# **Electronic Supplementary Information**

# Directing group switch in copper-catalyzed electrophilic C–H amination/migratory annulation cascade: divergent access to benzimidazolone/benzimidazole

Hasina Mamataj Begam,<sup>a</sup> Shantanu Nandi,<sup>a</sup> and Ranjan Jana<sup>\*a</sup>

<sup>a</sup>Organic and Medicinal Chemistry Division, CSIR-Indian Institute of Chemical Biology

4 Raja S. C. Mullick Road, Jadavpur, Kolkata-700032, West Bengal, India

E-mail: rjana@iicb.res.in

#### **Table of Contents**

| General information                                         | S2       |
|-------------------------------------------------------------|----------|
| Preparation of starting materials                           | S3-S10   |
| Optimization tables                                         | S10-S14  |
| Representative procedures for the main reactions            | S14-S16  |
| Deprotection of the heteroaryl from benzimidazolone product | S16-S17  |
| <sup>1</sup> H NMR spectra for mechanism                    | S17-S18  |
| Crystal structure                                           | S18-S27  |
| Spectral data                                               | S27-S65  |
| References                                                  | S66      |
| <sup>1</sup> H and <sup>13</sup> C NMR spectra              | S67-S147 |

**General Information**: Air-sensitive reagents were handled under a dry nitrogen atmosphere. Unless otherwise stated, all commercial reagents were used without additional purification. Solvents were dried using standard methods and distilled before use. TLC was performed on silica gel plates (Merck silica gel 60, f<sub>254</sub>), and the spots were visualized with UV light (254 and 365 nm) or by charring the plate dipped in KMnO<sub>4</sub> or vanillin charring solution. <sup>1</sup>H NMR spectra were recorded at 400 MHz (JEOL-JNM-ECZ400S/L1), <sup>13</sup>C NMR spectra were recorded at 100 MHz (JEOL-JNM-ECZ400S/L1) and <sup>19</sup>F NMR spectra were recorded at 376 MHz (JEOL-JNM-ECZ400S/L1) frequency in CDCl<sub>3</sub> solvent using TMS as the internal standard. Chemical shifts were measured in parts per million (ppm) referenced to 0.0 ppm for tetramethylsilane. The following abbreviations were used to explain multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, br. = broad, dt = doublet of triplet, td = triplet of doublet, dd = doublet of doublet. Coupling constants, *J* were reported in Hertz unit (Hz). HRMS (m/z) were measured using ESI technique (Q-Tof Micro mass spectrometer). Crystals were grown in dichloromethane and crystal data was recorded in (Bruker Kappa Apex-2, CCD Area Detector) instrument.

# **Preparation of starting materials:**

# Preparation of some 1-naphthylamines:



To a solution of 4-nitro-1-naphthol (106.0 mg, 0.4 mmol) in dry DMF (5.0 mL) were added  $K_2CO_3$  (83.0 mg, 0.6 mmol) and MeI (58 µL, 0.6 mmol). The resulting reaction mixture was stirred at r.t. for 12 hrs. After completion of the reaction, the mixture was diluted with ethyl acetate and washed with chilled water, brine solution and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated under reduced pressure and finally the crude product was purified by column chromatography to afford the desired product.

To a solution of nitro compound (50 mg) in 5.0 mL MeOH was added 10% Pd/C (15 mg) and stirred for 12 hrs under  $H_2$  atmosphere. Then the mixture was diluted with EtOAc (5 mL), filtered through celite, the filtrate was concentrated under reduced pressure to afford the crude compound which was purified by column chromatography to give the corresponding as purple colored viscous liquid which was used for amidation following **procedure1**.



Phenylboronic acid or 3-Furanylboronic acid (1.5 mmol, 1.5 equiv.), 4-bromo-1-naphthylamine (1.0 equiv.),  $K_2CO_3$  (1.0 equiv.) and  $Pd(PPh_3)_4$  (5 mol %) were added to an oven-dried sealed tube (15 mL) and toluene (2 mL) and  $H_2O$  (2 mL) were added into the tube which was then purged with nitrogen three times. The resulted solution was stirred at 100 °C for 8 hrs. The reaction mixture was cooled to r.t. and then extracted with ethyl acetate (3 × 15 mL). The combined organic layer was washed with brine, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and concentrated under reduced pressure. This crude product was passed through short column.

These substituted 1-naphthylamine compounds were then used for amidation following **procedure1**.



In an oven dried RB substituted 1-bromonaphthalene (2.5 mmol),  $K_2CO_3$  (865 mg, 6.25 mmol), and copper(II) sulfate pentahydrate (750 mg, 5.0 mmol) was taken and to it formamide (10 mL)was added. The RB was fitted with reflux condenser and heated at 160 °C for 4 hrs. (**caution:** don't use pressure tube for this reaction). After cooling to room temperature the reaction mixture was mixed with ice cold water (50 mL) and extracted with ethyl acetate (3×20 mL). Combined organic layers were dried over Na<sub>2</sub>SO<sub>4</sub> and evaporated. The crude product was used for the next step without further purification.

Aqueous (2 mL) sodium hydroxide (5.0 equiv.) was added to the ethanol (10 mL) solution of *N*-(naphthalen-1-yl)formamide. Resulting solution was heated to reflux for 6 hrs. Ethanol was evaporated and extracted with ethyl acetate ( $3 \times 10$  mL). The combined organic layer was dried over Na<sub>2</sub>SO<sub>4</sub> and solvent was evaporated under reduced pressure. The crude mixture was purified by column chromatography to obtain naphthylamines. These substituted 1-naphthylamine compounds were then used for amidation following **procedure 1**.

## General procedure for the preparation of picolinamides:

#### **Procedure 1 for the preparation of picolinamides:**



To an oven dried RB was charged with 2-picolinic acid or the corresponding acid (2.5 mmol) in dry DCM (5mL) was added 4-5 drops of DMF and the solution was stirred at 0 °C for 5 minutes. Then oxalyl chloride (0.26ml, 3 mmol) was added dropwise into the cooled solution of the acid which immediately formed rust-red color in case of 2-picolinic acid (other colors for other acids) with the gas bubbling and then stirred at 0 °C for 10 minutes. The reaction mixture was stirred at

room temperature for 4 hours. After completion, the excess oxalyl chloride was removed under *vacuum* to obtain crude acid chloride. Then, the crude pyridine-2-acid chloride was dissolved in 5mL dry DCM, and cooled to 0 °C and DMAP (61 mg, 0.5 mmol), Et<sub>3</sub>N (0.7 mL, 5 mmol) and the naphthylamine (2.5 mmol) were successively added. Then the reaction mixture was stirred under room temperature for overnight. After completion as indicated by TLC, the mixture was diluted with 60 mL DCM and washed with 2N HCl (20 mL), brine solution (20 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated under reduced pressure and finally the crude product was purified by column chromatography to afford the 2-picolinamide (50-85% yield). This method was used for the synthesis of most of the substrates.

## **Procedure 2 for the preparation of picolinamides:**

A RB containing pyridine-2-carboxylic acid (203 mg, 1.65 mmol), HATU (627 mg, 1.65 mmol) in dry DMF was cooled to 0 °C. Then DIPEA (0.43 ml, 2.5 mmol) and 5-amino isoquinoline (216 mg, 1.5 mmol) were successively added. The reaction mixture was stirred at r.t for overnight. Then the mixture was diluted with ethyl acetate and washed with chilled water, brine solution and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated under reduced pressure and finally the crude product was purified by column chromatography to afford **1aa**.

## **Procedure 3 for the preparation of picolinamides:**

An oven dried RB charged with 5-methyl pyrazine-2- carboxylic acid (319 mg, 2.31 mmol), 1naphthylamine (300 mg, 2.1 mmol), EDCI (443 mg, 2.31 mmol), HOBT (312 mg, 2.31 mmol) ) in dry DCM was cooled to 0 °C and then DIPEA (1.1 ml, 6.3 mmol) was added. The reaction mixture was stirred at r.t for 12 hrs. Then the mixture was diluted with DCM and washed with water, brine solution and dried over  $Na_2SO_4$ . The solvent was evaporated under reduced pressure and finally the crude product was purified by column chromatography to afford **1ad**. This method is also used for the synthesis of **1s**.

# Procedure for the synthesis of 1u:



In an oven dried sealed tube charged with **1a** (496 mg, 2.0 mmol), pyrazole (544 mg, 4.0 equiv.), CuCl<sub>2</sub> (41 mg, 0.3 mmol), Na<sub>2</sub>S<sub>2</sub>O<sub>8</sub> (952 mg, 4.0 mmol) was added dry DCE (5ml) and heated at 70 °C for 8 hrs. Then the reaction mixture was cooled to r.t and diluted with DCM and washed with water, brine solution

and dried over  $Na_2SO_4$ . The solvent was evaporated under reduced pressure and finally the crude product was purified by column chromatography to afford **1u**. This method is also used for the synthesis of amide version of **4r**.

# Procedure for the synthesis of 1y:



**1a** (248 mg, 1 mmol, 1.0 equiv.),  $K_2CO_3$  (276.5 mg, 2.0 mmol),  $Cu(OAc)_2 \cdot H_2O$  (40.0 mg, 0.2 mmol), TsCl (570 mg, 3.0 mmol) and DCE (5 mL) were successively added into a sealed tube. The mixture was stirred at 80 °C under air for 20 h. After cooling to ambient temperature, the resulting mixture was filtered through celite pad and washed with DCM. The filtrate was concentrated under vacuum and purified column chromatography using solvent mixtures of petroleum ether and ethyl acetate to give the product **1y**.

# **Procedure for the synthesis of 1x:**



Under a nitrogen atmosphere, in an oven-dried two-necked RB a solution of  $Fe(acac)_3$  (71 mg, 0.2 mmol) and (Z)-1,2-bis (diphenylphosphino)ethene (dppen) (88 mg, 0.22 mmol) in THF (1.0 ml) was injected into an anhydrous tetrahydrofuran (THF, 7 mL) solution of **1a** (496 mg, 2.0 mmol). Trimethylaluminum (2 ml, 4.0 mmol, 2.0 M in toluene) was slowly added. After stirring for 10 min to finish generating methane at r.t, 2,3-dichlorobutane (2,3-DCB) (0.9 ml, 8.0 mmol) was added via a syringe, and the RB was joined to reflux condenser and heated at 70 °C for 24 h. After cooling to r.t., the mixture was diluted with diethyl ether, and methanol (2.0 ml) was slowly added via a syringe at 0 °C to quench the aluminium reagent. Then the mixture was further diluted with diethyl ether and washed with water, brine solution and dried over Na<sub>2</sub>SO<sub>4</sub>. The solvent was evaporated under reduced pressure and finally the crude product was purified by column chromatography to afford **1x**.

# General Procedure for the preparation of O-benzoylhydroxylamines:



As reported in the literature <sup>1-3</sup> a solution of benzoyl peroxide (BPO, 1 equiv.) in CH<sub>2</sub>Cl<sub>2</sub> (5 mL/mmol BPO) was added to a mixture of the amine (1 equiv.) and aqueous Na<sub>2</sub>CO<sub>3</sub>/NaHCO<sub>3</sub> buffer (pH 10.5) solution (5 mL/mmol amine) at room temperature overnight. (Note: The desired product in most cases had R<sub>f</sub> values close to that of BPO). The aqueous layer was extracted three times with CH<sub>2</sub>Cl<sub>2</sub>. The organic layers were combined, dried over anhydrous Na<sub>2</sub>SO<sub>4</sub>, and concentrated. The crude residue was subjected to column chromatography for purification of the products. Using this protocol, *O*-benzoylhydroxylamine of other aliphatic primary amines were prepared. Most of the compounds are known in literature though <sup>1</sup>HNMR and <sup>13</sup>NMR spectral data of some compounds are given.

#### Preparation of P<sup>H</sup> 10.5 bicarbonate buffer solution:

100 mL 0.1M NaHCO<sub>3</sub> solution = 840 mg NaHCO<sub>3</sub> in 100 mL water (solution A), 100 mL 0.1M Na<sub>2</sub>CO<sub>3</sub> solution = 1.06 gm Na<sub>2</sub>CO<sub>3</sub> in 100 mL water (solution B). For preparation 50 ml of  $P^{H}$  10.5 = 5 mL solution A + 45 mL solution B.



2a<sub>4</sub>, 2a<sub>5</sub>, 2a<sub>6</sub>, 2a<sub>7</sub> were synthesized using corresponding substituted benzoyl peroxides.

## Synthesis of aryl acylperoxide

In a round-bottomed flask, the solution of acid chloride (5 mmol) in diethyl ether (2.5 mL) was cooled to 0 °C in an ice-bath. Then, hydrogen peroxide (0.294 g, 30 wt.% in H<sub>2</sub>O, 2.86 mmol) was added dropwise over 10 minutes to the cold solution. This was followed by the dropwise addition of an aqueous solution of NaOH (0.252g, 6.32 mmol, 2 mL) over 20 minutes. The resulting white

precipitate was collected by filtration. After washing with water  $(3\times5 \text{ mL})$  and diethyl ether  $(3\times5 \text{ mL})$ , the solid was air dried and used for the next step without any further purification. In some case if the compound was found to dissolve in ether, after evaporating ether the compound was extracted with DCM and dried over anhydrous Na<sub>2</sub>SO<sub>4</sub> and after rotary evaporation of the solvent (<40 °C) the solid compound was obtained.

# Synthesis of 2a2 and 2a3



(a) A 100 ml round bottomed flask, equipped with a magnetic stirring bar, was charged with cyclohexanone (2.58 g, 25 mmol), hydroxylamine hydrochloride (2.57 g, 37.5 mmol), sodium acetate (5.13 g, 62.5 mmol), ethanol (10 mL) and water (30 mL). The reaction mixture was refluxed for 6 hrs and brought to room temperature. Thin layer chromatography in vanilline stain showed the complete conversion of cyclohexanone to cyclohexanone oxime. At this point, ethanol was evaporated using rotary evaporator. The residue was dissolved in 100 ml of EtOAc and washed sequentially with 20 mL of 1M HCl, 20 mL sat. NaHCO<sub>3</sub>, 20 mL sat. NaCl, and organic layer was dried over Na<sub>2</sub>SO<sub>4</sub>.

(b) To a stirring solution of cyclohexanone oxime (2.86 g, 25 mmol, 1.0 equiv) in MeOH (30 mL) containing an altered pH strip were added solid NaBH<sub>3</sub>CN (2.32 g, 37.5 mmol, 1.5 equiv) and aqueous HCl (2.0 M, about 35 mL) over 15 min in such a way that the pH of the solution stayed within 2–3 during the duration of the addition. The reaction mixture was allowed to stir for an additional 3.5 h, and then was quenched with the addition of aqueous 15% NaOH (until pH = 10). MeOH was removed in vacuo. The remaining aqueous solution was extracted with CH<sub>2</sub>Cl<sub>2</sub> (3 × 100 mL). The organic layers were combined, washed with brine (100 mL), dried over Na<sub>2</sub>SO<sub>4</sub>, and filtered. The filtrate was concentrated in vacuo. The crude residue was used for the next step.

(c) An oven-dried round bottom flask was charged with the corresponding benzoic acid (1.1 equiv) and  $CH_2Cl_2$  (0.3 M). The flask was placed in an ice-bath, and 1,1'-carbonyldiimidazole (1.1 equiv) was added. The mixture was stirred at this temperature for 30 min, at which time N-alkyl hydroxylamine (1.0 equiv) solution in dry  $CH_2Cl_2$  was added dropwise. The ice-bath was removed, and the reaction mixture was allowed to stir at room temperature for 1-2 h. The resulting mixture was passed through a pad of Celite, and rinsed with  $CH_2Cl_2$ . The filtrate was concentrated and purified by column chromatography to give the corresponding amine electrophile.

## General procedure for the preparation of thioamides from corresponding picolinamides:



To a mixture of picolinamide (2.50 mmol) and Lawesson's reagent (0.52 g, 1.28 mmol) was added toluene (10 mL) and the solution refluxed for 12-48 hrs. The mixture was then filtered and solvent was removed under reduced pressure to afford a yellow solid material which was purified by column chromatography using solvent mixtures of petroleum ether and ethyl acetate to give the desired product (yellow solid). Using this method, thioamide of other amides were also prepared.

#### General procedure for the preparation of picolinimidamide:



In an oven dried two-necked RB charged with 2-cyano pyridine (520 mg, 5.0 mmol) and 1naphthylamine (715 mg, 5.0 mmol) under nitrogen atmosphere 10 ml dry DCE was added and cooled to 0 °C. Then AlCl<sub>3</sub> (665 mg, 5.0 mmol from glove box), was added portion wise to avoid overheating. The reaction mixture was stirred at this temperature for 10 minutes then at rt for 5 minutes. Then this mixture was heated to 80 °C for several hours under N<sub>2</sub> atmosphere. After consumtion of the starting materials. The reaction mixture was diluted with 20 mL dichloromethane and washed with 15 mL of 6N NaOH. The resulting organic layer was separated and dried over Na<sub>2</sub>SO<sub>4</sub> and solvent was removed under reduced pressure. Then this crude product was washed with distilled hexane three times and dried under high vacuum to give the desired product which can be used without further purification.

## **Procedure for the preparation of 6 and 7:**



## Optimization table for imidazolone product<sup>*a,b*</sup>:



| Entry           | Catalyst                               | Amine  | additive                       | solvent          | Yield (%) |
|-----------------|----------------------------------------|--------|--------------------------------|------------------|-----------|
| 1               |                                        | source |                                | DMCO             | 4.4       |
| 1               | $Cu(OAc)_2.H_2O$                       | 1.0    | -                              | DMSO             | 44        |
| 2               | $Cu(OAc)_2.H_2O$                       | 1.5    |                                | DMSO             | 50        |
| 3               | $Cu(OAc)_2.H_2O$                       | 2.5    | -                              | H <sub>2</sub> O | 0         |
| 4               | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | Toluene          | 20        |
| 5               | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | MeCN             | 39        |
| 6               | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | 1,4-Dioxane      | 62        |
| 7               | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | THF              | 52        |
| 8               | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | DMSO             | 90        |
| 10 <sup>c</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | DMSO             | 93        |
| $11^{d}$        | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | DMSO             | 87        |
| 12 <sup>e</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | DMSO             | 56        |
| 13 <sup>c</sup> | Cu                                     | 2.5    | -                              | DMSO             | 83        |
| 14 <sup>f</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | PIDA                           | DMSO             | 5<        |
| 15 <sup>f</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | $K_2S_2O_8$                    | DMSO             | 12        |
| 16 <sup>f</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | Bz <sub>2</sub> O <sub>2</sub> | DMSO             | 32        |
| 17 <sup>g</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 1.2    | Bz <sub>2</sub> O <sub>2</sub> | DMSO             | 58        |
| $18^{h}$        | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 2.5    | -                              | DMSO             | 0         |
| 19              | Pd(OAc) <sub>2</sub>                   | 2.5    | -                              | DMSO             | 5<        |
| 20              | Co(OAc) <sub>2</sub>                   | 2.5    | -                              | DMSO             | 20<       |
| 21              | Ni(OAc) <sub>2</sub>                   | 2.5    | -                              | DMSO             | n.r.      |
| 22              | Mn(OAc) <sub>2</sub>                   | 2.5    | -                              | DMSO             | n.r.      |
| 23              | FeBr <sub>2</sub>                      | 2.5    | -                              | DMSO             | n.r.      |
| 24              | FeCl <sub>2</sub>                      | 2.5    | -                              | DMSO             | n.r.      |

<sup>*a*</sup>All reactions were carried out in 0.2 mmol scale. <sup>*b*</sup>Yields refer to here are overall isolated yields. <sup>*c*</sup>5.0 mol% catalyst was used. <sup>*d*</sup>1.0 mol % catalyst was used. <sup>*e*</sup>Reaction was performed at room temperature. <sup>*f*</sup>Free amine was used as amine source and oxidant 2.5 equiv. <sup>*g*</sup>1.0 equiv Bz<sub>2</sub>O<sub>2</sub> was used. <sup>*h*</sup>25% *ortho* aminated product was obtained without any copper catalyst.

# **Optimization table for imidazole product**<sup>*a,b*</sup>:



| .0 equiv |
|----------|
|----------|

Cu(OAc)<sub>2</sub>.H<sub>2</sub>O (mol%) Yield (%) Entry Amine source Additive (equiv.)  $1^c$ 2.5 10 38 - $2^d$ 2.5 10 40 -3 2.5 10 46 -

| 4                               | 2.5 | 20 | -                                         | 48 |
|---------------------------------|-----|----|-------------------------------------------|----|
| 5                               | 3.0 | 10 | -                                         | 50 |
| 6                               | 3.0 | 20 | -                                         | 53 |
| $7^e$                           | 3.0 | 20 | -                                         | 34 |
| 8 <sup>f</sup>                  | 3.0 | 20 | -                                         | 40 |
| 9 <sup>g</sup>                  | 3.0 | 20 | -                                         | 40 |
| 10                              | 3.0 | 20 | 1.2 equiv. K <sub>2</sub> CO <sub>3</sub> | 58 |
| $11^{h}$                        | 3.0 | 20 | 1.2 equiv. K <sub>2</sub> CO <sub>3</sub> | 64 |
| 12 <sup><i>i</i></sup>          | 3.0 | 20 | 1.2 equiv. K <sub>2</sub> CO <sub>3</sub> | 88 |
| 13 <sup>i</sup>                 | 3.0 | 20 | -                                         | 64 |
| $14^i$                          | 3.0 | 10 | 1.2 equiv. K <sub>2</sub> CO <sub>3</sub> | 70 |
| 15 <sup><i>i</i>,<i>j</i></sup> | 3.0 | 10 | 1.2 equiv. K <sub>2</sub> CO <sub>3</sub> | 0  |

<sup>*a*</sup>All reactions were carried out in 0.2 mmol scale. <sup>*b*</sup>Yields refer to here are overall isolated yields. <sup>*c*</sup>Reaction was continued for 3 hrs. <sup>*d*</sup>Reaction was carried out at 100 °C. <sup>*e*</sup>Reaction was carried out in dry toluene. <sup>*f*</sup>Reaction was carried out in dry 1,4-dioxane. <sup>*g*</sup>Reaction was carried out in dry THF. <sup>*h*</sup>Reaction was carried out in air. <sup>*i*</sup>Reaction was carried under O<sub>2</sub> atm. <sup>*j*</sup>Reaction was performed with substrate **1a** instead of **4a**.

# Optimization table for imidazolone product in 2-substituted aniline system<sup>*a,b*</sup>:



| Entry          | Catalyst                                | Additive (1.5                  | Ligand (20 mol %) | Solvent     | Yield (%) |
|----------------|-----------------------------------------|--------------------------------|-------------------|-------------|-----------|
|                |                                         | equiv.)                        |                   |             |           |
| $1^c$          | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | DMSO        | 20        |
| $2^c$          | $Pd(OAc)_2$                             | -                              | -                 | DMSO        | nr        |
| 3 <sup>c</sup> | Co(OAc) <sub>2</sub> .4H <sub>2</sub> O | -                              | -                 | DMSO        | 5 <       |
| 4              | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | DMSO        | 40        |
| $5^d$          | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | DMSO        | 27        |
| 6 <sup>e</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | DMSO        | 27        |
| 7              | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | Toluene     | 20        |
| 8              | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | 1,4-dioxane | 32        |
| 9              | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | MeCN        | 28        |
| 10             | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | -                              | -                 | DCE         | 28        |
| 11             | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | K <sub>2</sub> CO <sub>3</sub> | -                 | DMSO        | 15        |
| 12             | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O  | NaHCO <sub>3</sub>             | -                 | DMSO        | 37        |

| 13 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Li <sub>2</sub> CO <sub>3</sub> | -                | DMSO | 35 |
|----|----------------------------------------|---------------------------------|------------------|------|----|
| 14 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | K <sub>2</sub> CO <sub>3</sub>  | -                | DMSO | 32 |
| 15 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Cs <sub>2</sub> CO <sub>3</sub> | -                | DMSO | nr |
| 16 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | KHCO <sub>3</sub>               | -                | DMSO | 30 |
| 17 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | LiO <sup>t</sup> Bu             | -                | DMSO | nr |
| 18 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | NaHCO <sub>3</sub>              | dppb             | DMSO | 39 |
| 19 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | NaHCO <sub>3</sub>              | dppm             | DMSO | 27 |
| 20 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | NaHCO <sub>3</sub>              | dppe             | DMSO | 35 |
| 21 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | NaHCO <sub>3</sub>              | dppp             | DMSO | 27 |
| 22 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | NaHCO <sub>3</sub>              | dppf             | DMSO | 20 |
| 23 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | NaHCO <sub>3</sub>              | dppen            | DMSO | 27 |
| 24 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                               | 1,10-phen        | DMSO | 18 |
| 25 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                               | PPh <sub>3</sub> | DMSO | 35 |
| 26 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                               | x-phos           | DMSO | 35 |
| 27 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                               | dtbbpy           | DMSO | 35 |
| 28 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                               | terpyridine      | DMSO | 35 |
| 29 | Cu(OTf) <sub>2</sub>                   | -                               | -                | DMSO | 35 |
| 30 | Cu <sub>2</sub> O                      | -                               | -                | DMSO | 33 |
| 31 | CuSO <sub>4</sub> .5H <sub>2</sub> O   | -                               | -                | DMSO | 35 |
| 32 | CuCl                                   | -                               | -                | DMSO | 28 |
| 33 | Cu(OAc) <sub>2</sub>                   | -                               | -                | DMSO | 35 |
| 34 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Zn dust                         | -                | DMSO | 30 |
| 35 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Mn(OAc) <sub>2</sub>            | -                | DMSO | 28 |
| 36 | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Mn(OAc) <sub>3</sub>            | -                | DMSO | 28 |

<sup>*a*</sup>All reactions were carried out in 0.2 mmol scale. <sup>*b*</sup>Yields refer to here are overall isolated yields. <sup>*c*</sup>Temperature was 80 °C. <sup>*d*</sup>20 mol % catalyst was used. <sup>*e*</sup>50 mol % catalyst was used.

# **Optimization table for amination product in aniline system**<sup>*a,b*</sup>**:**



| Entry | catalyst                               | additive                       | Yield (%) |
|-------|----------------------------------------|--------------------------------|-----------|
| 1     | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                              | 35        |
| $2^c$ | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | -                              | 25        |
| 3     | Cu(OTf) <sub>2</sub>                   | -                              | 10<       |
| 4     | Pd(OAc) <sub>2</sub>                   | -                              | nr        |
| 5     | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | 1,10-phen                      | 15        |
| 6     | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | K <sub>2</sub> CO <sub>3</sub> | 58        |
| $7^d$ | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | K <sub>2</sub> CO <sub>3</sub> | 50        |

| 8 <sup>e</sup> | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | K <sub>2</sub> CO <sub>3</sub>  | 54 |
|----------------|----------------------------------------|---------------------------------|----|
| 9              | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Na <sub>2</sub> CO <sub>3</sub> | 45 |
| 10             | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | Cs <sub>2</sub> CO <sub>3</sub> | 43 |
| 11             | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | KOAc                            | 30 |
| 12             | Cu(OAc) <sub>2</sub> .H <sub>2</sub> O | LiO <sup>t</sup> Bu             | 72 |

<sup>*a*</sup>All reactions were carried out in 0.2 mmol scale. <sup>*b*</sup>Yields refer to here are overall isolated yields. <sup>*c*</sup>Temperature 100 °C and time 12 hrs. <sup>*d*</sup>Air. <sup>*e*</sup>O<sub>2</sub> atm.

## **Representative Procedure 1 for imidazolone:**



In an oven dried 15 mL sealed tube containing a stir bar was added corresponding picolinamide (0.2 mmol, 1.0 equiv), *O*-benzoylhydroxylamine (0.5 mmol, 2.5 equiv.) and Cu(OAc)<sub>2</sub>·H<sub>2</sub>O (0.01 mmol). Dry DMSO (2mL) was then added and N<sub>2</sub> gas was purged for 2 minutes. The mixture was stirred at 80 °C for 6 hrs. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with saturated aq. NaHCO<sub>3</sub> solution (25mL), followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the desired imidazolone product.

# **Representative Procedure for imidazole:**



In an oven dried 15 mL sealed tube containing a stir bar was added corresponding thiopicolinamide (0.2 mmol, 1.0 equiv), *O*-benzoylhydroxylamine (0.5 mmol, 3.0 equiv.),  $Cu(OAc)_2$ ·H<sub>2</sub>O (0.04 mmol) and K<sub>2</sub>CO<sub>3</sub> (0.24 mmol). Dry DMSO (2mL) was then added and O<sub>2</sub> gas was purged for 2 minutes. [Note: amount of O<sub>2</sub> should be sufficient for better reaction and so large amount of empty space is required. For scale up reaction (2.0 mmol) 100 mL pressure tube was used]. The mixture was stirred at 90 °C for 6 hrs. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with saturated aq. NaHCO<sub>3</sub> solution (25mL), followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the desired imidazole product.

#### **Representative Procedure 2 for imidazolone in 2-substituted aniline system:**



In an oven dried 15 mL sealed tube containing a stir bar was added corresponding picolinamide (0.2 mmol, 1.0 equiv), *O*-benzoylhydroxylamine (0.5 mmol, 2.5 equiv.) and Cu(OAc)<sub>2</sub>·H<sub>2</sub>O (0.02 mmol). Dry DMSO (2mL) was then added and N<sub>2</sub> gas was purged for 2 minutes. The mixture was stirred at 100 °C for 6 hrs. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with saturated aq. NaHCO<sub>3</sub> solution (25mL), followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the desired imidazolone product.

#### **Representative Procedure for amination in aniline system:**



In an oven dried 15 mL sealed tube containing a stir bar was added corresponding picolinamide (0.2 mmol, 1.0 equiv), *O*-benzoylhydroxylamine (0.5 mmol, 2.5 equiv.), LiO<sup>t</sup>Bu (0.4 mmol, 2.0 equiv.) and Cu(OAc)<sub>2</sub>·H<sub>2</sub>O (0.02 mmol). Dry DMSO (2mL) was then added and N<sub>2</sub> gas was purged for 2 minutes. The mixture was stirred at 90 °C for 6 hrs. After allotted time the reaction mixture was cooled to room temperature. The mixture was diluted with EtOAc (15 mL) and washed with saturated aq. NaHCO<sub>3</sub> solution (25mL), followed by brine solution (25 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the desired amination product.

## Procedure for synthesis of compound 1a':



In an oven dried RB containing a stir bar was added picolinamide **1a** (2 mmol, 1.0 equiv), *O*-benzoylhydroxylamine (2 mmol, 1.0 equiv.) and Cu(OAc)<sub>2</sub>·H<sub>2</sub>O (0.2 mmol). Dry DMSO (15 mL) was then added and N<sub>2</sub> gas was purged for 2 minutes. The mixture was stirred at room temperature for 6 hrs. The mixture was diluted with EtOAc (100 mL) and washed with saturated aq. NaHCO<sub>3</sub> solution (50 mL), followed by brine solution (50 mL) and dried over Na<sub>2</sub>SO<sub>4</sub>, and evaporated in *vacuo*. The crude mixture was loaded on a silica gel column chromatography and purified using (Hexane/EtOAc) to give the amination product.

## Deprotection of pyridyl group of Benzimidazolone product:



This deprotection was done according a condition for the deprotection of N-pyridyl group.<sup>6</sup> In an oven dried RB containing a stir bar was added the benzimidazolone and dry MeCN and it was cooled to 0 °C in an ice-bath under N<sub>2</sub> atmosphere. Ice-cooled MeOTf (3.6 equiv.) was added dropwise to this solution. After addition the mixture was stirred at r.t. for 10 minutes. Then to this mixture MeOH (4 mL) was added and further cooled to 0 °C in an ice-bath. NaBH<sub>4</sub> (7.0 equiv.) was added portion-wise and stirred at this temperature for 15 minutes. After that the solvent was evaporated and diluted with EtOAc, washed with water and dried over Na<sub>2</sub>SO<sub>4</sub>. This was concentrated under vacuum followed by column chromatography gave the desired product.

#### <u>Time dependent <sup>1</sup>H NMR experiment for mechanistic determination of intermediate:</u>



<sup>9.2 9.1 9.0 8.9 8.8 8.7 8.6 8.5 8.4 8.3 8.2 8.1 8.0 7.9 7.8 7.7 7.6 7.5 7.4 7.3 7.2 7.1 7.0 6.9 6.8 6.7 6.6 6.5 6.4 6.3</sup> fl (ppm)



8.90 8.88 8.87 8.86 8.85 8.84 8.83 8.82 8.81 8.80 8.79 8.78 8.77 8.76 8.75 8.74 8.73 8.72 8.71 8.70 8.69 8.68 8.67 8.66 8.65 8.64 8.63 8.62 f1 (ppm)

# **Crystal structure:**

The crystals were grown in dichloromethane solvent. The pure compound was dissolved in dichloromethane slow evaporation led to the crystal **4a**. The crystal data was collected in X-ray spectroscopy (Bruker Kappa Apex-2, CCD Area Detector), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file has been uploaded separately as supporting information.



Thermal ellipsoid plot of **4a**. Ellipsoids are represented with 50% probability.

X-ray determined molecular structure of 4a, CCDC: 2025280

| Identification code               | HM_643S_0m_a                                         |
|-----------------------------------|------------------------------------------------------|
| Empirical formula                 | $C_{16}H_{12}N_2S$                                   |
| Formula weight                    | 264.34                                               |
| Temperature/K                     | 100.0                                                |
| Crystal system                    | monoclinic                                           |
| Space group                       | P21/c                                                |
| a/Å                               | 6.1282(2)                                            |
| b/Å                               | 14.1422(4)                                           |
| c/Å                               | 14.4603(4)                                           |
| $\alpha/^{\circ}$                 | 90                                                   |
| β/°                               | 95.2550(10)                                          |
| $\gamma/^{\circ}$                 | 90                                                   |
| Volume/Å <sup>3</sup>             | 1247.95(6)                                           |
| Z                                 | 4                                                    |
| $\rho_{calc}g/cm^3$               | 1.407                                                |
| $\mu/\text{mm}^{-1}$              | 2.167                                                |
| F(000)                            | 552.0                                                |
| Crystal size/mm <sup>3</sup>      | 0.2 	imes 0.2 	imes 0.2                              |
| Radiation                         | $CuK\alpha$ ( $\lambda = 1.54178$ )                  |
| 20 range for data collection/     | ° 8.764 to 133.626                                   |
| Index ranges                      | $-7 \le h \le 7, -16 \le k \le 16, -17 \le l \le 17$ |
| Reflections collected             | 19122                                                |
| Independent reflections           | 2213 [ $R_{int} = 0.0469, R_{sigma} = 0.0251$ ]      |
| Data/restraints/parameters        | 2213/0/172                                           |
| Goodness-of-fit on F <sup>2</sup> | 1.078                                                |
|                                   |                                                      |

Final R indexes [I>= $2\sigma$  (I)] R<sub>1</sub> = 0.0361, wR<sub>2</sub> = 0.0921 Final R indexes [all data] R<sub>1</sub> = 0.0373, wR<sub>2</sub> = 0.0929 Largest diff. peak/hole / e Å<sup>-3</sup> 0.26/-0.32

The crystals were grown in dichloromethane solvent. The pure compound was dissolved in dichloromethane slow evaporation led to the crystal **3aj**. The crystal data was collected in X-ray spectroscopy (Bruker Kappa Apex-2, CCD Area Detector), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file has been uploaded separately as supporting information.



Thermal ellipsoid plot of **3aj**. Ellipsoids are represented with 50% probability.

X-ray determined molecular structure of 3aj, CCDC: 2025266

| Identification code | HM_430A_0m_a      |
|---------------------|-------------------|
| Empirical formula   | $C_{18}H_{15}N_2$ |
| Formula weight      | 259.32            |
| Temperature/K       | 100.0             |
| Crystal system      | monoclinic        |
| Space group         | $P2_1/n$          |
| a/Å                 | 10.9333(3)        |

| b/Å                                            | 7.3400(2)                                            |
|------------------------------------------------|------------------------------------------------------|
| c/Å                                            | 16.2518(5)                                           |
| α/°                                            | 90                                                   |
| β/°                                            | 98.6550(10)                                          |
| $\gamma/^{\circ}$                              | 90                                                   |
| Volume/Å <sup>3</sup>                          | 1289.36(6)                                           |
| Z                                              | 4                                                    |
| $\rho_{calc}g/cm^3$                            | 1.336                                                |
| $\mu/\text{mm}^{-1}$                           | 0.612                                                |
| F(000)                                         | 548.0                                                |
| Crystal size/mm <sup>3</sup>                   | 0.2 	imes 0.2 	imes 0.2                              |
| Radiation                                      | $CuK\alpha \ (\lambda = 1.54178)$                    |
| 2© range for data collection/°                 | 13.262 to 132.918                                    |
| Index ranges                                   | $-12 \le h \le 12, -8 \le k \le 8, -19 \le l \le 17$ |
| Reflections collected                          | 18364                                                |
| Independent reflections                        | 2259 [ $R_{int} = 0.0807$ , $R_{sigma} = 0.0459$ ]   |
| Data/restraints/parameters                     | 2259/0/183                                           |
| Goodness-of-fit on F <sup>2</sup>              | 1.056                                                |
| Final R indexes [I>=2σ<br>(I)]                 | $R_1 = 0.0733, wR_2 = 0.2003$                        |
| Final R indexes [all data]                     | $R_1 = 0.0760,  wR_2 = 0.2033$                       |
| Largest diff. peak/hole / e<br>Å <sup>-3</sup> | 0.55/-0.66                                           |

The crystals were grown in dichloromethane solvent. The pure compound was dissolved in dichloromethane slow evaporation led to the crystal **5h**. The crystal data was collected in X-ray spectroscopy (Bruker Kappa Apex-2, CCD Area Detector), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file has been uploaded separately as supporting information.



Thermal ellipsoid plot of **5h**. Ellipsoids are represented with 50% probability.

X-ray determined molecular structure of **5h**, CCDC: 2025275

| Identification code          | K_101_0m_a                     |
|------------------------------|--------------------------------|
| Empirical formula            | $C_{23}H_{18}N_3$              |
| Formula weight               | 336.40                         |
| Temperature/K                | 100.0                          |
| Crystal system               | monoclinic                     |
| Space group                  | $P2_1/n$                       |
| a/Å                          | 11.8246(5)                     |
| b/Å                          | 8.7668(4)                      |
| c/Å                          | 16.2183(7)                     |
| $\alpha/^{\circ}$            | 90                             |
| β/°                          | 90.457(2)                      |
| γ/°                          | 90                             |
| Volume/Å <sup>3</sup>        | 1681.20(13)                    |
| Z                            | 4                              |
| $\rho_{calc}g/cm^3$          | 1.329                          |
| $\mu/mm^{-1}$                | 0.618                          |
| F(000)                       | 708.0                          |
| Crystal size/mm <sup>3</sup> | $0.35 \times 0.29 \times 0.28$ |
| Radiation                    | CuKa ( $\lambda = 1.54178$ )   |

 $2\Theta$  range for data 10.91 to 133.22 collection/° Index ranges  $-14 \le h \le 13, -10 \le k \le 10, -18 \le l \le 19$ Reflections collected 16494 Independent reflections 2930 [ $R_{int} = 0.0772$ ,  $R_{sigma} = 0.0536$ ] Data/restraints/parameters 2930/0/235 Goodness-of-fit on F<sup>2</sup> 1.105 Final R indexes [I>=2 $\sigma$  $R_1 = 0.0624, wR_2 = 0.1540$ (I)] Final R indexes [all data]  $R_1 = 0.0667$ ,  $wR_2 = 0.1575$ Largest diff. peak/hole / e 0.25/-0.66 Å-3

The crystals were grown in dichloromethane solvent. The pure compound was dissolved in dichloromethane slow evaporation led to the crystal **3ad**. The crystal data was collected in X-ray spectroscopy (Bruker Kappa Apex-2, CCD Area Detector), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file has been uploaded separately as supporting information.



Thermal ellipsoid plot of **3ad**. Ellipsoids are represented with 50% probability.

X-ray determined molecular structure of 3ad, CCDC: 2025269

| Identification code                   | HM_583_0m_a                                          |
|---------------------------------------|------------------------------------------------------|
| Empirical formula                     | $C_{2.44}H_{2.44}N_{0.44}O_{0.11}$                   |
| Formula weight                        | 39.83                                                |
| Temperature/K                         | 100.0                                                |
| Crystal system                        | triclinic                                            |
| Space group                           | P-1                                                  |
| a/Å                                   | 7.9957(2)                                            |
| b/Å                                   | 10.4307(2)                                           |
| c/Å                                   | 12.5078(3)                                           |
| $\alpha/^{\circ}$                     | 67.7270(10)                                          |
| β/°                                   | 89.0730(10)                                          |
| $\gamma/^{\circ}$                     | 71.4000(10)                                          |
| Volume/Å <sup>3</sup>                 | 908.36(4)                                            |
| Z                                     | 18                                                   |
| $\rho_{calc}g/cm^3$                   | 1.310                                                |
| $\mu/\text{mm}^{-1}$                  | 0.658                                                |
| F(000)                                | 380.0                                                |
| Crystal size/mm <sup>3</sup>          | $0.80\times0.28\times0.27$                           |
| Radiation                             | $CuK\alpha$ ( $\lambda = 1.54178$ )                  |
| $2\Theta$ range for data              | 7.692 to 133.402                                     |
| collection/°                          |                                                      |
| Index ranges                          | $-9 \le h \le 8, -12 \le k \le 12, -14 \le l \le 14$ |
| Reflections collected                 | 28821                                                |
| Independent reflections               | 3182 [ $R_{int} = 0.0634$ , $R_{sigma} = 0.0334$ ]   |
| Data/restraints/parameters 3182/0/245 |                                                      |

 $\begin{array}{ll} Goodness-of-fit \ on \ F^2 & 1.088 \\ \\ Final \ R \ indexes \ [I>=2\sigma \\ (I)] & R_1 = 0.0424, \ wR_2 = 0.0985 \\ \\ Final \ R \ indexes \ [all \ data] & R_1 = 0.0438, \ wR_2 = 0.0994 \\ \\ \\ Largest \ diff. \ peak/hole \ / \ e \\ & A^{-3} & 0.21/-0.25 \end{array}$ 

The crystals were grown in dichloromethane solvent. The pure compound was dissolved in dichloromethane slow evaporation led to the crystal **5b**. The crystal data was collected in X-ray spectroscopy (Bruker Kappa Apex-2, CCD Area Detector), and the data was analyzed using OLEX2 software. The structure is given below. The corresponding cif file has been uploaded separately as supporting information.



Thermal ellipsoid plot of 5b. Ellipsoids are represented with 50% probability.

X-ray determined molecular structure of 5b, CCDC: 2025279

| Identification code               | HM_788_1_0m_a                                        |
|-----------------------------------|------------------------------------------------------|
| Empirical formula                 | $C_{21}H_{19}N_3$                                    |
| Formula weight                    | 313.41                                               |
| Temperature/K                     | 100.0                                                |
| Crystal system                    | monoclinic                                           |
| Space group                       | P2 <sub>1</sub> /c                                   |
| a/Å                               | 15.2933(10)                                          |
| b/Å                               | 5.6759(9)                                            |
| c/Å                               | 18.003(3)                                            |
| α/°                               | 90                                                   |
| β/°                               | 99.217(8)                                            |
| $\gamma/^{\circ}$                 | 90                                                   |
| Volume/Å <sup>3</sup>             | 1542.5(4)                                            |
| Z                                 | 4                                                    |
| $\rho_{calc}g/cm^3$               | 1.3495                                               |
| $\mu/\text{mm}^{-1}$              | 0.627                                                |
| F(000)                            | 665.9                                                |
| Crystal size/mm <sup>3</sup>      | 0.2 	imes 0.2 	imes 0.2                              |
| Radiation                         | Cu Ka ( $\lambda = 1.54178$ )                        |
| $2\Theta$ range for data          | 5.86 to 143.7                                        |
| collection/°                      |                                                      |
| Index ranges                      | $-18 \le h \le 18, -6 \le k \le 6, -21 \le 1 \le 22$ |
| Reflections collected             | 22846                                                |
| Independent reflections           | 2934 [ $R_{int} = 0.0804$ , $R_{sigma} = 0.0465$ ]   |
| Data/restraints/parameter         | rs 2934/0/218                                        |
| Goodness-of-fit on F <sup>2</sup> | 1.048                                                |

Final R indexes [I>= $2\sigma$ (I)] Final R indexes [all data] R<sub>1</sub> = 0.0531, wR<sub>2</sub> = 0.1361 Largest diff. peak/hole / e Å<sup>-3</sup> 0.22/-0.34

# **Spectral data:**

*N*-(naphthalen-1-yl)pyridine-2-carbothioamide (4a)



Column chromatography (SiO<sub>2</sub>, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a yellow solid, mp 124-126 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  12.36 (s, 1H), 8.84 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 8.63-8.61 (m, 1H), 8.33 (d, J = 7.2 Hz, 1H), 8.03-7.99 (m, 1H), 7.95-7.89 (m, 2H), 7.85 (d, J = 8.4 Hz, 1H), 7.60-7.49 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  190.2, 151.5, 146.8, 137.7, 134.4, 134.3, 128.9, 128.4, 127.7, 126.8, 126.5, 126.3, 125.5, 125.3, 122.9, 121.6; HRMS (ESI, m/z) calcd. For C<sub>16</sub>H<sub>13</sub>N<sub>2</sub>S [M+H]<sup>+</sup>: 265.0799; found: 265.0802.

## N-(naphthalen-1-yl)picolinimidamide (4a')



Washing with distilled hexane afforded the desired product as a violet solid, mp 118-120 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.63 (d, *J* = 8.0 Hz, 1H), 8.61-8.59 (m, 1H), 8.10 (d, *J* = 8.0 Hz, 1H), 7.89-7.83 (m, 2H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.49-7.38 (m, 4H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.29-5.17 (br. S); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  152.9, 151.3, 148.1, 137.0, 134.8, 128.1, 127.4, 126.4, 126.2, 125.4, 123.9, 123.4, 122.0, 116.3; HRMS (ESI, m/z) calcd. For C<sub>16</sub>H<sub>14</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 248.1188; found: 248.1185.

N-(2-(cyclohexylamino)naphthalen-1-yl)picolinamide (1a')



Column chromatography (SiO<sub>2</sub>, eluting with 85:15 hexane/ethyl acetate) afforded the desired product as a brown gummy liquid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  9.76 (s, 1H), 8.68-8.67 (m, 1H), 8.34 (dt,  $J_1$  = 7.6 Hz,  $J_2$  = 1.2 Hz, 1H), 7.91 (td,  $J_1$  = 7.6 Hz,  $J_2$  = 1.6 Hz, 1H), 7.73-7.68 (m, 3H), 7.51-7.48 (m, 1H), 7.41-7.37 (m, 1H), 7.23-7.19 (m, 2H), 3.51-3.44 (m, 1H), 2.12-2.08 (m, 2H), 1.79-1.74 (m, 2H), 1.65-1.61 (m, 1H), 1.43-1.21 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  163.4, 149.8, 148.4, 141.5, 137.7, 131.5, 128.7, 128.3, 127.3, 127.0, 126.6, 122.8, 122.1, 120.5, 115.4, 113.0, 51.9, 33.8, 25.9, 25.1; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 346.1919; found: 346.1922.

# N-(naphthalen-1-yl)benzamide (6)



Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as white fluffy solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.27 (s, 1H), 7.98-7.95 (m, 3H), 7.90-7.87 (m, 2H), 7.73 (d, J = 8.4 Hz, 1H), 7.58-7.55 (m, 1H), 7.51-7.46 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 166.4, 134.9, 134.3, 132.5, 132.0, 128.94, 128.90, 127.6, 127.3, 126.5, 126.2, 126.1, 125.9, 121.5, 120.9.

# *N*-(2-(cyclohexylamino)naphthalen-1-yl)benzamide (7)



Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as white fluffy solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub> + CD<sub>3</sub>OD): δ 8.01-7.98 (m, 2H), 7.68-7.64 (m, 2H), 7.58-7.51 (m, 2H), 7.49-7.45 (m, 2H), 7.33-7.28 (m, 1H), 7.17-7.01 (m, 2H), 3.39-3.30 (m, 1H), 1.98 (d, J = 12.8 Hz, 2H), 1.69-1.61 (m, 2H), 1.58-1.54 (m, 1H), 1.35-1.12 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>+ CD<sub>3</sub>OD): δ 171.8, 137.7, 136.1, 135.6, 133.0, 132.8, 132.1, 132.0, 131.6, 131.0, 126.5, 124.8, 119.8, 56.8, 37.3, 33.6, 29.6, 28.9; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>25</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 345.1967; found: 345.1964.

# *O*-benzoyl-*N*-cyclohexylhydroxylamine (2a)



Column chromatography (SiO<sub>2</sub>, eluting with 98:2 hexane/ethyl acetate) afforded the desired product as colourless liquid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.02-7.99 (m, 2H), 7.58-7.53 (m, 1H), 7.45-7.41 (m, 2H), 3.07-2.99 (m, 1H), 1.98-1.94 (m, 2H), 1.81-1.74 (m, 2H), 1.64-1.59 (m, 1H), 1.31-1.17 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 167.0, 133.3, 129.4, 128.6, 59.9, 30.4, 25.9, 24.1.

## O-benzoyl-N-butylhydroxylamine (2g)



Column chromatography (SiO<sub>2</sub>, eluting with 98:2 hexane/ethyl acetate) afforded the desired product as colourless liquid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.03-7.99 (m, 2H), 7.86 (br. S, 1H), 7.58-7.54 (m, 1H), 7.46-7.42 (m, 2H), 3.13 (t, J = 7.2 Hz, 2H), 1.63-1.56 (m, 2H), 1.47-1.38 (m, 2H), 0.94 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 167.0, 133.4, 129.4, 128.6, 52.4, 29.3, 20.3, 13.9.

# O-benzoyl-N-isobutylhydroxylamine (2h)



Column chromatography (SiO<sub>2</sub>, eluting with 98:2 hexane/ethyl acetate) afforded the desired product as colourless liquid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.02-7.99 (m, 2H), 7.96 (br. S, 1H), 7.58-7.54 (m, 1H), 7.46-7.41 (m, 2H), 2.95 (d, J = 6.8 Hz, 2H), 1.99-1.89 (m, 1H), 1.00 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 166.9, 133.4, 129.4, 128.6, 60.2, 26.5, 20.6.

# O-benzoyl-N-(sec-butyl)hydroxylamine (2i)



Column chromatography (SiO<sub>2</sub>, eluting with 98:2 hexane/ethyl acetate) afforded the desired product as colourless liquid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.03-7.99 (m, 2H), 7.58-7.54 (m, 1H), 7.46-7.42 (m, 2H), 3.11 (sextet, J = 6.4 Hz, 1H), 1.71-1.61 (m, 1H), 1.50-1.39 (m, 1H), 1.17 (d, J = 6.4 Hz, 3H), 0.98 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 167.0, 133.3, 129.4, 128.6, 58.2, 26.8, 17.6, 10.3.

# *N*-((3s,5s,7s)-adamantan-1-yl)-*O*-benzoylhydroxylamine (2m)



Column chromatography (SiO<sub>2</sub>, eluting with 98:2 hexane/ethyl acetate) afforded the desired product as crystalline solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.03-8.01 (m, 2H), 7.59-7.55 (m, 1H), 7.47-7.43 (m, 2H), 2.11 (s, 3H), 1.76 (d, J = 2.8 Hz, 6H), 1.71-1.62 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 167.0, 133.3, 129.4, 128.6, 56.4, 40.1, 36.5, 29.2.

# *O*-benzoyl-*N*-(1-phenylethyl)hydroxylamine (2n)



Column chromatography (SiO<sub>2</sub>, eluting with 98:2 hexane/ethyl acetate) afforded the desired product as colourless liquid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 7.97-7.94 (m, 2H), 7.56-7.51 (m, 1H), 7.45-7.35 (m, 6H), 7.32-7.28 (m, 1H), 4.34 (q, J = 6.8 Hz, 2H), 1.55 (d, J = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 166.9, 141.3, 133.4, 129.4, 128.7, 128.6, 128.5, 127.9, 127.2, 61.0, 19.8.

# 3-cyclohexyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3a)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (63.8 mg, 93% yield), mp 142-144 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67-8.65 (m, 1H), 7.97 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.70 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.51 (d, J = 8.8 Hz, 1H), 7.45-7.41 (m, 1H), 7.29-7.25 (m, 1H), 7.19-7.15 (m, 1H), 6.96 (d, J = 8.0 Hz, 1H), 4.42-4.34 (m, 1H), 2.33-2.22 (m, 2H), 1.99-1.92 (m, 4H), 1.77 (d, J = 12.8 Hz, 1H),1.53-1.42 (m, 2H), 1.36-1.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.7, 150.2, 149.6, 138.8, 129.9, 129.2, 126.0, 125.8, 123.7, 123.5, 123.2, 121.8, 121.3, 120.4, 110.4, 53.7, 30.4, 26.2, 25.5; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>22</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 344.1763; found: 344.1760.

# 3-cyclopentyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3b)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (51 mg, 78% yield), mp 138-140  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67-8.65 (m, 1H), 7.97 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.82 (dd,  $J_1 = 8.4$  Hz,  $J_2 = 0.4$  Hz, 1H), 7.69 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.45-7.40 (m, 2H), 7.29-7.24 (m, 1H), 7.19-7.15 (m, 1H), 6.97 (d, J = 8.8 Hz, 1H), 4.97 (quintet, J = 8.8 Hz, 1H), 2.29-2.20 (m, 2H), 2.14-1.97 (m, 4H), 1.80-1.73 (m, 2H); <sup>13</sup>C NMR(100 MHz, CDCl<sub>3</sub>): $\delta$  153.9, 150.2, 149.6, 138.8, 130.0, 129.2, 125.8, 125.6, 123.8, 123.6, 123.5, 123.3, 121.9, 121.2, 120.5, 110.1, 54.0, 29.3, 25.3; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>20</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 330.1606; found: 330.1644.

3-cycloheptyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3c)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (46.4 mg, 65% yield), mp 154-156 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.67-8.65 (m, 1H), 7.98 (td,  $J_1$  = 8.0 Hz,  $J_2$  = 2.0 Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.70 (dt,  $J_1$  = 8.0 Hz,  $J_2$  = 0.8 Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.47-7.42 (m, 2H), 7.29-7.25 (m, 1H), 7.19-7.15 (m, 1H), 6.97 (d, J = 8.8 Hz, 1H), 4.62-4.55 (m, 1H), 2.37-2.29 (m, 2H), 2.07-2.03 (m, 2H), 1.88-1.85 (m, 2H), 1.73-1.64 (m, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.5, 150. 2, 149.5, 138.8, 130.0, 129.2, 125.8, 125.7, 123.7, 123.49, 123.47, 123.3, 121.8, 121.3, 120.5, 110.5, 55.6, 32.9, 27.7, 25.9; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 358.1919; found: 358.1921.

3-cyclooctyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3d)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (34 mg, 46% yield), mp 156-158  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.66-8.64 (m, 1H), 7.97 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.71 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.64 (d, J = 8.8 Hz, 1H), 7.45-7.41 (m, 2H), 7.29-7.25 (m, 1H), 7.19-7.15 (m, 1H), 6.99 (d, J = 8.8 Hz, 1H), 4.75-4.69 (m, 1H), 2.39-2.31 (m, 2H), 2.02-1.97 (m, 2H), 1.89-1.84 (m, 2H), 1.79-1.60 (m, 8H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.5, 150.2, 149.5, 138.7, 130.0, 129.2, 125.8, 125.5, 123.6, 123.5, 123.4, 123.3, 121.9, 121.3, 120.5, 110.6, 54.1, 32.6, 26.4, 26.2, 25.5; HRMS (ESI, m/z) calcd. For C<sub>24</sub>H<sub>26</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 372.2076; found: 372.2076.

# 3-ethyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3e)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (29 mg, 50% yield), mp 96-98  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.68-8.66 (m, 1H), 7.98 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.72-7.68 (m, 2H), 7.46-7.42 (m, 1H), 7.34 (d, J = 8.4 Hz, 1H), 7.31-7.27 (m, 1H), 7.22-7.18 (m, 1H), 7.02 (d, J = 9.2 Hz, 1H), 4.09 (q, J = 7.2 Hz, 2H), 1.43 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.9, 150.1, 149.6, 138.9, 130.4, 129.3, 126.2, 125.9, 123.8, 123.7, 123.5, 123.4, 121.8, 121.2, 120.5, 108.9, 36.3, 13.9; HRMS (ESI, m/z) calcd. For C<sub>18</sub>H<sub>16</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 290.1293; found: 290.1296.

# 3-propyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3f)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (39.4 mg, 65% yield), mp 134-136  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.66 (d, *J* = 3.6 Hz, 1H), 7.97 (t, *J* = 7.6 Hz, 1H), 7.82 (d, *J* = 8.4 Hz, 1H), 7.71-7.66 (m, 2H), 7.45-7.41 (m, 1H), 7.33 (d, *J* = 8.4 Hz, 1H), 7.27 (t, *J* = 7.2 Hz, 1H), 7.19 (t, *J* = 8.0 Hz, 1H), 7.01 (d, *J* = 8.8 Hz, 1H), 3.98 (t, *J* = 7.2 Hz, 2H), 1.87 (sextet, *J* = 7.2 Hz, 2H), 1.02 (t, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$  154.2, 150.1, 149.6, 138.8, 130.4, 129.3, 126.6, 125.9, 123.8, 123.7, 123.5, 123.4, 121.7, 121.3, 120.5, 109.1, 43.1, 22.1, 11.5; HRMS (ESI, m/z) calcd. For C<sub>19</sub>H<sub>18</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 304.1450; found: 304.1451.

3-butyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3g)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white solid (52 mg, 82% yield), mp 104-106  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.68-8.67 (m, 1H), 7.99 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.85-7.83 (m, 1H), 7.72 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.47-7.43 (m, 1H), 7.34 (d, J = 8.8 Hz, 1H), 7.31-7.27 (m, 1H), 7.22-7.18 (m, 1H), 7.04-7.02 (m, 1H), 4.03 (t, J = 7.2 Hz, 2H), 1.86-1.79 (m, 2H), 1.51-1.41 (m, 2H), 0.97 (t, J = 7.6 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 154.2, 150.1, 149.5, 138.9, 130.4, 129.3, 126.6, 125.9, 123.8, 123.7, 123.5, 123.4, 121.7, 121.3, 120.5, 109.1, 41.3, 30.8, 20.2, 13.8; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 318.1606; found: 318.1657.

3-isobutyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3h)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (40 mg, 63% yield). mp 112-114  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67 (s, 1H), 7.98 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.83 (d, J = 7.6 Hz, 1H), 7.72 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.46-7.43 (m, 1H), 7.34-7.26 (m, 2H), 7.22-7.18 (m, 1H), 7.03 (d, J = 8.4 Hz, 1H), 3.82 (d, J = 7.6 Hz, 2H), 2.34-2.24 (m, 1H), 1.02 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.5, 150.1, 149.4, 138.8, 130.4, 129.3, 126.9, 125.9, 123.7, 123.5, 123.4, 121.6, 121.3, 120.5, 109.4, 48.9, 28.3, 20.3; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 318.1606; found: 318.1608.

# 3-(sec-butyl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3i)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as light brown solid (60 mg, 95% yield), mp 112-114  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): $\delta$  8.68-8.66 (m, 1H), 7.98 (td,  $J_1 = 7.6$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.82 (d, J = 8.0 Hz, 1H), 7.71 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.65 (d, J = 8.4 Hz, 1H), 7.46-7.42 (m, 2H), 7.30-7.26 (m, 1H), 7.20-7.16 (m, 1H), 6.99 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 0.8$  Hz, 1H), 4.61-4.51 (m, 1H), 2.24-2.13 (m, 1H), 1.98-1.87 (m, 1H), 1.61 (d, J = 6.8 Hz, 3H), 0.93 (t, J = 7.6 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.9, 150.1, 149.5, 138.8, 130.0, 129.2, 126.0, 125.8, 123.7, 123.6, 123.5, 123.4, 121.8, 121.3, 120.5, 110.2, 51.8, 27.6, 18.8, 11.5; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 318.1606; found: 318.1610.

# 3-(tert-butyl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3j)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white powder (59.6 mg, 94% yield), mp 154–156 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67 (dd,  $J_1$  = 4.8 Hz,  $J_2$  = 1.2 Hz, 1H), 7.96 (td,  $J_1$  = 8.0 Hz,  $J_2$  = 2.0 Hz, 1H), 7.79 (d, J = 8.0 Hz, 1H), 7.75 (d, J = 9.2 Hz, 1H), 7.66 (d, J = 8.0 Hz, 1H), 7.58 (d, J = 9.2 Hz, 1H), 7.45- 7.42 (m, 1H), 7.28-7.24 (m, 1H), 7.15-7.11 (m, 1H), 6.85 (d, J = 8.8 Hz, 1H), 1.88 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.1, 150.4, 149.7, 138.8, 129.7, 128.9, 126.6, 125.7, 124.0, 123.8, 123.7, 122.6, 122.4, 121.3, 120.0, 113.1, 58.8, 29.8; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 318.1606; found: 318.1606.





The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white solid (49 mg, 66% yield), mp 120-122 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.68-8.66 (m, 1H), 7.95 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.81-7.78 (m, 2H), 7.62 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.4$  Hz, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.45-7.41 (m, 1H), 7.29-7.25 (m, 1H), 7.16-7.12 (m, 1H), 6.86 (d, J = 8.8 Hz, 1H), 2.18 (s, 2H), 1.98 (s, 6H), 0.92 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.4, 150.5, 149.8, 138.8, 129.6, 128.8, 127.1, 125.6, 124.0, 123.8, 123.7, 122.51, 122.49, 121.4, 120.0, 113.5, 62.4, 51.1, 31.9, 31.2, 31.0; HRMS (ESI, m/z) calcd. For C<sub>24</sub>H<sub>28</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 374.2232; found: 374.2235.

3-((3s)-adamantan-1-ylmethyl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3l)


The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a light brown solid (59 mg, 72% yield), mp 198–200  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.68 (d, *J* = 3.6 Hz, 1H), 7.98 (td, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 2.0 Hz, 1H), 7.84-7.82 (m, 1H), 7.73 (d, *J* = 8.0 Hz, 1H), 7.66 (d, *J* = 8.4 Hz, 1H), 7.46-7.43 (m, 1H), 7.38 (d, *J* = 8.8 Hz, 1H), 7.31-7.26 (m, 1H), 7.22-7.18 (m, 1H), 7.05-7.02 (m, 1H), 3.69 (s, 2H), 1.98 (s, 3H), 1.71-1.60 (m, 12H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.2, 150.1, 149.4, 138.9, 130.3, 129.3, 128.2, 125.9, 123.67, 123.66, 123.4, 121.6, 121.3, 120.3, 110.3, 53.9, 41.2, 36.8, 36.4, 28.3; HRMS (ESI, m/z) calcd. For C<sub>27</sub>H<sub>28</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 410.2232; found: 410.2231.

3-((3s,5s,7s)-adamantan-1-yl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3m)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a light brown solid (77 mg, 98% yield), mp 164-166  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67-8.65 (m, 1H), 7.98-7.93 (m, 1H), 7.85 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.66-7.63 (m, 1H), 7.54 (d, J = 9.2 Hz, 1H), 7.44-7.41 (m, 1H), 7.28-7.23 (m, 1H), 7.14-7.10 (m, 1H), 6.85 (d, J = 9.2 Hz, 1H), 2.68 (s, 6H), 2.25 (s, 3H), 1.80 (dd,  $J_1 = 32.4$  Hz,  $J_2 = 12.0$  Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  154.0, 150.5, 149.7, 138.7, 129.5, 128.8, 126.4, 125.6, 124.0, 123.72, 123.67, 122.6, 122.2, 121.3, 120.0, 113.6, 61.1, 40.9, 36.3, 30.1; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>26</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 396.2076; found: 396.2076

#### 3-(1-phenylethyl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3n)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a pale yellow solid (48.2 mg, 66% yield), mp 136-138 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.70-8.69 (m, 1H), 8.01 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.78-7.75 (m, 2H), 7.49-7.44 (m, 4H), 7.36-7.32 (m, 2H), 7.29-7.24 (m, 2H), 7.19-7.16 (m, 1H), 7.02-6.98 (m, 2H), 6.01 (q, J = 7.2 Hz, 1H), 1.99 (d, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 154.2, 150.1, 149.6, 139.8, 138.9, 130.1, 129.2, 128.8, 127.7, 126.9, 125.8, 125.4, 123.8, 123.7, 123.5, 123.4, 121.9, 121.2, 120.4, 110.8, 51.2, 17.7; HRMS (ESI, m/z) calcd. For C<sub>24</sub>H<sub>20</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 366.1606; found: 366.1606.

3-(1-(naphthalen-1-yl)ethyl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3o)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (73 mg, 88% yield), mp 222-224 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.69 (d, *J* = 4.8 Hz, 1H), 8.25 (d, *J* = 8.4 Hz, 1H), 8.01 (td, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 1.6 Hz, 1H), 7.96 (d, *J* = 7.2 Hz, 1H), 7.86 (d, *J* = 8.4 Hz, 1H), 7.81 (d, *J* = 8.0 Hz, 1H), 7.77 (d, *J* = 8.0 Hz, 1H), 7.68 (d, *J* = 8.4 Hz, 1H), 7.58 (t, *J* = 8.0 Hz, 1H), 7.51- 7.40 (m, 3H), 7.36 (d, *J* = 8.8 Hz, 1H), 7.22-7.18 (m, 1H), 7.14-7.10 (m, 2H), 6.93 (d, *J* = 8.8 Hz, 1H), 6.63 (q, *J* = 6.8 Hz, 1H), 2.11 (d, *J* = 6.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.9, 150.1, 149.7, 138.9, 134.9, 134.0, 131.8, 129.9, 129.4, 129.1, 128.9, 127.1, 126.1, 125.7, 125.6, 125.0, 124.8, 123.8, 123.59, 123.57, 123.51, 123.3, 122.0, 121.2, 120.3, 110.6, 48.9, 18.1; HRMS (ESI, m/z) calcd. For C<sub>28</sub>H<sub>22</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 416.1763; found: 416.1766.

## *tert*-butyl 4-(2-oxo-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-3(2H)-yl)piperidine-1-

#### carboxylate (3p)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a creamy white solid (80 mg, 90% yield), mp 174-176  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.68-8.66 (m, 1H), 7.99 (td,  $J_1$  = 8.0 Hz,  $J_2$  = 2.0 Hz, 1H), 7.83 (d, J = 8.0 Hz, 1H), 7.69 (dt,  $J_1$  = 8.0 Hz,  $J_2$  = 0.8Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.48-7.45 (m, 2H), 7.31-7.27 (m, 1H), 7.20-7.16 (m, 1H), 6.94 (d, J = 8.8 Hz, 1H), 4.62-4,54 (m, 1H), 4.35-4.33 (br. S, 2H), 2.90 (t, J = 12.4 Hz, 2H), 2.50-2.40 (m, 2H), 1.92 (d, J = 12.4 Hz, 2H), 1.50 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 154.8, 153.6, 150.0, 149.7, 138.9, 130.1, 129.2, 125.9, 125.4, 123.9, 123.8, 123.52, 123.50, 121.9, 121.2, 120.4, 110.2, 80.0, 51.8, 29.5, 28.6; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>29</sub>N<sub>4</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 445.2240; found: 445.2237.

3-cyclohexyl-5-phenyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3q)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white solid (67.8 mg, 81% yield), mp 186-188 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.68-8.66 (m, 1H), 7.99 (td,  $J_1 = 7.6$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.83-7.80 (m, 1H), 7.74 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.53-7.48 (m, 4H), 7.47-7.42 (m, 3H), 7.23-7.16 (m, 2H), 7.05-7.03 (m, 1H), 4.41-4.33 (m, 1H), 2.33-2.23 (m, 2H), 1.99-1.90 (m, 4H), 1.73 (d, J = 13.2 Hz, 1H), 1.50-1.40 (m, 2H), 1.32-1.26 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.9, 150.3, 149.6, 141.1, 138.8, 136.0, 130.5, 128.4, 128.2, 127.46, 127.44, 125.71, 125.67, 123.63,

123.61, 123.4, 121.51, 121.46, 120.6, 111.4, 53.8, 30.4, 26.1, 25.4; HRMS (ESI, m/z) calcd. For  $C_{28}H_{26}N_{3}O [M+H]^+$ : 420.2076; found: 420.2075.

5-bromo-3-cyclohexyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3r)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white solid (68 mg, 81% yield), mp 168-170  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.65-8.63 (m, 1H), 8.25-8.22 (m, 1H), 7.98 (td,  $J_1 = 7.6$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.83 (s, 1H), 7.69 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.46-7.43 (m, 1H), 7.40-7.35 (m, 1H), 7.40-7.35 (m, 1H), 7.22-7.18 (m, 1H), 6.99-6.96 (m, 1H), 4.36-4.28 (m, 1H), 2.29-2.19 (m, 2H), 1.95 (d, J = 11.2 Hz, 4H), 1.77 (d, J = 12.8 Hz, 1H),1.52-1.42 (m, 2H), 1.38-1.30 (m, 1H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.6, 150.0, 149.7, 138.9, 128.5, 127.8, 126.5, 126.2, 124.9, 123.9, 123.5, 121.9, 121.7, 121.2, 116.7, 114.4, 53.9, 30.4, 26.1, 25.4; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>21</sub>BrN<sub>3</sub>O [M+H]<sup>+</sup>: 422.0868; found: 422.0886.

3-cyclohexyl-5-methoxy-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3s)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a brown solid (44.7 mg, 60% yield), mp 166-168  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.64-8.62 (m, 1H), 8.27-8.25 (m, 1H), 7.95 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.70 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.41-7.37 (m, 1H), 7.29-7.25 (m, 1H), 7.22-7.18 (m, 1H), 6.98-6.96 (m, 1H), 6.87 (s, 1H), 4.35-4.27 (m, 1H), 4.05 (s, 3H), 2.34-2.24 (m, 2H), 1.99-1.93 (m, 4H), 1.78 (d, J = 12.8 Hz, 1H), 1.54-1.43 (m, 2H), 1.37-1.28 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$  153.9, 152.6, 150.3, 149.4, 138.6, 126.5, 126.1, 123.3, 123.21, 123.18, 122.8,

121.8, 121.3, 121.0, 115.4, 90.8, 56.3, 53.8, 30.4, 26.2, 25.6; HRMS (ESI, m/z) calcd. For  $C_{23}H_{24}N_3O_2$  [M+H]<sup>+</sup>: 374.1869; found: 374.1874.

3-cyclohexyl-5-(furan-3-yl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3t)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (65.4 mg, 80% yield), mp 190-192 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.67-8.66 (m, 1H), 8.07-8.05 (m, 1H), 7.99 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.72 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.65 (dd,  $J_1 = 1.6$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.59 (t, J = 1.6 Hz, 1H), 7.47-7.43 (m, 2H), 7.29-7.25 (m, 1H), 7.21-7.17 (m, 1H), 7.04-7.01 (m, 1H), 6.68 (dd,  $J_1 = 2.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 4.40-4.32 (m, 1H), 2.33-2.22 (m, 2H), 1.99-1.91 (m, 4H), 1.76 (d, J = 12.8 Hz, 1H), 1.53-1.42 (m, 2H), 1.36-1.28 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.8, 150.2, 149.5, 143.0, 140.6, 138.9, 128.5, 127.0, 126.3, 125.8, 125.7, 123.8, 123.7, 123.4, 121.7, 121.6, 120.7, 113.0, 111.4, 53.8, 30.4, 26.1, 25.4; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 410.1869; found: 410.1870.

# 3-cyclohexyl-5-(1H-pyrazol-1-yl)-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3u)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a creamy white solid (79.3 mg, 97% yield), mp 192-194 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.68-8.66 (m, 1H), 8.01 (td,  $J_1 = 7.6$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.85-7.84 (m, 1H), 7.76 (dd,  $J_1 = 2.4$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.73 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.62 (s, 1H), 7.54-7.51 (m, 1H), 7.48-7.45 (m, 1H), 7.30-7.25 (m, 1H), 7.23-7.19 (m, 1H), 7.05-7.02 (m, 1H), 6.56 (t, J = 2.0 Hz, 1H), 4.37-4.29 (m, 1H), 2.31-2.21 (m, 2H), 1.97-1.89 (m, 4H), 1.73 (d, J = 12.8 Hz, 1H), 1.49-1.39 (m, 2H), 1.33-1.25 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.8, 149.9, 149.7, 140.9, 139.0, 133.0, 132.6, 126.4, 126.1, 125.2, 124.9, 124.0, 123.96, 123.5, 122.5, 121.6, 120.5, 108.95, 106.7, 54.1, 30.3, 26.1, 25.3; HRMS (EI, m/z) calcd. For C<sub>25</sub>H<sub>24</sub>N<sub>5</sub>O [M+H]<sup>+</sup>: 410.1981; found: 410.1985.

3-cyclohexyl-5-fluoro-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3v)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown crystalline solid (47 mg, 65% yield), mp 142-144  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 8.65-8.64 (m, 1H), 8.08 (d, J = 8.0 Hz, 1H), 7.98 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.71 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.45-7.42 (m, 1H), 7.35-7.21 (m, 3H), 7.00-6.98 (m, 1H), 4.38-4.29 (m, 1H), 2.27-2.17 (m, 2H), 1.97-1.93 (m, 4H), 1.78 (d, J = 12.8 Hz, 1H), 1.53-1.41 (m, 2H), 1.36-1.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 155.5 (d, J = 244.7 Hz), 153.9, 150.0, 149.5, 138.9, 126.8, 125.2 (d, J = 12.5 Hz), 123.7, 123.69, 123.3, 121.7 (d, J = 6.3 Hz), 121.2 (d, J = 2.7 Hz), 120.8 (d, J = 4.8 Hz), 119.5 (d, J = 16.8 Hz), 117.9, 96.1 (d, J = 27.7 Hz), 53.9, 30.3, 26.1, 25.4; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -127.04 (s, 1F); HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>21</sub>FN<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 362.1669; found: 362.1667.

3-cyclohexyl-5-methyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3w)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (53.5 mg, 75% yield), mp 134-136  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.66-8.64 (m, 1H), 7.99-7.94 (m, 2H), 7.69 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.4$  Hz, 1H), 7.43-7.40 (m, 1H), 7.37 (s, 1H), 7.34-7.30 (m, 1H), 7.21-7.16 (m, 1H), 7.02 (d, J = 8.4 Hz, 1H), 4.40-4.32 (m, 1H), 2.76 (s, 3H), 2.34-2.24 (m, 2H), 1.98-1.92 (m, 4H), 1.78 (d, J = 12.4 Hz, 1H), 1.53-1.43 (m, 2H), 1.39-1.31 (m, 1H), 1.25 (grease); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.8, 150.4, 149.5, 138.8, 129.6, 128.8, 125.7, 125.5, 125.3, 123.5, 123.39, 123.36, 121.8, 120.7, 120.5, 111.3, 53.7, 30.4, 26.2, 25.5, 20.3; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 358.1919; found: 358.1920.

3-cyclohexyl-9-methyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3x)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown solid (67.8 mg, 95 % yield), mp 164-166 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.33-8.31 (m, 1H), 7.87 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.69-7.66 (m, 2H), 7.45 (d, J = 8.8 Hz, 1H), 7.25-7.20 (m, 2H), 7.08 (d, J = 7.2 Hz, 1H), 4.38-4.30 (m, 1H), 2.34-2.23 (m, 2H), 1.94 (d, J = 11.2 Hz, 4H), 1.77-1.74 (m, 4H), 1.51-1.41 (m, 2H), 1.36-1.28 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  155.1, 153.3, 148.3, 138.2, 131.1, 131.0, 129.0, 128.5, 127.1, 125.3, 123.5, 123.2, 122.2, 122.1, 121.6, 109.7, 53.9, 30.2, 26.2, 25.5, 21.7; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 358.1919; found: 358.1925.

3-cyclohexyl-1-(pyridin-2-yl)-5-tosyl-1H-naphtho[1,2-d]imidazol-2(3H)-one (3y)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a light brown powder (63.6 mg, 64% yield), mp 172-174  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 8.63-8.62 (m, 1H), 8.60 (s, 1H), 8.58 (dt,  $J_1 = 8.8$  Hz,  $J_2 = 0.8$  Hz, 1H), 8.01 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.81-7.78 (m, 2H), 7.69 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.49-7.46 (m, 1H), 7.35- 7.31 (m, 1H), 7.25-7.23 (m, 2H), 7.19-7.14 (m, 1H), 7.00-6.97 (m, 1H), 4.45-4.37 (m, 1H), 2.39-2.28 (m, 5H), 2.00-1.96 (m, 4H), 1.79 (d, J = 12.4 Hz, 1H), 1.57-1.46 (m, 2H), 1.42-1.34 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.6, 149.8, 149.4, 144.0, 139.2, 130.1, 129.8, 127.3, 127.1, 126.3, 125.8, 125.7, 125.4, 124.4, 123.7, 122.2, 120.6, 114.2, 54.4, 30.4, 25.2, 21.6; HRMS (ESI, m/z) calcd. For C<sub>29</sub>H<sub>28</sub>N<sub>3</sub>O<sub>3</sub>S [M+H]<sup>+</sup>: 498.1851; found: 498.1853.

3-cyclohexyl-1-(pyridin-2-yl)-1H-imidazo[4,5-f]quinolin-2(3H)-one (3z)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 65:35 hexane/ethyl acetate) afforded the desired product as a creamy white powder (62 mg, 90% yield), mp 144-146  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.73 (d, *J* = 3.6 Hz, 1H), 8.64-8.62 (m, 1H), 8.01-7.93 (m, 2H), 7.74-7.72 (m, 2H), 7.45-7.41 (m, 2H), 7.11-7.08 (m, 1H), 4.42-4.34 (m, 1H), 2.32-2.21 (m, 2H), 1.97-1.92 (m, 4H), 1.77 (d, *J* = 12.8 Hz, 1H), 1.52-1.41 (m, 2H), 1.36-1.28 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.7, 149.7, 149.5, 148.8, 144.6, 139.0, 129.7, 126.2, 124.6, 123.9, 123.2, 121.1, 120.2, 115.9, 113.5, 53.9, 36.4, 26.1, 25.4; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>20</sub>N<sub>4</sub>ONa [M+Na]<sup>+</sup>: 367.1535; found: 367.1551.

3-cyclohexyl-1-(pyridin-2-yl)-1H-imidazo[4,5-f]isoquinolin-2(3H)-one (3aa)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 65:35 hexane/ethyl acetate) afforded the desired product as a creamy white powder (56.4 mg, 82% yield), mp 160-162  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 9.20 (s, 1H), 8.68-8.66 (m, 1H), 8.20 (d, J = 5.6 Hz, 1H), 8.01 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.82 (d, J = 8.8 Hz, 1H), 7.74 (d, J = 7.6 Hz, 1H), 7.65 (d, J = 8.8 Hz, 1H), 7.49-7.46 (m, 1H), 6.84 (d, J = 6.0 Hz, 1H), 4.44-4.36 (m, 1H), 2.32-2.23 (m, 2H), 1.96 (d, J = 11.6 Hz, 4H), 1.79 (d, J = 12.8 Hz, 1H), 1.53-1.43 (m, 2H), 1.37-1.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.5, 152.8, 149.5, 149.3, 141.6, 139.0, 129.8, 124.0, 123.8, 123.2, 122.8, 120.5, 114.8, 111.8, 54.1, 30.4, 26.1, 25.4; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>21</sub>N<sub>4</sub>O [M+H]<sup>+</sup>: 345.1715; found: 345.1721.

3-cyclopentyl-5-phenyl-1-(pyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3ab)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white powder (45.4 mg, 56% yield), mp 142-144  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.68-8.67 (m, 1H), 8.01 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.85-7.83 (m, 1H), 7.75 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.53-7.42 (m, 6H), 7.36 (s, 1H), 7.24-7.16 (m, 2H), 7.07-7.03 (m, 1H), 4.94 (quintet, J = 8.8 Hz, 1H), 2.31-2.22 (m, 2H), 2.13-2.06 (m, 2H), 2.01-1.92 (m, 2H), 1.76-1.70 (m, 2H); <sup>13</sup>C NMR: (100 MHz, CDCl<sub>3</sub>): $\delta$  154.0, 150.2, 149.6, 141.1, 138.9, 136.1, 130.4, 128.4, 128.3, 127.5, 127.4, 125.7, 125.5, 123.7, 123.6, 123.4, 121.5, 120.7, 111.1, 54.1, 29.3, 25.1; HRMS (ESI, m/z) calcd. For C<sub>27</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 406.1919; found: 406.1917.

#### 3-cyclohexyl-1-(3-methylpyridin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3ac)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light brown crystalline solid (54.3 mg, 76% yield), mp 192-194  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.52 (s, 1H), 7.83-7.80 (m, 2H), 7.62 (d, J = 8.8 Hz, 1H), 7.54 (d, J = 8.4 Hz, 1H), 7.42 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 4.8$  Hz, 1H), 7.26-7.22 (m, 1H), 7.13-7.09 (m, 1H), 6.63 (d, J = 8.8 Hz, 1H), 4.45-4.37 (m, 1H), 2.30-2.23 (m, 5H), 1.99-1.92 (m, 4H), 1.77 (d, J = 12.8 Hz, 1H), 1.53-1.44 (m, 2H), 1.37-1.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.0, 149.3, 147.6, 140.4, 133.4, 129.7, 129.1, 126.1, 125.8, 124.8, 123.5, 122.6, 122.1, 120.3, 119.9, 110.6, 53.6, 30.6, 30.5, 26.1, 25.5, 17.5; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 358.1919; found: 358.1921.

3-cyclohexyl-1-(5-methylpyrazin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3ad)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a light brown solid (40.8 mg, 57% yield), mp 134-136  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): 8.89 (d, J = 0.8 Hz, 1H), 8.50 (s, 1H), 7.84 (d, J = 8.0 Hz, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.52 (d, J = 8.8 Hz, 1H), 7.32-7.28 (m, 1H), 7.24-7.19 (m, 1H), 6.98 (dd,  $J_1 = 8.8$  Hz,  $J_2 = 0.8$  Hz, 1H), 4.43-4.34 (m, 1H), 2.72 (s, 3H), 2.32-2.21(m, 2H), 1.98-1.93 (m, 4H), 1.78 (d, J = 12.4 Hz, 1H), 1.54-1.42 (m, 2H), 1.36-1.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): $\delta$  153.6, 153.5, 144.4, 143.4, 143.3, 129.9, 129.4, 126.4, 126.1, 123.72, 123.69, 121.5, 121.1, 120.3, 110.5, 53.9, 30.4, 26.1, 25.5, 21.4; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>23</sub>N<sub>3</sub>O [M+H] +: 359.1872; found: 359.1887.

3-cyclohexyl-1-(quinolin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3ae)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a creamy white powder (57.4 mg, 73% yield), mp 188-190  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.42 (d, J = 8.4 Hz, 1H), 8.05-8.02 (m, 1H), 7.97 (dd,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.84-7.82 (m, 2H), 7.77-7.73 (m, 1H), 7.64-7.62 (m, 2H), 7.54 (d, J = 8.8 Hz, 1H), 7.28-7.24 (m, 1H), 7.08-7.07 (m, 2H), 4.46-4.38 (m, 1H), 2.35-2.25 (m, 2H), 2.01-1.93 (m, 4H), 1.78 (d, J = 13.2 Hz, 1H), 1.54-1.44 (m, 2H), 1.38-1.30 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.8, 149.6, 147.3, 138.9, 130.3, 130.0, 129.3, 129.1, 127.8, 127.6, 127.4, 126.3, 125.7, 123.5, 121.73, 121.68, 121.2, 120.7, 110.4, 53.7, 30.4, 26.2, 25.5; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 394.1919; found: 394.1920.

3-butyl-1-(pyrazin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3af)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a light brown crystalline solid (41.3 mg, 65% yield), mp 140-142  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 9.07 (s, 1H), 8.69-8.63 (m, 2H), 7.86 (d, J = 8.0 Hz, 1H), 7.73 (d, J = 8.8 Hz, 1H), 7.36-7.30 (m, 2H), 7.27-7.23 (m, 1H), 7.04 (d, J = 8.4 Hz, 1H), 4.03 (t, J = 7.2 Hz, 2H), 1.86-1.79 (m, 2H), 1.50-1.41 (m, 2H), 0.97 (t, J = 7.6 Hz, 3H);<sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.9, 146.9, 144.4, 143.7, 143.4, 130.4, 129.6, 127.2, 126.2, 124.6, 123.8, 121.3, 121.0, 120.4, 109.2, 41.5, 30.7, 20.2, 13.8; HRMS (ESI, m/z) calcd. For C<sub>19</sub>H<sub>18</sub>N<sub>4</sub>O [M+H]<sup>+</sup>: 319.1559; found: 319.1558.

3-(tert-butyl)-1-(pyrazin-2-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3ag)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a creamy white powder (62.3 mg, 98% yield), mp 148-150  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 9.00 (d, J = 1.6 Hz, 1H), 8.68 (d, J = 2.4 Hz, 1H), 8.63 (dd,  $J_1 = 2.4$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.82 (d, J = 8.4 Hz, 1H), 7.76 (d, J = 9.2 Hz, 1H), 7.63 (d, J = 9.2 Hz, 1H), 7.32-7.28 (m, 1H), 7.21-7.16 (m, 1H), 6.85 (d, J = 8.4 Hz, 1H), 1.88 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.8, 147.2, 145.1, 143.8, 143.6, 129.7, 129.1, 127.2, 126.0, 123.9, 123.2, 121.9, 121.3, 119.9, 113.1, 59.1, 29.8; HRMS (ESI, m/z) calcd. For C<sub>19</sub>H<sub>19</sub>N<sub>4</sub>O [M+H]<sup>+</sup>: 319.1559; found: 319.1563.

3-cyclohexyl-1-(isoquinolin-1-yl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (3ah)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 70:30 hexane/ethyl acetate) afforded the desired product as a white powder (23.6 mg, 30% yield), mp 184-186  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.60 (d, *J* = 5.6 Hz, 1H), 8.00 (d, *J* = 8.4 Hz, 1H), 7.94 (d, *J* = 8.8 Hz, 1H), 7.91 (d, *J* = 6.0 Hz, 1H), 7.82-7.56 (m, 2H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.61-7.57 (m, 2H), 7.22-7.18 (m, 1H), 6.99-6.95 (m, 1H), 6.44 (d, *J* = 8.4 Hz, 1H), 4.99-4.41 (m, 1H), 2.37-2.27 (m, 2H), 2.07-1.95 (m, 4H), 1.79 (d, *J* = 11.6 Hz, 1H), 1.56-1.44 (m, 2H), 1.39-1.31 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.8, 141.7, 138.5, 131.5, 129.8, 129.1, 128.9, 127.1, 126.7, 126.1, 125.6, 123.5, 123.1, 122.8, 120.4, 120.1, 110.6, 53.7, 30.7, 26.2, 25.5; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 394.1919; found: 394.1920.





The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 85:15 hexane/ethyl acetate) afforded the desired product as a yellow fluffy solid (32.4 mg, 41% yield), mp 134-136 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 9.96 (S, 1H), 9.67-9.64 (m, 1H), 8.62 (d, J = 5.6 Hz, 1H), 7.92-7.90 (m, 2H), 7.81 (d, J = 8.4 Hz, 1H), 7.78- 7.69 (m, 4H), 7.43-7.39 (m, 1H), 7.28-7.21 (m, 2H), 3.52-3.46 (m, 1H), 2.12-2.09 (m, 2H), 1.79-1.74 (m, 2H), 1.64-1.60 (m, 1H), 1.42-1.19 (m, 5H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 165.2, 160.5, 154.8, 147.9, 140.5, 131.6, 130.8, 129.1, 128.3, 128.0, 127.4, 127.1, 127.0, 125.0, 122.3, 120.8, 110.9, 33.6, 25.9, 25.0; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>26</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 396.2076; found: 396.2078.

*N*-(5-(cyclohexylamino)quinolin-6-yl)picolinamide (3ai)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a pale yellow solid (42.2 mg, 61% yield), mp 146-148  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 10.98 (s, 1H), 8.87 (d, J = 9.2 Hz, 1H), 8.81 (dd,  $J_1 = 4.0$  Hz,  $J_2 = 1.6$  Hz, 1H), 8.67-8.65 (m, 1H), 8.33 (dt,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 8.29-8.27 (m, 1H), 7.94-7.89 (m, 2H), 7.49-7.46 (m, 1H), 7.37 (dd,  $J_1 = 8.4$  Hz,  $J_2 = 4.0$  Hz, 1H), 3.35 (s, 1H), 3.02-2.95 (m, 1H), 2.06-2.02 (m, 2H), 1.73-1.68 (m, 2H), 1.59-1.55 (m, 1H), 1.39-1.30 (m, 2H), 1.67-1.08 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 162.3, 150.4, 148.9, 148.2, 146.2, 137.7, 131.6, 131.0, 130.6, 126.5, 125.9, 125.5, 123.6, 122.6, 120.8, 58.6, 34.8, 25.9, 25.4; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>23</sub>N<sub>4</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 347.1872; found: 347.1889.

#### 3-methyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (3aj)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a colorless crystalline solid (26 mg, 50% yield), mp 108-110  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.74 (d, *J* = 8.0 Hz, 1H), 8.70-8.68 (m, 1H), 8.51 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.85 (td, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 1.2 Hz, 1H), 7.74 (d, *J* = 8.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.56-7.48 (m, 2H), 7.33-7.30 (m, 1H), 4.36 (s, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.9, 148.7, 148.3, 138.2, 136.9, 133.6, 130.6, 128.6, 127.2, 126.7, 124.8, 124.73, 124.67, 123.4, 122.1, 110.5, 33.1; HRMS (ESI, m/z) calcd. For C<sub>17</sub>H<sub>14</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 260.1188; found: 260.1196.

1-cyclohexyl-4-phenyl-3-(pyridin-2-yl)-1H-benzo[d]imidazol-2(3H)-one (3ak)



The general procedure 2 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a white solid (29.5 mg, 40% yield), mp 196-198  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.87-7.85 (m, 1H), 7.54 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.32 (d, J = 8.0 Hz, 1H), 7.25-7.17 (m, 2H), 7.06-6.89 (m, 7H), 4.38-4.29 (m, 1H), 2.32-2.22 (m, 2H), 1.94 (d, J = 10.8 Hz, 4H), 1.76 (d, J = 12.8 Hz, 1H), 1.51-1.42 (m, 2H), 1.35-1.25 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.5, 148.5, 148.1, 138.7, 137.3, 130.2, 128.3, 127.6, 126.4, 126.1, 125.7, 123.8, 122.2, 122.0, 121.9, 108.3, 53.6, 29.9, 26.1, 25.5; HRMS (ESI, m/z) calcd. For C<sub>24</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 370.1919; found: 370.1913.

#### 1-(tert-butyl)-4-phenyl-3-(pyridin-2-yl)-1H-benzo[d]imidazol-2(3H)-one (3al)



The general procedure 2 for imidazolone was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a white solid (20.5 mg, 30% yield), mp 228-230  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  7.93 (d, *J* = 3.6 Hz, 1H), 7.51-7.46 (m, 2H), 7.23 (d, *J* = 7.6 Hz, 1H), 7.14 (t, *J* = 8.0 Hz, 1H), 7.03-6.89 (m, 7H), 1.86 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.8, 148.6, 148.1, 138.8, 137.2, 130.9, 128.4, 127.6, 126.3, 126.2, 125.6, 123.8, 122.8, 121.9, 121.5, 111.2, 58.7, 29.6; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>22</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 344.1763; found: 344.1752.

#### 1-cyclohexyl-4-isopropyl-3-(pyridin-2-yl)-1H-benzo[d]imidazol-2(3H)-one (3am)



The general procedure 2 for imidazolone was followed was followed. Column chromatography  $(SiO_2, eluting with 80:20 hexane/ethyl acetate)$  afforded the desired product as a creamy white solid (43.5 mg, 65% yield), mp 164-166 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.58 (dd,  $J_1$  = 4.8 Hz,  $J_2$  = 2.0 Hz, 1H), 7.89 (td,  $J_1$  = 7.6 Hz,  $J_2$  = 2.0 Hz, 1H), 7.57 (d, J = 8.0 Hz, 1H), 7.37-7.34 (m, 1H), 7.12-7.04 (m, 2H), 7.00-6.98 (m, 1H), 4.29-4.21 (m, 1H), 2.46-2.36 (m, 1H), 2.27-2.16 (m, 2H), 1.89 (d, J = 11.2 Hz, 4H), 1.73 (d, J = 12.8 Hz, 1H), 1.48-1.38 (m, 2H), 1.32-1.24 (m, 1H), 1.02 (d, J = 6.8 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.9, 150.6, 149.0, 138.4, 132.4, 129.8, 126.1, 123.5, 123.4, 122.3, 119.0, 106.9, 53.5, 29.9, 27.7, 26.1, 25.5, 23.2; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>26</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 336.2076; found: 336.2067.

#### 4-(tert-butyl)-1-cyclohexyl-3-(pyridin-2-yl)-1H-benzo[d]imidazol-2(3H)-one (3an)



The general procedure 2 for imidazolone was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a creamy white solid (40 mg, 57% yield), mp 160-162  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.49 (dd,  $J_1$  = 4.8 Hz,  $J_2$  = 1.6 Hz, 1H), 7.86 (td,  $J_1$  = 7.6 Hz,  $J_2$  = 2.0 Hz, 1H), 7.60 (d, J = 8.0 Hz, 1H), 7.31-7.28 (m, 1H), 7.17 (dd,  $J_1$  = 8.0 Hz,  $J_2$  = 1.6 Hz, 1H), 7.12-7.04 (m, 2H), 4.22-4.14 (m, 1H), 2.29-2.18 (m, 2H), 1.91-1.85 (m, 4H), 1.72 (d, J = 12.8 Hz, 1H), 1.46-1.35 (m, 2H), 1.30-1.22 (m, 1H), 1.07 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 155.6, 153.8, 148.7, 138.1, 136.5, 132.2, 127.3, 124.5, 123.2, 122.6, 121.7, 107.1, 53.8, 34.9, 31.4, 29.7, 26.2, 25.5; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>28</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 350.2232; found: 350.2225.

1-cyclohexyl-4-ethyl-3-(pyridin-2-yl)-1H-benzo[d]imidazol-2(3H)-one (3ao)



The general procedure 2 for imidazolone was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a creamy white solid (16 mg, 25% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.60-8.58 (m, 1H), 7.89 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.58 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.37-7.34 (m, 1H), 7.09-7.04 (m, 2H), 6.89-6.88 (m, 1H), 4.30-4.22 (m, 1H), 2.26-2.19 (m, 4H), 1.89 (d, J = 9.6 Hz, 4H), 1.73 (d, J = 12.8 Hz, 1H), 1.48-1.38 (m, 2H), 1.32-1.24 (m, 1H), 0.89 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 153.8, 150.0, 148.9, 138.3, 129.7, 127.4, 126.6, 123.6, 123.4, 122.4, 122.1, 107.2, 53.5, 29.9, 26.1, 25.5, 25.1, 14.2; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>24</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 322.1919; found: 322.1913.

*N*-(2-(cyclohexylamino)-3,5-dimethoxyphenyl)picolinamide (3ap)



The general procedure for amination in aniline system was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a gummy liquid (51 mg, 72% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 11.04 (s, 1H), 8.62-8.60 (m, 1H), 8.25 (dt,  $J_1$  = 8.0 Hz,  $J_2$  = 0.8 Hz, 1H), 7.89 (d, J = 2.8 Hz, 1H), 7.85 (td,  $J_1$  = 8.0 Hz,  $J_2$  = 2.0 Hz, 1H), 7.43-7.39 (m, 1H), 6.25 (d, J = 2.8 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 2.74-2.68 (m, 1H), 1.93 (d, J = 12.8 Hz, 2H), 1.69-1.65 (m, 2H), 1.50 (s, 1H), 1.27-1.19 (m, 3H), 1.15-1.09 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 162.0, 156.8, 154.9, 150.6, 148.3, 137.5, 134.8, 126.2, 122.3, 119.5, 95.9, 94.9, 57.8, 55.7, 55.6, 34.2, 26.1, 25.3; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>26</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 356.1974; found: 356.1973.

*N*-(2-(cyclohexylamino)-3,5-dimethylphenyl)picolinamide (3aq)



The general procedure for amination in aniline system was followed. Column chromatography (SiO<sub>2</sub>, eluting with 95:5 hexane/ethyl acetate) afforded the desired product as a gummy liquid (33.5 mg, 52% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 10.87 (s, 1H), 8.63-8.61 (m, 1H), 8.29 (dt,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 8.23 (s, 1H), 7.88 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.45-7.42 (m, 1H), 6.75 (m, 1H), 2.84-2.77 (m, 1H), 2.31 (s, 3H), 2.26 (s, 3H), 2.06-2.03 (m, 2H), 1.71-1.68 (m, 2H), 1.55-1.54 (m, 1H), 1.32-1.25 (m, 2H), 1.13-1.08 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 161.9, 150.8, 148.1, 137.5, 133.5, 133.2, 131.5, 126.6, 126.1, 122.4, 118.6, 58.0, 34.7, 25.9, 25.5, 21.3, 18.3; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>26</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 324.2076; found: 324.2066.

#### *N*-(2-(cyclopentylamino)-3,5-dimethoxyphenyl)picolinamide (3ar)



The general procedure for amination in aniline system was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a gummy liquid (34 mg, 50% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 11.13 (s, 1H), 8.64-8.62 (m, 1H), 8.26 (dt,  $J_1$  = 8.0 Hz,  $J_2$  = 0.8 Hz, 1H), 7.92 (d, J = 2.4 Hz, 1H), 7.86 (td,  $J_1$  = 7.6 Hz,  $J_2$  = 1.6 Hz, 1H), 7.45-7.41 (m, 1H), 6.26 (d, J = 2.8 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 3.47 (quintet, J = 5.6 Hz, 1H), 1.80-1.70 (m, 4H), 1.56-1.46 (m, 4H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 162.1, 157.1, 155.2, 150.6, 148.3, 137.5, 135.3, 126.2, 122.3, 119.9, 95.8, 95.0, 60.8, 55.6, 33.2, 23.6; HRMS (ESI, m/z) calcd. For C<sub>19</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 342.1818; found: 342.1819.





The general procedure for amination in aniline system was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a gummy liquid (31 mg, 47% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 11.03 (s, 1H), 8.65-8.63 (m, 1H), 8.28-8.25 (m, 1H), 7.90-7.86 (m, 2H), 7.46-7.43 (m, 1H), 6.28 (d, J = 2.4 Hz, 1H), 3.84 (s, 3H), 3.81 (s, 3H), 2.85 (t, J = 7.2 Hz, 2H), 1.61 (quintet, J = 7.2 Hz, 2H), 1.49-1.39 (m, 2H), 0.89 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 162.3, 157.1, 154.6, 150.5, 148.3, 137.5, 134.5, 126.3, 122.3, 96.2, 95.2, 55.8, 55.7, 49.8, 32.8, 20.3, 14.1; HRMS (ESI, m/z) calcd. For C<sub>18</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 330.1818; found: 330.1822.

*N*-(2-(sec-butylamino)-3,5-dimethoxyphenyl)picolinamide (3at)



The general procedure for amination in aniline system was followed was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a gummy liquid (27.6 mg, 42% yield).

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 11.03 (s, 1H), 8.63-8.62 (m, 1H), 8.26 (dt,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.89-7.85 (m, 2H), 7.45-7.42 (m, 1H), 6.27 (d, J = 2.4 Hz, 1H), 3.84 (s, 3H), 3.79 (s, 3H), 2.98-2.90 (m, 1H), 1.68-1.57 (m, 1H), 1.47-1.39 (m, 1H), 1.04 (d, J = 6.4 Hz, 3H), 0.95 (t, J = 12.8 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 162.1, 156.9, 154.9, 150.6, 148.3, 137.5, 134.9, 126.2, 122.3, 96.1, 95.1, 55.7, 30.2, 19.9, 10.5; HRMS (ESI, m/z) calcd. For C<sub>18</sub>H<sub>24</sub>N<sub>3</sub>O<sub>3</sub> [M+H]<sup>+</sup>: 330.1818; found: 330.1826.

3-cyclohexyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5a)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a white solid (58 mg, 88% yield), mp  $88-90^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.77 (d, *J* = 8.0 Hz, 1H), 8.72-8.70 (m, 1H), 8.36 (d, *J* = 8.0 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.89-7.83 (m, 2H), 7.68 (d, *J* = 8.8 Hz, 1H), 7.64-7.60 (m, 1H), 7.51-7.47 (m, 1H), 7.36-7.33 (m, 1H), 5.59-5.52 (m, 1H), 2.39-2.29 (m, 2H), 2.16-2.12 (m, 2H), 1.99-1.94 (m, 2H), 1.81 (d, *J* = 12.4 Hz, 1H), 1.52-1.34 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  148.9, 137.0, 131.3, 130.1, 128.6, 128.2, 126.6, 125.83, 125.8, 124.9, 123.81, 123.79, 123.55, 123.53, 122.2, 113.7, 57.2, 31.8, 26.3, 25.6; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>22</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 328.1814; found: 328.1822.

3-cyclopentyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5b)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a light brown solid (50 mg, 80% yield), mp 146–148 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.73-8.72 (m, 1H), 8.51-8.48 (m, 1H), 8.25 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 1.2$  Hz, 1H), 8.02-7.98 (m, 2H), 7.81 (d, J = 9.2 Hz, 1H), 7.75 (d, J = 9.2 Hz, 1H), 7.62-7.58 (m, 1H), 7.50-7.46 (m, 2H), 6.09 (quintet, J = 9.2 Hz, 1H), 2.25-2.14 (m, 4H), 2.05-1.98 (m, 2H), 1.75-1.68 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.1, 149.4, 149.3, 138.9, 137.9, 130.9, 130.2, 128.9, 127.4, 126.9, 125.7, 125.3, 124.5, 124.1, 121.8, 113.7, 57.7, 31.0, 25.3; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>20</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 314.1657; found: 314.1653.

#### 3-propyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5c)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a light brown solid (40 mg, 70% yield), mp 58-60  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.75 (d, *J* = 8.0 Hz, 1H), 8.68-8.66 (m, 1H), 8.52 (dt, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 0.8 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.84 (td, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 1.6 Hz, 1H), 7.72 (d, *J* = 8.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.55 (d, *J* = 8.8 Hz, 1H), 7.52-7.48 (m, 1H), 7.31-7.28 (m, 1H), 4.89 (t, *J* = 7.2 Hz, 2H), 1.98-1.89 (m, 2H), 0.93 (t, *J* = 7.2 Hz, 3H), <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.0, 148.7, 148.0, 138.2, 136.8, 133.1, 130.6, 128.5, 127.3, 126.6, 124.74, 124.66, 124.5, 123.3, 122.0, 110.9, 47.2, 24.0, 11.4; HRMS (ESI, m/z) calcd. For C<sub>19</sub>H<sub>18</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 288.1501; found: 288.1497.

3-butyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5d)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a light brown solid (50 mg, 83% yield), mp 158-160  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 9.69 (d, J = 8.4 Hz, 1H), 9.41 (d, J = 8.0 Hz, 1H), 8.78 (d, J = 4.4 Hz, 1H), 8.12 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.97 (d, J = 2.0 Hz, 1H), 7.95 (d, J = 3.2 Hz, 1H), 7.86-7.82 (m, 1H), 7.68-7.61 (m, 2H), 7.54 (dd,  $J_1 = 7.6$  Hz,  $J_2 = 4.8$  Hz, 1H), 5.04 (t, J = 7.6 Hz, 2H), 1.98-1.94 (m, 2H), 1.44 (sextet, J = 7.6 Hz, 2H), 0.97 (t, J = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 149.6, 143.7, 143.2, 138.4, 131.7, 130.1, 129.2, 129.0, 128.6, 128.2, 127.8, 126.5, 125.3, 109.6, 46.9, 32.0, 20.0, 13.6; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N [M+H]<sup>+</sup>: 302.1657; found: 302.1663.

3-isobutyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5e)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a brown solid (52 mg, 86% yield), mp 74-76 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.76-8.73 (m, 1H), 8.67-8.66 (m, 1H), 8.52 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 1.2$  Hz, 1H), 7.93 (d, J = 7.6 Hz, 1H), 7.84 (td,  $J_1 = 8.0$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.72 (d, J = 8.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.55 (d, J = 9.2 Hz, 1H), 7.52-7.47 (m, 1H), 7.32-7.28 (m, 1H), 4.79 (d, J = 7.2 Hz, 2H), 2.31-2.20 (m, 1H), 0.88 (d, J = 6.4 Hz, 6H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.2, 148.5, 148.2, 138.2, 136.8, 133.5, 130.5, 128.5, 127.3, 126.6, 124.8, 124.7, 124.4, 123.3, 122.0, 111.3, 52.6, 30.1, 20.2; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 302.1579; found: 302.1658.

3-(sec-butyl)-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5f)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a light brown solid (48 mg, 80% yield), mp 88-90  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.76 (d, *J* = 8.0 Hz, 1H), 8.70-8.68 (m, 1H), 8.37 (dt, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 0.8 Hz, 1H), 7.92 (d, *J* = 8.0 Hz, 1H), 7.85 (td, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 2.0 Hz, 1H), 7.77 (d, *J* = 8.8 Hz, 1H), 7.67 (d, *J* = 8.8 Hz, 1H), 7.65-7.61 (m, 1H), 7.52-7.47 (m, 1H), 7.33-7.30 (m, 1H), 5.89-5.81 (m, 1H), 2.33-2.21 (m, 1H), 2.03-1.92 (m, 1H), 1.76 (d, *J* = 7.2 Hz, 3H), 0.74 (d, *J* = 7.2 Hz, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.3, 149.2, 148.7, 139.1, 136.9, 131.1, 130.1, 128.3, 127.4, 126.5, 125.7, 124.8, 123.8, 123.4, 122.1, 113.3, 54.9, 28.8, 20.2, 11.2; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 302.1579; found: 302.1660.

3-(tert-butyl)-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5g)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as light brown solid (43 mg, 72 % yield), mp 146-148  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.75 (d, *J* = 8.0 Hz, 1H), 8.71-8.69 (m, 1H), 7.92-7.88 (m, 2H), 7.84 (td, *J*<sub>1</sub> = 7.6 Hz, *J*<sub>2</sub> = 2.0 Hz, 1H), 7.77 (d, *J* = 7.6 Hz, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 7.61-7.57 (m, 1H), 7.51-7.47 (m, 1H), 7.40-7.37 (m, 1H), 1.70 (m, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  148.9, 136.6, 130.0, 128.0, 126.6, 125.9, 125.1, 124.0, 123.6, 122.5, 122.4, 114.9, 31.5; HRMS (ESI, m/z) calcd. For C<sub>20</sub>H<sub>20</sub>N<sub>3</sub> [M+H]<sup>+</sup>:302.1579; found:302.1660.

#### 3-benzyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5h)



The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a pale yellow solid (26.8 mg, 40% yield), mp 144-142 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.78 (d, *J* = 8.4 Hz, 1H), 8.62-8.60 (m, 1H), 8.57 (d, *J* = 8.0 Hz, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.84 (td, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 2.0 Hz, 1H), 7.67-7.63 (m, 2H), 7.52-7.48 (m, 1H), 7.44 (d, *J* = 8.8 Hz, 1H), 7.30-7.27 (m, 1H), 7.22-7.13 (m, 5H), 6.30 (s, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.6, 148.7, 147.9, 137.6, 136.9, 133.2, 130.7, 128.7, 128.5, 127.5, 127.1, 126.8, 124.9, 124.7, 123.6, 122.1, 111.1, 49.2; HRMS (ESI, m/z) calcd. For C<sub>24</sub>H<sub>18</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 336.1501; found: 336.1502.





The general procedure 1 for imidazolone was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a yellow solid (24.7 mg, 38% yield), mp 122-124  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.75 (d, *J* = 8.4 Hz, 1H), 8.71-8.69 (m, 1H), 8.56 (d, *J* = 8.0 Hz, 1H), 7.93 (d, *J* = 8.4 Hz, 1H), 7.86 (td, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 2.0 Hz, 1H), 7.76-7.70 (m, 2H), 7.66-7.62 (m, 1H), 7.52-7.48 (m, 1H), 7.35-7.31 (m, 1H), 7.26 (dd, *J*<sub>1</sub> = 1.6 Hz, *J*<sub>2</sub> = 0.8 Hz, 1H), 6.29 (s, 2H), 6.22-6.19 (m, 2H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.8, 148.5, 147.4, 142.3, 137.0, 133.1, 130.7, 128.5, 127.0, 126.7, 124.9, 124,8, 123.6, 122.1, 111.1, 110.5, 108.3, 42.3; HRMS (ESI, m/z) calcd. For C<sub>21</sub>H<sub>16</sub>N<sub>3</sub>O [M+H]<sup>+</sup>: 326.1293; found: 326.1294.

3-((3r,5r,7r)-adamantan-1-ylmethyl)-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5j)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a creamy white solid (61 mg, 78% yield), mp 176–178 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.75 (d, J = 8.0 Hz, 1H), 8.67-8.65 (m, 1H), 8.41 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.93 (d, J = 8.0 Hz, 1H), 7.86 (td,  $J_1 = 7.6$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.70 (d, J = 8.8 Hz, 1H), 7.66-7.62 (m, 1H), 7.59 (d, J = 8.8 Hz, 1H), 7.51-7.47 (m, 1H), 7.33-7.30 (m, 1H), 1.79 (s, 3H), 1.57-1.36 (m, 14H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 152.0, 149.1, 148.4, 137.1, 134.2, 130.4, 128.7, 128.4, 127.1, 126.7, 125.2, 124.8, 124.1, 123.5, 122.0, 112.4, 55.8, 41.0, 36.8, 36.6, 28.3; HRMS (ESI, m/z) calcd. For C<sub>27</sub>H<sub>28</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 394.2283; found: 394.2304.





The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 85:15 hexane/ethyl acetate) afforded the desired product as a creamy white solid (59 mg, 69 % yield), mp 112-114  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.76 (d, J = 8.0 Hz, 1H), 8.69-8.67 (m, 1H), 8.44 (d, J = 8.0 Hz, 1H), 7.93-7.87 (m, 2H), 7.74 (d, J = 9.2 Hz, 1H), 7.68 (d, J = 9.2 Hz, 1H), 7.65-7.61 (m, 1H), 7.52-7.48 (m, 1H), 7.37-7.34 (m, 1H), 5.94-5.85 (m, 1H), 4.35 (s, 2H), 2.88 (t, J = 9.6 Hz, 2H), 2.59-2.49 (m, 2H), 2.10 (dd,  $J_1 = 12.0$  Hz,  $J_2 = 2.0$  Hz, 2H), 1.53 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 154.9, 148.8, 148.3, 137.2, 131.1, 130.1, 128.3, 126.8, 125.8, 125.1, 124.3, 123.7, 122.1, 113.2, 80.0, 55.4, 30.8, 28.6; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>29</sub>N<sub>4</sub>O<sub>2</sub> [M+H] <sup>+</sup>: 429.2291; found: 429.2285.

#### 3-cyclohexyl-2-(5-methylpyrazin-2-yl)-3H-naphtho[1,2-d]imidazole (5l)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 85:15 hexane/ethyl acetate) afforded the desired product as a pale yellow powder (40.3 mg, 59% yield), mp 188-190 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  9.46 (s, 1H), 8.74 (d, *J* = 8.0 Hz, 1H), 8.51 (s, 1H), 7.91 (d, *J* = 8.0 Hz, 1H), 7.82 (d, *J* = 9.2 Hz, 1H), 7.68 (d, *J* = 9.2 Hz, 1H), 7.65-7.61 (m, 1H), 7.52-7.48 (m, 1H), 5.45-5.37 (m, 1H), 2.65 (s, 3H), 2.38-2.29 (m, 2H), 2.11 (d, *J* = 11.2 Hz, 2H), 1.96 (d, *J* = 12.8 Hz, 2H), 1.81 (d, *J* = 11.6 Hz, 1H), 1.50-1.34 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  153.1, 146.17, 146.16, 145.7, 142.7, 131.5, 130.1, 128.3, 127.3, 126.7, 125.0, 124.1, 122.1, 113.5, 57.3, 31.9, 26.2, 25.6, 21.7; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>23</sub>N<sub>4</sub> [M+H]<sup>+</sup>: 343.1923; found: 343.1926.

3-cyclohexyl-2-(quinolin-2-yl)-3H-naphtho[1,2-d]imidazole (5m)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a creamy white solid (38 mg, 50% yield), mp 180-182  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.80 (d, *J* = 8.0 Hz, 1H), 8.61 (d, *J* = 8.8 Hz, 1H), 8.31 (d, *J* = 8.4 Hz, 1H), 8.11 (d, *J* = 8.8 Hz, 1H), 7.93 (d, *J* = 8.0 Hz, 1H), 7.89-7.86 (m, 2H), 7.78-7.73 (m, 1H), 7.70 (d, *J* = 9.2 Hz, 1H), 7.67-7.63 (m, 1H), 7.60-7.56 (m, 1H), 7.53-7.49 (m, 1H), 6.14-6.06 (m, 1H), 2.47-2.37 (m, 2H), 2.27-2.24 (m, 2H), 2.02 (d, *J* = 13.6 Hz, 2H), 1.85 (d, *J* = 12.8 Hz, 1H), 1.61-1.50 (m, 2H), 1.47-1.39 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  151.0, 148.3, 147.4, 136.6, 132.0, 130.1, 129.83, 129.79, 128.3, 127.8, 127.6, 127.5, 127.2, 126.6, 124.9, 124.1, 122.9, 122.2, 113.8, 57.5, 32.0, 26.5, 25.8; HRMS (ESI, m/z) calcd. For C<sub>26</sub>H<sub>24</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 378.1970; found: 378.1974.

5-bromo-3-cyclohexyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5n)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a creamy white powder (67 mg, 83% yield), mp 154-156 °C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.79 (d, J = 8.0 Hz, 1H), 8.72-8.70 (m, 1H), 8.35 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 8.31-8.29 (m, 1H), 8.19 (s, 1H), 7.88 (td,  $J_1 = 7.6$  Hz,  $J_2 = 2.0$  Hz, 1H), 7.69-7.65 (m, 1H), 7.62-7.57 (m, 1H), 7.38-7.34 (m, 1H), 5.59-5.52 (m, 1H), 2.33-2.23 (m, 2H), 2.16-2.12 (m, 2H), 2.00-1.96 (m, 2H), 1.82-1.79 (m, 1H), 1.52-1.37 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 148.9, 137.0, 131.2, 128.6, 128.2, 127.8, 127.3, 126.8, 126.1, 125.8, 123.7, 122.5, 117.6, 57.4, 31.9, 26.2, 25.5; HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>21</sub>BrN<sub>3</sub> [M+H]<sup>+</sup>: 406.0919; found: 406.0926.





The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a white solid (63.5 mg, 92% yield), mp 128-130  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.77 (d, J = 8.0 Hz, 1H), 8.71-8.69 (m, 1H), 8.34 (d, J = 8.0 Hz, 1H), 8.14 (d, J = 8.0 Hz, 1H), 7.87 (td,  $J_1 = 7.6$  Hz,  $J_2 = 1.6$  Hz, 1H), 7.69-7.66 (m, 1H), 7.57-7.53 (m, 2H), 7.36-7.33 (m, 1H), 5.61-5.23 (m, 1H), 2.31-2.21 (m, 2H), 2.15-2.11 (m, 2H), 1.99-1.95 (m, 2H), 1.82-1.78 (m, 1H), 1.52-1.33 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 155.7 (d, J = 245.4 Hz), 151.0, 148.9, 136.9, 129.9 (d, J = 13.4 Hz), 128.6, 127.6, 127.4 (d, J = 5.3 Hz), 125.5, 125.0, 123.5, 122.1, 121.3 (d, J = 5.7 Hz), 120.8 (d, J = 18.2 Hz), 98.2 (d, J = 27.3 Hz), 57.2, 31.7, 26.2, 25.6; <sup>19</sup>F NMR (376 MHz, CDCl<sub>3</sub>): δ -126.54 (s, 1F); HRMS (ESI, m/z) calcd. For C<sub>22</sub>H<sub>21</sub>FN<sub>3</sub> [M+H]<sup>+</sup>: 346.1720; found: 346.1719.

#### 3-cyclohexyl-5-methyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5p)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as creamy white solid (58 mg, 85% yield), mp 132-134  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.95 (s, 1H), 8.73-8.71 (m, 1H), 8.48 (s, 1H), 8.04 (d, J = 8.4 Hz, 1H), 7.93-7.89 (m, 1H), 7.69-7.65 (m, 2H), 7.58-7.55 (m, 1H), 7.38-7.35 (m, 1H), 5.59-5.50 (m, 1H), 2.81 (s, 3H), 2.40-2.31 (m, 2H), 2.16-2.12 (m, 2H), 1.99-1.96 (m, 2H), 1.83-1.79 (m, 1H), 1.52-1.37 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 151.2, 148.8, 148.0, 137.9, 136.9, 131.1, 130.1, 129.4, 127.3, 126.3, 125.6, 124.7, 123.3, 122.6, 113.9, 57.1, 31.9, 26.3, 25.6, 20.7; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>24</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 342.1970; found: 342.1971.





The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 90:10 hexane/ethyl acetate) afforded the desired product as a creamy white solid (54.5 mg, 80% yield), mp 140-142  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 8.70-8.68 (m, 1H), 8.42 (dt,  $J_1 = 8.0$  Hz,  $J_2 = 0.8$  Hz, 1H), 7.87-7.82 (m, 2H), 7.79-7.76 (m, 1H), 7.67 (d, J = 8.8 Hz, 1H), 7.43-7.36 (m, 2H), 7.32-7.29 (m, 1H), 5.86-5.78 (m, 1H), 3.29 (s, 3H), 2.43-2.33 (m, 2H), 2.16-2.11 (m, 2H), 1.99- 1.95 (m, 2H), 1.81 (d, J = 11.2 Hz, 1H), 1.55-1.35 (m, 3H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 148.6, 147.3, 136.8, 135.0, 132.53, 132.48, 131.0, 128.5, 126.5, 126.4, 125.7, 124.6, 124.2, 123.2, 113.5, 56.9, 31.7, 26.3, 25.7, 23.8; HRMS (ESI, m/z) calcd. For C<sub>23</sub>H<sub>24</sub>N<sub>3</sub> [M+H]<sup>+</sup>: 342.1970; found: 342.1973.

#### 3-cyclohexyl-5-(1H-pyrazol-1-yl)-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5r)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a creamy white solid (43 mg, 55% yield), mp 174-176  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.85 (d, *J* = 8.0 Hz, 1H), 8.73-8.71 (m, 1H), 8.38 (d, *J* = 8.0 Hz, 1H), 7.95 (s, 1H), 7.92-7.84 (m, 3H), 7.68-7.64 (m, 1H), 7.60 (d, *J* = 8.0 Hz, 1H), 7.50-7.46 (m, 1H), 7.39-7.35 (m, 1H), 6.58 (t, *J* = 2.0 Hz, 1H), 5.62-5.54 (m, 1H), 2.34-2.23 (m, 2H), 2.17-2.13 (m, 2H), 1.96-1.91 (m, 2H), 1.76 (d, *J* = 12.4 Hz, 1H), 1.50-1.40 (m, 2H), 1.37-1.29 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  149.9, 149.0, 140.8, 137.1, 133.5, 132.5, 129.9, 127.3, 127.2, 126.6, 126.0, 125.9, 123.8, 123.6, 122.5, 112.1, 106.5, 57.5, 32.0, 26.2, 25.4; HRMS (ESI, m/z) calcd. For C<sub>25</sub>H<sub>24</sub>N<sub>5</sub> [M+H]<sup>+</sup>: 394.2032; found: 394.2036.

## 5-(1H-benzo[d][1,2,3]triazol-1-yl)-3-cyclohexyl-2-(pyridin-2-yl)-3H-naphtho[1,2-d]imidazole (5s)



The general procedure for imidazole was followed. Column chromatography (SiO<sub>2</sub>, eluting with 80:20 hexane/ethyl acetate) afforded the desired product as a creamy white solid (43.5 mg, 49% yield), mp 214-216  $^{\circ}$ C.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>):  $\delta$  8.90 (d, *J* = 8.0 Hz, 1H), 8.74-8.73 (m, 1H), 8.40 (d, *J* = 7.6 Hz, 1H), 8.26-8.21 (m, 1H), 8.07 (s, 1H), 7.91 (td, *J*<sub>1</sub> = 8.0 Hz, *J*<sub>2</sub> = 2.0 Hz, 1H), 7.71-7.67 (m, 1H), 7.51-7.46 (m, 2H), 7.45-7.37 (m, 2H), 7.30-7.27 (m, 2H), 5.67-5.59 (m, 1H), 2.29-2.16 (m, 4H),

1.91 (d, J = 13.2 Hz, 2H), 1.72 (d, J = 12.8 Hz, 1H), 1.49-1.38 (m, 2H), 1.31-1.20 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>):  $\delta$  150.6, 150.5, 149.0, 145.8, 140.3, 137.1, 135.4, 130.0, 128.3, 128.1, 127.6, 127.5, 126.2, 125.96, 125.92, 124.4, 123.9, 123.2, 122.8, 120.3, 113.6, 110.7, 57.6, 32.1, 26.1, 25.3; HRMS (ESI, m/z) calcd. For C<sub>28</sub>H<sub>25</sub>N<sub>6</sub> [M+H]<sup>+</sup>: 445.2141; found: 445.2140.

#### 3-cyclohexyl-1H-naphtho[1,2-d]imidazol-2(3H)-one (8a)



Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a light pink solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 11.40 (s, 1H), 8.04 (d, J = 8.0 Hz, 1H) 7.85 (d, J = 8.4 Hz, 1H), 7.58-7.53 (m, 2H), 7.50 (d, J = 8.8 Hz, 1H), 7.41-7.37 (m, 1H), 4.51-4.24 (m, 1H), 2.28-2.18 (m, 2H), 1.99-1.94 (m, 4H), 1.81 (d, J = 12.8 Hz, 1H), 1.59-1.48 (m, 2H), 1.39-1.32 (m, 1H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 155.4, 129.1, 128.6, 126.5, 124.9, 124.2, 122.5, 121.4, 120.6, 119.9, 110.9, 53.1, 30.8, 26.1, 25.5; HRMS (ESI, m/z) calcd. For C<sub>17</sub>H<sub>19</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 267.1497; found: 267.1506.

#### 3-(*tert*-butyl)-1H-naphtho[1,2-d]imidazol-2(3H)-one (8b)



Column chromatography (SiO<sub>2</sub>, eluting with 75:25 hexane/ethyl acetate) afforded the desired product as a white solid.

<sup>1</sup>H NMR (400 MHz, CDCl<sub>3</sub>): δ 11.71 (s, 1H), 8.05 (d, J = 8.4 Hz, 1H) 7.83 (d, J = 8.4 Hz, 1H), 7.69 (d, J = 8.8 Hz, 1H), 7.54-7-49 (m, 2H), 7.41-7.39 (m, 1H), 1.91 (s, 9H); <sup>13</sup>C NMR (100 MHz, CDCl<sub>3</sub>): δ 156.3, 128.8, 128.3, 126.2, 125.7, 124.3, 123.2, 120.7, 120.6, 119.7, 113.3, 58.6, 29.8; HRMS (ESI, m/z) calcd. For C<sub>15</sub>H<sub>17</sub>N<sub>2</sub>O [M+H]<sup>+</sup>: 241.1341; found: 241.1344.

#### **References.**

1) Nemchik, A.; Badescu, V., *Tetrahedron*, 2003, **59**, 4315-4325.

2) Phanstiel, O.; Wang, Q. X.; Powell, D. H.; Ospina, M. P.; Leeson, B. A., J. Org. Chem., 1999, 64, 803-806.

3) Xue, Y.; Fan, Z.; Jiang, X.; Wu, K.; Wang, M.; Ding, C.; Yao, Q.; Zhang, A., *Eur. J. Org. Chem.*, 2014, **2014**, 7481-7488.

4) Selvam, J. J. P.; Suresh, V.; Rajesh, K.; Reddy, S. R.; Venkateswarlu, Y., *Tet. Lett.*, 2006, **47**, 2507-2509.

5) Beesu, M.; Malladi, S. S.; Fox, L. M.; Jones, C. D.; Dixit, A.; David, S. A., *J. Med. Chem.*, 2014, **57**, 7325-7341.

6) Smout, V.; Peschiulli, A.; Verbeeck, S.; Mitchell, E. A.; Herrebout, W.; Bultinck, P.; Vande Velde, C. M. L.; Berthelot, D.; Meerpoel, L.; Maes, B. U. W., *J. Org. Chem.*, 2013, **78**, 9803-9814.

### <sup>1</sup>H NMR and <sup>13</sup>C NMR Spectra:



HM-6435 single\_pulse



120 110 f1 (ppm) 





HM-34524 single\_pulse single\_pulse single\_pulse



HM-1080 single\_pulse

### 



HM-1079P single\_pulse



S71












S73





2.113 1.768 1.714 1.714 1.651



110 100 f1 (ppm) 

 $<^{1.555}_{1.538}$ 



220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)

### HM-345 single\_pulse single\_pul











HM-580 single\_pulse





















### <1.032



S85





HM-434 single\_pulse





HM-393 single\_pulse















HM-490 single\_pulse

#### 000 db db 200 000 db db 200 000 db db 200 000 db 20





210 110 100 f1 (ppm) 200 190 180 170 160 150 140 130 120 90 80 70 60 50 40 30 20 10 0



# Particle Control of Co















HM-826 single pulse decoupled gated NOE

--127.038



100 80 -20 -40 -<mark>6</mark>0 -80 -100 -120 -140 f1 (ppm) 60 40 20 0 -160 -180 -200 -220 -240 -260 -280 -300





























S108
# HM-584 single\_pulse and a single



7,235 7,732 7,732 7,732 7,732 7,732 7,732 7,732 7,732 7,732 7,732 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 7,725 4.044 4.026 4.008





-1.882













S114

HM-430A single\_pulse





-1.857



Ó 100 90 f1 (ppm) 



HM-1168 single\_pulse



HM-1147 single\_pulse

## 45.95 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.65 45.75</

















HM-766 single\_pulse

















### HM-782 HM-782



HM-752 single\_pulse



HM-482G single\_pulse

### Part 2, 201 Part





HM-783 single\_pulse











# au di constante de la constant

### 2.467 2.459 2.459 2.427 2.247 2.247 2.247 2.247 2.247 2.247 2.247 2.247 2.247 2.247 2.247 2.247 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245 2.245



### 回動情力的であった。 のでは、 の





HM-832 single pulse decoupled gated NOE



100 80 -20 -<mark>6</mark>0 -80 -100 -120 -140 f1 (ppm) 60 40 20 0 -40 -160 -180 -200 -220 -240 -260 -280 -300

### 2.814 2.403 2.403 2.503 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305 2.305



190 180 170 160 150 140 130 120 110 100 90 f1 (ppm) 80 70 60 50 40 30 20 10 0








