Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supporting Information

Iminyl radical-triggered relay annulation for the construction of bridged aza-tetracycles bearing four contiguous stereogenic centers

Kun Jiang,^a Shi-Jun Li,^b Qing-Peng Liu,^a Ning Yu,^a Yu-Lin Li,^a Yu-Qiang Zhou,^a Kui-Cheng He,^a Jing Lin,^a Ting-Yu Zheng,^a Jian Lang,^a Yu Lan,^{*b} and Ye Wei^{*a}

- ^a School of Chemistry and Chemical Engineering, Southwest University, Chongqing, 400715, China
- ^b College of Chemistry, and Institute of Green Catalysis, Zhengzhou University, Zhengzhou, Henan, 450001, China

Table of Contents

1. Materials and Methods	S2
2. Preparation of Substrates	S3
3. Screening the Reaction Parameters using Oxime Ester as the Substrate	S14
4. Screening the Reaction Parameters using Peresters as the Substrate	S17
5. General Procedures for the Synthesis Bridged Aza-Tetracycles	S19
6. Reduction of Product 3b	S33
7. Computational Studies	S34
8. References	S51
9. ¹ H, ¹³ C, and ¹⁹ F NMR Spectra	S52

Materials and Methods

1. Materials and Methods

General. All reactions dealing with air- and moisture-sensitive compounds were carried out in dry reaction vessels under N₂ atmosphere. ¹H and ¹³C nuclear magnetic resonance (NMR) spectra were recorded on Bruker 600 MHz NMR spectrometer. ¹H and ¹³C NMR spectra are reported in parts per million (ppm) downfield from an internal standard, tetramethylsilane (0 ppm) and CHCl₃ (77.0 ppm), respectively. HRMS (m/z) was recorded using ESI (Q-TOF) mode. Single crystal X-ray data were recorded in a diffractometer with Mo K α radiation. Melting points were determined using a capillary melting point apparatus and are uncorrected.

Materials. Unless otherwise noted, materials were purchased from commercial suppliers and were used as received. Anhydrous acetonitrile was distilled over CaH_2 and stored under N_2 .

2. Preparation of Substrates

Azadienes¹ and peresters² were synthesized according to the literature procedures. The characterization data of newly synthesized azadienes (**1b-m**) and peresters (**4a-4f**, **4h-4o**) were summarization below. ¹H and ¹³C NMR spectra data for the rest of known ones showed good agreement with the literature data.^{1,2}

General Procedure for the Synthesis of Azadienes

Step 1:

To a solution of benzofuran-3(2H)-one **S1** (10 mmol, 1 equiv) and aldehyde (12 mmol, 1.2 equiv) in toluene was added piperidine (6-8 drops) at 85 °C. The reaction mixture was stirred at 85 °C for 3 hours. Then toluene was removed by concentration, and the reaction was quenched with an aqueous solution of saturated NH₄Cl. The aqueous layer was extracted with ethyl acetate. The combined organic layer was washed with brine and dried over Na₂SO₄. The crude product was purified by flash chromatography to give the compounds **S2**.

Step 2:

To a solution of compounds **S2** (10 mmol, 1 equiv), 4-methoxybenzenesulfonamide (12 mmol, 1.2 equiv), and Et₃N (20 mmol, 2 equiv) in DCM (40 mL) was slowly added TiCl₄ (10 mmol, 1 equiv) at 0 °C. Then, the mixture was stirred at room temperature for 12 h. The reaction was quenched with water and extracted with DCM. The combined organic layers were washed with brine and dried over Na₂SO₄. The crude product was purified by flash chromatography to give the azadienes **1**.

N-((*E*)-2-((*Z*)-benzylidene)benzofuran-3(2H)-ylidene)-4f-methoxybenzenesulfonamide (1b): This compound was prepared according to the general procedure. Yellow solid (2.5 g, 60% yield, eluent = petroleum ether/EtOAc (10:1)); Mp = 140-142 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.78 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 9.0 Hz, 2H), 7.87 (d, *J* = 7.2 Hz, 2H), 7.67 (t, *J* = 7.8 Hz, 1H), 7.44-7.37 (m, 3H), 7.32 (d, *J* = 8.4 Hz, 1H), 7.29-7.25 (m, 1H), 7.10 (s, 1H), 7.04 (d, *J* = 9.0 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.9, 164.8, 163.0, 149.7, 137.5, 133.8, 132.5, 131.7, 131.1, 130.2, 129.2, 128.9, 123.8, 118.4, 115.5, 114.0, 112.3, 55.6; HRMS (ESI): Calcd for C₂₂H₁₇NO₄S [M+H]⁺ 392.0951, found 392.0951.

4-methoxy-*N***-(**(*E*)**-2-(**(*Z*)**-4-methoxybenzylidene)benzofuran-3(2H)-ylidene)benzenesulfonam ide (1c):** This compound was prepared according to the general procedure. Yellow solid (2.2 g, 52% yield, eluent = petroleum ether/EtOAc (5:1); Mp = 149-151 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.77 (d, *J* = 7.8 Hz, 1H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.86 (d, *J* = 8.7 Hz, 2H), 7.65 (t, *J* = 7.7 Hz, 1H), 7.30 (d, *J* = 8.3 Hz, 1H), 7.26 (t, *J* = 7.6 Hz, 1H), 7.11 (s, 1H), 7.03 (d, *J* = 8.8 Hz, 2H), 6.95 (d, *J* = 8.7 Hz, 2H), 3.89 (s, 3H), 3.85 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.7, 164.5, 162.8, 161.5, 148.4, 137.1, 134.1, 133.8, 130.9, 129.1, 125.3, 123.6, 118.7, 116.4, 114.6, 114.0, 112.2, 55.6, 55.4; HRMS (ESI): Calcd for C₂₃H₁₉NO₅S [M+H]⁺422.1056, found 422.1057.

4-methoxy-*N***-(**(*E*)**-2-(**(*Z*)**-4-methylbenzylidene)benzofuran-3(2H)-ylidene)benzenesulfonamid e (1d):** This compound was prepared according to the general procedure. Yellow solid (2.92 g, 72% yield, eluent = petroleum ether/EtOAc (10:1)); Mp = 130-132 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.77 (d, *J* = 7.7 Hz, 1H), 8.06 – 8.02 (m, 2H), 7.78 (d, *J* = 7.9 Hz, 2H), 7.68-7.63 (m, 1H), 7.31 (d, *J* = 8.3 Hz, 1H), 7.28 – 7.21 (m, 3H), 7.10 (s, 1H), 7.05-7.02 (m, 2H), 3.89 (s, 3H), 2.38 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.6, 164.7, 162.9, 149.2, 141.0, 137.3 134.0, 131.7, 131.0, 129.8, 129.1, 123.7, 118.5, 116.0, 114.0, 112.3, 55.6, 21.6; HRMS (ESI): Calcd for C₂₃H₁₉NO₄S [M+H]⁺ 406.1107, found 406.1108.

N-((*E*)-2-((*Z*)-4-bromobenzylidene)benzofuran-3(2H)-ylidene)-4-methoxybenzenesulfonamid e (1e): This compound was prepared according to the general procedure. Yellow solid (3.15 g, 62% yield, eluent = petroleum ether/EtOAc (10:1)); Mp = 151-152 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.77 (d, *J* = 7.1 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 2H), 7.73 (d, *J* = 8.3 Hz, 2H), 7.68 (t, *J* = 7.7 Hz, 1H), 7.55 (d, *J* = 8.3 Hz, 2H), 7.32-7.27 (m, 2H), 7.05 (d, *J* = 8.4 Hz, 2H), 7.00(s,1H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.6, 163.0, 150.0, 137.6, 133.6, 132.8, 132.2, 131.3, 131.2, 129.2, 124.7, 123.9, 118.2, 114.1, 112.3, 55.6; **HRMS** (ESI): Calcd for C₂₂H₁₆BrNO₄S [M+H]⁺ 470.0054, found 470.0056.

methyl

-(((2*Z*,3*E*)-3-(((4-methoxyphenyl)sulfonyl)imino)benzofuran-2(3H)-ylidene)methyl)benzoate (1f): This compound was prepared according to the general procedure. Yellow solid (3.29 g, 73% yield); eluent = petroleum ether/EtOAc (10:1)); Mp = 165-166 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.78 (d, *J* = 7.1 Hz, 1H), 8.07 (d, *J* = 8.4 Hz, 2H), 8.04 (d, *J* = 8.9 Hz, 2H), 7.92 (d, *J* = 8.3 Hz, 2H), 7.69 (m, 1H), 7.33(d, *J* = 8.4 Hz, 1H), 7.30 (t, *J* = 7.8 Hz 1H), 7.05 (d, *J* = 8.9 Hz, 3H), 3.93 (s, 3H), 3.91 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 166.4, 164.8, 164.7, 163.1, 150.9, 137.8, 136.6, 136.5, 133.5, 131.2, 130.8, 130.0, 129.2, 124.1, 114.1, 112.3, 55.6, 52.3; HRMS (ESI): Calcd for C₂₄H₂₀NO₆S [M+H]⁺ 450.1007, found 450.1006.

4-(((2*Z***,3***E***)-3-(((4-methoxyphenyl)sulfonyl)imino)benzofuran-2(3H)-ylidene)methyl)phenyl acetate (1g):** This compound was prepared according to the general procedure. Yellow solid (2.3 g, 52% yield); eluent = petronleum ether/EtOAc (10:1)); Mp = 145-146 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.78 (d, *J* = 7.7 Hz, 1H), 8.04 (d, *J* = 8.8 Hz, 2H), 7.90 (d, *J* = 8.6 Hz, 2H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.33 – 7.26 (m, 2H), 7.18 (d, *J* = 8.6 Hz, 2H), 7.10 – 7.02 (m, 3H), 3.90 (s, 3H), 2.31 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 168.9, 164.8, 164.7, 163.0, 151.9, 137.5, 133.7, 132.8, 131.2, 130.1, 129.2, 123.8, 122.1, 114.1, 112.3, 55.6, 21.1; HRMS (ESI): Calcd for C₂₄H₁₉NO₆S [M + Na]⁺ 472.0825, found 472.0827.

4-methoxy-*N*-((*E*)-2-((*Z*)-2-methylbenzylidene)benzofuran-3(2H)-ylidene)benzenesulfonamid e (1h): This compound was prepared according to the general procedure. Yellow solid (3.04 g, 75% yield); eluent = petroleum ether/EtOAc (10:1)); Mp = 152-153 °C; ¹H NMR (600 MHz, CDCl₃) δ

8.76 (s, 1H), 8.21 (d, J = 7.4 Hz, 1H), 8.04 (d, J = 8.8 Hz, 2H), 7.66 (t, J = 7.7 Hz, 1H), 7.40 (s, 1H), 7.33 – 7.19 (m, 5H), 7.03 (d, J = 8.8 Hz, 2H), 3.89 (s, 3H), 2.42 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.9, 164.8, 162.9, 149.6, 139.2, 137.5, 133.9, 131.3 131.0, 130.7, 130.1, 129.1 126.5, 123.7, 114.0, 112.3, 55.6 20.2; **HRMS (ESI)**: Calcd for C₂₃H₁₉NO₄S [M+H]⁺ 406.1107, found 406.1109.

4-methoxy-*N***-((2***Z***,3***E***)-2-(naphthalen-2-ylmethylene)benzofuran-3(2H)-ylidene)benzenesulfo** namide (1i): This compound was prepared according to the general procedure. Yellow solid (3.44 g, 78 % yield; eluent = petroleum ether/EtOAc (10:1)); Mp = 158-160 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.79 (d, *J* = 7.8 Hz, 1H), 8.25 (s, 1H), 8.06 (d, *J* = 8.4 Hz, 2H), 8.04 (m, 1H)7.85 (t, *J* = 7.7 Hz, 2H), 7.81 (d, *J* = 7.7 Hz, 1H), 7.67 (t, *J* = 7.8 Hz, 1H), 7.54 – 7.47 (m, 2H), 7.35 (d, *J* = 8.3 Hz, 1H), 7.28 (t, *J* = 7.6 Hz, 1H), 7.24 (d, *J* = 7.2 Hz 1H), 7.05 (d, *J* = 8.8 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.8, 164.7, 162.6, 149.9, 137.4, 133.9, 133.8, 133.3, 132.7 131.1 130.1 129.2, 128.8, 128.6, 127.7, 126.7, 123.8, 118.5, 115.8, 114., 112.3, 55.6; HRMS (ESI): Calcd for C₂₆H₂₀NO₄S[M+H]⁺442.1106, found 442.1108.

4-methoxy-*N***-((2***Z***,3***E***)-2-(pyridin-3-ylmethylene)benzofuran-3(2H)-ylidene)benzenesulfonam ide (1j):** This compound was prepared according to the general procedure. Yellow solid (2.95 g, 75% yield; eluent = petroleum ether/EtOAc (3:1)); Mp = 178-180 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.98 (s, 1H), 8.79 (s, 1H), 8.59 (d, *J* = 3.5 Hz, 1H), 8.30 (d, *J* = 7.9 Hz, 1H), 8.04 (d, *J* = 8.7 Hz, 2H), 7.71 (t, *J* = 7.7 Hz, 1H), 7.39 (dd, *J* = 7.7, 4.9 Hz, 1H), 7.33 - 7.3. (m, 2H), 7.05 (m, 3H), 3.91 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.3, 163.1, 152.0, 149.9, 137.9, 137.8, 133.4, 131.3, 129.3, 128.8, 124.1, 123.9, 114.1, 112.3, 55.65; HRMS (ESI): Calcd for C₂₁H₁₇N₂O₄S [M+H]⁺ 393.0903, found 393.0904.

4-methoxy-*N***-((2***Z***,3***E***)-2-(thiophen-2-ylmethylene)benzofuran-3(2H)-ylidene)benzenesulfona mide (1k):** This compound was prepared according to the general procedure. Yellow solid (2.8 g, 67 % yield; eluent = petroleum ether/EtOAc (10:1)); Mp = 153-154 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.74 (s, 1H), 8.04 (d, *J* = 8.6 Hz, 2H), 7.67 (t, *J* = 7.7 Hz, 1H), 7.62 (d, *J* = 4.8 Hz, 1H), 7.52 (d, *J* = 3.6 Hz, 1H), 7.41 (s, 1H), 7.33 (d, *J* = 8.3 Hz, 1H), 7.29-7.26 (m, 1H), 7.14 (t, *J* = 4.2 Hz, 1H), 7.04 (d, *J* = 8.6 Hz, 2H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 164.3, 163.9, 162.9, 149.2, 145.8, 137.2, 133.9, 130.8, 129.1, 123.8, 118.2, 114.0, 113.5, 112.2, 55.6; HRMS (ESI): Calcd for C₂₄H₂₀NO₆S [M+Na]⁺420.0337, found 420.0335.

N-((E)-2-((E)-benzylidene)-2,3-dihydro-1H-inden-1-ylidene)-4-methoxybenzenesulfonamide(11): This compound was prepared according to the general procedure. White solid; (65% yield, eluent = pentane/ethyl acetate = 15:1); Mp = 149 – 150 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.89 (s, 1H), 8.07 (d, *J* = 8.6 Hz, 2H), 7.84 (s, 1H), 7.65 – 7.58 (m, 3H), 7.55 – 7.36 (m, 5H), 7.04 (d, *J* = 8.6 Hz, 2H), 4.05 (s, 2H), 3.90 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 175.4, 162.6, 150.4, 136.4, 135.4, 135.0, 134.9, 130.8, 129.8, 128.9, 127.9, 125.6, 113.9, 55.6, 34.3; **HRMS** (ESI): Calcd for C₂₃H₁₉NO₃S [M + Na]⁺ 412.0978, found 412.0978.

4-methoxy-N-((E)-2-((E)-4-(trifluoromethyl)benzylidene)-2,3-dihydro-1H-inden-1-ylidene)be nzenesulfonamide (1m): This compound was prepared according to the general procedure. White solid; (60% yield, eluent = pentane/ethyl acetate = 15:1); Mp = 154-155 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.93 (s, 1H), 8.09 (d, *J* = 8.7 Hz, 2H), 7.84 (s, 1H), 7.73 –7.69 (m, 4H), 7.67 (t, *J* = 7.4 Hz, 1H), 7.59 – 7.51 (m, 2H), 7.08 (d, *J* = 8.7 Hz, 2H), 4.08 (s, 2H), 3.94 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 174.8, 162.8, 150.0, 138.8, 135.3, 134.6, 129.8 (q, ¹*J*_{C-F} = 245.9 Hz), 128.7, 128.2, 125.7(q, ³*J*_{C-F} = 3.7 Hz), 125.6, 114.3, 114.0, 55.6, 34.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.81; HRMS (ESI): Calcd for C₂₄H₁₈F₃NO₃S [M + Na]⁺ 480.0852, found 480.0849.

General Procedure for the Synthesis of Oxime-derived Peresters

Step 1:

To a solution of benzoic acids **S3** (10 mmol, 1 equiv) in DCM was slowly added CDI (15 mmol, 1.5 equiv). The reaction mixture was stirred at rt for 1 h. Then, N,O-dimethylhydroxylamine hydrochloride (12 mmol, 1.2 equiv) was slowly added and the mixture was stirred at rt for 48 h. The reaction was quenched with an aqueous solution of saturated NaHCO₃. The aqueous layers were extracted with ethyl acetate. The combined organic layers were washed with brine and dried over Na₂SO₄. Then the mixture was filtered, concentrated to give the crude Weinreb amides **S4**, which were used in the next step without further purification.

Step 2:

To a 100 mL three-necked flask was charged with the crude Weinreb amide (10 mmol), the flask was evacuated and backfilled with N₂ (3 times). Dry THF (20 mL, 0.5 M) was added, then the solution was cooled to 0 °C. Subsequently, Grignard reagent (12 mmol, 1.2 equiv) was added dropwise. The reaction was warmed to rt and stirred for 12 h. The reaction was quenched with an aqueous solution of saturated NH₄Cl. The aqueous layers were extracted with ethyl acetate. The combined organic layers were dried over Na₂SO₄. Then the solution was filtered, concentrated to give the crude ketones, which were purified by flash chromatography to give the pure ketones **S5**. **Step 3**:

A mixture of ketones (5 mmol), hydroxylamine hydrochloride (10 mmol, 1.5 equiv), and NaOAc (20 mmol, 2 equiv) was dissolved in EtOH/H₂O (50 mL/50 mL). The mixture was stirred at rt for 3-4 h. Then EtOH was removed by concentration, and the residue was diluted with 1N HCl and ethyl acetate. The organic layer was separated and the aqueous layer was extracted with ethyl acetate. The combined organic layers were washed with saturated NaHCO₃ solution and brine, and then dried over Na₂SO₄. The combined organic solution was concentrated by rotary evaporation to give the crude compounds **S6**, which were used in the next step without further purification. **Step 4:**

S6 (10 mmol, 1.0 equiv) was dissolved in dry DMF (50 mL, 0.2 M), then the solution was cooled to 0 °C, and NaH (20 mmol, 2 equiv) was added slowly. The mixture was stirred at 0 °C for 1 h. Subsequently, α -bromo acid (11 mmol, 1.1 equiv) was added and the mixture was stirred at 0 °C for 10 h. The mixture was diluted with H₂O and ethyl acetate, the layers were separated and the aqueous layer was treated with 1N HCl. Then the aqueous layer washed with ethyl acetate, the combined organic extractions were dried over Na₂SO₄, filtered and evaporated. The crude product was purified by flash chromatography to give the imino-oxyacetic acids **S7**. **Step 5:**

The iminoxyacetic acids **S7** (10 mmol, 1.0 equiv) was added to a stirred solution of CDI (12 mmol, 1.2 equiv) in THF at rt. After 1 h, a solution of *tert*-butyl hydroperoxide (22 mmol, 2.2 equiv) was

added dropwise at -5 °C, and the mixture was stirred at -5 °C for 12 h. The mixture was poured into ice-water and extracted with cold diethyl ether. The organic phase was washed twice with cold water and the combined organic extractions were dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure ensuring the bath temperature does not exceed 30 °C. The crude product was purified by flash chromatography to give the peresters **4**.

(*E*)-tert-butyl-2-(((4-methyl-1-phenylpentylidene)amino)oxy)ethaneperoxoate (4a): This compound was prepared according to the general procedure. Colorless oil (65% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.62-7.59 (m, 2H), 7.3 6-7.33 (m, 3H), 4.80 (s, 2H), 2.81-2.76 (m, 2H), 1.67-1.59 (m, 1H), 1.49-1.44 (m, 2H), 1. 31 (s, 9H), 0.93 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 161.1, 135. 1, 129.4, 128.4, 126.4, 84.0, 69.8, 35.3, 28.4, 26.1, 25.1, 22.3; HRMS (ESI): Calcd for C₁₈H₂₈NO₄ [M+H]⁺ 322.2014, found 322.2013.

tert-butyl (*E*)-2-(((4-methyl-1-(m-tolyl)pentylidene)amino)oxy)ethaneperoxoate (4b): This compound was prepared according to the general procedure. Colorless oil (53% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.43 (s, 1H), 7.37 (d, *J* = 7.7 Hz, 1H), 7.26-7.23 (m, 1H), 7.18 (d, *J* = 7.5 Hz, 1H), 4.79 (s, 2H), 2.83 – 2.72 (m, 2H), 2.36 (s, 3H), 1.65 - 1.61 (m, 1H), 1.50 - 1.35 (m, 2H), 1.32 (s, 9H), 0.93 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 161.3, 138.1, 135.1, 130.2, 128.3, 127.1, 123.6, 84.0, 69.7, 35.3, 28.4, 26.1, 25.2, 22.3, 21.4; HRMS (ESI): Calcd for C₁₉H₃₀NO₄ [M+H]⁺ 336.2169, found 336.2169.

tert-butyl(*E*)-2-(((1-(4-methoxyphenyl)-4-methylpentylidene)amino)oxy)ethaneperoxoate (4c): This compound was prepared according to the general procedure. Colorless oil (45% yield; eluent = petroleum ether/EtOAc (50:5)); ¹H NMR (600 MHz, CDCl₃): δ 7.55 (d, *J* = 1.5 Hz, 2H), 6.87 (d, *J* = 3.9 Hz, 2H), 4.75 (s, 2H), 3.79 (s, 3H), 2.75 (q, *J* = 9.8 Hz, 2H), 1.42 (dd, *J* = 13.7, 7.1 Hz, 3H), 1.32 (s, 9H), 0.92 (d, *J* = 4.1 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.9, 160.7, 160.5, 127.8, 127.5, 113.8, 83.9, 69.7, 55.2, 35.4, 28.4, 26.0, 24.9, 22.3; HRMS (ESI): Calcd for C₁₉H₃₀NO₅ [M+H]⁺ 352.2118 found 352.2118.

tert-butyl

(*E*)-2-(((4-methyl-1-(4-(trifluoromethyl)phenyl)pentylidene)amino)oxy)ethaneperoxoate (4d): This compound was prepared according to the general procedure. Colorless oil (50% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.72 (d, *J* = 8.1 Hz, 2H), 7.61 (d, *J* = 8.1 Hz, 2H), 4.82 (s, 2H), 2.87 – 2.71 (m, 2H), 1.67-1.60 (m, 1H), 1.46 – 1.42 (m, 2H), 1.31 (s, 9H), 0.94 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.6, 159.9, 154.1, 138.5, 131.2 (q, ²*J* _{C-F} = 32.6 Hz), 126.7, 125.4 (q, ³*J* _{C-F} = 3.7 Hz), 124.0 (q, ¹*J* _{C-F} = 272.3 Hz), 85.2, 84.1, 69.8, 35.1, 28.4, 26.1, 24.9, 22.3; **HRMS (ESI)**: Calcd for C₁₉H₂₇F₃NO₄ [M+H]⁺ 390.1887, found 390.1887.

tert-butyl(*E*)-2-(((1-(4-iodophenyl)-4-methylpentylidene)amino)oxy)ethaneperoxoate (4e): This compound was prepared according to the general procedure. Colorless oil (53% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.69 (d, *J* = 7.9 Hz, 2H), 7.34 (d, *J* = 7.9 Hz, 2H), 4.79 (s, 2H), 2.74 (t, *J* = 7.8 Hz, 2H), 1.65-1.60 (m, 1H), 1.44-1.42 (m, 2H), 1.31 (s, 9H), 0.93 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.7, 160.2, 137.6, 134.6, 128.1, 95.6, 84.0, 69.8, 35.2, 28.4, 26.1, 24.7, 22.3; HRMS (ESI): Calcd for C₁₈H₂₆INO₄ [M+H]⁺ 448.0979, found 448.0979.

tert-butyl (*E*)-2-(((1-(3-bromophenyl)-4-methylpentylidene)amino)oxy)ethaneperoxoate (4f): This compound was prepared according to the general procedure. Colorless oil (50% yield; eluent = petroleum ether/EtOAc (50:3)); ¹H NMR (600 MHz, CDCl₃): δ 7.78 (s, 1H), 7.55-7.46 (m, 2H), 7.23 (t, *J* = 7.9 Hz, 1H), 4.80 (s, 2H), 2.81 – 2.70 (m, 2H), 1.66-1.58 (m, 1H), 1.45 – 1.42 (m, 2H), 1.32 (s, 9H), 0.94 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.6, 159.75, 137.1, 132.3, 130.0, 129.5, 125.0, 122.7, 84.1, 69.8, 35.2, 28.4, 26.1, 24.9, 22.3; HRMS (ESI): Calcd for C₁₈H₂₇BrNO₄ [M+H]⁺400.1118, found 400.1118.

tert-butyl (E)-2-(((4-methyl-1-(naphthalen-2-yl)pentylidene)amino)oxy)ethaneperoxoate (4h): This compound was prepared according to the general procedure. Colorless oil (46% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 8.0 (s, 1H), 7.83-7.78 (m, 4H), 7.48-7.47 (m, 2H), 4.85 (s, 2H), 2.92-2.90 (m, 2H), 1.71-1.66 (m, 1H), 1.55-1.51 (m, 2H), 1.32 (s, 9H), 0.96 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 160.9, 133.8, 133.1, 132.4, 128.5, 128.1, 127.6, 126.7, 126.4, 126.2, 123.8, 84.0, 69.9, 35.5, 28.5, 26.1, 24.8, 22.4; HRMS (ESI): Calcd for C₂₂H₃₀NO₄ [M+H]+ 372.2169, found 372.2168.

tert-butyl

(*E*)-2-(((1-(benzo[d][1,3]dioxol-5-yl)-4-methylpentylidene)amino)oxy)ethaneperoxoate (4i): This compound was prepared according to the general procedure. Colorless oil (48% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.13 (d, *J* = 1.4 Hz, 1H), 7.05 (dd, *J* = 8.1, 1.6 Hz, 1H), 6.75 (d, *J* = 8.2 Hz, 1H), 5.93 (s, 2H), 4.74 (s, 2H), 2.70 (dd, *J* = 9.3, 7.1 Hz, 2H), 1.62 – 1.58 (m, 1H), 1.44 – 1.40 (m, 2H), 1.29 (s, 9H), 0.91 (d, *J* = 6.7 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 160.4, 148.8, 147.9, 129.2, 120.7, 108.0, 106.6, 101.3, 83.9, 69.7, 35.4, 28.4, 26.1, 25.0, 22.3; HRMS (ESI): Calcd for C₁₉H₂₇NO₆ [M+H]⁺ 366.1911, found 366.1911.

tert-butyl (*E*)-2-(((1-(furan-2-yl)-4-methylpentylidene)amino)oxy)ethaneperoxoate (4j): This compound was prepared according to the general procedure. Colorless oil (49% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.36 (s, 1H), 7.28 (d, *J* = 3 Hz, 1H), 6.41-6.40 (m, 1H), 4.69 (s, 2H), 2.54-2.51 (m, 2H), 1.56-1.50 (m, 1H), 1.43-1.39 (m, 2H), 1.21 (s, 9H), 0.83 (d, d, *J* = 6.6 Hz); ¹³C NMR (151 MHz, CDCl₃): δ 167.4, 149.0, 145.2, 142.6, 118.8, 120.0, 83.9, 70.0, 36.6, 29.5, 27.8, 26.0, 22.3; HRMS (ESI): Calcd for C₁₆H₂₅NO₅ [M+Na]⁺ 334.1625, found 334.1626.

tert-butyl (*E*)-2-(((4-methyl-1-(thiophen-3-yl)pentylidene)amino)oxy)ethaneperoxoate (4k): This compound was prepared according to the general procedure. Colorless oil (56% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.46 (dd, *J* = 2.8, 1.1 Hz, 1H), 7.38 (dd, *J* = 5.0, 1.1 Hz, 1H), 7.28-7.26(m, 1H), 4.76 (s, 2H), 2.75 – 2.69 (m, 2H), 1.64-1.66 (m, 1H), 1.49-1.51 (m, 2H), 1.31 (s, 9H), 0.95 (d, *J* = 6.6 Hz, 6H); ¹³C NMR (151 MHz, CDCl₃): δ 167.9, 157.3, 137.3, 126.0, 125.5, 124.1, 84.0, 69.8, 35.6, 28.5, 26.1, 25.7, 22.3; HRMS (ESI): Calcd for C₁₆H₂₆NO₄S [M+Na]⁺ 328.1577, found 338.1578.

tert-butyl (*E*)-2-(((4-methyl-1-phenyloctylidene)amino)oxy)ethaneperoxoate (4l): This compound was prepared according to the general procedure. Colorless oil (45% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.55 – 7.50 (m, 2H), 7.27 (d, *J* = 4.6 Hz, 3H), 4.72 (s, 2H), 2.79-2.63 (m, 2H), 1.53 – 1.46 (m, 1H), 1.43-1.37 (m, 1H), 1.35 – 1.30 (m, 1H), 1.26 (s, 1H), 1.23 (s, 9H), 1.21 – 1.17 (m, 3H), 1.15 – 1.10 (m, 1H), 1.10 – 1.03 (m, 1H), 0.85 (d, *J* = 6.5 Hz, 3H), 0.80 (t, *J* = 6.2 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 161.2, 135.1, 129.4, 128.4, 126.4, 84.0, 69.8, 36.3, 33.4, 33.2, 29.2, 26.1, 24.8, 23.0, 19.4, 14.1; HRMS (ESI): Calcd for C₂₁H₃₄NO₄ [M+H]⁺ 364.2482, found 364.2482.

tert-butyl (*E*)-2-(((3-cyclohexyl-1-phenylpropylidene)amino)oxy)ethaneperoxoate (4m): This compound was prepared according to the general procedure. Colorless oil (46% yield; eluent = petroleum ether/EtOAc (50:1)); ¹H NMR (600 MHz, CDCl₃): δ 7.61 – 7.60 (m, 2H), 7.36 – 7.35 (m, 3H), 4.80 (s, 2H), 2.80 – 2.78 (m, 2H), 1.78 – 1.64 (m, 5H), 1.48 – 1.44 (m, 2H), 1.32 (s, 9H), 1.27 – 1.10 (m, 4H), 0.96-0.87 (m, 2H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 161.2, 135.1, 129.4, 128.4, 126.4, 84.0, 69.8, 38.1, 33.8, 33.0, 26.6, 26.3, 26.1, 24.7; HRMS (ESI): Calcd for C₂₁H₃₂NO₄ [M+H]⁺ 362.2325, found 362.2326.

tert-butyl (*E*)-2-(((1,4-diphenylbutylidene)amino)oxy)ethaneperoxoate (4n): This compound was prepared according to the general procedure. Colorless oil (50% yield; eluent = petroleum ether/EtOAc (50:2)); ¹H NMR (600 MHz, CDCl₃): δ 7.58 – 7.52 (m, 2H), 7.38 – 7.30 (m, 3H), 7.25 (t, *J* = 7.5 Hz, 2H), 7.20 – 7.13 (m, 3H), 4.79 (s, 2H), 2.82 (t, *J* = 7.8 Hz, 2H), 2.69 (t, *J* = 7.7 Hz, 2H), 1.93 – 1.91 (m, 2H), 1.30 (s, 9H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 160.6, 141.7, 135.0, 129.5, 128.6, 128.5, 128.3, 126.5, 125.9, 84.0, 69.7, 35.9, 28.0, 26.6, 26.1; HRMS (ESI): Calcd for C₂₂H₂₈NO₄ [M+H]⁺ 370.2013, found 370.2012.

tert-butyl (E)-2-(((1-phenyloctylidene)amino)oxy)ethaneperoxoate (40): This compound was prepared according to the general procedure. Colorless oil (46% yield; eluent = petroleum

ether/EtOAc (50:1)); ¹**H** NMR (600 MHz, CDCl₃): δ 7.62-7.61 (m, 2H), 7.36-7.35 (m, 3H), 4.80 (s, 2H), 2.78 (t, J = 2.1 Hz 2H), 1.61 – 1.54 (m, 2H), 1.41-1.36 (m, 2H), 1.32 (s, 9H), 1.31-1.24 (m, 4H), 0.87 (t, J = 6.0 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.8, 160.9, 135.2, 129.4, 128.4, 126.5, 84.0, 69.8, 31.5, 29.5, 27.0, 26.5, 26.0, 22.5, 14.0; HRMS (ESI): Calcd for C₂₀H₃₂NO₄ [M+H]⁺ 350.2326, found 350.2327.

3. Screening the Reaction Parameters using Oxime Ester as the Substrate

NTs O Ph	+ Ph	FeCl ₂ (10 mol%) PivONa (1 equiv) 1,4-dioxane (1 mL) T. 12 b	TsHN O N Ph
1a	2a	1, 12 11	3a
Entry	T (°C)		Yield (%) ^[b]
1	120		10
2	100		18
3	90		8

Table S1. Screening the temperature.^[a]

 $\label{eq:alpha} \ensuremath{\left[a\right]}\ensuremath{\left[accdent conditions: 1a\ (0.15\ mmol), 2a\ (0.1\ mmol), \ensuremath{\operatorname{FeCl}}_2\ (10\ mol\%), \ensuremath{\operatorname{PivONa}}\ (1\ equiv), 1,4-dioxane\ (1\ mL), \ensuremath{\left[accdent conditions: 1a\ (0.15\ mmol), 2a\ (0.1\ mmol), \ensuremath{\operatorname{FeCl}}\ (1\ mol\%), \ensuremath{\operatorname{PivONa}}\ (1\ equiv), 1,4-dioxane\ (1\ mL), \ensuremath{\left[accdent conditions: 1a\ (0.15\ mmol), 2a\ (0.1\ mmol), \ensuremath{\operatorname{FeCl}}\ (1\ mol\%), \ensuremath{\operatorname{PivONa}}\ (1\ equiv), 1,4-dioxane\ (1\ mL), \ensuremath{\left[accdent conditions: 1a\ (0.15\ mmol), 2a\ (0.1\ mmol), \ensuremath{\operatorname{FeCl}}\ (1\ mol\%), \ensuremath{\operatorname{PivONa}}\ (1\ equiv), 1,4-dioxane\ (1\ mL), \ensuremath{\left[accdent conditions: 1a\ (0.15\ mmol), \ensuremath{\operatorname{PivONa}}\ (1\ equiv), \ensuremath{\[accdent conditions: 1a\ (0.15\ mmol), \ensuremath{\[accdent conditions: 1a\ (0.15\ mmon), \ensuremath{\[accdent conditions: 1a\ (0.15\ mmon), \ensuremath{\[accdent conditions: 1a\ (0.15\ mmon), \ensuremath{\[accden condition$

T °C, 12 h, in a sealed tube, under Ar. [b] Isolated yields.

NTs O Ph	+ Ph	FeCl ₂ (10 mol%) PivONa (1 equiv) 1,4-dioxane (1 mL) 100 °C, 12 h	TsHN O N Ph
1a (x mmol)	2a (y mmol)		3a
Entry	x/y		Yield (%) ^[b]
1	0.1:0.15		11
2	0.15:0.1		18
3	0.2:0.1		16

Table S2. Screening the ratio of two substrates.^[a]

[a] Reaction conditions: **1a** (x mmol), **2a** (y mmol), FeCl₂ (10 mol%), PivONa (1 equiv), 1,4-dioxane (1 mL), 100 °C, 12 h, in a sealed tube, under Ar. [b] Isolated yields.

Table S3. Screening the bases.^[a]

NTs O Ph +	NOBz Ph Ph Ph FeCl ₂ (10 mol%) Base (1 equiv) 1,4-dioxane (1 mL) 100 °C, 12 h	TsHN ON Ph
1a	2a	3a
Entry	Base	Yield (%) ^[b]
1	PivONa	18
2	K_3PO_4	5
3	PhCO ₂ Na	17
4	NaHCO ₃	10
5	Na ₂ CO ₃	6
6	CH ₃ CO ₂ Na	16
7	tBuONa	trace
8	Et ₃ N	3
9	Pyridine	6
10	Na ₂ SO ₃	12

[a] Reaction conditions: **1a** (0.15 mmol), **2a** (0.1 mmol), FeCl₂ (10 mol%), base (1 equiv), 1,4-dioxane (1 mL), 100 °C, 12 h, in a sealed tube, under Ar. [b] Isolated yields.

Table S4	. Screening	the catalysts.	a]
----------	-------------	----------------	----

NTs O Ph +	Ph H	catalyst (10 mol%) NaOAc (1 equiv) 1,4-dioxane (1 mL) 100 °C, 12 h	TsHN O N Ph
1a	2a		3a
Entry	Catalyst		Yield(%) ^[b]
1	FeCl ₂		17
2	Fe(OAc) ₂		17
3	FeCl ₃		20
4	FeBr ₂		19
5	FeBr ₃		16
6	Fe(OTf) ₃		15
7	Fe(OTf) ₂		14
8	Fe(acac) ₃		15
9	Fe(acac) ₂		9
10	FeF ₂		10
11	FeI ₂		10
12	CuCl		0

[a] Reaction conditions: **1a** (0.15 mmol), **2a** (0.1 mmol), catalyst (10 mol%), NaOAc (1 equiv), 1,4-dioxane (1 mL), 100 °C, 12 h, in a sealed tube, under Ar. [b] Isolated yields.

Table S5. Screening the solvents.^[a]

NTs O Ph	Ph Ph	FeCl ₂ (10 mol%) PivONa (1 equiv) solvent (1 mL) 100 °C, 12 h	TsHN O N Ph
1a	2a		3a
Entry	Solvent		Yield (%) ^[b]
1	1,4-diox	ane	18
2	THF		13
3	MeCN		14
4	Toluene		7
5	DCE		12
6	DCM		15
7	DMSO		trace
8	DMF		trace
9	t-BuOM	e	14
10	CHCl ₃		10

[a] Reaction conditions: 1a (0.15 mmol), 2a (0.1 mmol), FeCl₂ (10 mol %), PivONa (1 equiv), solvent (1 mL), 100 °C, 12 h, in a sealed tube, under Ar. [b] Isolated yields.

O O R N O Ph	+ Ph + Ph + FeCl ₂ (10 mol%) NaOAc (1 equiv) MeCN (1 mL) 100 °C, 12 h	HN S-R O N Ph
1	2a	3
Entry	R	Yield (%) ^[b]
1	$4-MeO-C_6H_4$	49
2	4-CH ₃ -C ₆ H ₄	26
3	Ph	22
4	$4-NO_2-C_6H_4$	<10
5	$4-CF_3-C_6H_4$	0
6	CH_3	15
7	2,4-MeO-C ₆ H ₄	20

Table S6. Screening the R group on 1.^[a]

[a] Reaction conditions: 1 (0.15 mmol), 2a (0.15 mmol), $FeCl_2$ (10 mol%), NaOAc (1 equiv), MeCN (1 mL), 100 °C, 12 h, in a sealed tube, under Ar. [b] Isolated yields.

Table S7. Some substrates of oxime esters.^[a]

[a] Reaction conditions: **1b** (0.15 mmol), **2** (0.1 mmol), FeCl₂ (10 mol%), NaOAc (1 equiv), MeCN (1 mL), 100 °C, 12 h, in a sealed tube, under Ar. Isolated yields.

4. Screening the Reaction Parameters using Peresters as the Substrate

MeO $(1.5 equiv)$	+ Ph + Ph + 4a	FeCl ₂ (10 mol%) NaOAc (1 equiv) MeCN (1 mL), T, 12 h 3b
Entry	T (°C)	Yield(%) ^[b]
1	100	35
2	60	32
3	40	trace

Table S8. Screening the temperature.^[a]

[a] Reaction conditions: **1b** (0.15 mmol), **4a** (0.1 mmol), FeCl₂ (10 mol%), NaOAc (1 equiv), MeCN (1 mL), 12 h, in a sealed tube, under Ar. [b] Isolated yields.

Table S9. Screening the catalysts.^[a]

Me	$0 - \underbrace{0}_{N} = 0$ N $0 - \underbrace{0}_{N} = 0$ N $0 - \underbrace{0}_{N} = 0$ Ph 1b (1.5 equiv)	+ Ph	OO <i>t</i> Bu	catalyst (10 mol%) NaOAc (1 equiv) MeCN (1 mL), 60 °C, 12 h	OMe OSNH ON Ph 3b	
	Entry		Catalyst		Yield(%) ^[b]	_
	1		none		15	
	2		FeCl ₂		41	
	3		CuBr		11	
	4		CuBr ₂		trace	
	5		NiCl ₂		15	
	6		FeI ₂		trace	
	7		FeCl ₃		30	
	8		Fe(acac) ₃		32	
	9		AgOAc		trace	
	10		PdCl ₂		36	

Continued

11	Pd(PPh ₃)Cl ₂	60
12	Pd ₂ (dba) ₃	40
13	[Pd(allyl)Cl] ₂	43
14	Pd(OAc) ₂	35
15	Pd(PCy ₃) ₂ Cl ₂	43
16	$ZnCl_2$	trace
17	Sc(OTf) ₃	trace
18	Pd(PPh ₃)Cl ₂	trace ^[c]
19	Pd(PPh ₃)Cl ₂	67 ^[d]
20	Pd(PPh ₃)Cl ₂	trace ^[e]
21	Pd(PPh ₃)Cl ₂	trace ^[f]
22	Pd(PPh ₃)Cl ₂	trace ^[g]

[a] Reaction conditions: **1b** (0.15 mmol), **4a** (0.1 mmol), catalyst (10 mol%), NaOAc (1 equiv), MeCN (1 mL), 12 h, in a sealed tube, under Ar. [b] Isolated yields. [c] Reaction was run at 40 °C. [d] NaOAc (0.5 equiv) was used. [e] Et₃N (1 equiv) was used instead of NaOAc. [f] DBU (1,8-diazabicyclo[5.4.0]undec-7-ene, 1 equiv) was used instead of NaOAc. [g] DABCO (1,4-diazabicyclo[2.2.2]octane, 1 equiv) was used instead of NaOAc.

5. General Procedures for the Synthesis Bridged Aza-Tetracycles

An oven-dried Schlenk tube (10 mL) containing a stirring bar was charged with the azadiene 1 (0.3 mmol, 1.5 equiv). The Schlenk tube was then introduced into a glove box, where it was charged with $Pd(PPh_3)_2Cl_2$ (10 mol%, 14 mg) and NaOAc (8.2 mg, 0.1 mmol). The tube was fitted with a rubber septum and removed out of the glove box. Then perster 4 (0.2 mmol) and MeCN (2 mL) were added in turn to the Schlenk tube through the rubber septum using syringes, and then the septum was replaced by a Teflon screwcap under N₂ flow. The reaction mixture was stirred at 60 °C for 12 h. Upon cooling to room temperature, the reaction mixture was diluted with 5 mL of ethyl acetate and filtered through a pad of silica gel with additional ethyl acetate (30 mL) as the eluent. The filtrate was concentrated under reduced pressure. The residue was purified by flash chromatography on silica gel to afford the desired product.

N-(3,3-dimethyl-4,11-diphenyl-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibenzo[b,d]fura n-9b-yl)-4-methoxybenzenesulfonamide (3b):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1b** (0.3 mmol, 117.4 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3b** (75.6 mg). Yellow solid (67% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 213-215 °C; ¹H NMR (600 MHz, CDCl₃) δ 7.93 (d, *J* = 7.6 Hz, 2H), 7.72 (s, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.50 – 7.46 (t, *J* = 7.2 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.38 (t, *J* = 7.4 Hz, 2H), 7.31 (t, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 7.4 Hz, 1H), 6.99 (t, *J* = 7.7 Hz, 1H), 6.79 (t, *J* = 9.5 Hz, 3H), 6.52 (t, *J* = 7.5 Hz, 1H), 4.86 (s, 1H), 4.52 (s, 1H), 3.82 (s, 3H), 3.38 (s, 1H), 2.46 (d, *J* = 14.3 Hz, 1H), 1.64 (d, *J* = 13.9 Hz, 1H), 1.09 (s, 3H), 0.52 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 176.7, 162.8, 157.78, 136.28, 133.4, 132.3, 131.9, 131.7, 129.8, 129.1, 128.8, 128.6, 127.9, 127.8, 126.8, 125.0, 121.0, 114.0, 113.8, 111.8, 72.8, 55.6, 50.2, 49.2, 35.8, 35.0, 33.1, 28.4; HRMS (ESI): Calcd for C₃₄H₃₂N₂NaO₄S [M+Na]⁺ 582.1975, found 582.1976.

N-(3,3-dimethyl-4,11-diphenyl-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibenzo[b,d]fura n-9b-yl)-4-methoxybenzenesulfonamide (3f):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1c** (0.3 mmol, 126.3 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N_{2i} atmosphere was stirred at 60 °C for 12f h to afford **3f** (66.2

mg). Yellow solid (55% yield; eluent = pentane/ethyl acetate = 8:1); Mp = 224.2-224.6 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, J = 7.8 Hz, 2H), 7.68-7.54 (m, 4H), 7.49-42 (m, 3H), 7.10 (d, J = 7.5 Hz, 1H), 6.98 (t, J = 7.8 Hz, 1H), 6.92 (d, J = 8.1 Hz, 2H), 6.80-6.79 (m, 3H), 6.51 (t, J = 7.5 Hz, 1H), 4.85 (s, 1H), 4.51 (s, 1H), 3.83 (s, 3H), 3.82 (s, 3H), 3.32 (s, 1H), 2.44 (dd, J = 13.2, 1.8 Hz, 1H), 1.63 (dd, J = 12.2, 1.8 Hz, 1H), 1.07 (s, 3H), 0.52 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 176.7, 162.8, 158.6, 157.7, 133.3, 132.6, 132.4, 131.8, 129.8, 129.2, 128.8, 128.6, 128.3, 127.8, 125.1, 121.0, 113.9, 113.4, 111.8, 72.7, 55.6 55.12, 49.4, 49.2, 35.8, 35.0, 33.1, 28.5; HRMS (ESI): Calcd for C₃₅H₃₄N₂NaO₅S [M+Na]⁺ 617.2082, found 617.2081.

N-(3,3-dimethyl-11-phenyl-4-(p-tolyl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3g):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1g** (0.3 mmol, 121.5 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3g** (55.3 mg). Yellow solid (47% yield; eluent = pentane/ethyl acetate = 8:1); Mp = 216-217 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.35 (s, 1H), 7.89 (d, *J* = 7.2 Hz, 2H), 7.55-7.47 (m, 7H), 7.17 (d, *J* = 7.8 Hz, 2H), 7.00-6.96 (m, 2H), 6.90 (d, *J* = 8.9 Hz, 2H), 6.74 (d, *J* = 7.9 Hz, 1H), 6.41 (t, *J* = 7.4 Hz, 1H), 4.44 (s, 1H), 3.78 (s, 3H), 3.72 (s, 1H), 2.37 (d, *J* = 12.8 Hz, 1H), 2.32 (s, 3H), 1.48 (d, *J* = 12.0 Hz, 1H), 0.97 (s, 3H), 0.39 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 176.3, 162.2, 158.0 135.7, 135.1, 134.5, 132.4, 132.1, 130.2, 129.7, 129.5, 128.6, 128.4, 127.9, 125.0, 120.8, 114.2, 114.1, 111.3, 72.7, 56.1, 49.8, 48.3, 35.6, 35.1, 32.9, 28.8, 21.2; HRMS (ESI): Calcd for C₃₅H₃₄N₂NaO₅S [M+Na]⁺ 601.2131, found 601.2129.

N-(4-(4-bromophenyl)-3,3-dimethyl-11-phenyl-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)d ibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3h):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1e** (0.3 mmol, 140.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3h** (84.7 mg). Yellow solid (66% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 210-212 °C; ¹H NMR (600 MHz, DMSO-*d*₆): δ 8.38 (s, 1H), 7.90 (d, *J* = 7.4 Hz, 2H), 7.68-7.45 (m, 9H), 7.00-6.95 (m, 2H), 6.90 (d, *J* = 8.7 Hz, 2H), 6.76 (d, *J* = 7.9 Hz, 1H), 6.42 (t, *J* = 7.4 Hz, 1H), 4.45 (s, 1H), 3.78 (s, 3H), 3.77 (s, 1H), 2.37 (d, *J* = 13.4 Hz, 1H), 1.50 (d, *J* = 12.5 Hz, 1H), 0.98 (s, 3H), 0.39 (s, 3H).

¹³C NMR (151 MHz, DMSO-*d*₆): δ 176.7, 162.3, 157.9, 137.1, 135.0, 134.3, 132.5, 132.3, 131.0, 129.9, 129.8, 129.6, 128.4, 127.9, 125.0, 120.9, 120.4, 114.2, 113.8, 111.4, 72.7, 56.1, 49.9, 48.2, 35.5, 35.1, 32.8, 28.7; **HRMS (ESI)**: Calcd for C₃₄H₃₂BrN₂O₄S [M+H]⁺ 643.1261, found 643.1260.

Methyl4-(9b-((4-methoxyphenyl)sulfonamido)-3,3-dimethyl-11-phenyl-1,3,4,9b-tetrahydro-2 H-4a,1-(azenometheno)dibenzo[b,d]furan-4-yl)benzoate (3i):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1f** (0.3 mmol, 134.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3i** (95.79 mg). Yellow solid (77% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 202-204 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.04 (d, J = 8.4 Hz, 2H), 7.93 (d, J = 7.3 Hz, 2H), 7.79 (s, 2H), 7.56 (d, J = 8.9 Hz, 2H), 7.50-7.42 (m, 3H), 7.09 (d, J = 7.4 Hz, 1H), 7.00 (t, J = 7.7 Hz, 1H), 6.80-6.76 (m, 3H), 6.52 (t, J = 7.5 Hz, 1H), 5.07 (s, 1H), 4.53 (s, 1H), 3.92 (s, 3H), 3.82 (s, 3H), 3.49 (s, 1H), 2.47 (dd, J = 14.3, 2.1 Hz, 1H), 1.62 (dd, J = 14.6, 3.1 Hz, 1H), 1.08 (s, 3H), 0.49 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 176.9, 167.3, 162.9, 157.6, 141.9, 133.3, 132.2, 132.0, 131.7, 129.9, 129.1, 129.0, 128.9, 128.6, 127.8, 125.0, 121.2, 114.0, 113.5, 111.8, 72.8, 55.6, 52.0, 50.1, 49.2, 35.9, 35.0, 33.0, 28.4; HRMS (ESI): Calcd for C₃₆H₃₄N₂O₆S [M+H]⁺ 623.2210, found 623.2212.

4-(9b-((4-methoxyphenyl)sulfonamido)-3,3-dimethyl-11-phenyl-1,3,4,9b-tetrahydro-2H-4a,1-(azenometheno)dibenzo[b,d]furan-4-yl)phenyl acetate (3j):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1g** (0.3 mmol, 134.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3j** (82.3 mg). Yellow solid (66% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 238-241 °C; ¹H NMR (600 MHz, CDCl3) δ 7.91 (d, J = 7.3 Hz, 2H), 7.71 (s, 2H), 7.55 (d, J = 8.9 Hz, 2H), 7.47 (t, J = 7.3 Hz, 1H), 7.42 (t, J = 7.4 Hz, 2H), 7.10 (d, J = 8.1 Hz, 3H), 6.99 (t, J = 7.8 Hz, 1H), 6.79 (t, J = 9.2 Hz, 3H), 6.52 (t, J = 7.5 Hz, 1H), 4.93 (s, 1H), 4.51 (s, 1H), 3.82 (s, 3H), 3.40 (s, 1H), 2.44 (dd, J = 14.4, 2.4 Hz, 1H), 2.30 (s, 3H), 1.62 (dd, J = 14.4, 3.0 Hz, 1H), 1.07 (s, 3H), 0.52 (s, 3H); ¹³C NMR (151 MHz, CDCl3) δ 176.9, 169.4, 162.8, 157.6, 149.7, 133.8, 133.3, 132.6, 131.9, 129.9, 128.8, 128.7, 127.8, 125.0, 121.1, 120.8, 114.0, 113.7, 111.8, 72.7, 55.6, 49.6, 49.2, 35.8, 35.0,

N-(3,3-dimethyl-11-phenyl-4-(o-tolyl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3k):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1h** (0.3 mmol, 121.5 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3k** (53.2 mg). Yellow solid (46% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 210-212 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.04 (d, J = 7.7 Hz, 1H), 7.93 (d, J = 7.2 Hz, 2H), 7.57 (d, J = 8.8 Hz, 2H), 7.49-7.40 (m, 3H), 7.27-7.18 (m, 3H), 7.08 (d, J = 7.3 Hz, 1H), 6.99 (t, J = 7.7 Hz, 1H), 6.81(d, J = 9 Hz, 2 H), 6.76 (d, J = 8.4 Hz, 1H), 6.53 (t, J = 7.4 Hz, 1H), 4.98 (s, 1H), 4.47 (s, 1H), 3.93 (s, 1H), 3.83 (s, 3H), 2.49 (s, 3H), 2.34 (d, J = 14.4 Hz, 1H), 1.59 (d, J = 14.5 Hz, 1H), 0.99 (s, 3H), 0.65 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 162.8, 158.0, 137.6, 134.6, 133.5, 133.3, 132.3, 131.8, 130.6, 129.8, 129.2, 128.8, 128.7f, 127.8, 126.6, 125.5, 125.0 121.1, 114.0, 113.8, 112.0, 73.3, 55.6, 49.1, 43.5, 37.3, 34.9, 34.0, 28.8, 21.2; HRMS (ESI): Calcd for C₃₅H₃₅N₂O₄S [M+H]⁺ 579.2312, found 579.2310.

N-(3,3-dimethyl-4-(naphthalen-2-yl)-11-phenyl-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno) dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3l):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1i** (0.3 mmol, 132.3 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3l** (65.2 mg). Yellow solid (53% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 214.7-216.9 °C, ¹H NMR (600 MHz, CDCl₃): δ 8.11–7.98 (m, 4H), 7.89–7.86 (m, 3H), 7.59 (d, *J* = 8.6 Hz, 2H), 7.50–7.45 (m, 5H), 7.14 (d, *J* = 7.4 Hz, 1H), 6.99 (t, *J* = 7.6 Hz, 1H), 6.81 (d, *J* = 8.6 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.53 (t, *J* = 7.4 Hz, 1H), 4.95 (s, 1H), 4.56 (s, 1H), 3.82 (s, 3H), 3.58 (s, 1H), 2.50 (d, *J* = 14.0 Hz, 1H), 1.66 (d, *J* = 14.7 Hz, 1H), 1.15 (s, 3H), 0.56 (s, 3H); ¹³C NMR (151 MHz, DMSO-*d*₆): δ 176.5, 162.3, 158.0, 135.5, 135.0, 133.1, 132.5, 132.4, 130.8, 130.6, 130.1, 129.7, 129.6 , 128.5, 128.2, 128.0, 127.8, 127.1, 126.3, 126.1, 125.0, 120.9, 114.2, 111.3, 72.8, 56.1,

49.9, 48.9, 35.9, 35.1, 33.0, 28.8. **HRMS (ESI)**: Calcd for $C_{38}H_{35}N_2O_4S$ [M+H]⁺ 615.2312, found 615.2313.

N-(3,3-dimethyl-11-phenyl-4-(pyridin-3-yl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibe nzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3m):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1j** (0.3 mmol, 117.6 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3m** (63.4 mg). Yellow solid (56% yield; eluent = pentane/ethyl acetate = 3:1); Mp = 219-221 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.67 (s, 1H), 8.55 (d, *J* = 3.3 Hz, 1H), 8.34 (s, 1H), 7.92 (d, *J* = 7.2 Hz, 2H), 7.61 (d, *J* = 8.9 Hz, 2H), 7.49 (t, *J* = 7.3 Hz, 1H), 7.43 (t, *J* = 7.4 Hz, 2H), 7.33 (dd, *J* = 7.7, 4.8 Hz, 1H), 7.10 (d, *J* = 6.9 Hz, 1H), 7.00 (t, *J* = 7.2 Hz, 1H), 6.81 (d, *J* = 8.9 Hz, 2H), 6.75 (d, *J* = 8.0 Hz, 1H), 6.52 (t, *J* = 7.3 Hz, 1H), 4.58 (s, 1H), 3.82 (s, 3H), 3.48 (s, 1H), 2.54 (dd, *J* = 14.3, 1.6 Hz 1H), 1.65 (dd, *J* = 14.2, 3.0 Hz, 1H), 1.06 (s, 3H), 0.51 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.1, 165.9, 162.8, 157.5, 151.8, 148.2, 139.8, 133.6, 132.1, 132.0 129.8, 128.9, 128.6, 127.8, 125.0, 123.2, 121.2, 114.0, 113.4, 111.6, 72.7, 55.6, 49.4, 47.5, 35.7, 35.0, 32.9, 28.5; HRMS (ESI): Calcd for C₃₃H₃₁N₃O₄S [M+H]⁺ 566.2108, found 566.2115.

N-(3,3-dimethyl-11-phenyl-4-(thiophen-2-yl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)di benzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3n):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1k** (0.3 mmol, 119.1 mg), Pd(PPh₃)₂Cl₂ (0.04 mmol, 28.1 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 80 °C for 12 h to afford **3n** (43.5 mg). Yellow solid (38% yield; eluent = pentane/ethyl acetate = 10:1); Yellow solid; Mp = 210-212 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.93 (d, *J* = 7.4 Hz, 2H), 7.56 (d, *J* = 8.7 Hz, 2H), 7.49-7.41 (m, 4H), 7.28 (d, *J* = 4.2 Hz, 1H), 7.14 (d, *J* = 7.3 Hz, 1H), 7.07-6.98 (m, 2H), 6.86-6.78 (m, 3H), 6.55 (t, *J* = 7.4 Hz, 1H), 4.82 (s, 1H), 4.53 (s, 1H), 3.83 (s, 3H), 3.69 (s, 1H), 2.47 (d, *J* = 13.8 Hz, 1H), 1.68 (d, *J* = 12.7 Hz, 1H), 1.14 (s, 3H), 0.56 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.5, 162.9, 157.5, 138.4, 133.2, 132.2, 132.0, 130.0, 128.9, 128.8, 128.7, 128.6, 127.8, 126.4, 125.3, 125.0, 121.2, 114.0, 113.5, 111.9, 72.3, 55.6, 49.2, 45.9, 35.8, 33.2, 29.3; HRMS (ESI): Calcd for C₃₂H₃₁N₂O₄S₂ [M+H]⁺ 571.1720, found 571.1722.

N-(7,7-dimethyl-8,11-diphenyl-5,6,7,8-tetrahydro-8a,5-(azenometheno)fluoren-4b(9H)-yl)-4-methoxybenzenesulfonamide (3o):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **11** (0.3 mmol, 116.4 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3ad** (38.2 mg). Yellow solid (34% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 250-252 °C ¹H NMR (600 MHz, CDCl₃): δ 8.07 (s, 1H), 7.85 (d, *J* = 6.2 Hz, 2H), 7.43 - 7.38 (m, 6H), 7.28 (d, *J* = 6.6 Hz, 2H), 7.18 (s, 1H), 7.09 (d, *J* = 7.6 Hz, 1H), 6.93 (dt, *J* = 14.4, 7.1 Hz, 2H), 6.69 - 6.66 (m, 3H), 4.93 (s, 1H), 4.30 (s, 1H), 3.78 (s, 3H), 3.15 (d, *J* = 16.1 Hz, 1H), 3.07 (s, 1H), 2.80 (d, *J* = 16.2 Hz, 1H), 2.39 (d, *J* = 13.5 Hz, 1H), 1.68 (d, *J* = 11.8 Hz, 1H), 1.09 (s, 3H), 0.54 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 176.3, 162.3, 141.8, 141.7, 138.9, 133.6, 133.5, 131.8, 130.9, 128.6, 128.5, 128.1, 127.4, 126.4, 125.6, 125.2, 124.7, 113.7, 86.0, 74.5, 55.6, 51.6, 49.1, 38.9, 34.4, 33.9, 33.8, 28.8.

N-(7,7-dimethyl-11-phenyl-8-(4-(trifluoromethyl)phenyl)-5,6,7,8-tetrahydro-8a,5-(azenometh eno)fluoren-4b(9H)-yl)-4-methoxybenzenesulfonamide (3p):

According to the general procedure, a mixture consisting of oxime **4a** (0.2 mmol, 64.2 mg), azadiene **1m** (0.3 mmol, 136.8 mg), Pd(PPh₃)₃Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3ae** (47.8 mg). Yellow solid (37% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 315-317 °C; **¹H NMR** (600 MHz, CDCl₃): δ 8.21 (s, 1H), 7.83 (d, *J* = 7.0 Hz, 2H), 7.61-7.52 (m, 2H), 7.41-7.38 (m,, 5H), 7.18 (s, 1H), 6.97 (t, *J* = 7.8 Hz, 2H), 6.92 (t, *J* = 7.1 Hz, 1H), 6.69 (d, *J* = 8.6 Hz, 2H), 6.64 -6.62 (m, 1H), 5.18 (s, 1H), 4.28 (s, 1H), 3.79 (s, 3H), 3.19 (s, 1H), 3.10 (d, *J* = 16.0 Hz, 1H), 2.84 (d, *J* = 16.0 Hz, 1H), 2.40 (d, *J* = 13.2 Hz, 1H), 1.66 (d, *J* = 12.3 Hz, 2H), 1.05 (s, 3H), 0.50 (s, 3H); ¹³C **NMR** (151 MHz, CDCl₃): δ 176.5, 162.4, 143.2, 141.5, 141.4, 133.4, 131.1, 128.7, 128.6 (²*J*_{C-F} = 32.6 Hz), 128.5, 128.3, 127.4, 125.7, 125.2, 124.5, 124.4 (¹*J*_{C-F} = 267.6 Hz), 113.8, 85.5, 74.5, 55.6, 51.2, 49.1, 38.8, 34.5, 33.8, 28.7; ¹⁹F **NMR** (376 MHz, CDCl₃): δ -62.4;

N-(3,3-dimethyl-11-(m-tolyl)-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1-(aze nometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3q):

According to the general procedure, a mixture consisting of oxime **4b** (0.2 mmol, 67.2 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3o** (80.7 mg). Yellow solid (61% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 279-281 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.84 (s, 2H), 7.74 (s, 1H), 7.69 (d, J = 7.2 Hz, 1H), 7.63 (d, J = 8.0 Hz, 2H), 7.55 (d, J = 8.9 Hz, 2H), 7.33 – 7.29 (m, 2H), 7.07 (d, J = 6.7 Hz, 1H), 7.00 (t, J = 7.8 Hz, 1H), 6.78 (t, J = 9.1 Hz, 3H), 6.51 (t, J = 7.2 Hz, 1H), 5.00 (s, 1H), 4.51 (s, 1H), 3.82 (s, 3H), 3.49 (s, 1H), 2.46 (dd, J = 14.3, 2.1 Hz, 1H), 2.38 (s, 3H), 1.63 (dd, J = 14.4, 2.9 Hz, 1H), 1.08 (s, 3H), 0.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.1, 162.9, 157.6, 140.6, 138.7, 133.2, 132.9, 132.0, 132.0, 129.9, 128.9, 128.8, 128.7, 128.2, 125.0, 125.0, 124.8 (q, ³ $_{J-F}$ = 3.5 Hz), 124.4 (q, ¹ $_{J-F}$ = 272.3 Hz), 121.2, 114.0, 113.4, 111.8, 72.7, 55.7, 49.9, 49.3, 35.9, 35.0, 33.0, 28.4, 21.3. ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4.

4-methoxy-N-(11-(4-methoxyphenyl)-3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetra hydro-9bH-4a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)benzenesulfonamide (3r): According to the general procedure, a mixture consisting of oxime **4c** (0.2 mmol, 70.2 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3p** (34.1 mg). Yellow solid (25% yield; eluent = pentane/ethyl acetate = 8:1); Mp = 288-289 °C; ¹**H NMR** (600 MHz, CDCl₃): δ 7.87 (d, *J* = 8.8 Hz, 4H), 7.62 (d, *J* = 8.0 Hz, 2H), 7.55 (d, *J* = 8.9 Hz, 2H), 7.07 (d, *J* = 6.7 Hz, 1H), 7.00 (dd, *J* = 11.1, 4.3 Hz, 1H), 6.93 (d, *J* = 8.8 Hz, 2H), 6.78 (dd, *J* = 11.8, 8.6 Hz, 3H), 6.51 (t, *J* = 7.2 Hz, 1H), 4.94 (s, 1H), 4.47 (s, 1H), 3.83 (d, *J* = 9.0 Hz, 6H), 3.46 (s, 1H), 2.44 (dd, *J* = 14.3, 2.1 Hz, 1H), 1.60 (dd, *J* = 14.2, 2.9 Hz, 1H), 1.08 (s, 3H), 0.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.10, 162.84, 162.79, 157.58, 147.11, 140.72, 133.21, 131.96, 129.88, 129.66, 129.09, 129.0 (q, ²*J*_{C-F} = 31.9 Hz), 128.67, 125.4 (q, ¹*J*_{C-F} = 272.0 Hz),124.97, 124.84, 124.7 (q, ³*J*_{C-F} = 3.5 Hz),121.18, 114.27, 113.99, 113.34, 111.77, 72.64, 55.64, 55.44, 49.97, 49.08, 35.92, 35.05, 32.97, 28.34; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4.

N-(3,3-dimethyl-4,11-bis(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometh eno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3s):

According to the general procedure, a mixture consisting of oxime **4d** (0.2 mmol, 77.8 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3q** (67.5 mg). Yellow solid (47% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 285-286 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.03 (d, *J* = 6.4 Hz, 2H), 7.83 (s, 2H), 7.70 (d, *J* = 6.6 Hz, 2H), 7.64 (d, *J* = 6.6 Hz, 2H), 7.58 (d, *J* = 7.2 Hz, 2H), 7.11 (d, *J* = 6.0 Hz, 1H), 7.04 (t, *J* = 7.2 Hz, 1H), 6.86 - 6.76 (m, 3H), 6.56 (t, *J* = 7.2 Hz, 1H), 4.92 (s, 1H), 4.54 (s, 1H), 3.83 (s, 3H), 3.50 (s, 1H), 2.51 (d, *J* = 14.4 Hz, 1H), 1.63 (d, *J* = 14.2 Hz, 1H), 1.10 (s, 3H), 0.48 (s, 3H); ¹³C NMR (151 MHz, CDCl₃) δ 176.1, 163.0, 157.5, 140.2, 135.2, 133.0, 131.9, 130.2, 128.7, 128.1, 125.9 (q, ³*J*_{C-F} = 3.6 Hz), 125.0, 124.8 (q, ³*J*_{C-F} = 3.6 Hz), 121.5, 114.1, 113.5, 111.8, 72.9, 55.7, 49.9, 49.4, 35.8, 34.9, 33.0, 28.4; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4, -63.1.

N-(11-(4-iodophenyl)-3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a, 1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3t):

According to the general procedure, a mixture consisting of oxime **4e** (0.2 mmol, 77.8 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3r** (40.3 mg). Yellow solid (26% yield; eluent = pentane/ethyl acetate = 10:1); ¹**H** NMR (600 MHz, CDCl₃): δ 8.05 (s, 1H), 7.82 (d, *J* = 7.1 Hz, 3H), 7.66–7.53 (m, 5H), 7.31 (t, *J* = 7.7 Hz, 1H), 7.09 (d, *J* = 7.2 Hz, 1H), 7.03 (t, *J* = 7.4 Hz, 1H), 6.83–6.75 (m, 3H), 6.55 (t, *J* = 7.2 Hz, 1H), 4.99 (s, 1H), 4.47 (s, 1H), 3.83 (s, 3H), 3.49 (s, 1H), 2.48 (d, *J* = 13.9 Hz, 1H), 1.62 (d, *J* = 14.7 Hz, 1H), 1.09 (s, 3H), 0.49 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 175.9, 163.0, 157.6, 140.4, 135.0, 134.1, 133.1, 131.9, 130.5, 130.1, 128.9 (q, ²*J*_{C-F} = 31.7 Hz), 128.7, 126.3, 125.0, 124.8 (q, ³*J*_{C-F} = 3.02 Hz), 124.4 (q, ¹*J*_{C-F} = 273.3 Hz)123.3, 121.4, 114.1, 113.4, 111.8, 72.8, 55.6, 49.9, 49.3, 35.9, 34.9, 33.0, 28.4; ¹⁹F NMR (565 MHz, CDCl₃): δ -62.4; **HRMS (ESI)**: Calcd for C₃₆H₃₅F₃IN₂O4₈ [M+H]⁺ 775.1309, found 775.1311.

According to the general procedure, a mixture consisting of oxime **4f** (0.2 mmol, 79.8 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3s** (68.2 mg). Yellow solid (47% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 263-265 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, J = 7.8 Hz), 7.86 (s, 1H), 7.62 (d, J = 7.8 Hz), 7.56 (d, J = 8.4 Hz), 7.50-7.43 (m, 3H), 7.10 (d, J = 7.2 Hz, 1H), 7.02 (t, J = 7.2 Hz, 1H), 6.82-6.78 (m, 3H), 6.54 (t, J = 7.2 Hz, 1H), 4.99 (s, 1H), 4.47 (s, 1H), 3.83 (s, 3H), 3.49 (s, 1H), 2.47 (d, J = 12.6 Hz, 1H), 1.63 (dd, J = 14.4, 3 Hz, 1H), 1.09 (s, 3H), 0.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 175.9, 162.9, 157.5, 140.3, 135.0, 134.0, 133.1, 131.9, 130.5, 130.5, 130.1, 129.1 (² J_{C-F} = 32.2 Hz); 128.7, 128.7, 126.3, 125.0, 124.8 (³ J_{C-F} = 3.5 Hz), 124.4 (¹ J_{C-F} = 272.0 Hz), 123.3, 121.4, 114.0, 113.4, 111.8, 72.8, 55.7, 49.9, 49.3, 35.9, 34.9, 33.0, 28.4; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4.

N-(11-(2-bromophenyl)-3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4 a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3v):

According to the general procedure, a mixture consisting of oxime **4g** (0.2 mmol, 79.8 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3t** (85.8 mg). Yellow solid (59% yield; eluent = pentane/ethyl acetate = 10:1); ¹H NMR (600 MHz, CDCl₃): δ 7.92 (d, *J* = 7.8 Hz, 2H), 7.86 (s, 1H), 7.63 (d, *J* = 8.1 Hz, 2H), 7.56 (d, *J* = 8.4 Hz, 2H), 7.52-7.42 (m, 3 H), 7.10 (d, *J* = 7.3 Hz, 1H), 7.02 (t, *J* = 7.4 Hz, 1H), 6.84-6.76 (m, 3H), 6.54 (t, *J* = 7.4 Hz, 1H), 4.86 (s, 1H), 4.53 (s, 1H), 3.83 (s, 3H), 3.48 (s, 1H), 2.46 (d, *J* = 12.7 Hz, 1H), 1.63 (dd, *J* = 11.4 Hz,3 Hz, 1H), 1.09 (s, 3H), 0.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.0, 162.9, 157.6, 140.6, 133.2, 132.1, 131.9, 130.0, 128.9, 128.7, 127.8, 124.9, 124.75 (q, ³*J*_{C-F} = 3.0 Hz), 123.5 (q, ¹*J*_{C-F} = 277.5 Hz) 121.3, 114., 113.4, 111.8, 72.8, 55.6, 50.1, 49.2, 35.8, 35.0, 33.0, 28.4; ¹⁹F NMR (565 MHz, CDCl₃): δ -62.38; HRMS (ESI): Calcd for C₃₆H₃₅BrF₃N₂O4₈ [M+H]+ 727.1448, found 727.1451.

N-(3,3-dimethyl-11-(naphthalen-2-yl)-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3w):

According to the general procedure, a mixture consisting of oxime **4h** (0.2 mmol, 74.2 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3u** (70.1 mg). Yellow solid (51% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 285-287 °C; ¹H NMR (600 MHz, CDCl₃): δ 8.31 (s, 1H), 8.11 (d, J = 8.4 Hz, 1H), 7.96 (d, J = 7.5 Hz, 1H), 7.90 (s, 1H), 7.87-7.84 (m, 2H), 7.65 (d, J = 7.8 Hz, 2H), 7.60 (d, J = 8.5 Hz, 2H), 7.57 – 7.55 (m, 2H), 7.14 (d, J = 7.4 Hz, 1H), 7.02 (t, J = 7.7 Hz, 1H), 6.88 – 6.78 (m, 3H), 6.53 (t, J = 7.4 Hz, 1H), 4.85 (s, 1H), 4.70 (s, 1H), 3.84 (s, 3H), 3.50 (s, 1H), 2.54 (d, J = 14.0 Hz, 1H), 1.72 (d, J = 14.3 Hz, 1H), 1.11 (s, 3H), 0.51 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.0, 170.2, 162.9, 157.6, 137.9, 135.2, 133.2, 132.9, 132.0, 130.0, 129.5, 129.1, 129.0, 128.8, 128.7, 128.1, 127.8, 126.8, 126.1, 125.0, 124.8 (³J _{C-F} = 3.6 Hz), 123.8, 121.3, 114.0, 113.5, 111.8, 72.8, 55.7, 50.0, 49.2, 35.9, 35.2, 33.0, 28.4; ¹⁹F NMR (376 MHz, DMSO): δ -60.72; HRMS (ESI): Calcd for C₃₉H₃₄F₃N₂O₄S [M+H]⁺ 683.2186, found 683.2186.

N-(11-(benzo[d][1,3]dioxol-5-yl)-3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydr o-9bH-4a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3x):

According to the general procedure, a mixture consisting of oxime **4i** (0.2 mmol, 73.0 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under an argon atmosphere was stirred at 60 °C for 12 h to afford **3v**(63.5 mg). Yellow solid (51% yield; eluent = pentane/ethyl acetate = 10:1); ¹H NMR (600 MHz, CDCl₃): δ 7.84 (s, 2H), 7.62 (d, *J* = 7.9 Hz, 2H), 7.55 (d, *J* = 8.8 Hz, 2H), 7.47 (d, *J* = 1.2 Hz, 1H), 7.38 (dd, *J* = 7.8 Hz, 1.2 Hz, 1H), 7.08 (d, *J* = 7.2 Hz, 1H), 7.01 (t, *J* = 7.4 Hz, 1H), 6.86-6.76 (m, 4H), 6.53 (t, *J* = 7.4 Hz, 1H), 6.00 (d, *J* = 3.8 Hz, 2H), 4.92 (s, 1H), 4.43 (s, 1H), 3.82 (s, 3H), 3.46 (s, 1H), 2.43 (dd, J = 13.8 Hz, 1.2 Hz, 1H), 1.61 (d, J = 3.0 Hz, 1H), 1.08 (s, 3H), 0.50 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 175.9, 162.9, 157.6, 151.1, 148.5, 140.6, 133.2, 131.9, 129.9, 129.2 (q, ²_{JC-F} = 22 Hz), 128.7, 126.7, 125.0, 124.7 (q, ³_{JC-F} = 3.6 Hz), 123.5, 121.1, 124.4 (q, ¹_{JC-F} = 272

Hz), 114.0, 113.2, 111.8, 108.3, 107.2, 101.7, 72.7, 55.6, 49.9, 49.2, 35.9, 35.11, 32.0, 28.3; ¹⁹F NMR (565 MHz, CDCl₃): δ -62.4; HRMS (ESI): Calcd for C₃₆H₃₁F₃N₂O₆S [M+H]⁺ 677.1920, found 677.1918.

N-(11-(furan-2-yl)-3,3-dimethyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3y):

According to the general procedure, a mixture consisting of oxime **4j** (0.2 mmol, 62.2 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.04 mmol, 28.1 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3w** (65.1 mg). White solid (51% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 262 - 264 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.82 (s, 2H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.57 - 7.43 (m, 3H), 7.10 (d, *J* = 7.8 Hz, 1H), 7.05 (d, *J* = 3.2 Hz, 1H), 7.04 - 7.00 (m, 1H), 6.81 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.56 (t, *J* = 7.2 Hz, 1H), 6.53 - 6.52 (m, 1H), 4.88 (s, 1H), 4.35 (s, 1H), 3.83 (s, 3H), 3.46 (s, 1H), 2.44 (dd, *J*=14.4, 1.8, 1H), 1.62 (dd, *J* = 14.4, 3 Hz, 1H), 1.08 (s, 3H), 0.55 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 167.7, 162.9, 157.6, 148.1, 146.6, 140.3, 133.1, 132.0, 130.0, 129.1 (q, ²*J*_{C-F} = 32.2 Hz), 128.7, 125.0, 124.7 (q, ³*J*_{C-F} = 3.6 Hz), 124.4 (q, ¹*J*_{C-F} = 272.4 Hz), 121.3, 116.0, 114.0, 113.4, 112.3, 112.0, 72.6, 55.7, 50.1, 35.8, 35.3, 32.9, 28.3; ¹⁹F NMR (565 MHz, CDCl₃): δ -62.4.

N-(3,3-dimethyl-11-(thiophen-3-yl)-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a, 1-(azenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3z):

According to the general procedure, a mixture consisting of oxime **4k** (0.2 mmol, 65.4 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.04 mmol, 28.1 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 80 °C for 12 h to afford **3x** (48.4 mg). White solid (37% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 282 - 285 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.82 (s, 2H), 7.61 (d, *J* = 8.1 Hz, 2H), 7.58 (d, *J* = 0.6 Hz, 1H), 7.56 (d, *J* = 9 Hz, 2H) 7.10 (d, *J* = 7.4 Hz, 1H), 7.05 (d, *J* = 3.2 Hz, 1H), 7.01 – 7.04 (m, 1H), 6.81 (d, *J* = 8.9 Hz, 2H), 6.77 (d, *J* = 8.0 Hz, 1H), 6.56 (t, *J* = 7.2 Hz, 1H), 6.52 (dd, *J* = 3.3, 1.6 Hz, 1H), 4.88 (s, 1H), 4.35 (s, 1H), 3.83 (s, 3H), 3.46 (s, 1H), 2.44 (dd, *J* = 14.2, 1.9 Hz, 1H), 1.62 (dd, *J* = 14.4, 2.9 Hz, 1H), 1.08 (s, 3H), 0.55 (s, 3H); ¹³C NMR (151 MHz, CDCl3): δ 172.5, 162.9, 157.5, 140.6, 136.0,

133.1, 132.0, 123.0, 129.5, 129.1 (q, ${}^{2}J_{C-F} = 32.4 \text{ Hz}$), 128.7, 127.1, 126.3, 125.0, 124.7 (q, ${}^{3}J_{C-F} = 3.8 \text{ Hz}$), 124.4 (q, ${}^{1}J_{C-F} = 272.0 \text{ Hz}$), 121.3, 114.0, 113.3, 111.8, 72.7, 55.7, 50.7, 49.9, 35.9, 35.2, 32.9, 28.4; 23; ¹⁹F NMR (565 MHz, CDCl₃): δ -62.4.

N-(3-butyl-3-methyl-11-phenyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1-(a zenometheno)dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3aa):

According to the general procedure, a mixture consisting of oxime **41** (0.2 mmol, 72.6 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3y** (51.2 mg). Yellow solid (38% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 215-217 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.85 (d, *J* = 7.4 Hz, 2H), 7.76 (s, 2H), 7.55 (t, *J* = 6.8 Hz, 4H), 7.41 (d, *J* = 6.9 Hz, 1H), 7.36 (t, *J* = 7.2 Hz, 2H), 7.14 (d, *J* = 7.3 Hz, 1H), 6.96 (t, *J* = 7.6 Hz, 1H), 6.77 (d, *J* = 8.5 Hz, 2H), 6.72 (d, *J* = 7.9 Hz, 1H), 6.53 (t, *J* = 7.4 Hz, 1H), 4.80 (s, 1H), 4.50 (s, 1H), 3.76 (s, 3H), 3.36 (s, 1H), 2.30 (d, *J* = 14.1 Hz, 1H), 1.46 (d, *J* = 13.4 Hz, 1H), 1.37 – 1.28 (m, 1H), 1.20 – 1.15 (m, 1H), 1.13 – 0.96 (m, 4H), 0.77 (t, *J* = 6.5 Hz, 3H), 0.43 (s, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 177.0, 162.9, 157.5, 140.7, 133.4, 132.2, 132.1, 130.0, 129.5, 128.9, 128.7, 127.8, 125.2, 124.7 (³*J*_{C-F} = 3.8 Hz), 124.4 (¹*J* _{C-F} = 272.6 Hz), 121.5, 114.0, 113.3, 111.8, 72.9, 55.6, 49.5, 49.0, 45.1, 38.6, 32.5, 25.9, 23.5, 14.1; ¹⁹F NMR (565 MHz, CDCl₃): δ 62.4; HRMS (ESI): Calcd for C₃₈H₃₇F₃N₂O₄S [M + Na]+ 697.2318, found 673.2308.

4-methoxy-N-(11'-phenyl-4'-(4-(trifluoromethyl)phenyl)-1',2'-dihydro-4'H,9b'H-spiro[cycloh exane-1,3'-[4a,1](azenometheno)dibenzo[b,d]furan]-9b'-yl)benzenesulfonamide (3ab):

According to the general procedure, a mixture consisting of oxime **4m** (0.2 mmol, 72.2 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under an argon atmosphere was stirred at 60 °C for 12 h to afford **3aa** (60.1 mg). Yellow solid (44% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 252 - 255 °C; ¹H **NMR** (600 MHz, CDCl₃): δ 7.89 (d, J = 7.3 Hz, 2H), 7.67 – 7.53 (m, 4H), 7.50 – 7.37 (m, 3H), 7.11 (d, J = 7.2 Hz, 1H), 7.00 (t, J = 7.5 Hz, 1H), 6.81 (d, J = 8.4 Hz, 2H), 6.76 (d, J = 7.9 Hz, 1H), 6.54 (t, J = 7.2 Hz, 1H), 4.98 (s, 1H), 4.54 (s, 1H), 3.82 (s, 3H), 3.36 (s, 1H), 2.07 (dd, J = 32.1, 13.8 Hz, 2H), 1.40–1.50 (m, 2H), 1.40 – 1.19 (m, 4H), 1.10–1.01 (m, 1H), 1.00–0.90 (m, 1H),

0.70-0.60(m, 1H), 0.39 (t, J = 12.0 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 176.5, 162.9, 157.5, 140.3, 133.3, 132.5, 132.0, 131.9, 129.9, 129.0, 128.9, 128.7, 127.6, 125.1, 124.6, 124.5 (¹*J*_{C-F} = 273.3 Hz), 121.3, 114.0, 113.2, 111.8, 77.0, 72.8, 55.7, 52.1, 49.1, 41.0, 38.9, 33.0, 26.5, 24.9, 22.0, 21.5; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.3; HRMS (ESI): Calcd for C₃₈H₃₆F₃N₂O₄S [M + H]+ 673.2342, found 673.2343.

N-(3,11-diphenyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1-(azenometheno) dibenzo[b,d]furan-9b-yl)-4-methoxybenzenesulfonamide (3ac):

According to the general procedure, a mixture consisting of oxime **4n** (0.2 mmol, 73.8 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3ab** (41 mg). Yellow solid (30% yield; eluent = pentane/ethyl acetate = 10:1); Mp = 254-256 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.98 (d, *J* = 7.4 Hz, 2H), 7.72 (d, *J* = 8.8 Hz, 2H), 7.54 (t, *J* = 7.2 Hz, 1H), 7.51–7.41 (m, 6H), 7.23 (d, *J* = 7.3 Hz, 1H), 7.12-7.01 (m, 4H), 6.90 (d, *J* = 8.8 Hz, 2H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.81 (d, *J* = 7.2 Hz, 2H), 6.66 (t, *J* = 7.5 Hz, 1H), 5.02 (s, 1H), 4.79 (s, 1H), 3.86 (s, 3H), 3.65 (d, *J* = 9.7 Hz, 1H), 2.70–2.60 (m, 2H), 1.96 (dd, *J* = 7.6, 3.6 Hz, 1H); ¹³C NMR (151 MHz, CDCl₃): δ 175.6, 163.2, 157.5, 141.7, 141.3, 133.2, 132.2, 131.6, 130.4, 130.1, 129.4, 129.1 (q, ²*J*_{C-F} = 32.3 Hz), 128.9, 128.8, 128.4, 128.3,128.0, 126.8, 125.0 (q, ³*J*_{C-F} = 3.2 Hz), 124.3 (q, ¹*J*_{C-F} = 273.3 Hz), 121.7, 114.3, 113.0, 112.0, 72.5, 55.7, 50.0, 47.7, 46.9, 28.9; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.5; HRMS (ESI): Calcd for C₃₉H₃₂F₃N₂O₄S [M+H]+ 681.2029, found 681.2030.

4-methoxy-N-(11-phenyl-3-propyl-4-(4-(trifluoromethyl)phenyl)-1,2,3,4-tetrahydro-9bH-4a,1 -(azenometheno)dibenzo[b,d]furan-9b-yl)benzenesulfonamide (3ad):

According to the general procedure, a mixture consisting of oxime **4o** (0.2 mmol, 69.8 mg), azadiene **1n** (0.3 mmol, 137.7 mg), Pd(PPh₃)₂Cl₂ (0.02 mmol, 14.2 mg), NaOAc (0.1 mmol, 8.2 mg) and MeCN (2 mL) under a N₂ atmosphere was stirred at 60 °C for 12 h to afford **3ac** (42.3 mg). Yellow solid (32% yield; eluent = pentane/ethyl acetate = 10:1); Mp =247 - 250 °C; ¹H NMR (600 MHz, CDCl₃): δ 7.90 (d, J = 7.3 Hz, 2H), 7.69 - 7.53 (m, 6H), 7.53 - 7.39 (m, 3H), 7.03 (d, J = 7.2 Hz, 1H), 6.97 (t, J = 7.4 Hz, 1H), 6.80 (d, J = 8.5 Hz, 2H), 6.74 (d, J = 7.9 Hz, 1H), 6.49 (t, J = 7.3 Hz, 1H), 5.06 (s, 1H), 4.57 (s, 1H), 3.82 (s, 3H), 3.19 (d, J = 9.9 Hz, 1H), 2.10 (t, J = 11.9 Hz, 1H), 1.89 - 1.80 (m, 1H), 1.67 - 1.62 (m, 1H), 1.26 - 1.08 (m, 3H), 0.97 - 0.86 (m, 1H), 0.67

(t, J = 6.5 Hz, 3H); ¹³C NMR (151 MHz, CDCl₃): δ 175.8, 162.8, 157.6, 142.7, 133.3, 132.1, 131.7, 130.5, 129.8, 128.9, 128.7, 128.6, 127.8, 125.2 (${}^{3}J_{C-F} = 3.9$ Hz), 124.9, 121.3, 114.01, 112.8, 111.8, 71.8, 55.6, 49.5, 46.3, 38.4, 35.5, 25.9, 19.9, 14.1; ¹⁹F NMR (376 MHz, CDCl₃): δ -62.4; HRMS (ESI): Calcd for C₃₆H₃₄F₃N₂O₄S [M + H]⁺ 647.2186, found 647.2189.

6. Reduction of Product 3b

A 10 mL of Schlenk tube equipped with a stirrer bar was charged with **3b** (0.2 mmol, 112.8 mg), NaBH₃CN (2.4 mmol, 150.8 mg), followed by addition of AcOH (2.4 mmol, 144.1 mg) and MeOH (2 mL). The Schlenk tube was sealed with a Teflon screwcap and the reaction mixture was stirred at room temperature for 36 h. The reaction was neutralized with 1M NaOH, and extracted with EA. The organic phases were combined, dried and subjected to column chromatography on silica gel to afford the product **5** (104.1 mg).

5: White solid; (92% yield, eluent = petroleum ether/EtOAc (8:1)); Mp = 237-238 °C; **1H NMR** (600 MHz, CDCl₃):f δ 7.71 (s, 2H), 7.59 (d, J = 8.7 Hz, 2H), 7.37–7.28 (m, 8H), 7.18 (t, J = 6.0 Hz, 1H), 7.11 (t, J = 7.6 Hz, 1H), 6.86–6.80 (m, 3H), 6.71 (t, J = 7.4 Hz, 1H), 4.79 (s, 1H), 4.50 (d, J = 5.0 Hz, 1H), 3.86 (s, 1H), 3.84 (s, 3H), 3.37 (s, 1H), 2.13 (dd, J = 15.0, 4.1 Hz, 1H), 1.88 (d, J = 8.2 Hz, 1H), 1.71 (d, J = 14.9 Hz, 1H), 0.95 (s, 3H), 0.55 (s, 3H); ¹³C NMR (151 MHz, DMSO- d_6): δ 162.1, 159.3, 142.4, 139.6, 135.4, 131.3, 129.7, 129.4, 128.5, 128.2, 127.7, 126.8, 126.6, 126.1, 125.3, 120.9, 114.1, 112.5, 106.4, 72.6, 62.0, 56.1, 52.9, 45.2, 38.1, 35.6, 34.0, 30.0; **HRMS** (**ESI**): Calcd for C₃₄H₃₄N₂O₄S [M+H]⁺ 567.2312, found 567.2311.

7. Computational Studies

All the calculations in this study were performed using the Gaussian 16 program package.^[3] All the geometries were optimized at the M06-2X^[4]/Def2-SVP level, and the solvent effect was utilized the polarizable continuum model using integral equation formalism model (IEFPCM) in acetonitrile solvent.^[5] All the optimized stationary points had been identified as minima (zero imaginary frequencies) and transition states (one imaginary frequency), via the vibrational analysis. The solution-translational entropy correction has been calculated with THERMO program.^[6]

In order to understand the origin of diastereoselectivity, the corresponding transition state **TS3** (**RS**) have been located at the same level (Scheme S1). The calculated results show the free energy barrier for the **TS3** (**RS**) would be higher than that of **TS3** (**RR**). Furthermore, the possible hydrogen bond C-H…N would play an important role in the diastereoselectivity.

Species	G(a,u)	Species	G(a,u)
4a	-1056.07445	CO ₂	-188.37136
CH ₂ O	-114.34964	<i>t</i> BuO∙	-232.60698
M1	-520.76952	TS1	-520.74816
M2	-520.76747	1b	-1600.51672
TS2	-2121.28258	M3	-2121.3228
TS3 (RR)	-2121.29294	M4	-2121.32515
TS4	-2121.29057	M5	-2121.32143
TS5	-2121.2904	Pre-P	-2121.33034
TS6	-2121.28552	M6	-2121.32800
TS7	-2121.28814	M7	-2121.31055
TS8	-2121.2887	TS3 (RS)	-2121.29046

Table S10. The calculated free energies for the species in the calculation.

Table S11. The coordinates for the calculated species

4 a				1b			
С	-2.79382	0.01356	0.22618	С	-4.84230	2.33347	-0.12061
С	-1.37663	-0.35383	0.57431	С	-6.03637	2.42727	-0.85454
С	-0.37049	0.63066	-0.03816	С	-6.67329	3.63243	-1.12080
Н	-1.28350	-0.35077	1.66823	С	-6.06811	4.78263	-0.62339
Н	-1.16511	-1.37432	0.22506	С	-4.86710	4.72596	0.10316
С	1.08871	0.18201	0.08232	С	-4.24286	3.51162	0.35621
Н	-0.60910	0.77997	-1.10470	С	-4.53910	0.89910	-0.04798
Н	-0.50005	1.61267	0.44931	С	-5.63427	0.26127	-0.81953
Н	1.18231	-0.78208	-0.44973	Н	-7.59943	3.66057	-1.69335
С	2.00760	1.19402	-0.59882	Н	-6.53595	5.75051	-0.80978
Н	1.94220	2.17127	-0.09341	Н	-4.41284	5.64844	0.46433
Н	3.05657	0.86572	-0.56154	Н	-3.29460	3.47396	0.88437
Н	1.73206	1.34082	-1.65363	0	-6.50002	1.22288	-1.27243
С	1.50841	-0.03348	1.53511	С	-5.76599	-1.05836	-1.04772
Н	1.37983	0.89686	2.11114	Н	-4.97015	-1.65563	-0.59551
Н	0.91892	-0.82049	2.02703	С	-6.79417	-1.77569	-1.79380
Н	2.56760	-0.32317	1.59663	С	-7.88030	-1.14595	-2.43293
Ν	-3.47066	0.88523	0.87579	С	-6.68176	-3.17580	-1.87480
С	-3.47121	-0.60065	-0.94994	С	-8.81764	-1.90385	-3.12766
С	-4.86403	-0.50550	-1.10142	Н	-7.98640	-0.06382	-2.38373
С	-2.72991	-1.27144	-1.93177	С	-7.62219	-3.92889	-2.57069
С	-5.49575	-1.06939	-2.20460	Н	-5.84215	-3.67082	-1.38269
Н	-5.44344	0.01237	-0.33709	С	-8.69390	-3.29354	-3.19968
С	-3.36527	-1.83091	-3.04132	Н	-9.65455	-1.40574	-3.61935
Н	-1.64547	-1.35433	-1.84424	Н	-7.51875	-5.01349	-2.62277
С	-4.74815	-1.73434	-3.18038	Н	-9.43400	-3.87982	-3.74643
Н	-6.57976	-0.99394	-2.30365	Ν	-3.64645	0.15399	0.51242
Н	-2.77272	-2.34561	-3.79903	S	-2.37251	0.72643	1.41602
Н	-5.24469	-2.17763	-4.04482	0	-1.54614	-0.44325	1.66954
0	-2.77247	1.43183	1.92508	0	-1.74384	1.89114	0.79355
С	-3.62934	2.24235	2.69054	С	-3.12312	1.22880	2.93881
Н	-4.34333	1.64519	3.27547	С	-2.88358	2.50236	3.44107
Н	-4.18414	2.93941	2.04175	С	-3.89143	0.30252	3.65700
С	-2.79013	3.03906	3.66965	С	-3.43357	2.88160	4.66517
0	-3.01633	3.15534	4.83508	Н	-2.25657	3.19976	2.88376
0	-1.76776	3.62741	3.01225	С	-4.44184	0.67696	4.86868
0	-0.94362	4.36251	3.88226	Η	-4.05717	-0.70152	3.26259
С	0.34302	3.70303	3.97600	C	-4.21986	1.96979	5.38210
С	0.16091	2.26517	4.44647	Н	-3.23806	3.88181	5.04694
С	1.04366	3.77950	2.62576	Н	-5.05006	-0.01486	5.45150
С	1.05069	4.54858	5.02535	0	-4.79475	2.24014	6.56182
Н	-0.41382	2.24037	5.38265	С	-4.61083	3.52002	7.13157

Н	-0.36483	1.66647	3.68763	Н	-5.01012	4.30731	6.47407		
Н	1.14373	1.80550	4.62045	Н	-5.16320	3.52151	8.07642		
Н	1.15276	4.82725	2.31247	Н	-3.54637	3.71627	7.33155		
Н	2.04245	3.32494	2.69138	CO	2				
Н	0.46591	3.24064	1.86178	С	0.48651	0.34022	0.79760		
Н	2.07283	4.17377	5.16862	0	1.03221	0.21480	1.80915		
Н	1.10295	5.59696	4.70090	0	-0.05920	0.46564	-0.21394		
Н	0.51575	4.49730	5.98339	CH	20				
<i>t</i> BuO [.]			С	1.81295	-0.13252	-0.09292			
С	-4.87513	0.11519	-0.01991	0	3.01266	-0.13246	-0.09296		
С	-3.32769	0.10196	0.00450	Н	1.22159	0.80995	-0.09293		
Н	-5.24962	1.14718	-0.01574	Н	1.22153	-1.07495	-0.09289		
Н	-5.24816	-0.40494	-0.91181	M1					
Н	-5.23510	-0.40415	0.87891	С	-2.33314	-0.41932	0.25229		
С	-2.81228	-1.33986	-0.03434	С	-1.07799	0.42465	0.08957		
С	-2.81214	0.85837	1.23169	С	0.00422	-0.31100	-0.70480		
Н	-1.71351	-1.34533	-0.07254	Н	-1.35751	1.37140	-0.39602		
Н	-3.13077	-1.89188	0.86113	Н	-0.70360	0.67345	1.09278		
Н	-3.19705	-1.85215	-0.92693	С	1.31400	0.47229	-0.84063		
Н	-3.12933	0.35841	2.15765	Н	0.20794	-1.27236	-0.20562		
Н	-1.71338	0.89514	1.21662	Н	-0.36960	-0.55699	-1.71395		
Н	-3.19781	1.88728	1.22972	Н	1.67346	0.70521	0.17741		
0	-2.98851	0.76685	-1.15475	С	2.36797	-0.38968	-1.53328		
TS1				Н	2.04482	-0.64009	-2.55641		
С	0.70506	1.08727	0.37761	Н	3.32915	0.14001	-1.60299		
С	-0.71931	0.65272	0.72036	Н	2.53432	-1.33206	-0.99113		
С	-1.59703	0.56946	-0.52503	С	1.11783	1.78845	-1.59229		
Н	-0.65812	-0.32000	1.23765	Н	0.70140	1.59725	-2.59522		
Н	-1.14780	1.35785	1.44565	Н	0.43672	2.47224	-1.06585		
С	-0.89474	-0.13738	-1.66817	Н	2.07705	2.31088	-1.72095		
Н	-2.54680	0.06201	-0.27647	Ν	-2.63982	-0.85304	1.38933		
Н	-1.85599	1.59161	-0.84431	С	-3.17446	-0.74506	-0.94680		
Н	0.27075	0.44078	-1.49802	С	-3.08384	0.00941	-2.12240		
С	-0.63364	-1.61027	-1.44210	С	-4.08267	-1.81199	-0.88505		
Н	-1.58354	-2.17437	-1.44679	С	-3.89423	-0.29495	-3.21639		
Н	0.00385	-2.02680	-2.23567	Н	-2.38269	0.84238	-2.19284		
Н	-0.13965	-1.79751	-0.47702	С	-4.88780	-2.11505	-1.97878		
С	-1.41550	0.19951	-3.04543	Н	-4.14670	-2.40531	0.02848		
Н	-2.44087	-0.19291	-3.17395	С	-4.79618	-1.35584	-3.14774		
Н	-1.45416	1.28670	-3.20722	Н	-3.81761	0.30130	-4.12664		
Н	-0.79020	-0.24898	-3.83102	Н	-5.58737	-2.95026	-1.92177		
Ν	1.20816	0.97830	-0.77961	Н	-5.42585	-1.59378	-4.00633		
С	1.55297	1.64016	1.48999	M2					
С	1.18089	1.49778	2.83230	С	-0.03281	-0.31669	-0.43979		
С	2.75445	2.29616	1.18386	(С	-0.87387	0.93375	-0.60720	
----	-----------	----------	----------	---	----	----------	----------	----------	--
С	1.99610	1.99876	3.84858		С	-2.33725	0.69568	-0.96753	
Н	0.25664	0.98445	3.09957]	Н	-0.79840	1.52686	0.31914	
С	3.56196	2.80273	2.19713]	Η	-0.40380	1.55247	-1.38798	
Н	3.03965	2.40273	0.13660		С	-3.16335	-0.02802	0.05831	
С	3.18494	2.65442	3.53443]	Η	-2.79411	1.68747	-1.16363	
Н	1.69741	1.87492	4.89060]	Н	-2.39925	0.16087	-1.93211	
Н	4.49080	3.31713	1.94541]	Н	-1.48064	-1.50488	-0.72205	
Н	3.81843	3.05080	4.32941	(С	-2.87491	0.17210	1.51135	
TS	2]	Н	-3.07995	1.21427	1.82943	
С	-5.55180	-0.27421	0.03628]	Η	-3.50019	-0.48475	2.13255	
С	-4.18612	-0.92070	0.18439]	Н	-1.82060	-0.03091	1.75871	
С	-3.05095	0.09291	0.36432	(С	-4.53880	-0.44223	-0.35283	
Н	-4.22110	-1.60950	1.04406]	Η	-5.24128	0.41569	-0.33395	
Н	-4.00622	-1.54898	-0.70251]	Н	-4.55273	-0.83832	-1.37986	
С	-1.70819	-0.55270	0.51569]	Н	-4.95189	-1.20655	0.32209	
Н	-3.03625	0.76659	-0.50808	1	N	-0.47292	-1.50753	-0.53706	
Н	-3.27105	0.70686	1.25167		С	1.42569	-0.11972	-0.14064	
Н	-4.90928	1.51004	0.22150	(С	1.99151	1.15432	-0.00102	
С	-1.10618	-1.14556	-0.71486		С	2.25238	-1.24336	0.00746	
Н	-0.08572	-1.51322	-0.54553	(С	3.35106	1.30024	0.28041	
Н	-1.71057	-2.01709	-1.02970]	Η	1.37873	2.04980	-0.10735	
Н	-1.11007	-0.43306	-1.55429		С	3.60713	-1.09859	0.28675	
С	-1.37465	-1.19080	1.82459]	Η	1.80348	-2.23061	-0.10223	
Н	-0.29857	-1.40545	1.89882	(С	4.16212	0.17663	0.42432	
Н	-1.68898	-0.56656	2.67464]	Н	3.77548	2.29963	0.38783	
Н	-1.91121	-2.15555	1.91287]	Н	4.23660	-1.98313	0.39735	
Ν	-5.77203	0.97859	0.07662]	Η	5.22481	0.29224	0.64346	
С	-6.71758	-1.19562	-0.17636	1	M3				
С	-6.57385	-2.58896	-0.18124	(С	-1.66209	3.06906	0.84255	
С	-7.99383	-0.64847	-0.37743	(С	-2.59056	2.12097	0.10891	
С	-7.68125	-3.41539	-0.37930	(С	-3.25934	1.05620	0.97458	
Н	-5.59691	-3.04893	-0.02959]	Η	-3.35808	2.72545	-0.40124	
С	-9.09685	-1.47160	-0.57656]	Η	-1.99018	1.66470	-0.69194	
Н	-8.09687	0.43651	-0.37372	(С	-3.73449	-0.20543	0.22192	
С	-8.94397	-2.86063	-0.57763	1	Η	-2.57581	0.72966	1.77741	
Н	-7.55262	-4.49871	-0.37889]	Н	-4.13183	1.49280	1.48731	
Η	-10.08268	-1.02993	-0.73165]	Η	-2.08005	2.41112	2.57347	
Н	-9.80826	-3.50821	-0.73368	0	С	-4.66133	0.17771	-0.93484	
C	2.13346	0.50388	-1.62208	1	Η	-5.08349	-0.71735	-1.41404	
С	1.36259	1.50656	-2.23468	1	Η	-5.49630	0.78585	-0.55496	
С	1.56807	1.93785	-3.53935	1	Η	-4.13604	0.75974	-1.70691	
C	2.59651	1.32012	-4.24488	(С	-4.50671	-1.08394	1.20986	
C	3.38287	0.30970	-3.66318]	H	-4.89449	-1.98928	0.72339	

С	3.16135	-0.10976	-2.35835	Н	-3.88374	-1.38429	2.06460	
С	1.60905	0.38887	-0.26307	Н	-5.36629	-0.51844	1.59922	
С	0.52899	1.34789	-0.20952	Ν	-1.49724	3.10790	2.10465	
Н	0.94696	2.71929	-3.97562	С	-0.88670	4.03438	-0.00487	
Н	2.79307	1.62468	-5.27391	С	-1.14550	4.20066	-1.37079	
Н	4.17474	-0.15662	-4.24953	С	0.12762	4.80063	0.58671	
Н	3.75586	-0.90902	-1.92318	С	-0.41627	5.12113	-2.12497	
0	0.40563	1.99865	-1.40652	Н	-1.92338	3.61813	-1.86516	
С	-0.33343	1.49771	0.85043	С	0.85896	5.71379	-0.16487	
Н	0.01480	0.98294	1.74768	Н	0.32933	4.65800	1.64801	
С	-1.38857	2.49255	1.02426	С	0.58709	5.87911	-1.52588	
С	-1.97585	3.19345	-0.04545	Н	-0.63371	5.24213	-3.18732	
С	-1.89016	2.69893	2.32235	Н	1.64784	6.29980	0.30988	
С	-3.04215	4.05921	0.18391	Н	1.16015	6.59556	-2.11691	
Н	-1.60750	3.04262	-1.05937	С	0.50973	-0.78776	1.89534	
С	-2.95236	3.56967	2.54764	С	-0.37856	-1.70984	2.46204	
Н	-1.44007	2.16052	3.15947	С	-0.15687	-2.38604	3.64929	
С	-3.53628	4.24866	1.47678	С	1.04004	-2.09968	4.30420	
Н	-3.49584	4.58873	-0.65526	С	1.94988	-1.16995	3.77882	
Н	-3.32963	3.71542	3.56078	С	1.69981	-0.50393	2.58186	
Н	-4.37333	4.92678	1.64889	С	-0.13749	-0.35552	0.64532	
Ν	1.86872	-0.34323	0.79750	С	-1.37848	-1.06821	0.61783	
S	2.79067	-1.69009	0.76155	Н	-0.88480	-3.09607	4.03993	
0	2.52400	-2.37694	2.02203	Н	1.26667	-2.60357	5.24454	
0	2.59006	-2.45384	-0.47672	Н	2.87064	-0.95755	4.32259	
С	4.47712	-1.13474	0.78802	Н	2.39789	0.23727	2.20251	
С	5.41608	-1.76110	-0.02362	0	-1.50459	-1.85388	1.68685	
С	4.85981	-0.13082	1.68528	С	-2.47729	-0.95227	-0.37551	
С	6.75527	-1.37662	0.03446	Н	-2.06024	-0.28872	-1.14481	
Н	5.09982	-2.55095	-0.70738	С	-2.79828	-2.26776	-1.07140	
С	6.18680	0.25712	1.74315	С	-3.00124	-3.46668	-0.37503	
Н	4.11638	0.34722	2.32575	С	-2.91236	-2.27619	-2.46722	
С	7.14494	-0.36123	0.91816	С	-3.31762	-4.63973	-1.06064	
Н	7.47892	-1.87201	-0.61036	Н	-2.91003	-3.48779	0.71103	
Н	6.51881	1.04213	2.42283	С	-3.23465	-3.44674	-3.15315	
0	8.40454	0.08373	1.04168	Н	-2.74670	-1.35058	-3.02342	
С	9.41261	-0.49589	0.23979	С	-3.43880	-4.63361	-2.45029	
Н	9.20230	-0.34779	-0.83056	Н	-3.47127	-5.56477	-0.50273	
Н	10.34625	0.01323	0.49873	Н	-3.32083	-3.43065	-4.24067	
Н	9.51447	-1.57242	0.44583	Н	-3.68723	-5.55218	-2.98403	
TS3	6 (RR)			Ν	0.16168	0.44685	-0.35943	
С	-3.52409	-0.33679	-0.29551	S	1.59879	1.26961	-0.45176	
С	-3.73512	1.08301	-0.74387	0	1.50801	2.06015	-1.66916	
С	-3.56114	2.13688	0.36370	0	1.91537	1.95645	0.80200	

Н	-2.99697	1.25800	-1.53887	С	2.80397	-0.00832	-0.70337	
Н	-4.72488	1.19809	-1.20043	С	4.00063	0.03365	0.00274	
С	-2.36748	2.04659	1.34578	С	2.57418	-0.99330	-1.67261	
Н	-3.52498	3.11208	-0.14488	С	4.98525	-0.92360	-0.23808	
Н	-4.47282	2.16107	0.98206	Н	4.16746	0.81779	0.74315	
Н	-2.18686	-1.60334	0.42314	С	3.54533	-1.94955	-1.90860	
С	-2.62393	1.05545	2.50050	Н	1.63604	-1.01110	-2.23053	
Н	-1.93160	1.27677	3.32670	С	4.75932	-1.92173	-1.19579	
Н	-3.64943	1.17668	2.88129	Н	5.91688	-0.88067	0.32314	
Н	-2.47740	0.00497	2.23445	Н	3.39765	-2.73489	-2.65006	
С	-2.27239	3.43039	2.01427	0	5.64170	-2.88466	-1.49776	
Н	-1.41765	3.47226	2.70643	С	6.89463	-2.88785	-0.84487	
Н	-2.15846	4.23789	1.27838	Н	6.77642	-3.01971	0.24155	
Н	-3.18879	3.61842	2.59361	Н	7.45533	-3.73427	-1.25373	
Ν	-2.34419	-0.65655	0.06914	Н	7.44555	-1.95544	-1.04211	
С	-4.65196	-1.30078	-0.24685	M4				
С	-5.94736	-0.84627	0.03477	С	-2.07397	2.11693	-0.06466	
С	-4.42607	-2.67081	-0.44353	С	-3.52396	0.03611	-1.97015	
С	-6.99742	-1.75524	0.14512	С	-2.06614	0.23909	-2.41371	
Н	-6.13529	0.21745	0.19066	Н	-3.77735	-1.02954	-1.89087	
С	-5.48151	-3.57295	-0.35290	Н	-4.18843	0.48350	-2.72486	
Н	-3.42627	-3.03014	-0.69606	Н	-2.02829	0.89151	1.57180	
С	-6.76658	-3.11692	-0.05184	С	-1.75249	1.75125	-2.55249	
Н	-8.00013	-1.39781	0.38193	Н	-0.97402	1.88362	-3.32138	
Η	-5.30220	-4.63531	-0.52179	Н	-2.65722	2.25475	-2.93023	
Η	-7.59189	-3.82622	0.02412	С	-1.91242	-0.36183	-3.81869	
С	0.64846	-1.09488	-1.07089	Н	-0.85931	-0.35663	-4.13882	
С	-0.05489	-0.37397	-2.05350	Н	-2.27913	-1.39534	-3.86734	
С	0.02303	-0.62696	-3.41109	Н	-2.49175	0.24207	-4.53352	
С	0.85794	-1.67497	-3.80587	Ν	-1.73504	0.95244	0.60178	
С	1.56542	-2.42731	-2.85611	С	-3.16114	2.90667	0.42507	
С	1.47109	-2.15588	-1.49374	С	-3.40894	4.22249	-0.05856	
С	0.28524	-0.47894	0.19527	С	-4.06061	2.40833	1.41130	
С	-0.75161	0.48382	-0.14416	С	-4.46025	4.98387	0.42836	
Η	-0.54308	-0.02999	-4.12564	Н	-2.76044	4.65356	-0.82071	
Η	0.95293	-1.91379	-4.86580	С	-5.10916	3.18306	1.88998	
Η	2.19866	-3.24997	-3.19065	Н	-3.95852	1.38521	1.77718	
Η	2.00014	-2.76785	-0.76699	С	-5.32049	4.47963	1.41195	
0	-0.80947	0.62133	-1.49327	Н	-4.61357	5.99078	0.03528	
С	-0.96821	1.72703	0.70974	Н	-5.78224	2.76317	2.64009	
Η	-0.33833	1.51387	1.58593	Н	-6.14595	5.08382	1.78960	
С	-0.32144	2.91222	0.00467	С	-0.51658	-2.07230	1.51011	
С	-0.85223	3.47448	-1.16492	С	-1.87133	-2.24064	1.17872	
С	0.82837	3.48697	0.55608	С	-2.61206	-3.33360	1.62596	

С	-0.25531	4.58687	-1.75453	С	-1.95482	-4.25768	2.42972	
Η	-1.73674	3.03728	-1.62999	С	-0.60134	-4.10507	2.78214	
С	1.43260	4.59865	-0.03432	С	0.12759	-3.01534	2.33022	
Н	1.24988	3.06507	1.47203	С	-0.10091	-0.84735	0.84747	
С	0.88963	5.15391	-1.19106	С	-1.33829	-0.31446	0.07728	
Η	-0.68575	5.01209	-2.66260	Н	-3.65969	-3.44364	1.34854	
Н	2.32758	5.03163	0.41529	Н	-2.50547	-5.12559	2.79665	
Η	1.35652	6.02383	-1.65544	Н	-0.12254	-4.85215	3.41474	
Ν	0.61825	-0.63232	1.47989	Н	1.17472	-2.89738	2.60099	
S	1.75150	-1.68871	1.94956	0	-2.37758	-1.27167	0.39877	
0	1.90521	-1.52038	3.39291	С	-1.01625	-0.40008	-1.44271	
0	1.48562	-3.05669	1.47940	Н	-0.09292	0.18552	-1.55312	
С	3.26802	-1.16031	1.16848	С	-0.60331	-1.83348	-1.76086	
С	4.20711	-2.11863	0.80429	С	-1.51533	-2.89665	-1.83307	
С	3.53289	0.20082	0.98760	С	0.75501	-2.11521	-1.94977	
С	5.42617	-1.73006	0.25004	С	-1.07843	-4.19638	-2.08160	
Н	3.98102	-3.17728	0.94394	Н	-2.57952	-2.71344	-1.68204	
С	4.73923	0.59342	0.43042	С	1.19752	-3.41544	-2.19480	
Н	2.78659	0.94553	1.27001	Н	1.48237	-1.30337	-1.87445	
С	5.69642	-0.36768	0.06079	С	0.28050	-4.46205	-2.26053	
Н	6.14936	-2.49305	-0.03259	Н	-1.80566	-5.00833	-2.13306	
Н	4.97045	1.64633	0.26629	Н	2.26351	-3.60736	-2.32699	
0	6.83723	0.10536	-0.46901	Н	0.62066	-5.48144	-2.44957	
С	7.83696	-0.81406	-0.85383	Ν	0.98111	-0.17254	0.73726	
Н	7.47216	-1.49333	-1.63986	S	2.39139	-0.73821	1.45285	
Н	8.67029	-0.22197	-1.24532	0	2.26119	-0.62632	2.90294	
Н	8.18394	-1.40728	0.00637	0	2.73833	-2.03399	0.87413	
TS4				С	3.55896	0.45406	0.88991	
С	2.83511	0.20716	-0.58300	С	4.32230	0.17202	-0.23731	
С	1.38905	2.78353	-1.64111	С	3.69910	1.66190	1.58097	
С	0.39646	1.61193	-1.73570	С	5.24166	1.11074	-0.70089	
Η	0.87008	3.70986	-1.35960	Н	4.20447	-0.78515	-0.74711	
Н	1.83480	2.94374	-2.63497	С	4.61124	2.59568	1.12207	
Н	2.56081	0.93064	1.29028	Н	3.10116	1.85729	2.47232	
С	1.04327	0.41064	-2.44489	С	5.38668	2.32948	-0.02259	
Η	0.26218	-0.34997	-2.61605	Н	5.83790	0.88050	-1.58183	
Η	1.36134	0.75950	-3.43931	Н	4.75341	3.54816	1.63286	
С	-0.74470	2.07817	-2.65508	0	6.24204	3.29308	-0.39022	
Н	-1.49889	1.28772	-2.78508	C	7.04552	3.09177	-1.53489	
Н	-1.24297	2.96983	-2.25102	Н	6.42631	2.94722	-2.43339	
Н	-0.34042	2.33377	-3.64566	Н	7.64964	3.99685	-1.65212	
N	2.09969	0.58727	0.45020	Н	7.71053	2.22420	-1.40550	
С	4.30216	0.20701	-0.38057	Н	-3.74784	0.50396	-1.00262	
С	5.14371	0.57449	-1.43952	С	-1.26864	2.45344	-1.27641	

	С	4.85635	-0.14623	0.85858	Н	-0.22389	2.17673	-1.06901
	С	6.52338	0.60207	-1.25542	Н	-1.26303	3.53629	-1.45052
	Н	4.71130	0.86202	-2.39929	M5			
	С	6.23727	-0.13153	1.03277	С	2.74983	0.84583	-0.78839
	Н	4.21054	-0.46747	1.67841	С	0.67076	3.23039	-1.62163
	С	7.07034	0.24638	-0.02168	С	-0.02393	1.86683	-1.75434
	Н	7.17355	0.90255	-2.07761	Н	-0.03428	3.99661	-1.27157
	Н	6.66502	-0.42383	1.99234	Н	1.03030	3.53808	-2.61576
	Н	8.15210	0.26011	0.11845	Н	2.44921	1.21192	1.18901
	С	0.00258	-1.54585	1.91709	С	0.88410	0.90901	-2.54542
	С	0.02900	-0.36663	2.69682	Н	0.35561	-0.05858	-2.66728
	С	-0.26709	-0.33590	4.04179	Н	0.95603	1.30466	-3.57148
	С	-0.60541	-1.55710	4.65126	С	-1.28056	2.07676	-2.61276
	С	-0.62887	-2.74618	3.91158	Н	-1.79586	1.12389	-2.80478
	С	-0.32826	-2.76367	2.54990	Н	-1.98980	2.76095	-2.12717
	С	0.35761	-1.16287	0.59747	Н	-0.99833	2.51438	-3.58182
	С	0.63904	0.34360	0.61710	Ν	1.94981	1.16821	0.30672
	Н	-0.23183	0.59990	4.59946	С	4.19334	0.64143	-0.47600
	Н	-0.84670	-1.57456	5.71471	С	5.19273	1.12361	-1.33177
	Н	-0.88569	-3.68076	4.41265	С	4.57144	-0.05880	0.67900
	Н	-0.34743	-3.68494	1.96940	С	6.53810	0.90083	-1.04464
	0	0.39334	0.72145	1.95848	Н	4.90866	1.69323	-2.21837
	С	-0.25297	1.17886	-0.37042	С	5.91721	-0.28298	0.96415
	Н	-1.06021	0.48354	-0.65375	Н	3.80647	-0.45778	1.35001
	С	-0.92601	2.35253	0.31911	С	6.90474	0.19696	0.10364
	С	-0.19624	3.31787	1.02622	Н	7.30491	1.28880	-1.71693
	С	-2.31150	2.51433	0.21542	Н	6.19381	-0.84129	1.85977
	С	-0.83181	4.41274	1.60637	Н	7.95853	0.02559	0.32832
	Н	0.88405	3.20492	1.13599	С	0.52572	-1.48577	1.73962
	С	-2.95379	3.61305	0.79128	С	0.30503	-0.36426	2.57048
	Н	-2.89650	1.77607	-0.33973	С	0.09456	-0.46393	3.93189
	С	-2.21522	4.56609	1.48903	С	0.11601	-1.75088	4.48921
	Н	-0.24467	5.15017	2.15609	С	0.35277	-2.88199	3.69386
	Н	-4.03520	3.72205	0.69153	С	0.56145	-2.77124	2.32199
	Н	-2.71287	5.42409	1.94369	С	0.67724	-0.97621	0.42871
	Ν	0.55366	-1.86544	-0.55781	С	0.62798	0.56377	0.49541
	S	-0.49644	-2.96516	-1.14104	Н	-0.07474	0.42725	4.53564
	0	-0.05406	-3.25502	-2.50460	Н	-0.04725	-1.87019	5.56097
	0	-0.68711	-4.10027	-0.23388	Н	0.37714	-3.86766	4.16020
	С	-2.03810	-2.08437	-1.20914	Н	0.74141	-3.64657	1.70018
	С	-2.77379	-1.92738	-0.03743	0	0.33652	0.79633	1.87594
	С	-2.41062	-1.42390	-2.38330	С	-0.48719	1.23606	-0.38842
	С	-3.87056	-1.06740	-0.01327	Н	-1.17792	0.42063	-0.66070
l	Н	-2.48587	-2.47098	0.86461	С	-1.30902	2.23749	0.40916

С	-3.50748	-0.57578	-2.36686	С	-0.70681	3.26675	1.14837	
Н	-1.83324	-1.57491	-3.29714	С	-2.70558	2.18130	0.37440	
С	-4.22673	-0.37099	-1.17671	С	-1.47786	4.20554	1.82782	
Н	-4.42896	-0.94276	0.91282	Н	0.38198	3.31926	1.19962	
Н	-3.82364	-0.03906	-3.26203	С	-3.48471	3.12515	1.04904	
0	-5.22759	0.52446	-1.23616	Н	-3.19617	1.39455	-0.20376	
С	-5.99052	0.76408	-0.07160	С	-2.87291	4.14036	1.77995	
Н	-5.35852	1.14972	0.74409	Н	-0.98684	4.99498	2.39957	
Н	-6.73716	1.51860	-0.33873	Н	-4.57341	3.06477	0.99905	
Н	-6.50090	-0.15151	0.26451	Н	-3.47644	4.87790	2.31126	
Н	2.20975	2.63379	-0.92926	Ν	0.87331	-1.71222	-0.72706	
С	2.25460	-0.26397	-1.79120	S	-0.17688	-2.90762	-1.29207	
Н	1.58469	-1.26887	-1.28627	0	0.20688	-3.07399	-2.68632	
Н	3.00290	-0.61677	-2.50368	0	-0.12682	-4.03294	-0.37434	
TS	5			С	-1.78389	-2.19570	-1.18632	
С	2.70470	1.06053	-0.58664	С	-2.42857	-2.16978	0.04877	
С	0.46881	3.37835	-1.60228	С	-2.34567	-1.59421	-2.31627	
С	-0.01090	1.96251	-1.96255	С	-3.64047	-1.49764	0.17673	
Н	-0.37031	3.99413	-1.24965	Н	-1.98388	-2.66976	0.91143	
Н	0.87672	3.85625	-2.50607	С	-3.55744	-0.93585	-2.19236	
Н	1.84105	1.58696	1.22205	Н	-1.82920	-1.64439	-3.27663	
С	1.15026	1.17900	-2.63796	С	-4.20087	-0.86461	-0.94349	
Н	0.73426	0.40001	-3.29744	Н	-4.13405	-1.46989	1.14634	
Н	1.60731	1.88163	-3.35724	Н	-4.02977	-0.45027	-3.04660	
С	-1.11093	2.11546	-3.02275	0	-5.33452	-0.15196	-0.90606	
Н	-1.51647	1.13677	-3.32526	С	-6.03201	-0.03901	0.31967	
Н	-1.93946	2.72860	-2.64025	Н	-5.40508	0.44082	1.08732	
Н	-0.70890	2.61193	-3.91868	Н	-6.90670	0.58758	0.12022	
Ν	1.66627	1.29501	0.26741	Н	-6.36172	-1.02531	0.67958	
С	4.07938	0.97880	-0.08015	Н	1.52637	3.20433	-0.93682	
С	5.16882	1.18402	-0.94500	С	2.29049	0.70729	-2.05160	
С	4.33791	0.68292	1.27143	Н	1.38601	-1.27639	-1.49213	
С	6.47561	1.08648	-0.47545	Н	3.02080	0.38331	-2.79579	
Н	4.98040	1.43971	-1.98943	Pre	-P			
С	5.64647	0.59552	1.73842	С	-2.91676	-0.06882	-0.18794	
Н	3.51030	0.47843	1.95497	С	-1.73096	-2.76241	-1.58764	
С	6.72032	0.79596	0.86860	С	-0.79165	-1.56524	-1.80842	
Н	7.30898	1.24977	-1.16057	Н	-1.15695	-3.65934	-1.31565	
Η	5.82990	0.35656	2.78718	Н	-2.25940	-2.97622	-2.52878	
Η	7.74477	0.72606	1.23712	Н	-2.25020	-0.89924	1.62639	
С	1.50458	-1.55422	0.49942	С	-1.62310	-0.33000	-2.30469	
С	0.91427	-0.99682	1.64708	Н	-1.05756	0.21422	-3.07791	
С	1.15086	-1.48566	2.92161	Н	-2.51116	-0.71041	-2.83136	
С	2.03034	-2.57004	3.03597	С	0.16931	-1.95671	-2.93940	

С	2.63115	-3.13994	1.90726	Н	0.89520	-1.15439	-3.14559	
С	2.36291	-2.64562	0.62964	Н	0.72881	-2.86776	-2.67968	
С	0.98813	-0.81457	-0.65722	Н	-0.39317	-2.15686	-3.86369	
С	0.46554	0.47193	0.04346	Ν	-2.01745	-0.66356	0.66688	
Н	0.67177	-1.03515	3.79099	С	-4.31353	-0.28588	-0.16253	
Н	2.24982	-2.97469	4.02521	С	-5.17991	0.34295	-1.10198	
Н	3.31492	-3.98079	2.02958	С	-4.90919	-1.15102	0.80001	
Н	2.80988	-3.10025	-0.25572	С	-6.54851	0.12856	-1.06265	
0	0.07892	0.05017	1.35161	Н	-4.76305	1.00514	-1.86253	
С	-0.63040	1.19541	-0.73335	С	-6.28200	-1.35194	0.82509	
Н	-1.26859	0.40483	-1.15482	Н	-4.28228	-1.67755	1.52170	
С	-1.54302	2.04993	0.12585	С	-7.11841	-0.71571	-0.09911	
С	-1.07520	2.83765	1.18626	Н	-7.18752	0.62542	-1.79519	
С	-2.91578	2.06148	-0.14763	Н	-6.70905	-2.02263	1.57336	
С	-1.95669	3.59454	1.95674	Н	-8.19615	-0.87944	-0.07514	
Н	-0.01020	2.86134	1.41806	С	-1.09138	1.97112	0.83919	
С	-3.80317	2.81909	0.61756	С	-0.49567	1.32009	1.92153	
Н	-3.29706	1.45281	-0.96972	С	-0.41923	1.89163	3.18117	
С	-3.32487	3.58663	1.67859	С	-0.98204	3.16359	3.33424	
Н	-1.57135	4.19560	2.78209	С	-1.60266	3.81978	2.26736	
Η	-4.87032	2.79435	0.38906	С	-1.65430	3.22672	1.00233	
Η	-4.01199	4.17752	2.28651	С	-0.88659	1.10126	-0.38129	
Ν	0.32665	-1.53830	-1.66544	С	-0.64858	-0.25787	0.37041	
S	-0.80747	-2.75905	-1.44771	Н	0.05236	1.36407	4.00997	
0	-1.14684	-3.15588	-2.80816	Н	-0.94352	3.64585	4.31229	
0	-0.26150	-3.72622	-0.51100	Н	-2.04410	4.80480	2.42304	
С	-2.24014	-2.04279	-0.70193	Н	-2.11281	3.74425	0.15755	
С	-2.27063	-1.84688	0.67549	0	-0.01298	0.06708	1.59737	
С	-3.29993	-1.62899	-1.51690	С	0.09218	-1.23678	-0.53235	
С	-3.35926	-1.20035	1.25650	Н	0.95579	-0.67921	-0.91862	
Н	-1.44463	-2.19891	1.29676	С	0.66197	-2.44611	0.17696	
С	-4.39204	-1.00668	-0.93804	С	-0.05262	-3.16815	1.14301	
Η	-3.25985	-1.80719	-2.59223	С	1.95963	-2.86647	-0.14035	
С	-4.41744	-0.76317	0.44786	С	0.51797	-4.27299	1.77341	
Н	-3.36658	-1.03607	2.33242	Н	-1.06984	-2.87016	1.39927	
Н	-5.23816	-0.67280	-1.53931	С	2.53081	-3.97763	0.48133	
0	-5.48513	-0.09637	0.90865	Н	2.53333	-2.30638	-0.88337	
С	-5.55203	0.21029	2.28690	С	1.81081	-4.68368	1.44401	
Н	-4.70032	0.83885	2.59150	Н	-0.05321	-4.81901	2.52605	
Н	-6.48430	0.76435	2.43596	Н	3.54250	-4.28813	0.21404	
Н	-5.57130	-0.70622	2.89633	Н	2.25497	-5.54988	1.93683	
Н	1.24687	3.38077	-0.83025	Ν	0.17516	1.59534	-1.24820	
С	2.29458	0.59588	-1.82956	S	1.47573	2.59752	-1.00673	
Η	0.18263	-1.10499	-2.57332	0	1.67462	3.26521	-2.28543	

Н	3.05236	0.09427	-2.43842	0	1.26051	3.38084	0.19748
TS6				С	2.90245	1.57923	-0.72534
С	-1.00319	-3.32853	0.86009	С	2.84409	0.62091	0.28041
С	0.18059	-2.80265	0.13569	С	4.08537	1.82177	-1.42631
С	1.46746	-2.66983	0.91071	С	3.97184	-0.12358	0.60765
Н	0.28019	-3.14331	-0.90083	Н	1.86954	0.43265	0.72978
Н	-0.21844	-1.53902	-0.13935	С	5.21479	1.08439	-1.10299
С	2.72822	-2.16758	0.16746	Н	4.11262	2.57616	-2.21306
Н	1.30205	-2.02082	1.79085	С	5.16957	0.11422	-0.08563
Н	1.71067	-3.66302	1.33447	Н	3.90177	-0.88753	1.38022
Н	-0.22254	-3.10732	2.58447	Н	6.15855	1.23812	-1.62682
С	3.08223	-3.10979	-0.98551	0	6.31187	-0.54884	0.15116
Н	4.03191	-2.81057	-1.45140	С	6.32047	-1.54545	1.15179
Н	3.19577	-4.13749	-0.60912	Н	5.60608	-2.34981	0.91710
Н	2.31144	-3.11359	-1.77073	Н	7.33484	-1.95598	1.17352
С	3.87551	-2.16652	1.18217	Н	6.07850	-1.11989	2.13781
Н	4.82886	-1.90307	0.70463	Н	-2.48178	-2.58465	-0.80837
Н	3.68837	-1.45808	2.00290	С	-2.10843	0.66441	-1.22004
Н	3.98348	-3.17099	1.61814	Н	0.12004	1.34912	-2.23161
Ν	-1.08798	-3.41786	2.13543	Н	-2.63551	1.51220	-1.67661
С	-2.20913	-3.69926	0.05234	M6			
С	-2.11353	-4.19542	-1.25261	С	3.27775	0.05204	-1.30992
С	-3.47703	-3.54497	0.62868	С	2.26694	0.05316	-2.32426
С	-3.26318	-4.53125	-1.96756	С	1.50543	1.24376	-2.78979
Н	-1.13930	-4.34236	-1.72098	Н	2.04032	-0.89566	-2.81101
С	-4.62493	-3.86992	-0.08769	Н	2.17308	-0.43293	0.90830
Н	-3.54237	-3.15394	1.64407	С	-0.02917	1.04327	-2.89937
С	-4.52104	-4.36401	-1.39010	Н	1.70754	2.12508	-2.16196
Н	-3.17334	-4.92579	-2.98085	Н	1.86343	1.50722	-3.80304
Н	-5.60707	-3.73488	0.36865	Н	3.08046	1.90677	-0.85933
Н	-5.42014	-4.61943	-1.95340	С	-0.34104	-0.04855	-3.92937
С	0.28214	1.10744	1.97659	Н	-1.42145	-0.10470	-4.12098
С	1.59511	1.34260	2.41777	Н	0.15827	0.18416	-4.88195
С	1.91585	2.08130	3.54937	Н	-0.00862	-1.04405	-3.59954
С	0.84698	2.59593	4.27602	С	-0.64118	2.35810	-3.39345
С	-0.48030	2.36618	3.87388	Н	-1.73004	2.26420	-3.51081
С	-0.78019	1.62831	2.73383	Н	-0.43526	3.18910	-2.70623
С	0.44953	0.33582	0.74980	Н	-0.21679	2.61034	-4.37695
С	1.81260	0.15518	0.59372	Ν	3.62110	1.08085	-0.58948
Н	2.95355	2.23754	3.84268	С	3.95295	-1.25248	-0.98620
Н	1.04434	3.18056	5.17536	С	4.04212	-2.30327	-1.90782
Η	-1.29558	2.77177	4.47404	C	4.52397	-1.42220	0.28370
Η	-1.81220	1.43544	2.44922	C	4.67563	-3.49741	-1.56361
0	2.50015	0.74144	1.59310	Н	3.63851	-2.19171	-2.91513

	С	2.47756	-0.72329	-0.41329	С	5.14566	-2.61851	0.63231	
	Н	1.71202	-0.84711	-1.19444	Н	4.47976	-0.59304	0.99224	
	С	3.68506	-0.09753	-1.09191	С	5.22267	-3.66192	-0.29138	
	С	4.72820	0.51224	-0.38104	Н	4.74486	-4.30200	-2.29716	
	С	3.76761	-0.14155	-2.48963	Н	5.57464	-2.73609	1.62871	
	С	5.82166	1.05759	-1.05389	Н	5.71289	-4.59869	-0.02212	
	Н	4.68631	0.56824	0.70635	С	1.10287	2.26085	1.38757	
	С	4.86239	0.39874	-3.16355	С	0.46999	3.29007	0.68171	
	Н	2.95970	-0.60809	-3.05870	С	0.55906	4.63233	1.03692	
	С	5.89463	1.00153	-2.44569	С	1.33707	4.92154	2.15407	
	Н	6.62232	1.53194	-0.48394	С	1.99062	3.90511	2.87881	
	Н	4.90456	0.35233	-4.25283	С	1.88208	2.56947	2.51093	
	Н	6.75103	1.43063	-2.96816	С	0.75518	1.05422	0.66747	
	Ν	-0.39103	-0.26734	-0.15866	С	-0.03576	1.43066	-0.38060	
	S	-2.03526	0.01599	-0.24055	Н	0.04850	5.40701	0.46522	
	0	-2.48380	-0.80762	-1.35321	Н	1.44280	5.95857	2.47524	
	0	-2.69671	-0.14348	1.05215	Н	2.58956	4.17637	3.74925	
	С	-2.07933	1.72135	-0.69525	Н	2.36881	1.77677	3.07982	
	С	-2.86169	2.60698	0.03706	0	-0.21767	2.77898	-0.37821	
	С	-1.37979	2.14091	-1.83488	С	-0.59202	0.60753	-1.49682	
	С	-2.94480	3.94225	-0.35394	Н	-0.18189	-0.39739	-1.30352	
	Н	-3.41510	2.25468	0.90852	С	-2.10764	0.48326	-1.46936	
	С	-1.45528	3.46569	-2.21999	С	-2.94224	1.55700	-1.13111	
	Н	-0.77822	1.43123	-2.40547	С	-2.69939	-0.73283	-1.83108	
	С	-2.23703	4.37765	-1.48304	С	-4.32970	1.41974	-1.17251	
	Н	-3.56095	4.62720	0.22530	Н	-2.50419	2.51304	-0.84153	
	Н	-0.92031	3.83231	-3.09618	С	-4.08611	-0.87037	-1.88372	
	0	-2.24718	5.63834	-1.93281	Н	-2.06353	-1.58611	-2.07811	
	С	-3.02158	6.60152	-1.24654	С	-4.90662	0.20933	-1.55886	
	Н	-2.68171	6.71371	-0.20580	Н	-4.96307	2.26855	-0.90885	
	Н	-2.88096	7.54791	-1.77773	Н	-4.52538	-1.82909	-2.16414	
	Н	-4.08862	6.33172	-1.25656	Н	-5.99242	0.10871	-1.60611	
	TS7				Ν	1.16186	-0.27134	0.92442	
	С	0.07847	3.29803	-0.12987	S	0.51686	-1.04541	2.26575	
	С	-0.55165	2.42520	-1.12160	0	1.31271	-2.25830	2.39901	
	С	-2.04959	2.48653	-1.36418	0	0.41926	-0.12364	3.39228	
	Н	0.02137	2.36005	-2.04911	С	-1.12262	-1.44640	1.76100	
	Н	0.56465	0.34992	-2.61841	С	-2.17279	-0.61221	2.13080	
	С	-3.09138	1.79164	-0.43411	С	-1.34662	-2.62449	1.04000	
	Н	-2.33253	3.55365	-1.40577	С	-3.47790	-0.94911	1.77921	
	Н	-2.22065	2.07570	-2.37152	Н	-1.97003	0.29258	2.70534	
	Н	-0.04514	4.51704	1.32019	С	-2.64228	-2.96289	0.69531	
	С	-4.43536	1.85714	-1.16947	Н	-0.50879	-3.27105	0.77447	
	Н	-5.23579	1.40356	-0.56722	С	-3.71615	-2.12939	1.06218	
L.									

Н	-4.70630	2.90625	-1.36381	Н	-4.29433	-0.29195	2.07264	
Н	-4.39053	1.33056	-2.13551	Н	-2.86208	-3.87497	0.13986	
С	-3.26229	2.47395	0.92361	0	-4.93464	-2.54288	0.68737	
Н	-4.13687	2.05517	1.44242	С	-6.06114	-1.80119	1.10858	
Н	-2.37577	2.36741	1.55899	Н	-6.03025	-0.77573	0.71027	
Н	-3.42495	3.55102	0.77975	Н	-6.94016	-2.31892	0.71149	
Ν	-0.64322	3.93935	0.72250	Н	-6.12053	-1.76684	2.20737	
С	1.57661	3.40634	-0.13788	M7				
С	2.32392	3.39799	-1.32295	С	-0.00298	3.20587	0.11594	
С	2.25410	3.52608	1.08307	С	0.55017	2.17315	1.09037	
С	3.71414	3.50505	-1.28483	С	2.05198	2.33062	1.40828	
Н	1.82412	3.32376	-2.29005	Н	0.01702	2.37935	2.03306	
С	3.64206	3.62582	1.12282	Н	-0.54733	0.39558	2.69209	
Н	1.68846	3.49880	2.01738	С	3.12654	1.69313	0.48746	
С	4.37777	3.61322	-0.06272	Н	2.26636	3.40505	1.50504	
Η	4.28159	3.50641	-2.21693	Н	2.20098	1.88365	2.40430	
Η	4.15270	3.69816	2.08461	Н	0.26125	4.61510	-1.11171	
Η	5.46598	3.68827	-0.03489	С	4.45680	1.76121	1.24567	
С	0.99149	0.36179	0.25056	Н	5.27132	1.32221	0.65100	
С	0.44141	0.32062	1.53209	Н	4.71703	2.80931	1.45995	
С	1.20874	0.26241	2.68870	Н	4.40014	1.22014	2.20315	
С	2.59111	0.21547	2.51068	С	3.30931	2.39633	-0.85842	
С	3.16693	0.22272	1.22947	Н	4.19303	1.98688	-1.36951	
С	2.37537	0.30440	0.08653	Н	2.43504	2.27794	-1.51054	
С	-0.16114	0.42682	-0.66473	Н	3.45776	3.47348	-0.70627	
С	-1.27751	0.19133	0.16118	Ν	0.79160	3.93076	-0.56276	
Η	0.74727	0.23032	3.67538	С	-1.48899	3.40402	0.05532	
Η	3.23787	0.16248	3.38777	С	-2.28201	3.45210	1.20832	
Η	4.25242	0.17322	1.13039	С	-2.09638	3.58086	-1.19501	
Η	2.82608	0.31950	-0.90765	С	-3.65692	3.66501	1.10916	
0	-0.92448	0.26115	1.47181	Н	-1.83328	3.33114	2.19594	
С	-2.68975	0.28129	-0.28271	С	-3.47059	3.77829	-1.29414	
Η	-2.66968	-0.11665	-1.30701	Н	-1.48872	3.52491	-2.10142	
С	-3.65927	-0.58104	0.50171	С	-4.25597	3.81865	-0.14089	
С	-3.75844	-0.53510	1.89977	Н	-4.26296	3.70776	2.01551	
С	-4.49672	-1.46128	-0.19562	Н	-3.93267	3.89142	-2.27624	
С	-4.67744	-1.33893	2.57471	Н	-5.33363	3.97164	-0.21619	
Η	-3.10694	0.12856	2.46720	С	-0.97110	0.47030	-0.20555	
С	-5.41865	-2.26307	0.47675	С	-0.44254	0.24670	-1.47347	
Η	-4.41383	-1.52160	-1.28316	С	-1.23073	0.08910	-2.60420	
C	-5.51349	-2.20268	1.86691	С	-2.61457	0.11424	-2.41211	
Η	-4.73865	-1.28948	3.66327	С	-3.16855	0.27239	-1.13632	
Η	-6.06106	-2.94025	-0.08871	С	-2.34736	0.45349	-0.02045	
Η	-6.23225	-2.82908	2.39762	С	0.20477	0.65933	0.74110	

Ν	-0.14034	-0.06245	-2.00802	С	1.30309	0.09278	-0.12364
S	-0.23657	-1.71915	-2.28976	Н	-0.78281	-0.07829	-3.58367
0	-1.56230	-2.15366	-1.87488	Н	-3.27395	-0.01433	-3.27198
0	0.18925	-1.86755	-3.67369	Н	-4.25242	0.26106	-1.01252
С	0.93957	-2.48237	-1.22070	Н	-2.78105	0.58532	0.97308
С	2.25249	-2.63679	-1.65378	0	0.92428	0.13320	-1.44605
С	0.56240	-2.80500	0.08809	С	2.72498	0.19299	0.29338
С	3.22043	-3.10162	-0.76762	Н	2.72066	-0.23579	1.30786
Н	2.51916	-2.38746	-2.68222	С	3.68832	-0.64778	-0.51980
С	1.52467	-3.25530	0.97376	С	3.76074	-0.58865	-1.91936
Н	-0.47803	-2.69072	0.39945	С	4.55598	-1.51906	0.15165
С	2.86215	-3.39116	0.55835	С	4.67797	-1.37325	-2.61921
Н	4.24538	-3.22120	-1.11394	Н	3.08814	0.07038	-2.46711
Н	1.27424	-3.50422	2.00532	С	5.47611	-2.30226	-0.54497
0	3.72882	-3.80426	1.49244	Н	4.50095	-1.58582	1.24073
С	5.09374	-3.92707	1.14850	С	5.54082	-2.23067	-1.93617
Н	5.50511	-2.96161	0.81524	Н	4.71676	-1.31385	-3.70838
Н	5.61455	-4.25021	2.05524	Н	6.14091	-2.97289	0.00215
Н	5.23844	-4.67909	0.35796	Н	6.25728	-2.84237	-2.48687
TS8	8			Ν	0.11951	-0.01763	2.04104
С	-1.10861	2.41623	-0.55925	S	0.16168	-1.66781	2.27382
С	-0.81150	1.37983	-1.59710	0	1.47326	-2.15870	1.87543
С	-2.01514	0.82509	-2.39043	0	-0.28270	-1.82671	3.65310
Н	-0.03048	1.70309	-2.29958	С	-1.03253	-2.40466	1.20418
Н	0.47184	-0.59748	-2.52248	С	-2.33964	-2.55776	1.65347
С	-3.12206	-0.02299	-1.66884	С	-0.66901	-2.74342	-0.10347
Н	-2.50994	1.67352	-2.88676	С	-3.31637	-3.04023	0.78587
Н	-1.59781	0.20991	-3.19957	Н	-2.59412	-2.29845	2.68225
Н	-2.02617	2.49418	1.16810	С	-1.63909	-3.21376	-0.97002
С	-3.57108	-1.10328	-2.66419	Н	0.36540	-2.62061	-0.43096
Н	-4.37601	-1.71885	-2.23382	С	-2.97074	-3.35143	-0.53788
Н	-3.95399	-0.64288	-3.58798	Н	-4.33675	-3.15859	1.14581
Н	-2.72976	-1.76306	-2.92784	Н	-1.39948	-3.47404	-2.00138
С	-4.34574	0.85817	-1.37768	0	-3.84486	-3.78631	-1.45661
Н	-5.18363	0.25399	-1.00153	С	-5.20337	-3.91824	-1.09304
Н	-4.11941	1.64020	-0.64459	Н	-5.62137	-2.95242	-0.76893
Н	-4.67213	1.33614	-2.31422	Н	-5.73284	-4.26102	-1.98756
Ν	-1.97920	1.96014	0.29437	Н	-5.32985	-4.65919	-0.28889
С	-0.22514	3.57663	-0.36006				
С	0.38404	4.21222	-1.45686				
С	0.04105	4.07276	0.93032				
С	1.22989	5.30315	-1.26951				
Н	0.18052	3.85822	-2.46918				
С	0.89319	5.15598	1.11462				

Η	-0.39524	3.58320	1.80417
С	1.49212	5.77889	0.01582
Н	1.68821	5.78507	-2.13471
Н	1.09975	5.51339	2.12487
Н	2.16066	6.62831	0.16250
С	0.78551	0.50395	0.34017
С	0.27526	0.11856	1.58021
С	1.00783	0.22947	2.75503
С	2.30164	0.74454	2.64558
С	2.83335	1.13320	1.40964
С	2.07454	1.01471	0.24307
С	-0.27171	0.19755	-0.69701
С	-1.43089	-0.10394	0.21653
Н	0.58457	-0.07431	3.71232
Н	2.91024	0.84249	3.54606
Н	3.84887	1.52821	1.35941
Н	2.48363	1.31489	-0.72450
0	-1.00695	-0.35352	1.49594
С	-2.60811	-0.79007	-0.37296
Н	-2.21157	-1.75108	-0.74179
С	-3.69202	-1.14098	0.62229
С	-4.13325	-0.23302	1.59451
С	-4.29556	-2.40198	0.56517
С	-5.16042	-0.57488	2.47195
Н	-3.66504	0.75021	1.65086
C	-5 32826	-2.74638	1 43894
н	-3 94506	-3 12782	-0 17284
	-5 76604	-1 83115	2 39465
н	-5 49338	0 14452	3 22.59 105
н	-5.78600	-3 73503	1 37434
н	-6 57198	-2.09605	3 08000
N	0.0877170	-0 88271	-1 62/75
C IN	0.06221	-0.00521	-1.02473
0	-0 17092	-2.30303 -2.81071	-1.10023
	0.72000	-2.019/1	-0.03432 2 10007
	0./3989	-5.12209	-2.4008/
	2.30739	-2.1/409	-0.33833
C	3.33212	-1.84952	-1.42251
C	2.55198	-2.3266/	0.82843
C	4.62098	-1.64062	-0.93948
H	3.13163	-1.75591	-2.49160
	3.83479	-2.13051	1.30990
H	1.73214	-2.58695	1.49860
C	4.87464	-1.77391	0.43479
Η	5.41573	-1.38051	-1.63629

Н	4.06114	-2.23178 2.	37163		
0	6.07846	-1.58053 0.	99526		
С	7.16119	-1.20700 0.	16882		
Н	6.96226	-0.24954 -0.3	33710		
Н	8.02947	-1.09644 0.	82601		
Н	7.37112	-1.98117 -0.5	58510		
TS3 (RS)					
С	-2.85453	0.20552	-0.99579		
С	-2.29583	1.21835	-1.94631		
С	-2.54119	2.69171	-1.61025		
Н	-1.21740	0.98280	-1.98122		
Н	-2.67422	1.02461	-2.95915		
С	-2.01671	3.31267	-0.27935		
н	-2.11838	3 26471	-2.44985		
н	-3 62605	2.87693	-1 65690		
н	-3 23911	-0 24303	0.85939		
C	-3.17947	3 50912	0.71281		
н	-2.81800	3 98739	1 63662		
п	2.01000	A 17266	0.26142		
и	-3.93213	4.17200 2.56485	0.07830		
	-3.00040	2.30483	0.97839		
	-1.4900/	4.72033	-0.380/3		
Н	-1.1/143	5.23303	0.33698		
H	-0.64340	4.71955	-1.28400		
Н	-2.29651	5.32412	-1.03824		
Ν	-2.90566	0.51202	0.25315		
С	-3.20732	-1.15016	-1.48372		
С	-3.85678	-1.33924	-2.71258		
С	-2.87391	-2.27244	-0.70756		
С	-4.17943	-2.62266	-3.14765		
Н	-4.13143	-0.47932	-3.32519		
С	-3.17631	-3.55413	-1.15696		
Н	-2.32494	-2.15053	0.22943		
С	-3.83643	-3.73251	-2.37390		
Н	-4.69627	-2.75708	-4.09882		
Н	-2.88528	-4.41789	-0.55752		
Н	-4.07752	-4.73761	-2.72314		
С	-0.73405	-0.70878	2.30951		
С	-1.43441	0.22762	3.09018		
С	-1.80037	0.02471	4.41083		
С	-1.42910	-1.19085	4,98390		
C	-0 72600	-2 15074	4 24064		
C	-0.37632	-1 92993	2 91168		
C	-0 56269	-0.06859	1 00102		
	-0.30209	1 21076	1 11833		

Н	-2.34502	0.79100	4.96165
Н	-1.68994	-1.39598	6.02299
Н	-0.45170	-3.09503	4.71220
Н	0.14861	-2.69016	2.33860
0	-1.69136	1.37407	2.39599
С	-0.88115	2.53183	0.45186
Н	-0.70660	3.15358	1.34562
С	0.50079	2.45985	-0.19937
С	0.75607	2.57369	-1.56901
С	1.59558	2.27999	0.65813
С	2.05922	2.49215	-2.06521
Н	-0.05854	2.73974	-2.27251
С	2.89686	2.19320	0.17023
Н	1.42050	2.19802	1.73512
С	3.13410	2.29615	-1.20089
Н	2.22950	2.58456	-3.13915
Н	3.72764	2.04506	0.86257
Н	4.151073	2.22515	-1.59063
Ν	-0.12343	-0.40146	-0.19620
S	0.59916	-1.78794	-0.63200
0	0.24826	-2.92263	0.23229
0	0.36254	-1.94831	-2.06460
С	2.32387	-1.44105	-0.40520
С	3.11843	-1.18448	-1.51458
С	2.85805	-1.39949	0.88813
С	4.46974	-0.87991	-1.34786
Н	2.67682	-1.22370	-2.51097
С	4.19527	-1.08917	1.05886
Н	2.22800	-1.60927	1.75543
С	5.01003	-0.82245	-0.05759
Н	5.08242	-0.67932	-2.22520
Н	4.64514	-1.04392	2.05097
0	6.29224	-0.52164	0.20926
C	7.15888	-0.23538	-0.86756
Н	6.81500	0.64580	-1.43181
Н	8.14024	-0.02543	-0.43014
Н	7.24130	-1.09433	-1.55136

8. References

[1] Z.-Q. Rong, M. Wang, C. H. E. Chow, Y. Zhao, Chem. Eur. J. 2016, 22, 9483.

[2] A. R. Forrester, M. Gill, R. H. Thomson, J. Chem. Soc., Chem. Commun. 1979, 616.

[3] Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi ,R.; Normand, J.; Raghavachari, K.; Rendell, A. P.;Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian16, Gaussian, Inc., Wallingford, CT, **2016**.

[4] Y. Zhao, D. G. Truhlar, Theor. Chem. Acc. 2008, 120, 215.

[5] a) F. Furche, R. Ahlrichs, J. Chem. Phys. 2002, 117, 7433; (b) G. Scalmani, M. J. Frisch, B. Mennucci, J. Tomasi, R. Cammi, V. Barone, J. Chem. Phys. 2006, 124, 094107:1-15.

[6] D.-C. Fang, THERMO; Beijing Normal University, Beijing, People's Republic of China, 2013.

9. ¹H, ¹³C, and ¹⁹F NMR Spectra

¹H NMR Spectrum of 1b

¹³C NMR Spectrum of 1b

¹H NMR Spectrum of 1c

¹³C NMR Spectrum of 1c

¹³C NMR Spectrum of 1d

¹³C NMR Spectrum of 1e

¹³C NMR Spectrum of 1f

¹³C NMR Spectrum of 1g

¹³C NMR Spectrum of 1h

¹³C NMR Spectrum of 1i

¹³C NMR Spectrum of 1j

¹³C NMR Spectrum of 1k

¹³C NMR Spectrum of 11

¹H NMR Spectrum of 1m

¹³C NMR Spectrum of 1m

¹⁹F NMR Spectrum of 1m

S67

¹H NMR Spectrum of 4k

¹H NMR Spectrum of 4m

7.61 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.751 7.7527 7.752

¹H NMR Spectrum of 3k

¹³C NMR Spectrum of 3n

¹H NMR Spectrum of 30

 $\begin{array}{c} 8.07\\ 7.38\\ 7.43\\ 7.43\\ 7.43\\ 7.738\\ 7.738\\ 7.738\\ 7.738\\ 7.738\\ 7.738\\ 7.738\\ 7.738\\ 7.738\\ 7.728\\ 6.92\\ 6.92\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 6.69\\ 1.728\\ 2.33\\ 3.07\\ 7.28\\ 2.33\\ 3.07\\ 1.67\\ 0.08\\ 8.00\\ 0.00\\$

¹H NMR Spectrum of 3p

ALX-330 ALX-340 ALX

¹³C NMR Spectrum of 3p

¹⁹F NMR Spectrum of 3p

¹³C NMR Spectrum of 3q

¹H NMR Spectrum of 3r

¹⁹F NMR Spectrum of 3r

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

¹³C NMR Spectrum of 3s

¹⁹F NMR Spectrum of 3s

¹H NMR Spectrum of 3t

¹³C NMR Spectrum of 3t

¹⁹F NMR Spectrum of 3t

¹³C NMR Spectrum of 3u

¹⁹F NMR Spectrum of 3u

¹H NMR Spectrum of 3v

$\begin{array}{c} 7.93\\ 7.75\\$

¹³C NMR Spectrum of 3v

¹⁹F NMR Spectrum of 3v

10 0 -10 -20 -30 -40 -50 -60 -70 -80 -90 -100 -120 -140 -160 -180 -200 fl (ppm)

¹³C NMR Spectrum of 3w

¹³C NMR Spectrum of 3x

¹⁹F NMR Spectrum of 3x

--62.39

¹³C NMR Spectrum of 3y

¹H NMR Spectrum of 3z

$\begin{array}{c} 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.87\\ 7.75\\$

¹³C NMR Spectrum of 3z

¹³C NMR Spectrum of 3aa

S106

¹⁹F NMR Spectrum of 3aa

Noesy Spectrum of 3aa

¹³C NMR Spectrum of 3ab

 $\begin{array}{c} -176.46\\ -157.49\\ -157.49\\ -157.49\\ 133.29\\ 133.29\\ 122.00\\ -128.85\\ -122.05\\ -124.66\\ 112.66\\ -124.66\\ -124.66\\ -124.66\\ -124.66\\ -124.66\\ -124.56\\ -72.75\\ -72.75\\ -72.75\\ -72.75\\ -72.75\\ -72.55\\ -7$

¹⁹F NMR Spectrum of 3ab

¹³C NMR Spectrum of 3ad

¹³C NMR Spectrum of 5

