Supplementary Material for "Dielectric response of thin water films: A

thermodynamic perspective"

Stephen J. \textsf{Cox}^1 and Phillip L. Geissler $^{2,\,3}$

¹⁾Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom.^{[a\)](#page-0-0)}

2)Chemical Sciences Division, Lawrence Berkeley National Laboratory, Berkeley,

CA 94720, United States.

3)Department of Chemistry, University of California, Berkeley, CA 94720, United States.^{[b\)](#page-0-1)}

(Dated: 3 June 2022)

This supplementary material includes a detailed derivation of results obtained for the periodic continuum model presented in Sec. III. Results for the "bulk+interface" model with different parameters are also presented, along with those obtained with $w = 30 \text{ Å}$ and $w = 25 \text{ Å}$.

a)Electronic mail: sjc236@cam.ac.uk

b)Electronic mail: geissler@berkeley.edu

I. DERIVATION

The system we consider is shown schematically in Fig. 1. Two planes with charge density $\pm q$ are located at $z = \pm w/2$. We will consider a more general case than in the main article. Here, a linear dielectric occupies the region $-(w/2 - \delta_{\rm lo}) \le z \le (w/2 - \delta_{\rm hi})$, such that $\delta_{\rm lo} + \delta_{\rm hi} = \delta$; while the electrostatic potential is sensitive to the values of $\delta_{\rm lo}$ and $\delta_{\rm hi}$, we will show that $\Delta f_{\text{DCT}}(L)$ only depends on their sum. The boundaries of the dielectric are situated at $\xi_{hi} = w/2 - \delta_{hi}$ and $\xi_{lo} = w/2 - \delta_{lo}$. The polarization of the medium is P.

Potential due to the charged plates

The potential due to the charged plates is,

$$
\phi_q(z) = 4\pi \int_{\text{cell}} \mathrm{d}z' \rho_q(z') J(z - z'),\tag{S1}
$$

with

$$
\rho_q(z) = q \big[\delta_D(z - w/2) - \delta_D(z + w/2) \big],\tag{S2}
$$

where $\delta_{\rm D}(x)$ is the Dirac delta-function, and $^{1-3}$ $^{1-3}$ $^{1-3}$

$$
J(z) = \text{const.} + \frac{z^2}{2L} - \frac{|z|}{2}.
$$
 (S3)

Inside the region occupied by the charged sheets, $-w/2 \le z \le w/2$, we have

$$
\phi_q(z) = 4\pi q \bigg(-\frac{zw}{L} + z \bigg). \tag{S4}
$$

Similarly, for $w/2 < z \leq L/2$,

$$
\phi_q(z) = 4\pi q \left(-\frac{zw}{L} + \frac{w}{2} \right),\tag{S5}
$$

while for $-L/2 \le z < -w/2$,

$$
\phi_q(z) = 4\pi q \left(-\frac{zw}{L} - \frac{w}{2} \right). \tag{S6}
$$

Potential due to a uniformly polarized dielectric

A uniformly polarized dielectric generates the same electric potential as a charge distribution comprising two uniformly charged planes,

$$
\rho_{\text{solv}}(z) = P\big[\delta_{\text{D}}(z - \xi_{\text{hi}}) - \delta_{\text{D}}(z + \xi_{\text{lo}})\big].\tag{S7}
$$

This leads to the following potential,

$$
\phi_{\text{solv}}(z) = 4\pi P \bigg[-\frac{z(\xi_{\text{hi}} + \xi_{\text{lo}})}{L} + \frac{\xi_{\text{hi}}^2 - \xi_{\text{lo}}^2}{2L} + \frac{1}{2} (|z + \xi_{\text{lo}}| - |z - \xi_{\text{hi}}|) \bigg] \tag{S8}
$$

For the region occupied by the dielectric we have $(-\xi_{\text{lo}} \le z \le \xi_{\text{hi}})$,

$$
\phi_{\text{solv}}(z) = 4\pi P \bigg[-\frac{z(\xi_{\text{hi}} + \xi_{\text{lo}})}{L} + z + \frac{\xi_{\text{hi}}^2 - \xi_{\text{lo}}^2}{2L} + \frac{\xi_{\text{lo}} - \xi_{\text{hi}}}{2} \bigg],\tag{S9}
$$

while for $\xi_{\rm hi} < z \leq L/2$

$$
\phi_{\text{solv}}(z) = 4\pi P \bigg[-\frac{z(\xi_{\text{hi}} + \xi_{\text{lo}})}{L} + \frac{\xi_{\text{hi}}^2 - \xi_{\text{lo}}^2}{2L} + \frac{\xi_{\text{hi}} + \xi_{\text{lo}}}{2} \bigg],\tag{S10}
$$

and for $-L/2 \le z \le -\xi_{\rm lo}$ we have,

$$
\phi_{\text{solv}}(z) = 4\pi P \bigg[-\frac{z(\xi_{\text{hi}} + \xi_{\text{lo}})}{L} + \frac{\xi_{\text{hi}}^2 - \xi_{\text{lo}}^2}{2L} - \frac{\xi_{\text{hi}} + \xi_{\text{lo}}}{2} \bigg]. \tag{S11}
$$

The total potential

The total potential is simply the linear superposition of potentials due to the charged planes and the solvent, $\phi(z) = \phi_q(z) + \phi_{solv}(z)$. Most important for the derivation is the region $-\xi_{\text{lo}} \leq z \leq \xi_{\text{hi}},$

$$
\phi(z) = 4\pi q \left(-\frac{zw}{L} + z \right) + 4\pi P \left[-\frac{z(\xi_{\rm hi} + \xi_{\rm lo})}{L} + z + \frac{\xi_{\rm hi}^2 - \xi_{\rm lo}^2}{2L} + \frac{\xi_{\rm lo} - \xi_{\rm hi}}{2} \right].
$$
 (S12)

The potential in each of the remaining regions is listed below.

For
$$
-L/2 \le z < -w/2
$$
:
\n
$$
\phi(z) = 4\pi q \left(-\frac{zw}{L} - \frac{w}{2} \right) + 4\pi P \left[-\frac{z(\xi_{hi} + \xi_{lo})}{L} + \frac{\xi_{hi}^2 - \xi_{lo}^2}{2L} - \frac{\xi_{hi} + \xi_{lo}}{2} \right].
$$
\n(S13)

For $-w/2 \leq z < -\xi_{\text{lo}}$:

$$
\phi(z) = 4\pi q \left(-\frac{zw}{L} + z \right) + 4\pi P \left[-\frac{z(\xi_{\rm hi} + \xi_{\rm lo})}{L} + \frac{\xi_{\rm hi}^2 - \xi_{\rm lo}^2}{2L} - \frac{\xi_{\rm hi} + \xi_{\rm lo}}{2} \right].
$$
 (S14)

For $\xi_{\text{hi}} < z \leq w/2$:

$$
\phi(z) = 4\pi q \left(-\frac{zw}{L} + z \right) + 4\pi P \left[-\frac{z(\xi_{\rm hi} + \xi_{\rm lo})}{L} + \frac{\xi_{\rm hi}^2 - \xi_{\rm lo}^2}{2L} + \frac{\xi_{\rm hi} + \xi_{\rm lo}}{2} \right].
$$
 (S15)

For $w/2 < z \leq L/2$:

$$
\phi(z) = 4\pi q \left(-\frac{zw}{L} + \frac{w}{2} \right) + 4\pi P \left[-\frac{z(\xi_{hi} + \xi_{lo})}{L} + \frac{\xi_{hi}^2 - \xi_{lo}^2}{2L} + \frac{\xi_{hi} + \xi_{lo}}{2} \right].
$$
 (S16)

Note that $\xi_{\text{hi}} + \xi_{\text{lo}} = w - \delta$, where $\delta = \delta_{\text{hi}} + \delta_{\text{lo}}$.

Linear response

Equations [S12–](#page-2-0)[S16](#page-2-1) provide general expressions for the total electrostatic potential for the periodic continuum model considered in Fig. 1. As P depends upon the electric field, a self-consistent solution is required. In the case that the dielectric medium is linearly responding, however, the solution is analytically tractable. Consider the electric field inside the dielectric. From Eq. [S12](#page-2-0) we find for $-\xi_{\text{lo}} \le z \le \xi_{\text{hi}}$,

$$
E = -4\pi q \left(1 - \frac{w}{L} \right) - 4\pi P \left(1 - \frac{w - \delta}{L} \right). \tag{S17}
$$

Applying the local constitutive relation, $4\pi P = (\epsilon - 1)E$, we find

$$
P = -(\epsilon - 1) \left[q \left(1 - \frac{w}{L} \right) + P \left(1 - \frac{w - \delta}{L} \right) \right],\tag{S18}
$$

or rearranging,

$$
P = -\frac{(\epsilon - 1)(1 - \frac{w}{L})q}{1 + (\epsilon - 1)(1 - \frac{w - \delta}{L})}.
$$
\n(S19)

From Eq. [S13,](#page-2-2) it is clear that the potential at the charged plate at $z = -w/2$, due to the polarized dielectric is

$$
\phi_{\text{solv,lo}} = 2\pi P \left[\frac{w(w - \delta)}{L} + \frac{\xi_{\text{hi}}^2 - \xi_{\text{lo}}^2}{L} - (w - \delta) \right].
$$
 (S20)

Similarly, for the charged plate at $z = +w/2$ we have,

$$
\phi_{\text{solv,hi}} = 2\pi P \bigg[-\frac{w(w - \delta)}{L} + \frac{\xi_{\text{hi}}^2 - \xi_{\text{lo}}^2}{L} + (w - \delta) \bigg]. \tag{S21}
$$

The solvation free energy is $f_{solv}^{(L)} = q(\phi_{solv,hi} - \phi_{solv,lo})/2$. Combining Eqs. [S20,](#page-3-0) [S21](#page-3-1) and [S19](#page-3-2) gives,

$$
f_{\text{solv}}^{(L)} = -2\pi q^2 (w - \delta) \frac{(\epsilon - 1)(1 - \frac{w}{L})^2}{1 + (\epsilon - 1)(1 - \frac{w - \delta}{L})}.
$$
 (S22)

In the limit $L \to \infty$ this gives,

$$
f_{\text{solv}}^{(\infty)} = -2\pi q^2 \frac{(w-\delta)(\epsilon-1)}{\epsilon}.
$$
 (S23)

The finite size correction we must apply is $\Delta f_{\text{DCT}}(L) = f_{\text{solv}}^{(\infty)} - f_{\text{solv}}^{(L)}$. Thus,

$$
\Delta f_{\text{DCT}}(L) = 2\pi q^2 (w - \delta)(\epsilon - 1) \left[\frac{(1 - \frac{w}{L})^2}{1 + (\epsilon - 1)(1 - \frac{w - \delta}{L})} - \frac{1}{\epsilon} \right]. \tag{S24}
$$

FIG. S1. $f_{solv}^{(L)}(q) + \Delta f_{DCT}(L)$ with (a) $w = 40 \text{ Å}$ and (b) $w = 20 \text{ Å}$. These data are the same as shown Figs. 3c and 3d, except $f_{\text{solv,int}}^{(\infty)}$ (pink dotted lines) is plotted with $\epsilon_{\text{int}} = 10$ and $\ell_{\text{int}} =$ 6.0 ± 1.5 Å. While discrepancies between $f_{solv, int}^{(\infty)}$ and $f_{solv}^{(L)}(q) + \Delta f_{DCT}(L)$ are reduced compared to Figs. 3c and 3d, $f_{\text{solv}}^{(\infty)}$ given by Eq. 9 (gray dashed lines) still gives a superior description of the simulation data.

$\,$ II. $\,$ SENSITIVITY OF $f_{\rm solv,int}^{(\infty)}\,$ TO $\epsilon_{\rm int}$ AND $\ell_{\rm int}$

In Fig. [S1](#page-4-0) we plot $f_{solv}^{(L)}(q) + \Delta f_{DCT}(L)$ for $w = 40 \text{ Å}$ and $w = 20 \text{ Å}$ (see Fig. 3), but with $f_{\text{solv,int}}^{(\infty)}$ (Eq. 12) parameterized with $\epsilon_{\text{int}} = 10$ and $\ell_{\text{int}} = 6.0 \pm 1.5 \text{ Å}$. We argue that $\ell_{\text{int}} = \ell_{\epsilon} \approx 6 \text{ Å}$ sets a lower bound on reasonable values of ℓ_{int} . As discussed in the main article, increasing $\epsilon_{\rm int}$ and decreasing $\ell_{\rm int}$, while imposing the constraint $\ell_w = \ell_{\rm bulk} + 2\ell_{\rm int}$ will obviously reduce discrepancies between $f_{solv, int}^{(\infty)}$ and $f_{solv}^{(L)}(q) + \Delta f_{DCT}(L)$, as evidenced by Fig. [S1.](#page-4-0) Nonetheless, it is clear that $f_{\text{solv}}^{(\infty)}$ given by Eq. 9 still provides a superior description of the simulation data.

FIG. S2. Dependence of solvation free energy $f_{\text{solv}}^{(L)}(q)$ on system size L, shown in (a) and (b) for $w = 30 \text{ Å}$ and $w = 25 \text{ Å}$, respectively. The values of L for $w = 30 \text{ Å}$ are are indicated in the legend of panel (a); those for the thinner liquid slab are shown in (b). In both cases the WCA particles coincide with the charged planes. Adding $\Delta f_{\text{DCT}}(L)$ given by Eq. 10 largely removes this sensitivity, as seen in (c) and (d) for $w = 30 \text{ Å}$ and $w = 25 \text{ Å}$, respectively. DCT predictions for $f_{\text{solv}}^{(\infty)}(q)$ (Eq. 9) are plotted as dashed gray lines. Black squares and gray triangles show results obtained with $D = 0 \text{ V/A}$ for the smallest and largest values of L, respectively. The pink dotted lines show predictions of $f_{solv,int}^{(\infty)}$ from a dielectric continuum model, in which an interfacial layer of width $\ell_{\rm int} = 7.5 \text{ Å}$ is assigned a permittivity $\epsilon_{\rm int} = 2.1$ much lower than in bulk liquid, computed from (Eq. 12). The shaded regions bound predictions with $6 \text{ Å} \leq \ell_{\text{int}} \leq 9 \text{ Å}.$

III. RESULTS WITH $w = 30 \text{ Å}$ AND $w = 25 \text{ Å}$ (WCA CENTERS COINCIDE WITH THE CHARGED PLANES)

In Fig. [S2](#page-5-0) we present results for $f_{solv}^{(L)}(q)$ and $f_{solv}^{(L)}(q) + \Delta f_{DCT}(L)$ obtained with $w = 30 \text{ Å}$ and $w = 25 \text{ Å}$, where in both cases, the positions of the WCA particles coincide with the charged planes. We draw the same conclusions as from Fig. 3 in the main article.

FIG. S3. Number density profiles $\rho(z)$ for hydrogen (dashed blue) and oxygen (solid blue) atoms of water, with $q = 0 e/\text{\AA}^2$ for (a) $w = 30 \text{\AA}$ and (b) $w = 25 \text{\AA}$. In both cases the WCA particles coincide with the charged planes. The vertical dashed line shows the location $z = w/2$ of WCA particles, and the vertical dotted line indicates the dielectric boundary at $z = (w - \delta)/2$. (The shaded region indicates the same 95 % confidence interval as in Fig. 2.) In both cases, the dielectric boundary aligns closely with the vanishing of hydrogen atom density.

REFERENCES

- ¹P. Wirnsberger, D. Fijan, A. Šarić, M. Neumann, C. Dellago, and D. Frenkel, J. Chem. Phys. 144, 224102 (2016).
- ²C. Pan, S. Yi, and Z. Hu, Phys. Chem. Chem. Phys. **19**, 4861 (2017).
- ³S. J. Cox and P. L. Geissler, J. Chem. Phys. 148[, 222823 \(2018\).](http://dx.doi.org/10.1063/1.5020563)