{t}, 1 \mathrm{~F}, \mathrm{~F}^{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{3} \mathrm{~J}_{\mathrm{FF}}\right.$ $=19 \mathrm{~Hz}],-163.58\left[\mathrm{t}, 2 \mathrm{~F}, \mathrm{~F}^{3,5}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{3} \mathrm{~J}_{\mathrm{FF}} \sim 25 \mathrm{~Hz}, 2^{\text {nd }}\right.$ order], -163.96 [t, $2 \mathrm{~F}, \mathrm{~F}^{3,5}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right),{ }^{3} \mathrm{~J}_{\mathrm{FF}} \sim 17 \mathrm{~Hz}, 2^{\text {nd }}$ order]; ${ }^{195} \mathrm{Pt}\left\{{ }^{1} \mathrm{H}\right\}(150 \mathrm{MHz}) \delta-$ 4079.8 ppm (t.t.t.t. $\mathrm{A}_{2} \mathrm{~B}_{2} \mathrm{C}_{2} \mathrm{D}_{2} \mathrm{X}$ approximating to $\mathrm{A}_{4} \mathrm{~B}_{4} \mathrm{X}$ p.p. as ${ }^{3} \mathrm{~J}_{\mathrm{AX}}$ $\left.\sim{ }^{3} J_{\mathrm{BX}} \gg{ }^{4} \mathrm{~J}_{\mathrm{CX}} \sim{ }^{4} \mathrm{JDXX}^{3} \mathrm{~J}_{\mathrm{FPt}} \sim 344,{ }^{4} \mathrm{~J}_{\mathrm{FPt}} \sim 83 \mathrm{~Hz}\right)$. IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) v \mathrm{co}=$ 2084(vs), 2053(vs), 2014(vs) cm ${ }^{-1}$. HR-MS (ESI, MeCN) found m / z 798.8942 (calc. for $\mathrm{C}_{21} \mathrm{H}_{12} \mathrm{O}_{1}{ }^{75} \mathrm{AsCoF}_{10}{ }^{195} \mathrm{Pt}[M-2 \mathrm{CO}]^{+}$: 798.8936). Analysis found: C, $32.41 ; \mathrm{H}, 1.35 \%$; calc. for $\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{O}_{3} \mathrm{AsCoF} 10 \mathrm{Pt}$: C, 32.30; H, 1.41\%.

Single crystals of 4 suitable for X-ray diffraction were grown from evaporation of $\mathrm{Et}_{2} \mathrm{O}$ solution at $-30^{\circ} \mathrm{C}$. A suitable crystal was selected and mounted in oil on a Micromount ${ }^{\text {TM }}$ mylar loop and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated $\mathrm{Cu}-\mathrm{K}_{\alpha}$ radiation ($\lambda=1.54184 \AA$) at 150.0(1) K. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and a spherical absorption correction was applied ($T_{\min } / T_{\max }=0.14128 / 0.23775$). The structure was solved within Olex2 ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with the SHELXL ${ }^{14}$ refinement package using LeastSquares against F^{2} in an anisotropic (for non-hydrogen atoms) approximation. Aliphatic hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.5 U_{\text {eq }}(\mathrm{C})$, where $U_{\text {eq }}(\mathrm{C})$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. The crystal comprised a single enantiomer Principal crystallographic data and refinement parameters are as follows: $\mathrm{C}_{23} \mathrm{H}_{12} \mathrm{AsCoF}_{10} \mathrm{O}_{3} \mathrm{Pt}\left(M_{\mathrm{w}}=855.27 \mathrm{gmol}^{-1}\right)$: orange prism, $0.264 \times 0.12 \times 0.067 \mathrm{~mm}$, orthorhombic, space group $P 2_{1} 2_{1} 2_{1}$ (no. 19), $a=9.18910(10) \AA, b=12.75590(10) \AA, c=21.0227(2) \AA, V=$ $2464.18(4) \AA^{3}, Z=4, \mu(C u K \alpha)=18.190 \mathrm{~mm}^{-1}, \rho_{\text {calc }}=2.305 \mathrm{Mgm}^{-}$ ${ }^{3}, 8725$ reflections measured $\left(8.108^{\circ} \leq 2 \Theta \leq 147.49^{\circ}\right), 4597$ unique $\left(R_{\text {int }}=0.0233, R_{\text {sigma }}=0.0328\right)$ which were used in all calculations, GOF $=1.056, D_{\min } / D_{\max }=-1.50 / 1.21 \mathrm{e}^{-3}$. The final R_{1} was 0.0292 $(I>2 \sigma(I))$ and $w R_{2}$ was 0.0714 (all data). CCDC number 2130787.

Figure S22: (a) The molecular structure of $\mathbf{5}$ (Methyl and pentafluorophenyl groups simplified, 50\% displacement ellipsoids, Pt TBPY-5-12-C enantiomer in non-centrosymmetric $P 2_{1} 2_{1} 2_{1}$ space group). Selected distances $[\AA]$ and angles [${ }^{[}$]: As1-Pt1 2.5185(8), Co1-Pt1 2.996(1), Pt1-C3 1.889(9), Pt1-C12 2.053(8), Pt-C18 2.077(7), As1-Pt1-Co1 53.04(3), As1-Pt1-C18 169.58(2), Co1-Pt1-C18 137.24(2).

$4.11\left[\left\{\mathrm{Co}(\mathrm{CO})_{2}\left(\mu: \sigma, \eta^{5}-\mathrm{AsC}_{4} \mathrm{Me}_{4}\right)\right\}_{2} \mathrm{Au}\right]\left[\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{2}\right](5)$

To a stirred solution of $\mathbf{2 c}(110 \mathrm{mg}, 0.37 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added solid $\mathrm{Au}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)(\mathrm{THT})(150 \mathrm{mg}, 0.33 \mathrm{mmol})$. After stirring overnight, the mixture was filtered through a short ($2 \times 2 \mathrm{~cm}$) Celite ${ }_{\circledR}$ plug and the filtrate dried under reduced pressure. The yellow solids obtained were then washed with $\mathrm{Et}_{2} \mathrm{O}(3 \times 3 \mathrm{~mL}$ portions). Re-crystallisation from the minimum amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{Et}_{2} \mathrm{O}$ at $-20^{\circ} \mathrm{C}$ overnight provided 180 mg of the product as a yellow microcrystalline solid in 84% isolated yield (based on Au). The product is readily soluble in polar organic solvents and may be handled in air as a solid or solution for a short while however turns brown overnight. NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}\right):{ }^{1} \mathrm{H}(400 \mathrm{MHz}) \delta 2.33(\mathrm{~s}, 6 \mathrm{H}$, $\left.\alpha-\mathrm{CH}_{3}\right), 1.70\left(\mathrm{~s}, 6 \mathrm{H}, \beta-\mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}(176 \mathrm{MHz}) \delta 200.2(\mathrm{CO}), 149.5$ $\left(\mathrm{m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 138.7\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 138.3\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right), 137.35\left(\mathrm{~m}, \mathrm{C}_{6} \mathrm{~F}_{5}\right)$, $122.7\left(C_{\alpha}\right), 118.0\left(C_{\beta}\right), 18.2\left(\alpha-\mathrm{CH}_{3}\right), 14.4\left(\beta-\mathrm{CH}_{3}\right) ;{ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\} \delta-$ $115.63\left[\mathrm{~d}, 2 \mathrm{~F},{ }^{3} J_{\mathrm{FF}}=30 \mathrm{~Hz} \mathrm{~F}^{2,6}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)\right],-163.00\left(\mathrm{t}, 1 \mathrm{~F},{ }^{3} J_{\mathrm{FF}}=21 \mathrm{~Hz}\right.$ $\mathrm{F}^{4}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$], -164.16 [dd, $2 \mathrm{~F},{ }^{3} \mathrm{~J}_{\mathrm{FF}} \sim 23 \mathrm{~Hz}, \mathrm{~F}^{3,5}\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)$]; IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$ $v_{c o}=2062$ (sh), 2051(vs), 2009(vs) cm${ }^{-1}$; HR-MS (ESI, MeCN) found $\mathrm{m} / \mathrm{z} 792.8439$ (calc. for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{4}{ }^{75} \mathrm{As}_{2}{ }^{197} \mathrm{AuCo}_{2}[M]^{+}$: 792.8436). Analysis found: C, 29.03; H, 1.87\%; calc. for $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{As}_{2} \mathrm{Au}_{2} \mathrm{Co}_{2} \mathrm{~F}_{10}$: C, 29.03; H, 1.83\%.

Single crystals of 5 suitable for X-ray diffraction were grown from the vapour diffusion of $\mathrm{Et}_{2} \mathrm{O}$ into $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ solution at $-30^{\circ} \mathrm{C}$. A suitable crystal was selected and mounted in oil on a Micromount ${ }^{\text {TM }}$ mylar loop and fixed under a cold stream of nitrogen. Data were collected using an Agilent Technologies Supernova/EosS2-CCD diffractometer with graphite monochromated Cu-K ${ }_{\alpha}$ radiation ($\lambda=1.54184 \AA$) at $150.0(1) \mathrm{K}$. Data were processed using the CrysAlisPRO-CCD and -RED software packages ${ }^{11}$ and a spherical absorption correction was applied ($T_{\min } / T_{\max }=0.10891 / 0.20750$). The structure was solved within Olex2 ${ }^{12}$ with SHELXT ${ }^{13}$ using Intrinsic Phasing and refined with the SHELXL ${ }^{14}$ refinement package using Least-Squares against F^{2} in an anisotropic (for non-hydrogen atoms)
approximation. Aliphatic hydrogen atom positions were refined in isotropic approximation in a "riding" model with the $U_{\text {iso }}(\mathrm{H})$ parameters fixed to $1.5 U_{\text {eq }}(C)$, where $U_{\text {eq }}(C)$ is the equivalent thermal parameter of the carbon atom to which the corresponding H atom is bonded. Principal crystallographic data and refinement parameters are as follows: $\mathrm{C}_{32} \mathrm{H}_{24} \mathrm{O}_{4} \mathrm{As}_{2} \mathrm{Au}_{2} \mathrm{Co}_{2} \mathrm{~F}_{10} \mathrm{O}_{4} \quad\left(M_{\mathrm{w}}=\right.$ $1324.14 \mathrm{gmol}^{-1}$): yellow needle, $0.346 \times 0.085 \times 0.08 \mathrm{~mm}$, triclinic, space group $P-1$ (no. 2), $a=15.12080(10) \AA, b=21.7675(2) \AA, c$ $=23.8537(2) \AA, \alpha=100.2830(10)^{\circ}, \beta=104.7800(10)^{\circ}, \gamma=$ $91.0780(10)^{\circ}, V=7452.43(11) \AA^{3}, Z=8, \mu\left(C u-K_{\alpha}\right)=24.075 \mathrm{~mm}^{-1}$, $\rho_{\text {calc }}=2.360 \mathrm{Mgm}^{-3}, 149532$ reflections measured $\left(7.102^{\circ} \leq 2 \Theta \leq\right.$ 146.294°), 29642 unique ($R_{\text {int }}=0.0391, R_{\text {sigma }}=0.0298$) which were used in all calculations, GOF $=1.041, D_{\min } / D_{\max }=-1.82 /$ $1.22 \mathrm{e} / \AA^{3}$. The final R_{1} was $0.0265(I>2 \sigma(I))$ and $w R_{2}$ was 0.0631 (all data). CCDC number 2130790.

Figure S23. Molecular structure of the repeating unit of infinite chains of $\mathbf{5}_{\mathrm{n}}$ (Hydrogen atoms omitted for clarity, four crystallographically independent molecules in the unit cell, 50% displacement ellipsoids).
5. Selected spectra
-ELECTRONIC SUPPORTING INFORMATION-

RMK-124-EI/AJ
65262
HR0033AFAMM (1.674) Is $(1.00,1.00) \mathrm{C} 30 \mathrm{H} 20 \mathrm{AsCoO} 2$
(100

06-Mar-2020
13:36:36
Magnet El+ 7.12 e 12

HR EI MS (MeCN)

547.0045
548.0077
HR0033AFAMM 42 (1.674)
100

RMK-129-EI/AJ
65263
HR0034AFAMM (0.877) Is $(1.00,1.00)$ C18H12AsCoO2

Autospec Premier

393.9385

HR EI MS (MeCN)

ll MS Spectrum Results (zoomed)

-ELECTRONIC SUPPORTING INFORMATION-

-ELECTRONIC SUPPORTING INFORMATION-

RMK-213-A-EI/AJ
66714
HR0062AFAMMA (0.039) Is $(1.00,1.00) \mathrm{C} 12 \mathrm{H} 21 \mathrm{AsCoO} 4 \mathrm{P}$

100

394.9760
395.9781

${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}\left(\mathrm{C}_{6} \mathrm{D}_{6}\right)$

[^0]

-ELECTRONIC SUPPORTING INFORMATION-

-ELECTRONIC SUPPORTING INFORMATION-

RMK-217-B-EI/AJ
66720
HR0066 (0.837) Is ($1.00,1.00$) C16H33AsCoO4PSi2
100
(0.837) Is $(1.00,1.00) \mathrm{C} 16 \mathrm{H} 33 \mathrm{AsCoO4PS}$
(

Autospec Premier

10-Jun-2021 14:58:57
Magnet El+
510.0203
7.02 e 12

HR0066AFAMMA 15 (0.598) Cm (15:17)

6.

7. Author Contributions

RMK was responsible for the conceptualisation and execution of the experimental research, the acquisition and critical analysis of the characterisational data and compilation of the original draft. AFH was responsible for funding acquisition, project administration, validation and refinements to the manuscript.

8. References

1 a) H. Imoto, A. Urushizaki, I. Kawashima, K. Naka, Chem. -Eur. J., 2018, 24, 8797-8803; b) P. J. Fagan, W. A. Nugent, J. C. Calabrese, J. Am. Chem. Soc., 1994, 116, 1880-1889; c) M. Westerhausen, C. Gückel, H. Piotrowski, P. Mayer, M. Warchhold, H. Nöth, Z. Anorg. Allg. Chem., 2001, 627, 1741-1750; d) M. Westerhausen, M. H. Digeser, C. Gückel, H. Nöth, J. Knizek, W. Ponikwar, Organometallics 1999, 18, 2491-2496.
2 a) E. H. Braye, W. Hübel, I. Caplier, J. Am. Chem. Soc., 1961, 83, 4406-4413; b) F. C. Leavitt, T. A. Manuel, F. Johnson, L. U. Matternas, D. S. Lehman, J. Am. Chem. Soc., 1960, 82, 5099-5102.
3 Spartan 20^{\circledR} (2020) Wavefunction, Inc., 18401 Von Karman Ave., Suite 370 Irvine, CA 92612 U.S.A

4 J.-D. Chai and M. Head-Gordon, J. Chem. Phys., 2008, 128, 0841061-18410615; (b) J.-D. Chai and M. Head-Gordon, Phys. Chem. Chem. Phys., 2008, 10, 6615-6620.

5 a) P. J. Hay and W.R. Wadt, J. Chem. Phys., 1985, 82, 270-283; b) W. R. Wadt and P. J. Hay, J. Chem. Phys. 1985, 82, 284-298; c) P. J. Hay, W. R. Wadt, J. Chem. Phys., 1985, 82, 299-310.
W. J. Hehre, R. Ditchfeld and J. A. Pople, J. Chem. Phys., 1972, 56, 2257-2261

7 a) I. R. Lyatifov, G. M. Jafarov, V. N. Babin, P. V. Petrovskii, V. D. Zagorevskii, J. Organomet. Chem., 1989, 368, 223-230; b) R. B. King, M. B. Bisnette, J. Organomet. Chem., 1967, 8, 287-297.
8 J. W. Chambers, A. J. Baskar, S. G. Bott, J. L. Atwood, M. D. Rausch, Organometallics 1986 5, 1635-1641.
9 C. Charrier, H. Bonnard, F. Mathey, D. Neibecker, J. Organomet. Chem., 1982, 231, 361 367.

10 A. J. M. Caffyn, D. Carmichael, F. Mathey, L. Ricard, Organometallics 1997, 16, 2049-2054 11 CrysAlisPRO®, Oxford Diffraction/Agilent Technologies UK Ltd., Yarton, England, 2010.
12 O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, J. Appl Crystallog., 2009, 42, 339-341.
13 G. Sheldrick, Acta Crystallog. Sect. A 2015, 71, 3-8.
14 G. Sheldrick, Acta Crystallog. Sect. C 2015, 71, 3-8.

[^0]:

