Enantioselective Construction of cis-Hydroindole Scaffolds via

Asymmetric Inverse-Electron-Demand Diels-Alder Reaction:

Application to the Formal Total Synthesis of (+)-Minovincine

Fangqing Zhang, Bing-Tao Ren, Yuqiao Zhou, Yangbin Liu* and Xiaoming Feng*

Table of Contents:

1. General Information
2. Optimization of Reaction Conditions
Table S1. Investigation of Lewis Acids. 3
Table S2. Investigation of Ligands
Table S3. Investigation of Solvents. 5
Table S4. Investigation of Temperature. 5
Table S5. Investigation of the Loading and Ratio of Catalyst
3. Preparation of Substrates
Table S6. Structures of Substituted 2-pyrones. 6
Table S7. Structures of Substituted Enamines
4. General Procedure for the Catalytic Asymmetric Reaction
5. Procedure for Transformation of Product
6. Asymmetric Formal Total Synthesis of (+)-Minovincine
7. X-ray Crystallographic Data of 3a
Table S8. Crystal Data and Structure Refinement for 3a .
8. Reference
9. Chromatographic Data for Chiral Products
10. NMR Spectra of New Compounds

1. General Information

All manipulations were maintained under an atmosphere of argon unless otherwise stated. All solvents were dried and distilled according to general practice prior to use. All reagents were purchased from commercial sources and used without further purification unless specified otherwise. Solvents for flash column chromatography were technical grade and distilled prior to use. Analytical thin-layer chromatography (TLC) was performed using Huanghai silica gel plates with HSGF 254. Visualization of the developed chromatogram was performed by UV absorbance (254 nm) and appropriate stains. Flash column chromatography was performed using silica gel (300-400 mesh) from Levan.com with the indicated solvent system according to standard techniques. CDCl₃ was bought from Leyan.com. ¹H NMR and ¹³C NMR were recorded on a Bruker NMR 400 or Bruker NMR 500. Multiplicities are described as: s (singlet), d (doublet), t (triplet), q (quartet), m (multiplet); and coupling constants (J) are reported in Hertz (Hz). ¹³C NMR spectra were recorded with total proton decoupling. Chiral HPLC was recorded on a Shimadzu LC-20A spectrometer using Daicel Chiralcel IA, OJ, ID, AD, OD columns. HRMS (ESI) analysis was performed by the Analytical Instrumentation Center at Peking University Shenzhen Graduate School and (HRMS) data were reported with ion mass/charge (m/z) ratios as values in atomic mass units.

2. Optimization of Reaction Conditions

MeO O	+ Cbz Lewis acid (1:1, 10 DCE,	d/L ₃ -PiPr ₂ <u>) mol%)</u> 35 °C MeO ₂ C	H O H N Cbz	-N -N -N -N -N -N -N -N -N $R = 2,6-iPr_2C_6H_3$
1a	2a		3a	L ₃ -PiPr ₂
Entry ^a	Lewis acid	Time (h)	Yield (%) ^b	ee (%) ^c
1	Fe(OTf) ₃	24	trace	
2	In(OTf) ₃	24	trace	
3	Sc(OTf) ₃	24	trace	
4	Zn(OTf) ₂	3	91	-18
5	Ni(OTf) ₂	3	86	37
6	Yb(OTf) ₃	3	92	13
7	La(OTf) ₃	7	91	4
8	Co(BF ₄) ₂ ·6H ₂ O	3	62	79
9	Gd(OTf) ₃	3	50	2
10	$Mg(OTf)_2$	3	73	78
11	Ca(OTf) ₂	12	trace	
12	Cu(OTf) ₂	8	66	42
13	Dy(OTf) ₃	10	74	71

Table S1. Investigation of Lewis Acids.

^a Reaction conditions: 1a (0.10 mmol), 2a (0.15 mmol, 1.5 equiv.), Lewis acid (10 mol%), L₃-PiPr₂ (10 mol%), DCE (0.5 mL), rt. ^bNMR yield detected by using CH₂Br₂ as an internal standard. ^c Enantiomeric excess determined by HPLC analysis on a chiral stationary phase. DCE = 1,2-dichloroethane.

Table S2. Investigation of Ligands.

2a

Mg(OTf)₂/Ligand (1:1, 10 mol%)

MeO₂C

Cbz

 $\begin{array}{l} \textbf{L_{3}-PiPr_{2}: R = 2,6-}\textit{i}Pr_{2}C_{6}H_{3}, n = 1 \\ \textbf{L_{2}-PiPr_{2}: R = 2,6-}\textit{i}Pr_{2}C_{6}H_{3}, n = 0 \end{array}$ **L₃-PiAd**: R =1-adamantyl, n = 1 **L₃-PiEt₂**: R = 2,6-Et₂C₆H₃, n = 1 L₃-PiMe₂: R = 2,6-Me₂C₆H₃, n = 1

 L_3 -PrAd: R =1-adamantyl, n = 1 L_3 -PrPh₂: R = C₆H₅, n = 1 L₃-PrCHPh₂: R = CH(C₆H₅)₂, n = 1 L₃-PrMe₂: R = 2,6-Me₂C₆H₃, n = 1 **L₃-RaPr₂**: R = 2,6-*i*Pr₂C₆H₃

3 2 · · · · · 2 · 0 · · 5 · · · ·					
Entry ^a	Ligand.	Time (h)	Yield (%) ^b	ee (%) ^c	
1	L ₃ -PiPr ₂	3	80	79	
2	L ₂ -PiPr ₂	12	99	68	
3	L ₃ -PrPr ₂	12	97	69	
4	L ₂ -PrPr ₂	17	97	67	
5	L ₃ -RaPr ₂	12	99	79	
6	L ₃ -PiMe ₂	3	97	88	
7	L ₃ -PiAd	17	91	12	
8	L ₃ -PiEt ₂	6	95	82	
9	L ₃ -PrMe ₂	17	93	43	
10	L ₃ -PrPh	12	99	2	
11	L ₃ -PrAd	3	96	20	
12	L ₃ -PrCHPh ₂	6	99	6	

^a Reaction conditions: 1a (0.10 mmol), 2a (0.15 mmol, 1.5 equiv.), Mg(OTf)₂ (10 mol%), ligand (10 mol%), DCE (0.5 mL), rt,. ^b NMR yield detected by using CH₂Br₂ as an internal standard. ^c Enantiomeric excess determined by HPLC analysis on a chiral stationary phase. DCE = 1,2-dichloroethane.

Table S3. Investigation of Solvents.

MeO O O 1a	Mg(OTf N (1:1, - Cbz solve 2a	$0_2/L_3$ -PiMe ₂ 10 mol%) MeO ₂ C nt, 35 °C MeO ₂ C	H $O = \frac{1}{2}$	H^{+} H^{-} H
Entry ^a	Solvent	Time (h)	Yield (%) ^b	ee (%)°
1	DCE	3	93	88
2	DCM	3	99	91
3	CHCl ₃	3	99	95
4	Tol	12	86	64
5	PhCl	12	97	85
6	THF	12	96	64
7	Et ₂ O	12	99	77
8	EA	12	60	85
9	MeCN	12	99	88
10	MeOH	12	68	28

^a Reaction conditions: **1a** (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), Mg(OTf)₂ (10 mol %), L₃-PiMe₂ (10 mol %), solvent (0.5 mL), 35 °C. ^b NMR yield detected by using CH₂Br₂ as an internal standard. ^c Enantiomeric excess determined by HPLC analysis on a chiral stationary phase.

Table S4. Investigation of Temperature.

Me	0 0 0 + 1a	Mg(OTf N (1:1, Cbz CHC 2a	f)₂/ L₃-PiMe₂ 10 mol%) I _{I₃} , Temp.	MeO ₂ C Cbz 3a	$N - H' = 2,6 - Me_2C_6H_3$ $L_3 - PiMe_2$
_	Entry ^a	Temp. (°C)	Time (h)	Yield (%) ^t	ee (%) ^c
-	1	35	3	>99	95
	2	45	3	99	88
	3	25	4	>99	94
	5	15	12	>99	95
	6	5	12	59	93
	7	-20	36	trace	

^a Reaction conditions: **1a** (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), Mg(OTf)₂ (10 mol %), L₃-PiMe₂ (10 mol %), CHCl₃ (0.5 mL), at indicated temperature. ^b NMR yield detected by using CH₂Br₂ as an internal standard. ^c Enantiomeric excess determined by HPLC analysis on a chiral stationary phase.

$ \frac{1}{1a} = \frac{1}{2a} $		Mg(OTf) ₂ L ₃ -PiMe ₂ CHCl ₃ ,	$\begin{array}{c} Mg(OTf)_{2} (x \text{ mol}\%) \\ \underline{L_{3}}-PiMe_{2} (y \text{ mol}\%) \\ CHCl_{3}, 35 \ ^{\circ}C \end{array} \xrightarrow{MeO_{2}C} \begin{array}{c} H \\ MeO_{2}C \\ Cbz \\ 3a \end{array} \xrightarrow{N-H} \\ R = 3a \end{array}$			
Entry ^a	X	У	Time (h)	Yield (%) ^b	ee (%) ^c	
1	10	10	3	99	95	
2	5	5	3	99	95	
3	2	2	12	99	93	
4	10	11	12	89	95	
5	10	9	12	90	87	

Table S5. Investigation of the Loading and Ratio of Catalyst.

^a Reaction conditions: **1** (0.10 mmol), **2a** (0.15 mmol, 1.5 equiv.), Mg(OTf)₂ (x mol %), L₃-PiMe₂ (y mol %), CHCl₃ (0.5 mL), 35 °C. ^b NMR yield detected by using CH₂Br₂ as an internal standard. ^c Enantiomeric excess determined by HPLC analysis on a chiral stationary phase.

3. Preparation of Substrates

Table S6. Structures of Substituted 2-pyrones.

All 2-pyrones were prepared according to the literature.¹

Table S7. Structures of Substituted Enamines.

All enamines were prepared according to the literature.²⁻⁸

4. General Procedure for the Catalytic Asymmetric Reaction

After stirring a mixture of Mg(OTf)₂ (0.005 mmol, 5 mol %) and L₃-PiMe₂ (0.005 mmol, 5 mol %) in dry CHCl₃ (0.5 mL) at 35 °C for 1 h under argon atmosphere, substrate **1** (0.10 mmol) and substrate **2** (0.15 mmol) were added, and then the reaction mixture was stirring at 35 °C. After the disappearance of substrate **1** (monitored by TLC), the crude product was purified by silica gel flash chromatography (EtOAc: petroleum ether 1: 3) to afford the desired product **3**.

1-benzyl 7-methyl (3a*R*,4*R*,7*S*,7a*S*)-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 3 h. Product **3a** was obtained as a white solid (35 mg, 99% yield, 95% ee). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t

(minor) = 21.59 min, t (major) = 24.89 min. $[\alpha]^{25}D = -81.0$ (c = 0.23, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.56 – 7.31 (m, 5H), 7.02 (d, J = 7.7 Hz, 1H), 6.60 (dd, J = 7.8, 5.0 Hz, 1H), 5.25 – 4.98 (m, 3H), 4.92 (d, J = 7.7 Hz, 1H), 4.12 – 3.50 (m, 4H), 3.27 (dd, J = 11.6, 5.0 Hz, 1H), 3.14 (td, J = 11.0, 7.5 Hz, 1H), 2.12 (dd, J = 13.6, 10.4 Hz, 1H), 1.81 – 1.55 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.7, 167.3, 154.4, 136.2, 133.0, 130.0, 128.5, 128.2, 128.0, 75.7, 67.4, 60.5, 59.5, 53.0, 48.0, 44.9, 25.9; HRMS (ESI): exact mass calculated for: C₁₉H₁₉O₆NNa [M+Na]⁺: 380.1105, found: 380.1103.

1-benzyl 7-ethyl (3a*R*,4*R*,7*S*,7a*S*)-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 12 h. Product **3b** was obtained as a white solid (32 mg, 86% yield, 88% ee). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 17.36 min, t (major) = 14.98 min. [α]²⁵D = -85.7 (c = 0.14, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.60 – 7.30 (m, 5H), 7.00 (d, J = 7.7 Hz, 1H), 6.58 (d, J = 7.8 Hz, 1H), 5.41 – 5.09 (m, 1H), 5.03 (d, J = 12.1 Hz, 1H), 4.93 (d, J = 7.6 Hz, 1H), 4.60 – 3.97 (m, 2H), 3.74 (t, J = 10.0 Hz, 1H), 3.34 – 3.20 (m, 1H), 3.13 (td, J = 11.0, 7.4 Hz, 1H), 2.09 (tt, J = 10.2, 8.1 Hz, 1H), 1.64 (dd, J = 13.7, 7.4 Hz, 1H), 1.47 – 1.16 (m, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 166.7, 154.4, 136.3, 133.1, 130.0, 128.5, 128.2, 128.0, 75.7, 67.3, 62.2, 60.4, 59.6, 48.1, 45.0, 25.8, 14.0. HRMS (ESI): exact mass calculated for: C₂₀H₂₁O₆NNa [M+Na]⁺: 394.1261, found: 394.1260.

1-benzyl 7-isopropyl (3a*R*,4*R*,7*S*,7a*S*)-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 12 h. Product **3c** was obtained as a white solid (27 mg, 70% yield, 92% *ee*). The enantiomeric excess was determined by CHIRALPAK OJ-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t

(minor) = 25.29 min, t (major) = 19.05 min. $[\alpha]^{25}D = -71.4$ (c = 0.17, in CH₂Cl₂). ¹H

NMR (400 MHz, CDCl₃) δ 7.41 – 7.29 (m, 5H), 6.99 (d, J = 7.6 Hz, 1H), 6.57 (dd, J = 7.8, 5.0 Hz, 1H), 5.27 – 5.09 (m, 3H), 5.05 (d, J = 12.2 Hz, 1H), 4.92 (d, J = 7.6 Hz, 1H), 3.73 (t, J = 10.2 Hz, 1H), 3.30 – 3.19 (m, 1H), 3.13 (td, J = 11.0, 7.4 Hz, 1H), 2.16 – 1.99 (m, 1H), 1.64 (dd, J = 13.7, 7.3 Hz, 1H), 1.46 – 1.30 (m, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 168.0, 166.1, 154.4, 136.4, 133.2, 129.9, 128.5, 128.1, 128.0, 75.6, 70.0, 67.2, 60.2, 59.7, 48.0, 45.0, 25.9, 21.6. HRMS (ESI): exact mass calculated for: C₂₁H₂₃O₆NNa [M+Na]⁺: 408.1457, found: 408.1450.

7-allyl 1-benzyl (3a*R*,4*R*,7*S*,7a*S*)-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 12 h. Product **3d** was obtained as a white solid (22 mg, 60% yield, 89% ee). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t

(minor) = 17.14 min, t (major) = 18.84 min. $[\alpha]^{25}D = -55.6$ (c = 0.14, in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.41 – 7.28 (m, 5H), 6.99 (d, J = 7.5 Hz, 1H), 6.58 (dd, J = 7.8, 5.0 Hz, 1H), 6.01 (s, 1H), 5.43 (d, J = 16.9 Hz, 1H), 5.25 (d, J = 10.4 Hz, 1H), 5.18 – 5.07 (m, 2H), 5.02 (d, J = 11.9 Hz, 1H), 4.96 – 4.80 (m, 2H), 4.79 – 4.31 (m, 1H), 3.72 (s, 1H), 3.36 – 3.18 (m, 1H), 3.11 (td, J = 11.0, 7.4 Hz, 1H), 2.08 (tt, J = 10.2, 6.0 Hz, 1H), 1.63 (dd, J = 13.8, 7.4 Hz, 1H). ¹³C NMR (126 MHz, CDCl₃) δ 167.7, 166.7, 154.4, 136.3, 132.9, 132.1, 130.1, 128.5, 128.2, 128.0, 118.2, 75.7, 67.3, 66.7, 60.5, 59.6, 48.0, 44.9, 25.8. HRMS (ESI): exact mass calculated for: C₂₁H₂₁O₆NNa [M+Na]⁺: 406.1261, found: 406.1267.

Dibenzyl (3a*R*,4*R*,7*S*,7a*S*)-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 12 h. Product **3e** was obtained as a colorless oil (35 mg, 80% yield, 86% *ee*). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20 1.0 mL/min, λ = 210 nm, t

(minor) = 23.63 min, t (major) = 32.80 min. $[\alpha]^{25}D = -44.4$ (c = 0.32, in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.39 (s, 2H), 7.31 – 7.18 (m, 8H), 6.92 (d, J = 7.5 Hz, 1H), 6.47 (dd, J = 7.8, 5.0 Hz, 1H), 5.33 (s, 1H), 5.01 (dt, J = 22.8, 9.8 Hz, 4H), 4.84 (d, J = 7.6 Hz, 1H), 3.62 (s, 1H), 3.14 (s, 1H), 3.09 – 2.96 (m, 1H), 2.07 – 1.88 (m, 1H), 1.53 (dd, J = 13.8, 7.4 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 167.8, 166.8, 154.5, 136.4, 135.9, 132.9, 130.2, 128.6, 128.5, 128.2, 128.2, 128.1, 75.8, 67.9, 67.4, 60.7, 59.7, 48.1, 45.0, 25.8. HRMS (ESI): exact mass calculated for: C₂₅H₂₃O₆NNa [M+Na]⁺: 456.1423, found: 456.1418.

Benzyl (3aR, 4R, 7S, 7aS)-6-methyl-7-((methylperoxy)- λ^2 -methyl)-8-oxo-2, 3, 3a, 4, 7, 7a-hexahydro-1*H*-4, 7-(epoxymethano)indole-1-carboxylate

Following the general procedure, reaction time 12 h. Product **3f** was obtained as a white solid (34 mg, 90% yield, 89% ee). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t

(minor) = 18.71 min, t (major) = 15.46 min. $[\alpha]^{25}D = -90.7$ (c = 0.19, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.39 – 7.29 (m, 5H), 6.57 – 5.83 (m, 1H), 5.19 (d, J = 12.4 Hz, 1H), 5.08 – 4.92 (m, 3H), 3.83 (s, 3H), 3.70 (t, J = 10.2 Hz, 1H), 3.25 – 3.12 (m, 1H), 3.07 (td, J = 10.9, 7.4 Hz, 1H), 2.15 – 2.03 (m, 4H), 1.65 (dd, J = 13.7, 7.4 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 167.0, 167.5, 154.4, 143.4, 136.3, 128.5, 128.2, 128.0, 124.5, 75.1, 67.3, 61.9, 60.8, 52.3, 48.0, 44.9, 25.8, 20.3. HRMS (ESI): exact mass calculated for: C₂₀H₂₁O₆NNa [M+Na]⁺: 394.1261, found: 394.1263.

1-benzyl 7-methyl (3a*R*,4*R*,7*S*,7a*S*)-4-methyl-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 12 h. Product **3g** was obtained as a white solid (32 mg, 86% yield, 94% ee). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t

(minor) = 32.09 min, t (major) = 25.16 min. $[\alpha]^{25}D = -114.6$ (c = 0.27, in CH₂Cl₂). ¹H

NMR (400 MHz, CDCl₃) δ 7.53 – 7.27 (m, 5H), 6.92 (d, J = 7.8 Hz, 1H), 6.30 (d, J =7.9 Hz, 1H), 5.07 (dd, J = 40.5, 12.3 Hz, 2H), 4.93 (d, J = 7.7 Hz, 1H), 3.86 (d, J = 23.9Hz, 3H), 3.70 (t, J = 10.2 Hz, 1H), 3.11 (td, J = 10.9, 7.3 Hz, 1H), 3.03 - 2.89 (m, 1H), 2.04 (dq, *J* = 13.8, 10.2 Hz, 1H), 1.70 (s, 3H), 1.64 (dd, *J* = 13.8, 7.3 Hz, 1H); ¹³C NMR (101 MHz, CDCl₃) δ 168.2, 167.4, 154.5, 136.3, 134.4, 131.9, 128.5, 128.2, 128.0, 82.7, 67.4, 61.98, 59.5, 53.0, 50.7, 47.9, 26.1, 20.9. HRMS (ESI): exact mass calculated for: C₂₀H₂₁O₆NNa [M+Na]⁺: 394.1261, found: 394.1261.

1-(tert-butyl) 7-methyl (3aR,4R,7S,7aS)-8-oxo-2,3,3a,7a-tetrahydro-1H-4,7-(epoxymethano)indole-1,7(4H)-dicarboxylate

Following the general procedure, reaction time 24 h. Product 3i was obtained as a white solid (26 mg, 80% yield, 94% ee). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm \times 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 7.23 min, t (major) = 6.04 min. $[\alpha]^{25}D = -121.8$ (c = 0.11, in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 6.97 (d, J = 7.5 Hz, 1H), 6.55 (dd, J = 7.9, 5.0 Hz, 1H), 5.15 - 5.08 (m, 1H), 4.84 (d, J = 7.7 Hz, 1H), 3.90 (s, 3H), 3.59 (s, 1H), 3.26 - 3.19 (m, 1H),

3.03 (td, J = 11.0, 7.4 Hz, 1H), 2.06 (m, J = 13.5, 10.3, 2.6 Hz, 1H), 1.58 (dd, J = 13.7, 7.4 Hz, 1H), 1.40 (s, 9H). ¹³C NMR (101 MHz, CDCl₃) δ 167.9, 167.3, 153.9, 133.1, 130.1, 80.5, 75.8, 60.3, 59.5, 53.2, 47.9, 44.5, 28.3, 26.1. HRMS (ESI): exact mass calculated for: C₁₆H₂₁O₆NNa [M+Na]⁺: 346.1261, found: 346.1260.

Methyl (3aR,4R,7S,7aS)-1-acetyl-8-oxo-1,2,3,3a,4,7a-hexahydro-7H-4,7-(epoxymethano)indole-7-carboxylate

 $(0.46 \text{ cm} \times 25 \text{ cm})$, hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 12.39 min, t (major) = 10.29 min. $[\alpha]^{25}D = -136.4$ (c = 0.11, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.98 (d, J = 7.7 Hz, 1H), 6.57 (d, J = 2.7 Hz, 1H), 5.12 (s, 1H), 4.96 (d, J = 7.6 Hz, 1H), 3.93 (s, 3H), 3.50 (t, J = 10.0 Hz, 1H), 3.24 (dd, J = 17.9, 10.3 Hz, 2H), 2.15 (dq, J = 20.6, 10.2 Hz, 1H), 1.96 (s, 3H), 1.71 (dd, J = 13.7, 7.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 169.7, 167.8, 167.6, 133.4, 129.9, 75.6, 59.7, 59.1, 53.2, 49.0, 44.3, 26.1, 23.3. HRMS (ESI): exact mass calculated for: C₁₃H₁₅O₅NNa [M+Na]⁺: 288.0842, found: 288.0842.

1'-benzyl 7'-methyl (3a'*R*,4'*R*,7'*S*,7a'*S*)-8'-oxo-3a',7a'-dihydrospiro[cyclohexane-1,3'-[4,7](epoxymethano)indole]-1',7'(2'*H*,4'*H*)-dicarboxylate

Following the general procedure, Mg(OTf)₂ (10 mol%), L₃-PiMe₂ (10 mol%), 1a (0.1 mmol) and 2k (0.15 mmol) reacted for 36 h. Product 3k was obtained as a white solid (34 mg, 79% yield, 85% *ee*). The enantiomeric excess was determined by CHIRALPAK

OD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 16.42 min, t (major) = 9.15 min. [α]²⁵D = -85.0 (c = 0.11, in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.42 - 7.27 (m, 5H), 6.99 (d, J = 7.5 Hz, 1H), 6.57 (d, J = 4.7 Hz, 1H), 5.45 - 4.86 (m, 4H), 3.90 (d, J = 74.1 Hz, 3H), 3.64 (d, J = 10.7 Hz, 1H), 3.55 (s, 1H), 2.87 (d, J = 4.4 Hz, 1H), 2.81 (d, J = 11.2 Hz, 1H), 1.47 (dd, J = 76.4, 28.8 Hz, 10H). ¹³C NMR (126 MHz, CDCl₃) δ 168.3, 167.6, 155.1, 136.6, 132.8, 130.0, 128.7, 128.4, 127.8, 74.3, 67.4, 60.4, 59.4, 57.7, 54.7, 53.3, 42.5, 37.2, 32.0, 25.9, 23.6, 22.3. HRMS (ESI): exact mass calculated for: C₂₄H₂₇O₆NNa [M+Na]⁺: 448.1731, found: 448.1731.

1-benzyl 7-methyl (2*R*,3a*R*,4*R*,7*S*,7a*S*)-2-(((tert-butyldimethylsilyl)oxy)methyl)-8oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

Following the general procedure, reaction time 24 h. Product **31** was obtained as a colorless oil (44 mg, 88% yield, dr > 20:1). $[\alpha]^{25}D = -$ 89.1 (*c* = 0.12, in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.38 – 7.26 (m, 5H), 6.84 (d, J = 7.6 Hz, 1H), 6.47 (dd, J = 7.8, 5.0 Hz, 1H), 5.20 –

4.90 (m, 3H), 4.69 (d, J = 8.0 Hz, 1H), 4.12 – 4.03 (m, 1H), 3.90 (s, 3H), 3.63 (s, 1H), 3.48 (dd, J = 10.2, 2.6 Hz, 1H), 3.24 – 3.15 (m, 1H), 2.09 – 1.98 (m, 1H), 1.48 (ddd, J

= 13.3, 8.8, 7.4 Hz, 1H), 0.85 (s, 9H), -0.03 (d, J = 2.2 Hz, 6H). ¹³C NMR (126 MHz, CDCl₃) δ 169.3, 168.1, 153.7, 136.4, 132.6, 128.8, 128.6, 128.3, 128.3, 75.6, 67.2, 65.3, 61.5, 60.8, 60.0, 52.7, 45.4, 28.1, 26.0, 18.3, -5.4, -5.5. HRMS (ESI): exact mass calculated for: C₂₆H₃₅O₇NSiNa [M+Na]⁺: 524.2075, found: 524.2076.

1-(tert-butyl) 7-methyl (2*S*,3a*R*,4*R*,7*S*,7a*S*)-2-methyl-8-oxo-2,3,3a,7a-tetrahydro-1*H*-4,7-(epoxymethano)indole-1,7(4*H*)-dicarboxylate

 δ 169.0, 167.7, 153.6, 132.9, 128.8, 80.2, 75.5, 60.2, 58.8, 55.6, 52.7, 43.6, 33.3, 28.3, 21.3. HRMS (ESI): exact mass calculated for: $C_{17}H_{23}O_6NNa$ [M+Na]⁺: 360.1418, found: 360.1418.

Methyl (1*S*,4*S*,8*S*)-8-(((benzyloxy)carbonyl)amino)-3-oxo-2-oxabicyclo [2.2.2]oct-5-ene-4-carboxylate

Following the general procedure, Mg(OTf)₂ (10 mol%), L₃-PiMe₂ (10 mol%), 1a (0.1 mmol) and 2n (0.15 mmol) reacted for 24 h. Product 3n was obtained as a colorless oil (27 mg, 80% yield, 92% *ee*). The enantiomeric excess was determined by CHIRALPAK ID

 $(0.46 \text{ cm} \times 25 \text{ cm})$, hexanes/*i*PrOH = 70/30, 1.0 mL/min, $\lambda = 210 \text{ nm}$, t (minor) = 69.45 min, t (major) = 28.27 min. [α]²⁵D = -25.5 (c = 0.44, in CH₂Cl₂). ¹H NMR (500 MHz, CDCl₃) δ 7.33 (d, J = 11.8 Hz, 5H), 6.90 - 6.79 (m, 1H), 6.73 (dd, J = 7.8, 5.1 Hz, 1H), 5.25 (d, J = 1.6 Hz, 1H), 5.06 (s, 2H), 4.93 - 4.77 (m, 1H), 4.63 (d, J = 9.9 Hz, 1H), 3.83 (s, 3H), 2.86 (d, J = 10.0 Hz, 1H), 1.55 (dd, J = 14.4, 2.2 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 167.1, 155.0, 135.9, 133.6, 129.6, 128.7, 128.6, 128.5, 128.3,

73.7, 67.3, 59.7, 53.3, 46.7, 36.9. HRMS (ESI): exact mass calculated for: $C_{17}H_{17}O_6NNa [M+Na]^+$: 354.0954, found: 354.0948.

Benzyl ((15,45,55)-8-methyl-4-((methylperoxy)- λ^2 -methyl)-3-oxo-2-oxabicyclo[2.2.2]oct-7-en-5-yl)carbamate

Following the general procedure, Mg(OTf)₂ (10 mol%), L₃-PiMe₂ (10 mol%), **1f** (0.1 mmol) and **2n** (0.15 mmol) reacted for 36 h. Product **3o** was obtained as a colorless oil (28 mg, 82% yield, 90% *ee*). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 6.84 min, t (major) = 7.40 min. [α]²⁵D = -20.3 (*c* = 1.8, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.32 (d, J = 1.8 Hz, 5H), 6.30 (d, J = 3.6 Hz, 1H), 5.17 - 4.96 (m, 3H), 4.91 - 4.78 (m, 1H), 4.64 (d, J = 9.4 Hz, 1H), 3.80 (s, 3H), 2.81 - 2.63 (m, 1H), 2.08 (d, J = 1.5 Hz, 3H), 1.55 (d, J = 14.3 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 166.8, 155.3, 139.1, 136.1, 128.6, 128.4, 128.3, 127.5, 72.8, 67.3, 62.7, 52.8, 46.9, 36.8, 20.8. HRMS (ESI): exact mass calculated for: C₁₈H₁₉O₆NNa [M+Na]⁺: 368.1105, found: 368.1103.

Benzyl (S)-(5-methyl-2-((methylperoxy)- λ^2 -methyl)cyclohexa-2,4-dien-1-yl)carbamate

Following the general procedure, Mg(OTf)₂ (10 mol%), L₃-PiMe₂ (10 mol%), **1g** (0.1 mmol) and **2n** (0.15 mmol) reacted for 36 h at 35°C. After that, evaporate the solvent and add PhCl (1 mL) to the residue, then heat to 110 °C and stir for 2 h. Product **3p** was obtained as a colorless oil (25 mg, 83% yield, 92% *ee*). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 15.27 min, t (major) = 13.37 min. [α]²⁵D = -96.3 (*c* = 0.13, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.51 – 7.24 (m, 5H), 7.14 (d, J = 5.8 Hz, 1H), 5.91 (dd, J = 4.5, 1.3 Hz, 1H), 5.07 (s, 2H), 4.81 (d, J = 6.6 Hz, 2H), 3.73 (s, 3H), 2.52 (d, J = 8.6 Hz, 2H), 1.88 (s, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 166.9, 155.4, 144.5, 136.8, 128.6, 128.2, 123.6, 118.6, 66.8, 51.9, 42.7, 36.8, 24.1. HRMS (ESI): exact mass calculated

for: C₁₇H₁₉O₄NNa [M+Na]⁺: 324.1206, found: 324.1208.

Methyl (1*R*,4*S*,7*S*,8*S*)-8-(((benzyloxy)carbonyl)amino)-7-methyl-3-oxo-2oxabicyclo[2.2.2]oct-5-ene-4-carboxylate

Following the general procedure, using Mg(OTf)₂ (5 mol%), L₃- **PiMe**₂ (5 mol%), **1a** (0.2 mmol), benzyl (*E*)-prop-1-en-1ylcarbamate (0.4 mmol), reaction time 24 h. Product **3q** was obtained as a colorless oil (56 mg, 82% yield, 86% *ee*). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, $\lambda = 210$ nm, t (minor) = 14.94 min, t (major) = 10.81 min. [α]²⁵D = -44.7 (*c* = 1.13, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.37 (s, 5H), 6.80 (d, *J* = 7.8 Hz, 1H), 6.75 (dd, *J* = 8.0, 4.9 Hz, 1H), 5.17 – 5.01 (m, 2H), 4.92 (d, *J* = 5.0 Hz, 1H), 4.72 (d, *J* = 10.0 Hz, 1H), 4.30 (d, *J* = 10.0 Hz, 1H), 3.81 (s, 3H), 1.83 – 1.77 (m, 1H), 1.38 (d, *J* = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 168.3, 167.2, 155.3, 136.0, 134.4, 128.7, 128.5, 128.3, 78.9, 67.3, 59.9, 54.1, 53.2, 43.7, 17.0. HRMS (ESI): exact mass calculated for: C₁₈H₁₉O₆NNa [M+Na]⁺: 368.1105, found: 368.1100.

Methyl (1*R*,4*S*,7*S*,8*R*)-7-(benzoyloxy)-8-(((benzyloxy)carbonyl)amino)-3-oxo-2-oxabicyclo[2.2.2]oct-5-ene-4-carboxylate

Following the general procedure, Mg(OTf)₂ (10 mol%), L₃-PiMe₂ (10 mol%), **1a** (0.2 mmol) and benzyl (*E*)-prop-1-en-1- ylcarbamate (0.3 mmol) reacted for 48 h. Product **3r** was obtained as a yellow solid (36 mg, 40% yield, 92% *ee*). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 8.17 min, t (major) = 9.15 min. [α]²⁵D = +83.92 (*c* = 0.37, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.93 (d, J = 7.3 Hz, 2H), 7.64 (t, J = 7.5 Hz, 1H), 7.43 (t, J = 7.5 Hz, 2H), 7.29 (d, J = 8.3 Hz, 4H), 7.15 (d, J = 6.1 Hz, 1H), 7.08 (d, J = 7.6 Hz, 1H), 6.76 (dd, J = 7.7, 5.1 Hz, 1H), 5.73 (dd, J = 7.6, 3.6 Hz, 1H), 5.46 (s, 1H), 5.30 – 5.11 (m, 1H), 4.98 (s, 2H), 4.67 (d, J = 10.8 Hz, 1H), 3.91 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 166.7, 166.2, 164.6, 155.2, 135.6, 134.0, 131.6, 131.5, 129.7, 128.7, 128.5, 128.3, 128.1, 72.8, 68.2, 67.5, 59.2, 53.5, 50.2. HRMS (ESI): exact mass calculated for: $C_{24}H_{22}O_8N [M+H]^+$: 452.1340, found: 452.1340.

Methyl (3a*S*,4*R*,7*S*,7a*S*)-8-oxo-2,3,3a,7a-tetrahydro-4,7-(epoxymethano)benzo furan-7(4*H*)-carboxylate

Following the general procedure, Mg(OTf)₂ (10 mol%), L₃-PiMe₂ (10 mol%), **1a** (0.1 mmol) and 2,3-dihydrofuran (0.2 mmol) were reacted for 36 h. Product **3s** was obtained as a colorless oil (21 mg, 94% yield, 70% *ee*). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm × 25 cm), hexanes/ethanol = 90/10, 1.0 mL/min, λ = 210 nm, t (minor) = 14.25 min, t (major) = 16.09 min. [α]²⁵D = +40.0 (*c* = 0.42, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 6.84 – 6.76 (m, 1H), 6.55 (dd, *J* = 7.9, 5.0 Hz, 1H), 5.26 – 5.22 (m, 1H), 4.86 (d, *J* = 7.8, 1H), 3.93 (s, 3H), 3.92 – 3.86 (m, 1H), 3.79 – 3.73 (m, 1H), 3.22 – 3.15 (m, 1H), 2.17 – 2.08 (m, 1H), 1.57 – 1.49 (m, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.3, 167.5, 131.7, 129.7, 78.6, 76.5, 70.8, 61.7, 53.4, 45.3, 28.2. HRMS (ESI): exact mass calculated for: C₁₁H₁₂O₅Na [M+Na]⁺: 247.0577, found: 247.0575.

5. Procedure for Transformation of Product

1-benzyl 6-methyl (3a*R*,4*R*,4a*S*,5a*R*,6*S*,6a*S*)-7-oxooctahydro-4,6-(epoxymethano)cyclopropa[f]indole-1,6-dicarboxylate

3a (21.4 mg, 0.06 mmol) and palladium acetate (20 mol%) were dissolved in DCM (5 mL), an excess of ethereal diazomethane (\sim 10 equiv.) was added slowly at 0 °C. The solution was stirred at rt for 16

^{3t} h until the yellow color disappeared. The solvent was removed under reduced pressure and the residue was purified by flash chromatography directly on silica gel (petroleum ether: ethyl acetate = 2:1) to obtain **3t** as a white solid (15 mg, 68% yield, 96% *ee*). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm × 25 cm), hexanes/ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 14.58 min, t (major) =18.78 min. [α]²⁵D = -110.0 (*c*=0.10, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.48 – 7.28 (m, 5H), 5.09 (d, J = 47.8 Hz, 2H), 4.76 (d, J = 8.6 Hz, 1H), 4.68 (s, 1H), 3.87 (d, J = 76.9 Hz, 4H), 3.45 (td, J = 11.2, 7.3 Hz, 1H), 3.14 – 2.99 (m, 1H), 2.14 (m, J = 21.1, 10.4 Hz, 1H), 1.78 (m, J = 21.7, 10.9, 5.6 Hz, 2H), 1.34 (td, J = 7.8, 3.9 Hz, 1H), 0.79 (q, J = 7.8 Hz, 1H), 0.54 (dt, J = 7.2, 3.7 Hz, 1H). ¹³C NMR (101 MHz, CDCl₃) δ 168.9, 167.7, 154.6, 136.3, 128.6, 128.0, 74.3, 67.5, 60.0, 57.3, 52.9, 48.2, 43.6, 25.4, 10.2, 7.7, 3.0. HRMS (ESI): exact mass calculated for: C₂₀H₂₁O₆NNa [M+Na]⁺: 394.1261, found: 394.1262.

1-benzyl 7-methyl (3aS,7aS)-2,3,3a,7a-tetrahydro-1*H*-indole-1,7-dicarboxylate

3a (35.7 mg, 0.1 mmol) was dissolved in chlorobenzene (1.0 mL), then warmed to 130 °C and stirred for 12 h. The solvent was removed Cbź COOMe under reduced pressure and the residue was purified by flash 3u chromatography directly on silica gel (petroleum ether: ethyl acetate = 6:1) to obtain 3u as a colorless oil (24 mg, 74% yield, 96% ee). The enantiomeric excess was determined by CHIRALPAK OD-H (0.46 cm \times 25 cm), hexanes/ ethanol = 80/20, 1.0 mL/min, $\lambda = 210$ nm, t (minor) = 6.09 min, t (major) = 5.52 min. $[\alpha]^{25}D = -29.0$ (c=1.2, in CH₂Cl₂). ¹H NMR (400 MHz, DMSO) δ 7.42 – 7.14 (m, 5H), 6.81 (d, J = 5.0 Hz, 1H), 6.18 – 6.07 (m, 1H), 5.90 (d, J = 9.1 Hz, 1H), 4.92 (s, 2H), 4.49 (d, J = 6.8 Hz, 1H), 3.52 (dd, J = 37.2, 27.9 Hz, 4H), 3.08 (s, 1H), 2.98 (d, J = 6.4 Hz, 1H), 2.27 – 2.11 (m, 1H), 2.07 (dd, J = 12.0, 6.5 Hz, 1H). ¹³C NMR (101 MHz, DMSO) δ 167.7, 154.0, 137.5, 136.0, 131.9, 128.8, 128.2, 128.0, 127.9, 124.1, 66.2, 52.2, 51.8, 46.6, 39.5, 30.2. HRMS (ESI): exact mass calculated for: C₁₈H₁₉O₄NNa [M+Na]⁺: 336.1212, found: 336.1204.

1-benzyl 7-methyl (3a*S*,4*R*,7*R*,7a*S*)-4-methyl-2,3,3a,4,7,7a-hexahydro-1*H*-indole-1,7-dicarboxylate

To a stirred suspension of CuI (152 mg, 0.8 mmol) in dry Et₂O (2 mL) was added MeLi (1.6 M in Et₂O, 0.88 mL, 1.4 mmol) dropwise at 0 °C. After stirring at this temperature for 10 min, TMSI (112 mg,

0.8 mmol) and 3u (31.3 mg, 0.1 mmol) was added dropwise at -78 °C. The reaction

Cbź

3v

mixture was stirred at this temperature for 90 min. After the reaction was completed, NH₃·H₂O (25%, w/w, 2mL) was slowly added. Then the mixture was warmed to rt and extracted with ethyl acetate $(3 \times 10 \text{ mL})$. The organic phase was washed with brine (10 mL) and dried over sodium sulfate. After filtration, the solvent was removed and the residue was purified by flash chromatography (petroleum ether: ethyl acetate = 8:1). Product 3v was obtained as a colorless oil (18 mg, 56% yield, 97% ee). The enantiomeric excess was determined by CHIRALPAK AD-H (0.46 cm \times 25 cm), hexanes/ ethanol = 90/10, 1.0 mL/min, λ = 210 nm, t (minor) = 9.37 min, t (major) = 10.98 min. $[\alpha]^{25}D = -16.0$ (c=0.10, in CH₂Cl₂). ¹H NMR (400 MHz, CDCl₃) δ 7.43 – 7.26 (m, 5H), 5.75 (s, 1H), 5.49 (dd, J = 36.4, 9.5 Hz, 1H), 5.06 (dt, J = 19.9, 15.7 Hz, 2H), 4.36 (d, J = 24.8 Hz, 1H), 3.68 (s, 1H), 3.50 – 3.36 (m, 2H), 3.31 (s, 2H), 3.04 (d, J = 49.7 Hz, 1H), 2.31 – 2.01 (m, 2H), 1.94 (s, 1H), 1.71 (d, J = 11.0 Hz, 1H), 1.12 (d, J = 7.2 Hz, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 174.4, 174.1, 155.1, 154.9, 133.0, 132.5, 128.5, 128.3, 128.0, 127.9, 127.8, 121.1, 120.9, 67.1, 66.6, 55.1, 53.9, 52.4, 51.9, 46.7, 45.3, 45.0, 44.7, 43.5, 42.6, 31.3, 31.0, 29.7, 29.6, 28.7, 22.4. HRMS (ESI): exact mass calculated for: C₁₉H₂₃O₄NNa [M+Na]⁺: 352.1519, found: 352.1522.

6. Asymmetric Formal Total Synthesis of (+)-Minovincine

1-benzyl 7-methyl (3a*R*,4*R*,7*S*,7a*S*)-8-oxohexahydro-1*H*-4,7-(epoxymethano) indole-1,7(4*H*)-dicarboxylate

3a (857 mg, 2.4 mmol) and $[Ir(cod)(PCy_3)(Py)]PF_6$ (Crabtree's catalyst, 96.2 mg, 0.12 mmol) were dissolved in THF (20 mL), then the mixture was stirred at rt for 4 h under H₂ atmosphere. The solvent was removed under reduced pressure and the residue was purified by

flash chromatography directly on silica gel (petroleum ether: ethyl acetate = 3:1) to obtain product **4** as a white solid (790 mg, 92% yield, 97% *ee*). The enantiomeric excess was determined by CHIRALPAK IA-H (0.46 cm × 25 cm), hexanes/ ethanol = 80/20, 1.0 mL/min, λ = 210 nm, t (minor) = 16.37 min, t (major) = 25.58 min. [α]²⁵D = -74.8

 $(c=0.5, \text{ in CH}_2\text{Cl}_2)$. ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.28 (m, 5H), 5.24 – 4.95 (m, 2H), 4.80 (dd, J = 9.3, 1.6 Hz, 1H), 4.56 – 4.52 (m, 1H), 4.00 – 3.90 (m, 1H), 3.76 (s, 3H), 3.48 – 3.40 (m, 1H), 3.06 – 2.98 (m, 1H), 2.30 – 2.22 (m, 1H), 2.20 – 2.10 (m, 1H), 2.09 – 1.96 (m, 2H), 1.85 – 1.78 (m, 1H), 1.69 – 1.63 (m, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 170.9, 169.4, 154.8, 136.3, 128.6, 128.3, 128.0, 77.4, 67.5, 58.9, 53.3, 52.7, 47.7, 42.2, 25.0, 21.2, 19.6. HRMS (ESI): exact mass calculated for: C₁₉H₂₁O₆NNa [M+Na]⁺: 382.1267, found: 382.1261.

1-benzyl 7-methyl (3a*R*,4*R*,7*R*,7a*S*)-4-hydroxyoctahydro-1*H*-indole-1,7dicarboxylate

A solution of KOH (985.6 mg, 17.6 mmol) in MeOH (10 mL) was added dropwise into **4** (790 mg, 2.2 mmol) in THF (10 mL) at rt. The mixture was stirred at 40 °C for 24 h. After that, the pH was adjusted to 4 by KHSO₄ solution (1 M) at 0 °C, then the mixture was extracted

by ethyl acetate (3 × 30 mL). The combined organic layers were dried with Na₂SO₄ and concentrated. The obtained intermediate then was dissolved in a mixture solvent of Et₂O and MeOH (4:1, a total of 20 mL). Next, trimethylsilyldiazomethane (2 mol/L in hexane, 2.2 mL, 4.4 mmol) was added to the solution and the mixture was stirred at rt for 2 h. Then the mixture was concentrated and the residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate = 1:1) to afford **5** as a white solid (670 mg, 91% yield over two steps). ¹H NMR (500 MHz, CDCl₃) δ 7.46 – 7.17 (m, 5H), 5.08 (dd, J = 56.6, 46.0 Hz, 2H), 4.32 (s, 1H), 3.97 (d, J = 51.1 Hz, 1H), 3.67 – 3.21 (m, 5H), 2.46 (d, J = 108.1 Hz, 2H), 2.19 – 1.87 (m, 3H), 1.79 (s, 1H), 1.70 – 1.44 (m, 3H). ¹³C NMR (126 MHz, CDCl₃) δ 174.9, 155.1, 137.2, 136.6, 128.5, 128.1, 128.0, 127.9, 67.7, 67.5, 67.2, 66.7, 57.1, 56.4, 52.1, 51.6, 45.8, 45.1, 44.7, 44.4, 28.1, 27.6, 26.6, 25.6, 21.2. HRMS (ESI): exact mass calculated for: C₁₈H₂₃NO₅Na [M+Na]⁺: 356.1468, found: 356.1468.

1-benzyl 7-methyl (3a*R*,4*R*,7*R*,7a*S*)-4-((tert-butyldimethylsilyl)oxy)octahydro-1*H*-indole-1,7-dicarboxylate

To a solution of **5** (670 mg, 2 mmol) and imidazole (1.36 g, 20 mmol) in dry DCM were added tert-butyldimethylsilyl chloride (3.01 g, 20 mmol) slowly at 0 °C. Then the reaction mixture was warmed to rt and stirred for 2 h until the reaction was complete (monitored by TLC). The

reaction mixture was diluted with DCM and washed with saturated NaHCO₃ solution. Then the mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate 10:1) to afford **6** as a colorless oil (0.90 g, 99% yield). ¹H NMR (400 MHz, CDCl₃) δ 7.41 – 7.21 (m, 5H), 5.25 – 4.90 (m, 2H), 4.26 (dd, J = 9.5, 6.7 Hz, 1H), 3.92 (d, J = 17.2 Hz, 1H), 3.64 – 3.25 (m, 5H), 2.48 – 2.14 (m, 2H), 2.05 (d, J = 9.9 Hz, 1H), 1.86 (s, 1H), 1.73 (dd, J = 19.9, 10.0 Hz, 1H), 1.58 – 1.42 (m, 3H), 0.87 (s, 9H), 0.02 (s, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.0, 174.7, 155.1, 154.9, 137.2, 136.8, 128.4, 127.9, 67.9, 66.9, 66.5, 57.1, 56.6, 52.0, 51.4, 46.7, 45.8, 45.0, 44.6, 28.2, 27.8, 26.3, 25.8, 25.3, 21.3, 21.0, 18.1, -4.7, -4.9. HRMS (ESI): exact mass calculated for: C₂₄H₃₇NO₅SiNa [M+Na]⁺: 470.2333, found: 470.2332.

Methyl (3a*R*,4*R*,7*R*,7a*S*)-4-((tert-butyldimethylsilyl)oxy)octahydro-1*H*-indole-7-carboxylate

TBSO A mixture of **6** (0.90 g, 2 mmol) and Pd/C (40% wt, 0.36 g) in EtOH (20 mL) was stirred under H₂ atmosphere (1 atm) at rt for 2 h, and then filtered through a short pad of celite. The mixture was concentrated under reduced pressure and purified by flash column chromatography (silica gel, DCM: MeOH = 15:1) to afford **7** as a colorless oil (0.55 g, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.94 (d, J = 3.3 Hz, 1H), 3.73 (s, 3H), 3.69 – 3.60 (m, 1H), 3.27 (s, 1H), 3.18 – 3.01 (m, 2H), 2.40 (dd, J = 13.3, 6.0 Hz, 1H), 2.30 – 2.16 (m, 1H), 1.99 – 1.84 (m, 2H), 1.80 – 1.70 (m, 1H), 1.59 (ddt, J = 13.9, 9.3, 7.6 Hz, 3H), 0.90 (s, 9H), 0.06 (d, J = 5.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.4, 68.7, 57.3, 51.9, 46.6, 43.7, 43.2, 28.9, 27.1, 25.8, 21.7, 18.1, -4.6, -4.9. HRMS (ESI): exact mass calculated for: C₁₆H₃₁NO₃SiNa [M+Na]⁺: 336.1965, found: 336.1963.

methyl (3a*R*,4*R*,7*R*,7a*S*)-4-((tert-butyldimethylsilyl)oxy)-1-(3-iodopropyl) octahydro-1*H*-indole-7-carboxylate

To a solution of 7 (0.55 g, 1.75 mmol) in DMF (5 mL) was added NaHCO₃ (1.47 g, 17.5 mmol) followed by 1,3-diiodopropane (5.18 g, 17.5 mmol). The reaction mixture was heated to 35 °C for 3 h until the

8 reaction was complete. The mixture was diluted with water and extracted with ethyl acetate $(3 \times 30 \text{ mL})$. The organic layer was washed with saturated NaCl solution $(3 \times 30 \text{ mL})$, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate = 10: 1) to afford **8** as a colorless oil (0.44 g, 52% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.76 – 3.56 (m, 4H), 3.21 (td, J = 6.3, 3.8 Hz, 2H), 3.15 – 3.00 (m, 2H), 2.75 (dd, J = 7.1, 4.6 Hz, 1H), 2.57 (d, J = 5.2 Hz, 1H), 2.36 – 2.21 (m, 2H), 2.12 – 2.01 (m, 1H), 1.96 – 1.83 (m, 3H), 1.82 – 1.74 (m, 1H), 1.74 – 1.58 (m, 3H), 1.47 – 1.33 (m, 1H), 0.86 (s, 9H), 0.02 (d, J = 5.0 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 175.5, 70.7, 64.2, 55.0, 51.8, 51.6, 45.3, 42.3, 32.3, 30.5, 26.6, 25.9, 22.3, 18.1, 5.2, -4.1, -4.6. HRMS (ESI): exact mass calculated for: C₁₉H₃₇INO₃Si [M+H]⁺: 482.1582, found: 482.1583.

(3¹S,6aS,9R,9aR)-9-((tert-butyldimethylsilyl)oxy)octahydro-4*H*-pyrrolo[3,2,1-ij]quinoline-6a(3¹*H*)-carboxylate

To a solution of **8** (0.44 g, 0.91 mmol) in THF (5 mL) was added LDA (1.82 mL, 1.82 mmol) slowly at -78 °C under N_2 atmosphere. Then the reaction mixture was stirred at -78 °C for 2 h and then heated to 0 °C

⁹ for another 2 h. The reaction was quenched with saturated NH₄Cl solution, extracted with ethyl acetate and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate = 10: 1) to afford **9** as a colorless oil (0.28 g, 87% yield). ¹H NMR (400 MHz, CDCl₃) δ 3.67 (s, 3H), 3.48 (ddd, J = 11.4, 9.1, 4.4 Hz, 1H), 3.08 (d, J = 3.4 Hz, 1H), 2.96 (d, J = 10.7 Hz, 1H), 2.36 (d, J = 4.6 Hz, 1H), 2.13 – 1.89 (m, 3H), 1.83 – 1.70 (m, 5H), 1.70 – 1.61 (m, 2H), 1.55 – 1.44 (m, 1H), 1.44 – 1.33 (m, 1H), 1.22 – 1.11 (m,

1H), 0.83 (s, 9H), 0.01 (d, J = 7.4 Hz, 6H). ¹³C NMR (101 MHz, CDCl₃) δ 177.1, 73.9, 66.7, 53.0, 52.9, 51.9, 46.0, 44.9, 33.1, 33.1, 26.2, 25.9, 25.7, 21.8, 18.0, -3.8, -4.4. HRMS (ESI): exact mass calculated for: C₁₉H₃₆NO₃Si [M+H]⁺: 354.2459, found: 354.2458.

methyl (3¹S,6aS,9aR)-9-oxooctahydro-4*H*-pyrrolo[3,2,1-ij]quinoline-6a(3¹*H*)carboxylate

To a solution of **9** (0.28 g, 0.79 mmol) in THF (5 mL) was added HCl solution (1 M, 4 mL, 4 mmol). The reaction mixture was stirred at rt for 4 h until the reaction was complete. The pH of the mixture was

adjusted to 8 by saturated NaHCO₃ solution, then the mixture was extracted with ethyl acetate, dried over Na₂SO₄ and concentrated under reduced pressure to obtain a white solid. Next, the white solid and Et₃N (0.48 g, 4.8 mmol) were dissolved in a mixed solvent of DCM and DMSO (1:2, a total of 6 mL). then a solution of PySO₃ (4.0 mmol) in DMSO (2 mL) was added to the mixture at rt. The reaction was stirred at rt overnight, then quenched with saturated NaHCO₃ solution. The mixture was extracted with ethyl acetate, dried over Na₂SO₄ and concentrated under reduced pressure. The residue was purified by flash column chromatography (silica gel, petroleum ether: ethyl acetate = 5: 1) to afford **10** as a yellow oil (0.13 g, 70% yield over two steps). [α]²⁵D = -27.8 (c = 1.0, in CHCl₃). ¹H NMR (400 MHz, CDCl₃) δ 3.78 (s, 3H), 3.07 – 2.97 (m, 2H), 2.92 – 2.84 (m, 1H), 2.62 (d, J = 5.1 Hz, 1H), 2.43 (ddd, J = 30.1, 17.4, 10.4 Hz, 3H), 2.25 (td, J = 14.7, 5.3 Hz, 1H), 2.08 – 1.97 (m, 2H), 1.96 – 1.85 (m, 2H), 1.82 – 1.65 (m, 2H), 1.63 – 1.51 (m, 2H). ¹³C NMR (101 MHz, CDCl₃) δ 210.2, 176.4, 67.9, 52.6, 52.5, 52.2, 49.3, 45.8, 38.5, 32.5, 27.2, 21.2, 21.1. HRMS (ESI): exact mass calculated for: C₁₃H₂₀NO₃ [M+H]⁺: 238.1438, found: 238.1438.

7. X-ray Crystallographic Data of 3a

Table S8. Crystal Data and Structure Refinement for 3a.

Information	3 a		
Identification code	mjr18224_0m		
Empirical formula	C ₂₅ H ₁₉ BrN ₄ O	2	
Formula weight	487.35		
Temperature	173(2) K		
Wavelength	1.34139 Å		
Crystal system	Orthorhombic		
Space group	P 21 21 21		
	a = 6.6491(4) Å	$\alpha = 90^{\circ}$.	
Unit cell dimensions	b = 13.5692(7) Å	$\beta = 90^{\circ}.$	
	c = 23.9241(13) Å	$\gamma = 90^{\circ}.$	
Volume	2158.5(2) Å ³	;	
Z	4		
Density (calculated)	1.500 Mg/m ³	5	
Absorption coefficient	1.873 mm ⁻¹		
F(000)	992		
Crystal size	0.170 x 0.140 x 0.10	00 mm ³	
Theta range for data collection	5.673 to 54.994	↓°.	
Inday ranges	-7<=h<=8, -16<=k<=14, -		
index ranges	27<=l<=29		
Reflections collected	13564		
Independent reflections	3900 [R(int) = 0.0	462]	
Completeness to theta = 53.594°	94.7 %		
Absorption correction	Semi-empirical from e	quivalents	
Max. and min. transmission	0.7456 and 0.46	577	

Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	3900 / 0 / 290
Goodness-of-fit on F ²	1.045
Final R indices [I>2sigma(I)]	R1 = 0.0269, wR2 = 0.0663
R indices (all data)	R1 = 0.0274, wR2 = 0.0667
Absolute structure parameter	0.097(7)
Extinction coefficient	0.0147(16)
Largest diff. peak and hole	0.278 and -0.473 e.Å ⁻³
CCDC number	2158164

8. Reference

- X.-W. Liang, Y. Zhao, X.-G. Si, M.-M. Xu, J.-H. Tan, Z.-M. Zhang, C.-G.
 Zheng, C. Zheng and Q. Cai, *Angew. Chem.*, *Int. Ed.*, 2019, **58**, 14562–14567.
- D. F. Oliveira, P. Miranda and C. R. D. Correia, J. Org. Chem., 1999, 64, 6646–6652.
- 3. D. Francis, A. Nelson and S. P. Marsden, *Chemistry*, 2020, **26**, 14861–14865.
- 4. Y. Xie, J. Hu, P. Xie, B. Qian and H. Huang, *J. Am. Chem. Soc.*, 2013, **135**, 18327–18330.
- 5. E. M. Boyd and J. Sperry, *Tetrahedron Lett.*, 2012, **53**, 3623–3626.
- 6. T. Yokoi, Y. Nakagawa and H. Miyagawa, *Pest Manag Sci*, 2019, **75**, 115–124.
- L.-H. Liao, M.-M. Zhang, Y.-J. Liao, W.-C. Yuan and X.-M. Zhang, Synlett, 2015, 26, 1720–1724.
- 8. S.-C. Krieg, J. Grimmer, P. Kramer, M. Bolte, H. Kelm and G. Manolikakes, *Angew. Chem., Int. Ed.*, 2021, **60**, 23667–23671.

9. Chromatographic Data for Chiral Products

Compound 3a

HPLC Conditions Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.171	43905539	967122	48.185	55.093
2	24.306	47213950	788309	51.815	44.907
Total		91119488	1755431	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	21.587	189378	5533	2.623	3.426
2	24.894	7031675	155974	97.377	96.574
Total		7221054	161507	100.000	100.000

Compound 3b

Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.188	9345107	174644	50.153	53.104
2	17.336	9288049	154231	49.847	46.896
Total		18633156	328875	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.978	59374578	922980	93.922	93.824
2	17.357	3842659	60760	6.078	6.176
Total		63217238	983740	100.000	100.000

Compound 3c

Column: Chiralcel OJ-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.094	20497645	277275	50.582	57.898
2	25.267	20025690	201631	49.418	42.102
Total		40523335	478906	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.052	17585864	240463	95.899	97.493
2	25.286	752074	6182	4.101	2.507
Total		18337939	246646	100.000	100.000

Compound 3d

HPLC Conditions Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.028	13130151	423857	50.669	52.961
2	19.010	12783329	376465	49.331	47.039
Total		25913480	800322	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.140	2079915	70092	5.796	7.675
2	18.843	33802914	843124	94.204	92.325
Total		35882828	913217	100.000	100.000

Compound 3e

Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.105	56222157	971982	46.872	57.411
2	32.840	63725302	721031	53.128	42.589
Total		119947459	1693013	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	23.631	4464223	107426	5.782	12.109
2	32.802	72738116	779763	94.218	87.891
Total		77202339	887188	100.000	100.000

Compound 3f

HPLC Conditions

Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.499	31273527	523477	49.577	53.903
2	18.389	31807636	447664	50.423	46.097
Total		63081163	971141	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	15.462	49628398	751080	94.624	93.681
2	18.713	2819853	50663	5.376	6.319
Total		52448251	801743	100.000	100.000

Compound 3g

Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	25.886	7968330	176039	48.570	54.898
2	31.619	8437395	144625	51.430	45.102
Total		16405725	320664	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	25.655	27643708	516246	96.876	97.077
2	32.089	891336	15544	3.124	2.923
Total		28535044	531790	100.000	100.000

Compound 3i

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min

Detection: UV 210 nm

HPLC Conditions

Racemic

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.023	1269405	99893	49.756	51.473
2	7.195	1281857	94174	50.244	48.527
Total		2551262	194068	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.044	3625454	308196	96.990	97.267
2	7.231	112497	8659	3.010	2.733
Total		3737951	316855	100.000	100.000

Compound 3j

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.330	1239124	58244	51.061	54.906
2	12.329	1187620	47835	48.939	45.094
Total		2426743	106079	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	10.291	3633763	167668	93.277	94.078
2	12.393	261904	10553	6.723	5.922
Total		3895666	178221	100.000	100.000

Compound 3k

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.979	1390548	78396	50.068	65.405
2	15.873	1386796	41466	49.932	34.595
Total		2777344	119862	100.000	100.000

Chiral

uV

<u>1 9.145 4761460 254035 92.772 95.86</u> 2 16.415 370994 10970 7.228 4.14	Peak#	Ret. Time	Area	Height	Area %	Height %
2 16.415 370994 10970 7.228 4.14	1	9.145	4761460	254035	92.772	95.860
2 10.413 57077 10770 7.220 4.1-	2	16.415	370994	10970	7.228	4.140
Total 5132455 265005 100.000 100.00	Total		5132455	265005	100.000	100.000

Compound 3n

HPLC Conditions

Column: Chiralcel ID, Daicel Chemical Industries, Ltd.

Eluent: hexanes/ *i*PrOH (70:30)

Flow rate: 1.0 mL/min

Detection: UV 210 nm

Racemic

Peak#	Ret. Time	Area	Height	Area%	Height%
1	28.506	5061418	109442	46.740	69.069
2	52.663	336757	4202	3.110	2.652
3	63.154	422496	4407	3.902	2.781
4	68.904	5008279	40401	46.249	25.497
Total		10828950	158453	100 000	100 000

Chiral

mAU

Peak#	Ret. Time	Area	Height	Area%	Height%
1	28.274	18569446	383735	95.895	98.291
2	69.449	794871	6670	4.105	1.709
Total		19364317	390405	100.000	100.000

Compound 3o

HPLC Conditions

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min

Detection: UV 210 nm

Racemic

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.842	261236	19486	49.222	53.197
2	7.427	269490	17144	50.778	46.803
Total		530726	36630	100.000	100.000

Peak#	Ret. Time	Area	Height	Area %	Height %
1	6.835	142987	11291	5.044	5.884
2	7.398	2691580	180583	94.956	94.116
Total		2834567	191873	100.000	100.000
Compound 3p

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd.

HPLC Conditions

Eluent: hexanes/ethanol (80:20)

Flow rate: 1.0 mL/min

Detection: UV 210 nm

Racemic

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.545	1453937	68046	50.096	54.568
2	15.599	1448391	56653	49.904	45.432
Total		2902328	124699	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.369	2442771	115177	96.166	96.673
2	15.270	97391	3964	3.834	3.327
Total		2540162	119141	100.000	100.000

Compound 3q

Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/EtOH (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

HPLC Conditions

PDA Ch1 210nm 4nm

Peak#	Ret. Time	Area	Area %
1	10.816	3179813	50.125
2	15.020	3163912	49.875
Total		6343724	100.000

Chiral

PDA Ch1 210nm 4nm

Peak#	Ret. Time	Area	Area %
1	10.809	7113824	93.282
2	14.938	512354	6.718
Total		7626178	100.000

Compound 3r

MeO₂C NHCbz

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/EtOH (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

HPLC Conditions

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	8.173	362320	18742	4.150	4.769
2	9.151	8369041	374285	95.850	95.231
Total		8731361	393027	100.000	100.000

Compound 3s

HPLC Conditions

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/EtOH (90:10) Flow rate: 1.0 mL/min Detection: UV 210 nm

PDA Ch1 210nm 4nm Area % 49.738 Peak# Ret. Time Area 1970125 14.155 16.011 1990848 2

3960973

50.262

100.000

PDA Ch1 210nm 4nm

Total

Peak#	Ret. Time	Area	Area %
1	14.251	219698	14.925
2	16.089	1252273	85.075
Total		1471971	100.000

Compound 3t

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.698	1445197	47776	50.995	56.542
2	19.077	1388825	36721	49.005	43.458
Total		2834022	84496	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.577	84391	3167	1.564	2.217
2	18.784	5312263	139715	98.436	97.783
Total		5396654	142882	100.000	100.000

Compound 3u

Column: Chiralcel OD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.538	2402141	248549	50.123	53.694
2	6.138	2390393	214354	49.877	46.306
Total		4792534	462904	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	5.522	5902774	620835	97.834	98.360
2	6.090	130670	10349	2.166	1.640
Total		6033444	631183	100.000	100.000

Compound 3v

Column: Chiralcel AD-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (90:10) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.392	1716399	92787	50.534	50.518
2	11.005	1680142	90884	49.466	49.482
Total		3396541	183671	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	9.372	20378	1196	1.480	1.520
2	10.981	1356342	77471	98.520	98.480
Total		1376720	78666	100.000	100.000

Column: Chiralcel IA-H, Daicel Chemical Industries, Ltd. Eluent: hexanes/ethanol (80:20) Flow rate: 1.0 mL/min Detection: UV 210 nm

Racemic

HPLC Conditions

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.117	3559033	111235	48.984	61.532
2	24.965	3706643	69541	51.016	38.468
Total		7265676	180777	100.000	100.000

Chiral

Peak#	Ret. Time	Area	Height	Area %	Height %
1	16.369	59367	2132	1.338	2.547
2	25.279	4378507	81577	98.662	97.453
Total		4437874	83709	100.000	100.000

10. NMR Spectra of New Compounds

¹³C NMR of Compound **3a**

¹³C NMR of Compound **3b**

 $^{13}\mathrm{C}$ NMR of Compound $3\mathrm{c}$

¹³C NMR of Compound **3d**

¹³C NMR of Compound **3e**

¹³C NMR of Compound **3f**

¹³C NMR of Compound **3g**

¹³C NMR of Compound **3i**

Compound 3j

¹³C NMR of Compound **3**j

¹³C NMR of Compound **3**k

¹³C NMR of Compound **3**I

¹H NMR of Compound **3m**

¹³C NMR of Compound **3m**

¹³C NMR of Compound **3n**

¹³C NMR of Compound **30**

¹³C NMR of Compound **3p**

¹³C NMR of Compound **3**q

Compound 3r

¹³C NMR of Compound **3r**

Compound 3s

¹³C NMR of Compound **3s**

Compound 3t

¹³C NMR of Compound **3**t

 $^{13}\mathrm{C}$ NMR of Compound $\mathbf{3u}$

¹³C NMR of Compound **3v**

77.537 77.537 77.537 77.537 77.537 77.537 77.5387 77.5387 77.5387 77.5387 77.5387 77.5387 77.5387 77.5387 77.53

¹³C NMR of Compound 4

¹³C NMR of Compound 5

¹³C NMR of Compound **6**

¹³C NMR of Compound 7

¹³C NMR of Compound 8

¹³C NMR of Compound 9

¹³C NMR of Compound **10**