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I. DERIVATION

The system we consider is shown schematically in Fig. 1. Two planes with charge density

±q are located at z = ±w/2. We will consider a more general case than in the main article.

Here, a linear dielectric occupies the region −(w/2 − δlo) ≤ z ≤ (w/2 − δhi), such that

δlo + δhi = δ; while the electrostatic potential is sensitive to the values of δlo and δhi, we

will show that ∆fDCT(L) only depends on their sum. The boundaries of the dielectric are

situated at ξhi = w/2− δhi and ξlo = w/2− δlo. The polarization of the medium is P .

Potential due to the charged plates

The potential due to the charged plates is,

φq(z) = 4π

∫
cell

dz′ρq(z
′)J(z − z′), (S1)

with

ρq(z) = q
[
δD(z − w/2)− δD(z + w/2)

]
, (S2)

where δD(x) is the Dirac delta-function, and1–3

J(z) = const. +
z2

2L
− |z|

2
. (S3)

Inside the region occupied by the charged sheets, −w/2 ≤ z ≤ w/2, we have

φq(z) = 4πq

(
− zw

L
+ z

)
. (S4)

Similarly, for w/2 < z ≤ L/2,

φq(z) = 4πq

(
− zw

L
+
w

2

)
, (S5)

while for −L/2 ≤ z < −w/2,

φq(z) = 4πq

(
− zw

L
− w

2

)
. (S6)

Potential due to a uniformly polarized dielectric

A uniformly polarized dielectric generates the same electric potential as a charge distri-

bution comprising two uniformly charged planes,

ρsolv(z) = P
[
δD(z − ξhi)− δD(z + ξlo)

]
. (S7)
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This leads to the following potential,

φsolv(z) = 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
+

1

2

(
|z + ξlo| − |z − ξhi|

)]
(S8)

For the region occupied by the dielectric we have (−ξlo ≤ z ≤ ξhi),

φsolv(z) = 4πP

[
− z(ξhi + ξlo)

L
+ z +

ξ2hi − ξ2lo
2L

+
ξlo − ξhi

2

]
, (S9)

while for ξhi < z ≤ L/2

φsolv(z) = 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
+
ξhi + ξlo

2

]
, (S10)

and for −L/2 ≤ z ≤ −ξlo we have,

φsolv(z) = 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
− ξhi + ξlo

2

]
. (S11)

The total potential

The total potential is simply the linear superposition of potentials due to the charged

planes and the solvent, φ(z) = φq(z) + φsolv(z). Most important for the derivation is the

region −ξlo ≤ z ≤ ξhi,

φ(z) = 4πq

(
− zw

L
+ z

)
+ 4πP

[
− z(ξhi + ξlo)

L
+ z +

ξ2hi − ξ2lo
2L

+
ξlo − ξhi

2

]
. (S12)

The potential in each of the remaining regions is listed below.

For −L/2 ≤ z < −w/2:

φ(z) = 4πq

(
− zw

L
− w

2

)
+ 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
− ξhi + ξlo

2

]
. (S13)

For −w/2 ≤ z < −ξlo:

φ(z) = 4πq

(
− zw

L
+ z

)
+ 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
− ξhi + ξlo

2

]
. (S14)

For ξhi < z ≤ w/2:

φ(z) = 4πq

(
− zw

L
+ z

)
+ 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
+
ξhi + ξlo

2

]
. (S15)

For w/2 < z ≤ L/2:

φ(z) = 4πq

(
− zw

L
+
w

2

)
+ 4πP

[
− z(ξhi + ξlo)

L
+
ξ2hi − ξ2lo

2L
+
ξhi + ξlo

2

]
. (S16)

Note that ξhi + ξlo = w − δ, where δ = δhi + δlo.
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Linear response

Equations S12–S16 provide general expressions for the total electrostatic potential for

the periodic continuum model considered in Fig. 1. As P depends upon the electric field,

a self-consistent solution is required. In the case that the dielectric medium is linearly

responding, however, the solution is analytically tractable. Consider the electric field inside

the dielectric. From Eq. S12 we find for −ξlo ≤ z ≤ ξhi,

E = −4πq

(
1− w

L

)
− 4πP

(
1− w − δ

L

)
. (S17)

Applying the local constitutive relation, 4πP = (ε− 1)E, we find

P = −(ε− 1)

[
q

(
1− w

L

)
+ P

(
1− w − δ

L

)]
, (S18)

or rearranging,

P = −
(ε− 1)(1− w

L
)q

1 + (ε− 1)(1− w−δ
L

)
. (S19)

From Eq. S13, it is clear that the potential at the charged plate at z = −w/2, due to the

polarized dielectric is

φsolv,lo = 2πP

[
w(w − δ)

L
+
ξ2hi − ξ2lo

L
− (w − δ)

]
. (S20)

Similarly, for the charged plate at z = +w/2 we have,

φsolv,hi = 2πP

[
− w(w − δ)

L
+
ξ2hi − ξ2lo

L
+ (w − δ)

]
. (S21)

The solvation free energy is f
(L)
solv = q(φsolv,hi − φsolv,lo)/2. Combining Eqs. S20, S21 and S19

gives,

f
(L)
solv = −2πq2(w − δ)

(ε− 1)(1− w
L

)2

1 + (ε− 1)(1− w−δ
L

)
. (S22)

In the limit L→∞ this gives,

f
(∞)
solv = −2πq2

(w − δ)(ε− 1)

ε
. (S23)

The finite size correction we must apply is ∆fDCT(L) = f
(∞)
solv − f

(L)
solv. Thus,

∆fDCT(L) = 2πq2(w − δ)(ε− 1)

[
(1− w

L
)2

1 + (ε− 1)(1− w−δ
L

)
− 1

ε

]
. (S24)
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FIG. S1. f
(L)
solv(q) + ∆fDCT(L) with (a) w = 40 Å and (b) w = 20 Å. These data are the same

as shown Figs. 3c and 3d, except f
(∞)
solv,int (pink dotted lines) is plotted with εint = 10 and `int =

6.0 ± 1.5 Å. While discrepancies between f
(∞)
solv,int and f

(L)
solv(q) + ∆fDCT(L) are reduced compared

to Figs. 3c and 3d, f
(∞)
solv given by Eq. 9 (gray dashed lines) still gives a superior description of the

simulation data.

II. SENSITIVITY OF f
(∞)
solv,int TO εint AND `int

In Fig. S1 we plot f
(L)
solv(q) + ∆fDCT(L) for w = 40 Å and w = 20 Å (see Fig. 3), but

with f
(∞)
solv,int (Eq. 12) parameterized with εint = 10 and `int = 6.0 ± 1.5 Å. We argue that

`int = `ε ≈ 6 Å sets a lower bound on reasonable values of `int. As discussed in the main

article, increasing εint and decreasing `int, while imposing the constraint `w = `bulk + 2`int

will obviously reduce discrepancies between f
(∞)
solv,int and f

(L)
solv(q)+∆fDCT(L), as evidenced by

Fig. S1. Nonetheless, it is clear that f
(∞)
solv given by Eq. 9 still provides a superior description

of the simulation data.
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c d

simple DCT
(Eq. 9)

bulk + interface
(Eq. 12)

a b

FIG. S2. Dependence of solvation free energy f
(L)
solv(q) on system size L, shown in (a) and (b) for

w = 30 Å and w = 25 Å, respectively. The values of L for w = 30 Å are are indicated in the

legend of panel (a); those for the thinner liquid slab are shown in (b). In both cases the WCA

particles coincide with the charged planes. Adding ∆fDCT(L) given by Eq. 10 largely removes this

sensitivity, as seen in (c) and (d) for w = 30 Å and w = 25 Å, respectively. DCT predictions for

f
(∞)
solv (q) (Eq. 9) are plotted as dashed gray lines. Black squares and gray triangles show results

obtained with D = 0 V/Å for the smallest and largest values of L, respectively. The pink dotted

lines show predictions of f
(∞)
solv,int from a dielectric continuum model, in which an interfacial layer of

width `int = 7.5 Å is assigned a permittivity εint = 2.1 much lower than in bulk liquid, computed

from (Eq. 12). The shaded regions bound predictions with 6 Å ≤ `int ≤ 9 Å.

III. RESULTS WITH w = 30 Å AND w = 25 Å (WCA CENTERS COINCIDE

WITH THE CHARGED PLANES)

In Fig. S2 we present results for f
(L)
solv(q) and f

(L)
solv(q) + ∆fDCT(L) obtained with w = 30 Å

and w = 25 Å, where in both cases, the positions of the WCA particles coincide with the

charged planes. We draw the same conclusions as from Fig. 3 in the main article.
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FIG. S3. Number density profiles ρ(z) for hydrogen (dashed blue) and oxygen (solid blue) atoms

of water, with q = 0 e/Å2 for (a) w = 30 Å and (b) w = 25 Å. In both cases the WCA particles

coincide with the charged planes. The vertical dashed line shows the location z = w/2 of WCA

particles, and the vertical dotted line indicates the dielectric boundary at z = (w − δ)/2. (The

shaded region indicates the same 95 % confidence interval as in Fig. 2.) In both cases, the dielectric

boundary aligns closely with the vanishing of hydrogen atom density.
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