Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

This version of the ESI published 03/08/2022 replaces the previous version published 03/06/2022. Figure S18 is replaced with a corrected version.

Electronic Supplementary Information (ESI)

Highly selective acid-catalyzed olefin isomerization of limonene to terpinolene by kinetic suppression of the overreactions in a confined space of porous metal-macrocycle framework

Wei He, Shohei Tashiro* and Mitsuhiko Shionoya*

Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan

• 1. Materials and methods	page S2
• 2. Preparation and characterization of 2-NBSA@MMF	page S2
• 3. Isomerization of (+)-limonene using 2-NBSA@MMF and 2-NBSA·H ₂ O	page S7
• 4. Examination of the inhibitory effects of additives on the over-isomerization	page S14
• 5. Crystal structures of MMF soaked in a solution of terpenes	page S19
• 6. Cyclization of nerol using 2-NBSA@MMF and 2-NBSA·H2O	page S25
• 7. References	page S29

1. Materials and methods

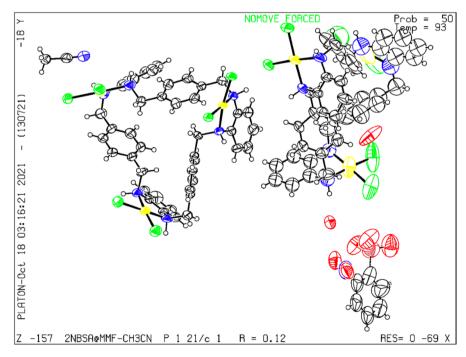
Metal–macrocycle framework (MMF) and macrocyclic ligand L were prepared according to our procedure.¹ MMF crystals were washed with CH₃CN and then used for guest incorporation. 2-Nitrobenzenesulfonic acid monohydrate (2-NBSA·H₂O) was purchased from TCI Co. Ltd. 2-NBSA@MMF was prepared according to a soaking-and-washing procedure which we developed to immobilize *p*-toluenesulfonic acid in MMF.² The detailed procedure is described on page S2. The previously reported catalyst, *p*-TsOH@MMF, was also prepared according to our procedure.² Commercially available CHCl₃ and CDCl₃ were passed through basic Al₂O₃ before use to remove a trace amount of HCl or DCl. In this study, only the reaction products that could be directly compared with the standard samples by ¹H NMR spectra were attributed. For instance, (+/–)-limonene, terpinolene (**2**), α -terpinene (**3**), γ -terpinene (**4**) and *p*-cymene (**5**) were identified by matching their ¹H NMR resonances to commercial samples (**2** was also identified by ¹³C NMR analysis). Terpene substrates, terpenoid substrates, standards for product assignment, solvents, organic and inorganic reagents were all commercially available, and used without further purification.

NMR spectroscopic measurements were performed using a Bruker AVANCE 500 spectrometer. ¹H NMR spectra are calibrated as below: Si(*CH*₃)₄ = 0 ppm in CDCl₃, *CH*D₂SOCD₃ = 2.50 ppm in DMSO-*d*₆. FT-IR spectra were recorded on a JASCO FT/IR-4200 spectrometer using a ZnSe attenuated total reflection (ATR) method. Single-crystal XRD (ScXRD) analyses were performed using an XtaLAB P200 system diffractometer with CuK α -radiation, and the obtained data were analyzed using an Olex2 software package³ except for refinement, which was performed using a SHELXL-2018/3 program suite.⁴ Several restraints were applied to MMF and guest molecules in all the crystal structures. Hydrogen atoms were placed at the calculated positions and refined using a riding model. The occupancies of the guest molecules were refined based on the electron densities using the free variables of the SHELXL-2018/3 program. In assigning guest molecules, all Q peaks above 2.0, except for the ghost peaks around Pd, were assigned by the least-square refinement, and all Q peaks above 1.4 were tested for guest search. The X-ray structures were displayed using the PyMOL program. Electron density maps were generated using the ShelXle program.⁵ The non-covalent interactions were analyzed by the reduced density gradient method^{6,7} using the NCIPLOT program⁸ and visualized by the VMD program.⁹

2. Preparation and characterization of 2-NBSA@MMF

2.1 Procedures for the preparation of 2-NBSA+MMF and 2-NBSA@MMF crystals

MMF crystals (ca. 0.5 mg) were soaked in a CH₃CN solution of 2-NBSA·H₂O (1.0 M, 100 μ L, 100 μ mol) in a capped micro-tube at 298 K for 24 h to obtain 2-NBSA+MMF crystals. Resulting 2-NBSA+MMF crystals were washed with a small amount of CH₃CN (ca. 100 μ L), collected by


filtration, then washed again with CHCl₃ (ca. 800 μ L). The resulting 2-NBSA@MMF crystals were immediately used for catalytic reactions or characterization. **Caution!** *A CH₃CN solution of 2-NBSA may corrode nitrile gloves, so it is better to wear polyethylene gloves outside the nitrile gloves when handling*.

2.2 Crystal structure of 2-NBSA+MMF and 2-NBSA@MMF

One 2-NBSA+MMF or 2-NBSA@MMF crystal was picked up separately in a micro loop and immediately mixed with paratone oil and single-crystal XRD was measured at 93 K.

Crystal data for 2-NBSA+MMF

Crystal data for $(Pd_3LCl_6)_2 \cdot (2-NBSA)_{0.37} \cdot (CH_3CN) \cdot (H_2O)_{0.87}$: $C_{88.2}H_{87.5}Cl_{12}N_{13.4}O_{2.7}Pd_6S_{0.4}$, $F_W = 2453.43$, crystal dimensions $0.14 \times 0.15 \times 0.22 \text{ mm}^3$, monoclinic, space group $P2_1/c$, a = 19.5405(2), b = 51.93156(5), c = 14.3152(1) Å, $\beta = 90.587(1)^\circ$, V = 14525.8(2) Å³, Z = 4, $\rho_{calcd} = 1.122$ g cm⁻³, $\mu = 8.23 \text{ mm}^{-1}$, T = 93 K, $\lambda(CuK\alpha) = 1.54187$ Å, $2\theta_{max} = 148.6^\circ$, 168241/28625 reflections collected/unique ($R_{int} = 0.0517$), $R_1 = 0.1209$ ($I > 2\sigma(I)$), $wR_2 = 0.3983$ (for all data), GOF = 1.665, largest diff. peak and hole 4.110/-1.700 eÅ⁻³. CCDC deposit number 2133387. Several restraints were applied to the MMF and the guest molecules to prevent the structure from collapsing during the least-squares refinement.

Fig. S1 ORTEP drawing of 2-NBSA+MMF at the 50% probability level. Color: C black, N blue, O red, Cl green, S deep red and Pd yellow.

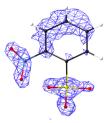
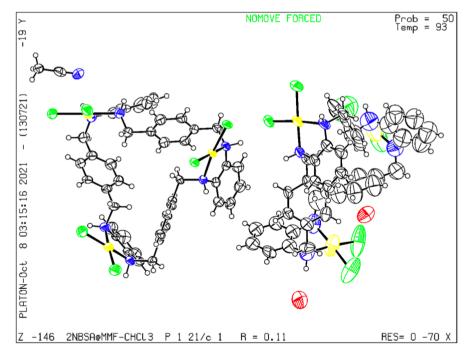



Fig. S2 Electron density maps of 2-NBSA in the crystal structure of 2-NBSA+MMF (contour level: $1.00 \text{ e}^{-/\text{Å}^3}$).

Crystal data for 2-NBSA@MMF

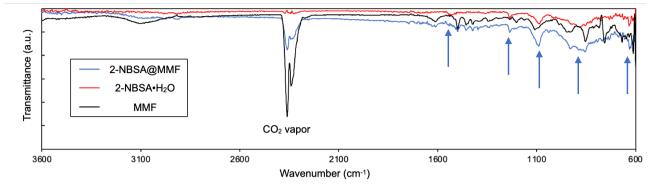

Crystal data for $(Pd_3LCl_6)_2 \cdot (CH_3CN) \cdot (H_2O)$: $C_{86}H_{87}Cl_{12}N_{13}O_2Pd_6$, $F_W = 2382.48$, crystal dimensions $0.10 \times 0.10 \times 0.21 \text{ mm}^3$, monoclinic, space group $P2_1/c$, a = 19.6017(1), b = 52.3627(4), c = 14.3397(1) Å, $\beta = 90.600(1)^\circ$, V = 14717.43(17) Å³, Z = 4, $\rho_{calcd} = 1.075$ g cm⁻³, $\mu = 8.06$ mm⁻¹, T = 93 K, $\lambda(CuK\alpha) = 1.54187$ Å, $2\theta_{max} = 147.1^\circ$, 173429/28355 reflections collected/unique ($R_{int} = 0.0533$), $R_1 = 0.1080$ ($I > 2\sigma(I)$), $wR_2 = 0.3596$ (for all data), GOF = 1.546, largest diff. peak and hole 4.228/-2.216 eÅ⁻³. CCDC deposit number 2133388. Several restraints were applied to the MMF and the guest molecules to prevent the structure from collapsing during the least-squares refinement.

Fig. S3 ORTEP drawing of 2-NBSA@MMF at the 50% probability level. Color: C black, N blue, O red, Cl green and Pd yellow.

2.3 FT-IR measurement of 2-NBSA@MMF

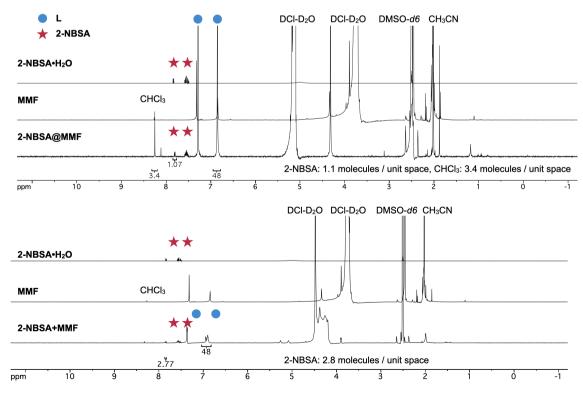

To confirm the presence of 2-NBSA in the 2-NBSA@MMF crystals, the as-synthesized 2-NBSA@MMF crystals were air-dried on a filter paper for 15 sec, and then examined by ATR-IR measurement at room temperature.

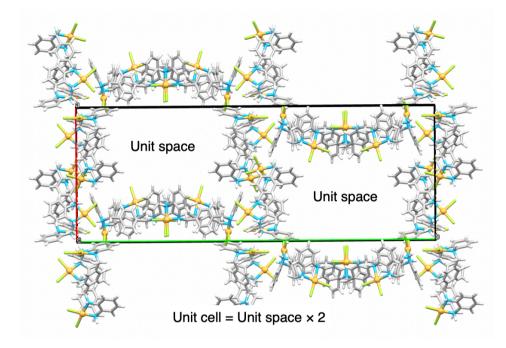
Fig. S4 FT-IR spectra (ATR, rt) of 2-NBSA@MMF crystals, 2-NBSA·H₂O, and as-synthesized MMF crystals. The peaks indicated by blue arrows indicate the presence of 2-NBSA in the 2-NBSA@MMF crystals.

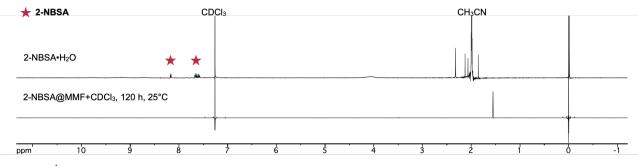
2.4 Digestion NMR experiments of 2-NBSA@MMF

To estimate the amount of 2-NBSA in the unit space of 2-NBSA@MMF crystals, the assynthesized 2-NBSA@MMF crystals were air-dried on a filter paper for 45 sec, then digested DMSO d_6 /DCl-D₂O ([DCl] = 0.17 M), and ¹H NMR was measured at 300 K. As a result, the amounts of 2-NBSA and CHCl₃ in the unit space of MMF were estimated to be 1.1 and 3.4 molecules, respectively, based on the integral ratio. For 2-NBSA+MMF, the amount of 2-NBSA in the unit space of the MMF was estimated to be 2.8 molecules from the integral ratio. Here, the "unit space" of MMF is defined as a half of the unit cell, and thus corresponds to one unit of a nano-channel of MMF.

S5

Fig. S5 ¹H NMR spectra (500 MHz, 300 K) of 2-NBSA·H₂O, MMF, and 2-NBSA@MMR (top) or 2-NBSA+MMF (bottom) after dissolution. The amounts of 2-NBSA and CHCl₃ in the unit space of MMF were estimated and labeled (bottom right). Solvents: DMSO-*d*₆ for 2-NBSA·H₂O; DMSO-*d*₆/DCl ([DCl] = 0.32 M) for MMF; DMSO-*d*₆/DCl ([DCl] = 0.17 M) for 2-NBSA@MMF; DMSO-*d*₆/DCl ([DCl] = 0.22 M) for 2-NBSA+MMF.




Fig. S6 The definition of the "unit space" of MMF.

2.5 Catalyst quantity of 2-NBSA@MMF

The chemical composition of 2-NBSA@MMF except for water was estimated to be $(Pd_3LCl_6)_4 \cdot (2-NBSA)_{1.1} \cdot (CHCl_3)_{3.4} \cdot (H_2O)_n$ from the integral ratios of the ¹H NMR spectrum (Fig. S5). The number of water molecules included in 2-NBSA@MMF was tentatively estimated to be n = 20 (Mw = 5640.8), since previous elemental analysis suggested that the as-synthesized MMF crystals ($(Pd_3LCl_6)_4 \cdot (CH_3CN)_2 \cdot (H_2O)_{36}$) contained 36 water molecules in its unit space.¹ Therefore, the number n and the molecular weight Mw of 2-NBSA@MMF should be within the ranges of $0 \le n \le 36$ and $5280.5 \le Mw \le 5929.1$, respectively. Therefore, the catalyst quantity of 2-NBSA@MMF used in this study (n = 20, Mw = 5640.8) falls within the error range of 6% with respect to water content.

2.6 Acid-leaching test of 2-NBSA@MMF in CDCl₃

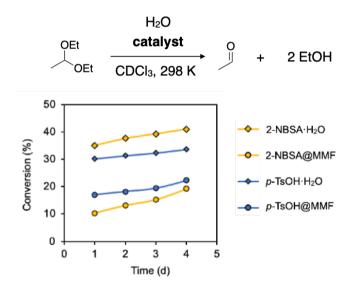

To examine whether 2-NBSA elutes from 2-NBSA@MMF into CDCl₃ solutions, the assynthesized 2-NBSA@MMF crystals (ca. 0.5 mg) were soaked in CDCl₃ (ca. 1.0 mL) at 298 K for 120 h, and analyzed by ¹H NMR at 298 K. As the result, acid-leaching was not observed after soaking 2-NBSA@MMF in CDCl₃ at 298 K for 120 h.

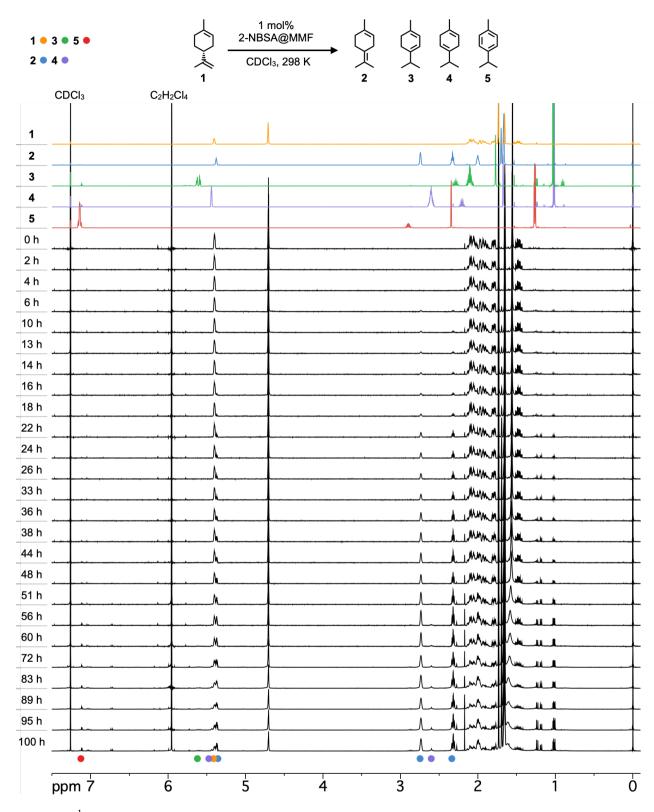
Fig. S7 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of a CDCl₃ solution containing dissolved 2-NBSA·H₂O or a solution heterogeneously containing 2-NBSA@MMF crystals.

2.7 Catalytic activity tests of 2-NBSA@MMF and p-TsOH@MMF

In the heterogeneous reactions, a CDCl₃ solution of acetaldehyde diethyl acetal (100 mM, 1.0 mM, 100 μ mol) was mixed with 2-NBSA@MMF or *p*-TsOH@MMF (acid in MMF, 1 mol%) in an NMR tube. For the homogeneous reactions, a CDCl₃ solution of acetaldehyde diethyl acetal (100 mM, 1.0 mM, 99 μ mol) containing 2-NBSA·H₂O or *p*-TsOH·H₂O (2 mol%) was prepared in an NMR tube. The mixtures were shaken on a shaker at 298 K and monitored by ¹H NMR spectroscopy (500 MHz CDCl₃, 300 K).


Fig. S8 Catalytic hydrolysis reaction of acetaldehyde diethyl acetal with 2-NBSA@MMF, *p*-TsOH@MMF, 2-NBSA·H₂O, or *p*-TsOH·H₂O in CDCl₃ at 298 K.

3. Isomerization of (+)-limonene using 2-NBSA@MMF and 2-NBSA·H₂O


3.1 Procedure for the isomerization of (+)-limonene using 2-NBSA@MMF

Crystals of 2-NBSA@MMF (ca. 0.5 mg, 0.1 µmol of 2-NBSA in MMF, 1 mol%) immediately after preparation and a CDCl₃ solution of (+)-limonene (1) (10 mM, 1.0 mL, 10 µmol) were placed in an NMR tube. The heterogeneous mixture was shaken on a shaker at 298 K and the time course was monitored by ¹H NMR measurements (500 MHz, CDCl₃, 300 K). The conversion ratios of (+)-

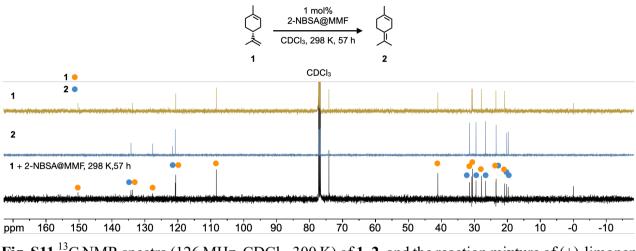

limonene (1) and yields of main products were evaluated using 1,1,2,2-tetrachloroethane (9 mM, 1.0 mL, 9 μ mol) as internal standard. When (+)-limonene (1) was treated with 2-NBSA@MMF, 45% of (+)-limonene (1) was consumed at 298 K after 51 h, and the formation of terpinolene (2) (41% yield, 91% selectivity), α -terpinene (3) (0.6%), γ -terpinene (4) (1.7%), and *p*-cymene (5) (0.6%) was confirmed. When the reaction was further extended to 100 h at 298 K, 67% of (+)-limonene (1) was consumed and the formation of terpinolene (2) (50% yield, 75% selectivity), α -terpinene (3) (3%), γ -terpinene (4) (4%) and *p*-cymene (5) (3%) was confirmed. Next, to further confirm the formation of terpinolene (2), a similar reaction mixture was prepared separately under the same conditions and analyzed by ¹³C NMR spectroscopy (126 MHz, CDCl₃, 300 K) after 57 h. As a result, **2** was identified by matching the ¹³C NMR resonances with a commercial sample.

Fig. S9 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **1–5** and the reaction mixtures of (+)-limonene (**1**) and 2-NBSA@MMF in CDCl₃ at 298 K after 51 h (top) and 100 h (bottom).

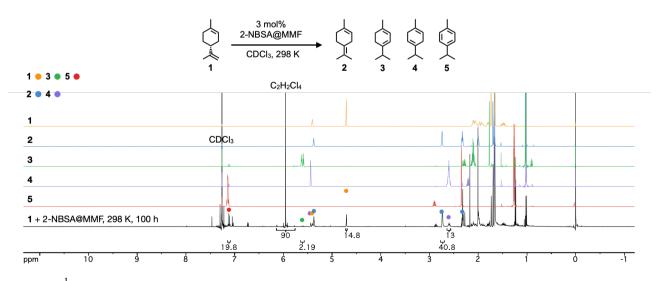


Fig. S10 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **1–5** and the time-course analysis of the reaction mixture of (+)-limonene (**1**) and 2-NBSA@MMF in CDCl₃ at 298 K.

Fig. S11¹³C NMR spectra (126 MHz, CDCl₃, 300 K) of **1**, **2**, and the reaction mixture of (+)-limonene (1) and 2-NBSA@MMF in CDCl₃ at 298 K after 57 h.

To investigate the effect of catalyst amount on this reaction, the catalyst was increased to 3 mol% as follows. First, crystals of 2-NBSA@MMF (ca. 1.5 mg, 0.3 µmol of 2-NBSA in MMF, 3 mol%) immediately after preparation and a CDCl₃ solution of (+)-limonene (1) (10 mM, 1.0 mL, 10 µmol) were placed in an NMR tube. The heterogeneous mixture was shaken on a shaker at 298 K and the time course was monitored by ¹H NMR measurements (500 MHz, CDCl₃, 300 K). The conversion ratios of (+)-limonene (1) and the yields of the main products were evaluated using 1,1,2,2-tetrachloroethane (9 mM, 1.0 mL, 9 µmol) as internal standard. When (+)-limonene (1) was treated with 2-NBSA@MMF, 85% of (+)-limonene (1) was consumed at 298 K after 100 h, and the formation of terpinolene (2) (41% yield, 48% selectivity), α-terpinene (3) (2%), γ-terpinene (4) (6%), and *p*-cymene (5) (10%) was confirmed.

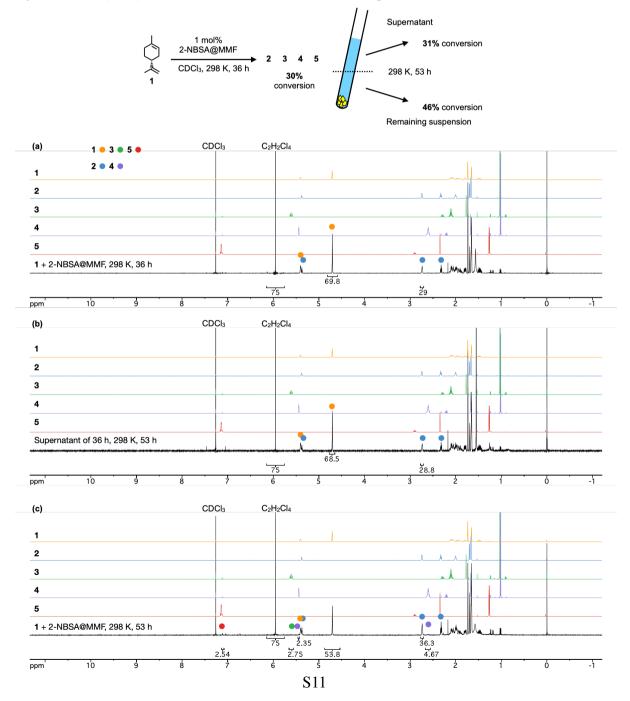
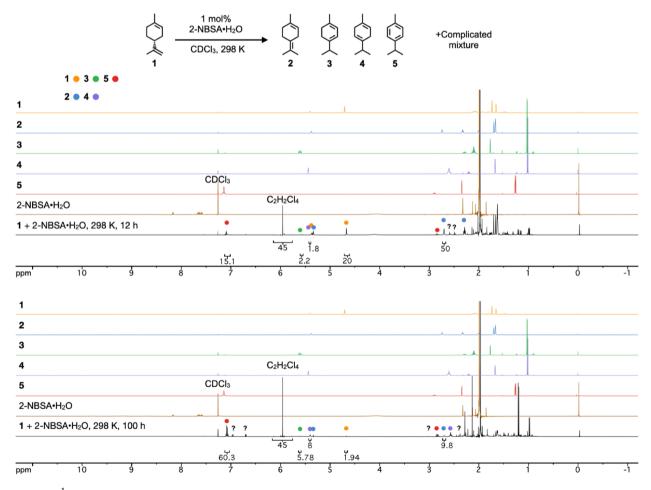
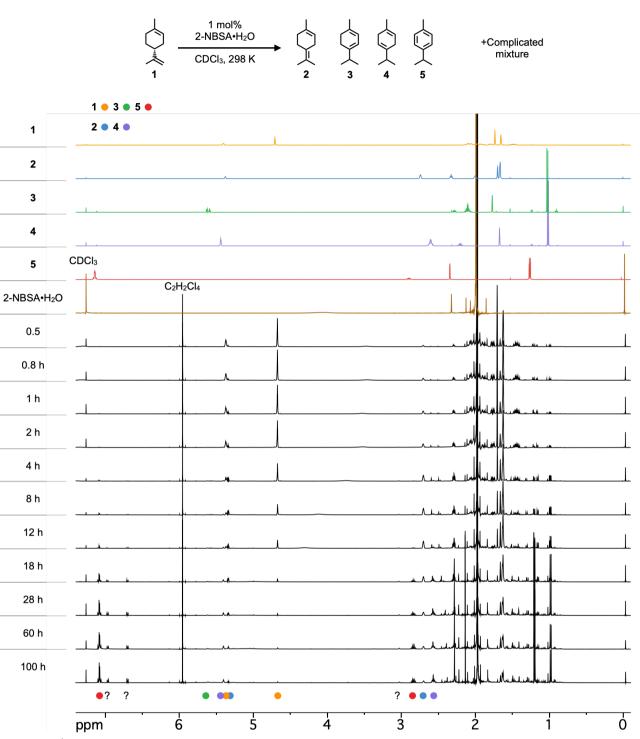


Fig. S12 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **1–5** and the reaction mixtures of (+)-limonene (**1**) and 2-NBSA@MMF in CDCl₃ at 298 K after 100 h.

3.2 Confirmation of heterogeneous properties of the 2-NBSA@MMF catalyst

Crystals of 2-NBSA@MMF (ca. 0.5 mg, 0.1 μ mol of 2-NBSA in MMF, 1 mol%) immediately after preparation and a CDCl₃ solution of (+)-limonene (10 mM, 1.0 mL, 10 μ mol) were placed in an NMR tube. 1,1,2,2-Tetrachloroethane (7.5 mM, 1.0 mL, 7.5 μ mol) was used as internal standard to evaluate the conversion ratios of (+)-limonene (1) and the yields of the main products. This heterogeneous mixture was shaken on a shaker at 298 K for 36 h, and ¹H NMR measurements revealed that 30% of 1 was converted to 2–5.


Then, half of the supernatant was removed with a syringe and filtrated through a membrane filter unit. The supernatant and the rest of the suspension were placed separately under the same conditions. After 17 h, ¹H NMR measurement showed that the conversion rate of the supernatant liquid had hardly increased (31%), while the conversion rate of the suspension had reached 46%.


Fig. S13 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **1**–**5**, and (a) the reaction mixture of **1** and 2-NBSA after 36 h; (b) the supernatant of the 36 h-reaction after 53 h; (c) the remaining suspension of the 36 h-reaction after 53 h.

3.3 Procedure for the isomerization of (+)-limonene using 2-NBSA·H₂O

A CDCl₃ solution of 2-NBSA·H₂O (1 mM, 0.1 mL, 0.1 µmol, 1 mol%) and a CDCl₃ solution of (+)-limonene (1) (11 mM, 0.9 mL, 9.9 µmol) were set in an NMR tube. This mixture was shaken on a shaker at 298 K and the time course was monitored by ¹H NMR measurements (500 MHz, CDCl₃, 300 K). 1,1,2,2-Tetrachloroethane (4.5 mM, 1.0 mL, 4.5 µmol) was used as an internal standard to evaluate the conversion ratio of (+)-limonene and the yield of main product. Treatment of (+)-limonene (1) with 2-NBSA·H₂O at 298 K for 12 h resulted in 80% conversion of (+)-limonene (1) to terpinolene (2) (50% yield, 63% selectivity), α-terpinene (3) (2.2%), γ-terpinene (4) (1.8%) and *p*-cymene (5) (7.5%). After extending the reaction to 100 h at 298 K, 98% of (+)-limonene (1) was converted to terpinolene (2) (9.8% yield, 10% selectivity), α-terpinene (3) (5.8%), γ-terpinene (4) (8.0%) and *p*-cymene (5) (30%).

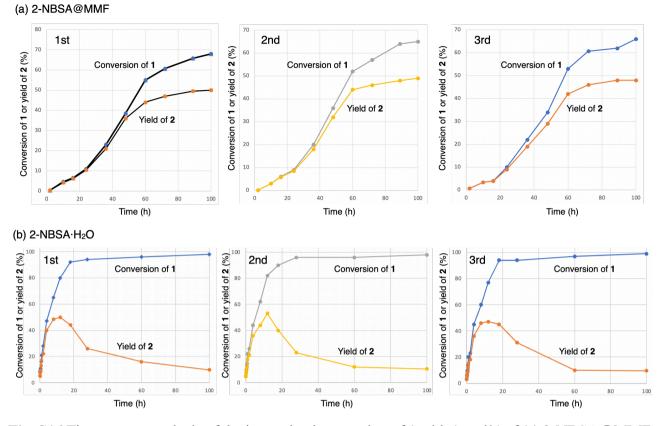

Fig. S14 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **1–5** and the reaction mixture of (+)-limonene (**1**) and 2-NBSA·H₂O in CDCl₃ at 298 K after 12 h (top) and 100 h (bottom).

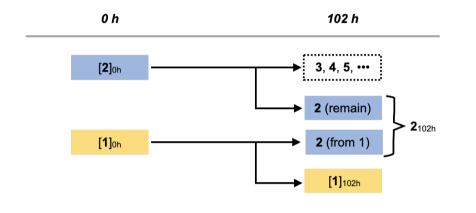
Fig. S15 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of 1–5, 2-NBSA·H₂O, and the time-course analysis of the reaction mixture of (+)-limonene (1) and 2-NBSA·H₂O in CDCl₃ at 298 K.

3.4 Reproducibility test of the catalytic reactions

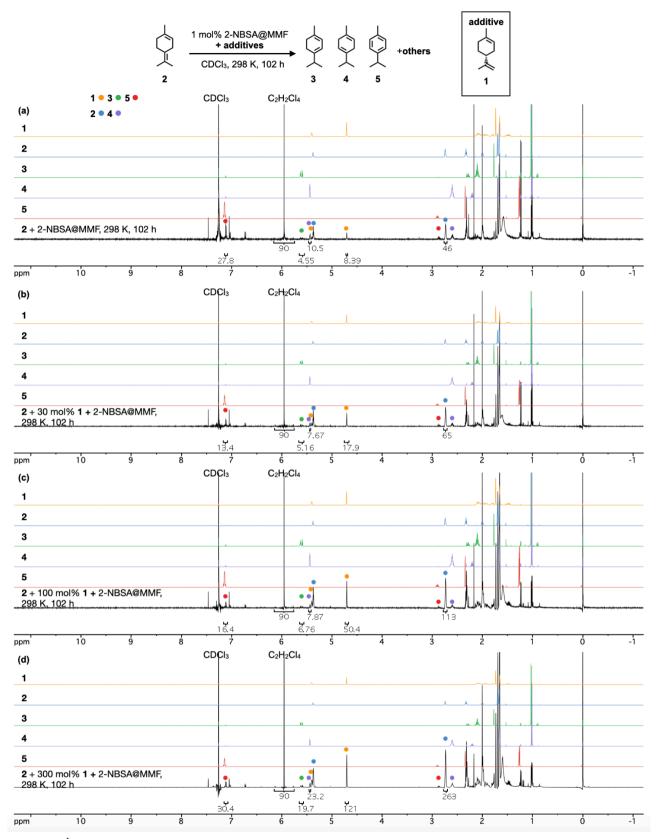
Catalytic conversion of (+)-limonene (1) with 2-NBSA@MMF or 2-NBSA \cdot H₂O was repeated three times under the same condition to verify the reproducibility. The standard errors in Fig. 4d were estimated from these results.

Fig. S16 Time-course analysis of the isomerization reaction of **1** with 1 mol% of (a) 2-NBSA@MMF or (b) 2-NBSA·H₂O in CDCl₃ at 298 K.

4. Examination of the inhibitory effects of additives on the over-isomerization 4.1 Inhibitory effects of (+)-limonene on the over-isomerization of terpinolene using 2-NBSA@MMF


To confirm the over-isomerization of terpinolene (2) using 2-NBSA@MMF, crystals of 2-NBSA@MMF (ca. 0.5 mg, 0.1 μ mol of 2-NBSA in MMF, 1 mol%) immediately after preparation and a CDCl₃ solution of terpinolene (2) (10 mM, 1.0 mL, 10 μ mol) were set in an NMR tube. This heterogeneous mixture was shaken on a shaker at 298 K and analyzed by ¹H NMR measurements (500 MHz, CDCl₃, 300 K) after 102 h. The conversion ratios of terpinolene (2) was evaluated from the internal standard of 1,1,2,2-tetrachloroethane (9 mM, 1.0 mL, 9 μ mol). Terpinolene (2) was treated with 2-NBSA@MMF, 54% of terpinolene (2) was consumed and the formation of α -terpinene (3) (5%), γ -terpinene (4) (11%), *p*-cymene (5) (14%) and limonene (8%) at 298 K for 102 h.

Then, to examine the inhibitory effects of (+)-limonene (1) on over-isomerization, 30 mol%, 100 mol%, or 300 mol% of (+)-limonene (1) (3 μ mol, 10 μ mol, or 30 μ mol, respectively, based on terpinolene) were added to the reaction mixture before shaking at 298 K for 102 h. The conversion of terpinolene (2) to α -terpinene (3), γ -terpinene (4) and *p*-cymene (5) decreased to 47%, 37% and 16%, respectively.


Additives	Concentration (mM)				$C_{anyoncion}(2)^{q}$
Additives —	[1] _{0h}	[2] _{0h}	[1] 102h	[2] _{102h}	- Conversion $(2)^a$
30 mol% 1	3	10	1.8	6.5	47%
100 mol% 1	10	10	5.0	11.3	37%
300 mol% 1	30	10	12.1	26.3	16%

Tab. S1 Inhibitory effects of (+)-limonene (1) on over-isomerization of terpinolene (2).

^{*a*} Considering that additive **1** selectively converted to **2**, the conversion rate of **2** was calculated as follows, where $([1]_{0h} - [1]_{102h})$ represents the change in concentration of **1** after 102 h.

Conversion (2) = $\frac{[2]_{0h} - [2]_{remain}}{[2]_{0h}} = \frac{[2]_{0h} - \{[2]_{102h} - ([1]_{0h} - [1]_{102h})\}}{[2]_{0h}}$

Fig. S17 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **1**–**5**, and (a) the reaction mixture of **2** and 2-NBSA@MMF; (b) the reaction mixture of **2** + 30 mol% of **1** and 2-NBSA@MMF; (c) the reaction mixture of **2** + 100 mol% of **1** and 2-NBSA@MMF; (d) the reaction mixture of **2** + 300 mol% of **1** and 2-NBSA@MMF in CDCl₃ at 298 K after 102 h.

4.2 Inhibitory effects of (–)-α-pinene, (–)-β-pinene, benzene, and 1,2-dibromobenzene on the over-isomerization of terpinolene using 2-NBSA@MMF

Crystals of 2-NBSA@MMF (ca. 0.5 mg, 0.1 µmol of 2-NBSA in MMF, 1 mol%) immediately after preparation, a CDCl₃ solution of terpinolene (**2**) (10 mM, 1.0 mL, 10 µmol), and additives such as (–)- α -pinene (**6**) (15 µmol, 150 mol% relative to **2**), (–)- β -pinene (**7**) (15 µmol, 150 mol% relative to **2**), benzene (**8**) (19 µmol, 190 mol% relative to **2**) or 1,2-dibromobenzene (**9**) (19 µmol, 190 mol% relative to **2**) were set in an NMR tube. These heterogeneous mixtures were shaken on a shaker at 298 K and analyzed by ¹H NMR measurements (500 MHz, CDCl₃, 300 K) after 102 h. The conversion ratios of terpinolene (**2**) were evaluated from the internal standard of 1,1,2,2-tetrachloroethane (12 mM, 1.0 mL, 12 µmol). As a result, the conversion of terpinolene (**2**) to α -terpinene (**3**), γ -terpinene (**4**) and *p*-cymene (**5**) decreased to 0%, 0%, 87% and 55%, respectively, at 298 K after 102 h.

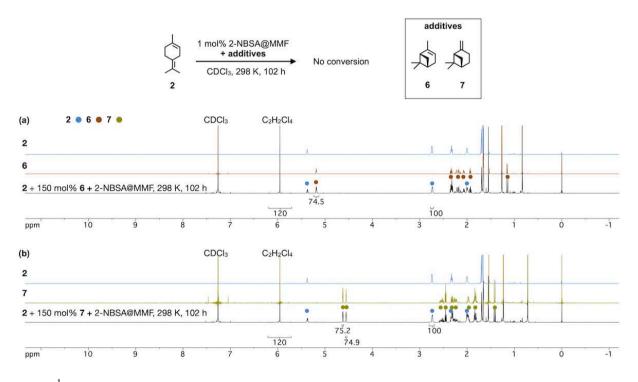


Fig. S18 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of (a) 2, 6, and the reaction mixture of 2 + 150 mol% of 6 and 2-NBSA@MMF in CDCl₃ at 298 K after 102 h; (b) 2, 7 and the reaction mixture of 2 + 150 mol% of 7 and 2-NBSA@MMF in CDCl₃ at 298 K after 102 h.

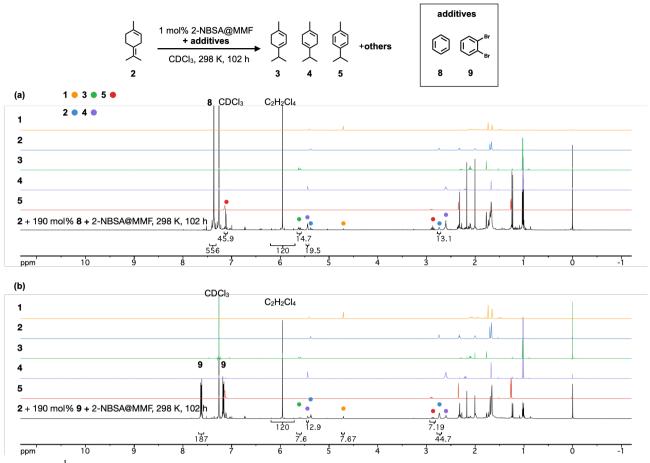
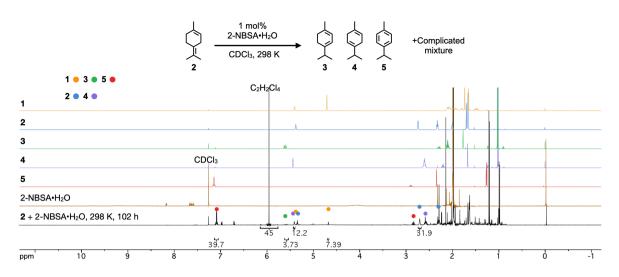
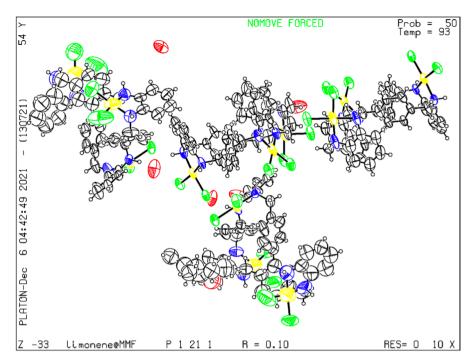



Fig. S19 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of 1–5, and (a) the reaction mixture of 2 + 190 mol% of 8 in CDCl₃ at 298 K after 102 h; (b) the reaction mixture of 2 + 190 mol% of 9 and 2-NBSA@MMF in CDCl₃ at 298 K after 102 h.

4.3 Isomerization of terpinolene using 2-NBSA·H₂O

A CDCl₃ solution of 2-NBSA·H₂O (1 mM, 0.1 mL, 0.1 μ mol, 1 mol%) and a CDCl₃ solution of terpinolene (**2**) (11 mM, 0.9 mL, 9.9 μ mol) were set in an NMR tube. This mixture was shaken on a shaker at 298 K and the time course of the reaction was monitored by ¹H NMR measurements (500 MHz, CDCl₃, 300 K). Using 1,1,2,2-tetrachloroethane (4.5 mM, 1.0 mL, 4.5 μ mol) as an internal standard, the conversion ratios of terpinolene (**2**) and the yields of main products were evaluated. Treatment of terpinolene (**2**) with 2-NBSA·H₂O at 298 K for 102 h resulted in consumption of 68% of **2** to α-terpinene (**3**) (4%), γ-terpinene (**4**) (12%), *p*-cymene (**5**) (20%) and limonene (7%).

Fig. S20 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of 1–5 and the reaction mixture of terpinolene (2) and 2-NBSA·H₂O in CDCl₃ at 298 K after 102 h.


5. Crystal structures of MMF soaked in a solution of terpenes

5.1 Crystal structure of (+)-limonene@MMF

MMF crystals (ca. 0.5 mg) were soaked in a CHCl₃ solution of (+)-limonene (1) (1.0 M, 100 μ L, 100 μ mol) at 298 K for 24 h in a capped microtube. One MMF crystal was then picked up and immediately mixed with paratone oil and single-crystal XRD was measured at 93 K.

Crystal data for (+)-limonene@MMF

Crystal data for $(Pd_3LCl_6)_4 \cdot ((+)-limonene)_{0.6} \cdot (H_2O)_{4.5}$: $C_{174}H_{177.6}Cl_{24}N_{24}O_{4.5}Pd_{12}$, $F_W = 4804.03$, crystal dimensions $0.08 \times 0.10 \times 0.11 \text{ mm}^3$, monoclinic, space group $P2_1$, a = 14.2647(1), b = 52.2312(10), c = 19.5113(3) Å, $\beta = 91.295(1)^\circ$, V = 14533.4(4) Å³, Z = 2, $\rho_{calcd} = 1.098$ g cm⁻³, $\mu = 8.17 \text{ mm}^{-1}$, T = 93 K, $\lambda(CuK\alpha) = 1.54187$ Å, $2\theta_{max} = 147.3^\circ$, 160911/56440 reflections collected/unique ($R_{int} = 0.0658$), $R_1 = 0.1006$ ($I > 2\sigma(I)$), $wR_2 = 0.3087$ (for all data), GOF = 1.095, largest diff. peak and hole 3.340/-1.950 eÅ⁻³, Flack parameter = 0.245(15), Hooft parameter = -0.061(8). CCDC deposit number 2133386. Several restraints were applied to the MMF and the guest molecules to prevent the structure from collapsing during the least-squares refinement. The structure was refined as an inversion twin.

Fig. S21 ORTEP drawing of (+)-limonene@MMF at the 50% probability level. Color: C black, N blue, O red, Cl green and Pd yellow.

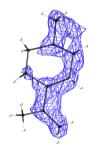
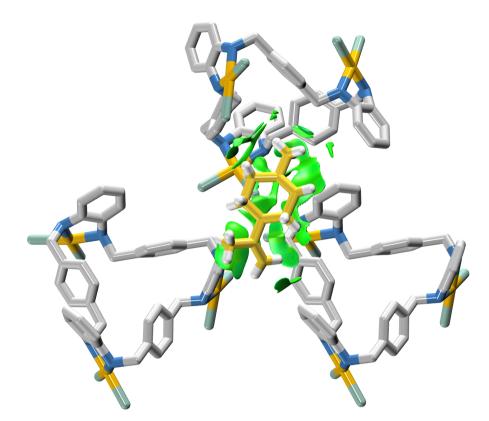
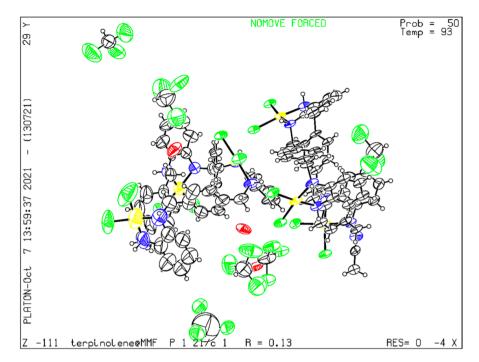


Fig. S22 Electron density maps of (+)-limonene in the crystal structure of (+)-limonene@MMF (contour level: $1.20 \text{ e}^{-}/\text{Å}^{3}$).



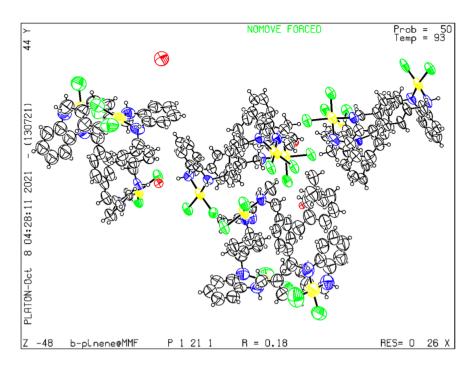

Fig. S23 Plot of noncovalent interactions between (+)-limonene (1) and three adjacent macrocycles. Noncovalent interactions: green surface (s = 0.5 a.u., $\rho < 0.05$ a.u.). Macrocycles and (+)-limonene: sticks model. MMF: Pd, yellow; Cl, green; N, blue; C, grey. 1: C, yellow; H, white. Hydrogen atoms attached to macrocycles were omitted for clarity.

5.2 Crystal structure of terpinolene@MMF

MMF crystals (ca. 0.5 mg) were soaked in a CHCl₃ solution of terpinolene (2) (1.0 M, 100 μ L, 100 μ mol) at 298 K for 24 h in a capped micro-tube. One MMF crystal was then picked up and immediately mixed with paratone oil and single-crystal XRD was measured at 93 K.

Crystal data for terpinolene@MMF

Crystal data for $(Pd_3LCl_6)_2 \cdot (CH_3CN) \cdot (CHCl_3)_{3.3} \cdot (H_2O)_2 : C_{89.3}H_{90.3}Cl_{21.8}N_{13}O_2Pd_6$, $F_W = 2786.43$, crystal dimensions $0.10 \times 0.10 \times 0.20 \text{ mm}^3$, monoclinic, space group $P2_1/c$, a = 19.4857(2), b = 51.8380(7), c = 14.3167(1) Å, $\beta = 90.706(1)^\circ$, V = 14460.2(3) Å³, Z = 4, $\rho_{calcd} = 1.280$ g cm⁻³, $\mu = 9.90 \text{ mm}^{-1}$, T = 93 K, $\lambda(CuK\alpha) = 1.54187$ Å, $2\theta_{max} = 146.8^\circ$, 175959/28222 reflections collected/unique ($R_{int} = 0.0971$), $R_1 = 0.1322$ ($I > 2\sigma(I)$), $wR_2 = 0.3637$ (for all data), GOF = 1.084, largest diff. peak and hole 3.140/-1.950 eÅ⁻³. CCDC deposit number 2133390. Several restraints were applied to the MMF and the guest molecules to prevent the structure from collapsing during the least-squares refinement.


Fig. S24 ORTEP drawing of terpinolene@MMF at the 50% probability level. Color: C black, N blue, O red, Cl green and Pd yellow.

5.3 Crystal structure of (–)-β-pinene@MMF

MMF crystals (ca. 0.5 mg) were soaked in a CH₃CN solution of (–)- β -pinene (7) (1.0 M, 100 μ L, 100 μ mol) at 298 K for 24 h in a capped micro-tube. One MMF crystal was then picked up and immediately mixed with paratone oil and single-crystal XRD was measured at 93 K.

Crystal data for (-)-β-pinene @MMF

Crystal data for $(Pd_3LCl_6)_4 \cdot ((-)-\beta-pinene)_{0.91} \cdot (CH_3CN) \cdot (H_2O)_2$: $C_{179.1}H_{185.6}Cl_{24}N_{25}O_2Pd_{12}$, $F_W = 4847.88$, crystal dimensions $0.01 \times 0.02 \times 0.05$ mm³, monoclinic, space group $P2_1$, a = 14.3205(1), b = 50.1973(12), c = 19.4935(3) Å, $\beta = 91.679(1)^\circ$, V = 14006.9(4) Å³, Z = 2, $\rho_{calcd} = 1.149$ g cm⁻³, $\mu = 8.47$ mm⁻¹, T = 93 K, λ (CuK α) = 1.54187 Å, $2\theta_{max} = 145.1^\circ$, 147264/53297 reflections collected/unique ($R_{int} = 0.0849$), $R_1 = 0.1752$ ($I > 2\sigma(I)$), $wR_2 = 0.4764$ (for all data), GOF = 1.795, largest diff. peak and hole 4.250/-3.050 eÅ⁻³, Flack parameter = 0.23(3), Hooft parameter = -0.048(8). CCDC deposit number 2133389. Several restraints were applied to the MMF and the guest molecules to prevent the structure from collapsing during the least-squares refinement. The structure was refined as an inversion twin.

Fig. S25 ORTEP drawing of (-)- β -pinene@MMF at the 50% probability level. Color: C black, N blue, O red, Cl green and Pd yellow.

Fig. S26 Electron density maps of (–)- β -pinene in the crystal structure of (–)- β -pinene@MMF (contour level: 1.80 e⁻/Å³).

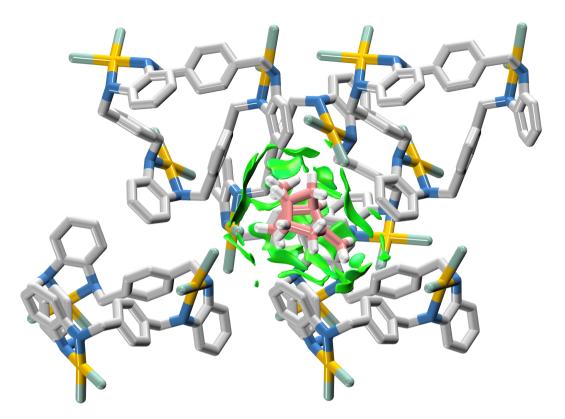
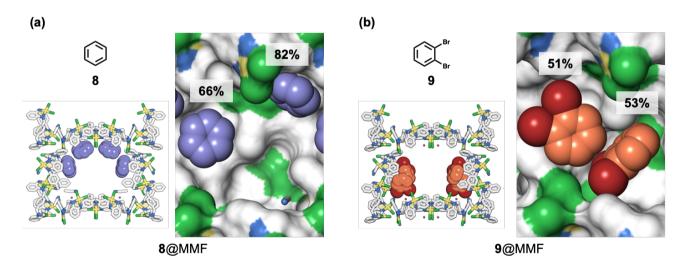
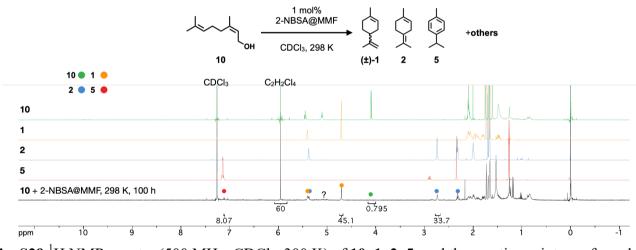
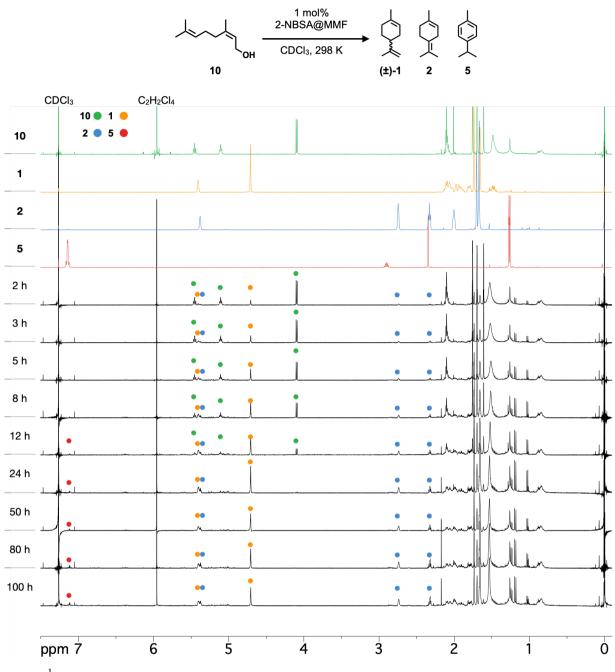



Fig. S27 Plot of non-covalent interactions between (–)- β -pinene (7) and five adjacent macrocycles. Non-covalent interactions: green surface (s = 0.5 a.u., $\rho < 0.05$ a.u.). Macrocycles and (–)- β -pinene: sticks model. MMF: Pd, yellow; Cl, green; N, blue; C, grey. 7: C, pink; H, white. Hydrogen atoms attached to macrocycles were omitted for clarity.

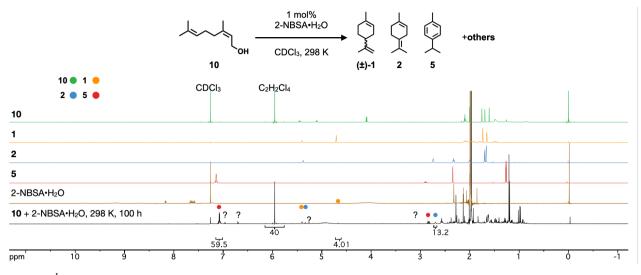

Fig. S28 Crystal structures of MMF soaked in an acetonitrile solution of (a) benzene (8) and (b) 1,2dibromobenzene (9).¹ These binding structures are for reference only, because the soaking solvent (acetonitrile) is different from the reaction solvent (chloroform). MMF: sticks model or surface model; 8 and 9: space-filling mode; water: sticks model. MMF: Pd, yellow; Cl, green; N, blue; C, grey. 8: C, purple. 9: C, orange; O, red. Water: O, red. Hydrogen atoms attached to MMF were omitted for clarity.

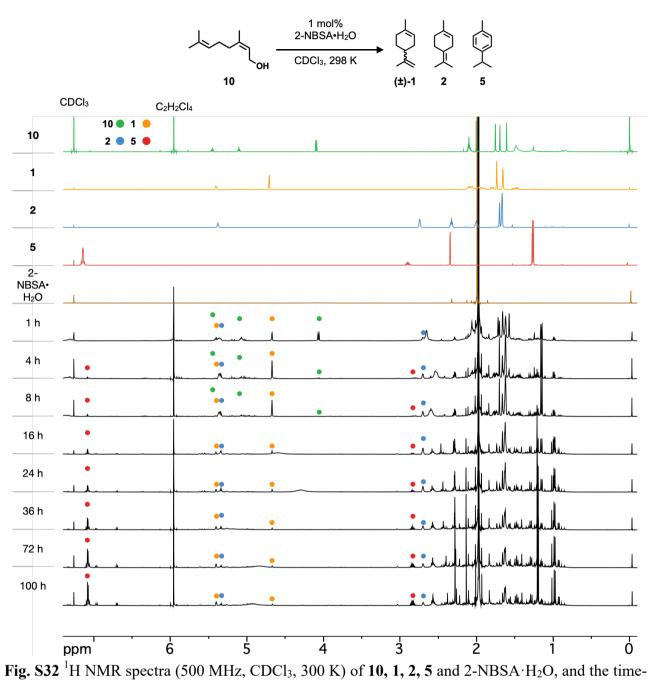
Green and blue surface represents exposed Cl and N-H groups of MMF, respectively. The molecular occupancies of **8** and **9** were denoted.


6. Cyclization of nerol using 2-NBSA@MMF and 2-NBSA·H₂O

6.1 Procedure for the cyclization of nerol using 2-NBSA@MMF

Crystals of 2-NBSA@MMF (ca. 0.5 mg, 0.1 μ mol of 2-NBSA in MMF, 1 mol%) immediately after preparation and a CDCl₃ solution of nerol (10 mM, 1.0 mL, 10 μ mol) were set in an NMR tube. This heterogeneous mixture was shaken on a shaker at 298 K and the time-course of the reaction was monitored by ¹H NMR measurements (500 MHz, CDCl₃, 300 K). The conversion ratios of nerol (**10**) and the yields of the main products were evaluated from the internal standard of 1,1,2,2-tetrachloroethane (6 mM, 1.0 mL, 6 μ mol). Treatment of nerol (**10**) with 2-NBSA@MMF resulted in 99% conversion of nerol (**10**) to limonene (45%), terpinolene (**2**) (34%) and *p*-cymene (**5**) (4%) at 298 K after 100 h.


Fig. S29 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **10**, **1**, **2**, **5**, and the reaction mixture of nerol (10) and 2-NBSA@MMF in CDCl₃ at 298 K after 100 h.


Fig. S30 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) of **10**, **1**, **2**, **5**, and the time-course analysis of the reaction mixture of nerol (10) and 2-NBSA@MMF in CDCl₃ at 298 K.

6.2 Procedure for the isomerization of nerol using 2-NBSA·H₂O

A CDCl₃ solution of 2-NBSA·H₂O (1 mM, 0.1 mL, 0.1 μ mol, 1 mol%) and a CDCl₃ solution of nerol (11 mM, 0.9 mL, 9.9 μ mol) were set in an NMR tube. This mixture was shaken on a shaker at 298 K and the time-course of the reaction was monitored by ¹H NMR measurements (500 MHz, CDCl₃, 300 K). The conversion ratios of nerol (**10**) and the yields of the main products were evaluated from the internal standard of 1,1,2,2-tetrachloroethane (4 mM, 1.0 mL, 4 μ mol). Treatment of nerol (**10**) with 2-NBSA@MMF resulted in 100% conversion of nerol (**10**) to limonene (4%), terpinolene (**2**) (13%) and *p*-cymene (**5**) (30%) at 298 K after 100 h.

Fig. S31 ¹H NMR spectra (500 MHz, CDCl₃, 300 K) for **10**, **1**, **2**, **5**, 2-NBSA·H₂O and the reaction mixture of nerol (**10**) and 2-NBSA·H₂O in CDCl₃ at 298 K after 100 h.

course analysis of the reaction mixture of nerol (10) and 2-NBSA·H₂O in CDCl₃ at 298 K.

7. References

- 1. S. Tashiro, R. Kubota and M. Shionoya, J. Am. Chem. Soc., 2012, 134, 2461–2464.
- 2. S. Tashiro, H. Yonezawa, R. Kubota, T. Umeki and M. Shionoya, *Chem. Commun.*, 2016, **52**, 7657–7660.
- 3. O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. Howard and H. Puschmann, *J. Appl. Crystallogr.*, 2009, **42**, 339–341.
- 4. G. M. Sheldrick, Acta Crystallogr. C, 2015, 71, 3-8.
- 5. C. B. Hübschle, G. M. Sheldrick and B. Dittrich, J. Appl. Crystallogr., 2011, 44, 1281–1284.
- 6. E. R. Johnson, S. Keinan, P. Mori-Sánchez, J. Contreras-García, A. J. Cohen and W. Yang, J. Am. Chem. Soc., 2010, 132, 6498–6506.
- 7. R. Chaudret, B. De Courcy, J. Contreras-García, E. Gloaguen, A. Zehnacker-Rentien, M. Mons and J. P. Piquemal, *Phys. Chem. Chem. Phys.*, 2014, **16**, 9876.
- 8. J. Contreras-García, E. R. Johnson, S. Keinan, R. Chaudret, J.-P. Piquemal, D. N. Beratan and W. Yang, *J. Chem. Theory and Comput.*, 2011, 7, 625–632.
- 9. W. Humphrey, A. Dalke and K. Schulten, J. Mol. Graph., 1996, 14, 33-38.