Directed, Nickel-Catalyzed 1,2-Alkylsulfenylation of Alkenyl Carbonyl Compounds

Zi-Qi Li, ${ }^{a}$ Wen-Ji He, ${ }^{a}$ Hui-Qi Ni, ${ }^{a}$ and Keary M. Engle ${ }^{*}{ }^{*}$
${ }^{a}$ Department of Chemistry, The Scripps Research Institute, 10550 North Torrey Pines Road, La Jolla, California 92037, United States

*keary@scripps.edu

Table of Contents

General Information 2
Table of Substrates 3
Experimental Procedures 4
Representative Procedures and Analytical Data9
X-Ray Crystallography 26
DFT Calculations. 47
References 55
NMR Spectra 56

General Information

Unless otherwise stated, all materials were used as received from commercial sources without further purification. All glassware and magnetic stir bars were dried in an oven at $100{ }^{\circ} \mathrm{C}$ overnight unless otherwise stated. All solvents were purchased from MilliporeSigma (Sure/Seal ${ }^{\mathrm{TM}}$) and used as received. 2Dram ($8-\mathrm{mL}$) reaction tubes were purchased from Fisher (Cat\#: 50976409). Caps with TFE septa were purchased from Chemglass (Cat\#: CG-4910-16). Ambient (room) temperature refers to $21-24^{\circ} \mathrm{C}$. Elevated temperatures were maintained by an IKA heating block for 2-dram vials or a silicone oil bath for larger vessels. Thin-layer chromatography (TLC) was performed using EMD Millipore 250 mm silica gel F-254 plates ($250 \mu \mathrm{~m}$) with F-254 fluorescent indicator and visualized by UV fluorescence quenching, iodine, Seebach's stain, or potassium permanganate stain. SiliCycle SiliaFlash P60 silica gel (particle size 40-63 $\mu \mathrm{m}$) was used for flash chromatography. Analtech thin layer chromatography products ($20 \mathrm{~cm} \times 20 \mathrm{~cm}$, 1000 micron) were used for preparative TLC. ${ }^{1} \mathrm{H},{ }^{13} \mathrm{C}$ and ${ }^{19} \mathrm{~F}$ NMR spectra were recorded on a Bruker DRX equipped with a 5 mm DCH cryoprobe ($600 \mathrm{MHz}, 150 \mathrm{MHz}$, and 376 MHz , respectively). ${ }^{1} \mathrm{H}$ NMR spectra were reported relative to $\mathrm{Me}_{4} \mathrm{Si}(\delta 0.0)$ unless otherwise stated. ${ }^{13} \mathrm{C}$ NMR spectra were calibrated to residual solvent signals $\left(\mathrm{CDCl}_{3}\right.$ at 77.16 ppm$)$. High-resolution mass spectra (HRMS) were recorded on an Agilent LC/MSD TOF mass spectrometer by electrospray ionization time of flight experiments or atmosphericpressure chemical ionization time of flight experiments.

Commercial Suppliers of Chemicals:

The following chemicals were purchased from the suppliers indicated:
$\mathrm{Ni}(\mathrm{COD})_{2}$: Strem (1295-35-8)
Tetrahydrofuran: MilliporeSigma (401757-100ML)
All commercial reagents were purchased from MilliporeSigma, Alfa Aesar, Oakwood, TCI or Strem and used as received.

Table of Substrates

1

1 e

1a

1 f

1k

1b

1g

11

10

1c

1 h

1 m

1p

1n
study. ${ }^{1-2}$

Scheme S2. Limitations. N.D. = product not detected.

Experimental Procedures

General Procedure A for the Synthesis of N-S Reagents

Synthesis of sulfenyl chlorides: The reaction was carried out according to a modified literature procedure. ${ }^{3}$ To a solution of thiol (100 mmol) in $\mathrm{CCl}_{4}(100 \mathrm{~mL}$) was added triethylamine (3 drops). The solution was cooled to $0{ }^{\circ} \mathrm{C}$. Sulfuryl chloride (110 mmol) was added dropwise. The reaction was kept stirring at $0{ }^{\circ} \mathrm{C}$ for an additional 30 min . After this time, the solvent was removed, and the residue was used without further purification.

Synthesis of N -alkylbenzamides: To a solution of the appropriate benzoyl chloride (1.0 equiv) in DCM (0.7 M) were added triethylamine (2.0 equiv) and the appropriate alkyl amine (1.2 equiv) under $0{ }^{\circ} \mathrm{C}$. The reaction was warmed to room temperature and stirred for an additional $5-30 \mathrm{~min}$, and reaction progress was monitored by TLC. After this time, the reaction was quenched with water. The aqueous solution was extracted with $\mathrm{DCM}(\times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure, and the residue was subjected to flash column chromatography on silica gel with hexanes/ethyl acetate as the eluent to afford the product. For the synthesis of N-methybenzamides, an aqueous solution of methylamine was used; in this case, no purification was required before subjecting the residue to the next step.

Synthesis of $\mathbf{N}-\mathbf{S}$ reagents: The reaction was carried out according to a modified literature procedure. ${ }^{4}$ To a solution of N-alkylbenzamide (5 mmol) in THF (10 mL) was added KH (1.5 equiv). The reaction mixture was stirred at room temperature for 1 h . After this time, solution of ArSCl in THF (5 mL) was added dropwise at $-78{ }^{\circ} \mathrm{C}$ until a light-yellow color persisted, suggesting the reaction had reached completion. The reaction was allowed to warm to room temperature and continue stirring for an additional 1 h , and reaction progress was monitored by TLC. After this time, the reaction was quenched with water. The aqueous solution was extracted with $\mathrm{DCM}(\times 3)$. The combined organic layers were dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The organic solvent was removed under reduced pressure, and the residue was subjected to flash column chromatography on silica gel with hexanes/ethyl acetate as the eluent to afford the product.

Large-scale synthesis of S10:

Following General Procedure A, S10 was prepared on 20 mmol scale with 83% isolated yield.

General Procedure B for Nickel-catalyzed Carbosulfenylation

Outside of the glovebox, to an oven-dried 1-dram ($4-\mathrm{mL}$) reaction tube equipped with a magnetic stir bar were added the appropriate alkene (0.1 mmol) and $\mathrm{N}-\mathrm{S}$ reagent $(0.12 \mathrm{mmol})$. The vial was then introduced into an argon-filled glovebox antechamber. Once transferred inside the glovebox, $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})^{5}(3.1$ $\mathrm{mg}, 10 \mathrm{~mol} \%)$ or $\mathrm{Ni}(\mathrm{COD})_{2}(2.8 \mathrm{mg}, 10 \mathrm{~mol} \%)$ was added to the vial, followed by THF (1.0 mL). The vial was sealed with a screw-top septum cap and removed from the glovebox. The dialkylzinc reagent $(0.1$ $\mathrm{mmol}, 1 \mathrm{M}$ in THF) or alkylzinc bromide ($0.1 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF) was added dropwise over the course of 15 min as the reaction vessel was heated to $60^{\circ} \mathrm{C}$ while stirring. The reaction was left to stir at $60^{\circ} \mathrm{C}$ for 30 min . After this time, $\mathrm{N}-\mathrm{S}$ reagent ($0.06 \mathrm{mmol}, 0.6 \mathrm{M}$ in THF) was added in one portion followed by dropwise addition of dialkylzinc reagent ($0.05 \mathrm{mmol}, 1 \mathrm{M}$ in THF) or alkylzinc bromide ($0.05 \mathrm{mmol}, 0.5$ M in THF) over the course of 10 min . Following addition of the reagents, the septum cap was sealed with grease. The reaction was left to stir at $60^{\circ} \mathrm{C}$ for 20 h . After this time, the reaction was diluted with saturated NaHCO_{3} solution (10 mL). The aqueous solution was then extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$). The combined organic layers were dried by passage through a pad of silica gel with ethyl acetate as eluent. The filtrate was concentrated and purified by preparative thin-layer chromatography (PTLC) to furnish the desired product.

Large-Scale Experiment

Outside of the glovebox, to an oven-dried $100-\mathrm{mL}$ round-bottom flask equipped with a magnetic stir bar were added alkene $1(530 \mathrm{mg}, 2.5 \mathrm{mmol})$, $\mathrm{N}-\mathrm{S}$ reagent ($770 \mathrm{mg}, 3.0 \mathrm{mmol}$), and DMFU ($72 \mathrm{mg}, 0.5 \mathrm{mmol}$). The vial was then introduced into an argon-filled glovebox antechamber. Once transferred inside the glovebox, $\mathrm{Ni}(\mathrm{COD})_{2}(69 \mathrm{mg}, 0.25 \mathrm{mmol})$ and THF $(20 \mathrm{~mL})$ were added to the flask. The flask was sealed with a septum cap, removed from the glovebox and then equipped with a nitrogen-filled balloon. The dialkylzinc reagent ($2.5 \mathrm{mmol}, 1 \mathrm{M}$ in THF) was added dropwise over the course of 20 min as the reaction vessel was heated to $60^{\circ} \mathrm{C}$ while stirring. The reaction was left to stir at $60^{\circ} \mathrm{C}$ for 30 min . After this time, the $\mathrm{N}-\mathrm{S}$ reagent ($1.5 \mathrm{mmol}, 0.6 \mathrm{M}$ in THF) was added in one portion followed by dropwise addition of dialkylzinc reagent ($1.25 \mathrm{mmol}, 1 \mathrm{M}$ in THF) over the course of 15 min . The reaction was left to stir at 60 ${ }^{\circ} \mathrm{C}$ for 20 h . After this time, the reaction was concentrated, and the crude residue was purified by column chromatography to furnish the desired product 2a in 70% yield (639 mg).

Optimization of Reaction Conditions for Carbosulfenylation Using $\mathrm{Et}_{2} \mathbf{Z n}$ as Nucleophile

Using S1 as a benchmark, the reaction conditions were optimized under the following standard conditions:
Outside of the glovebox, to an oven-dried 1-dram (4-mL) reaction tube equipped with a magnetic stir bar were added alkene $\mathbf{1}(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathbf{S} 1(40 \mathrm{mg}, 0.12 \mathrm{mmol})$. The vial was then introduced into an argon-filled glovebox antechamber. Once transferred inside the glovebox, the appropriate nickel catalyst ${ }^{6}(0.01 \mathrm{mmol})$ and solvent $(1.0 \mathrm{~mL})$ were added to the vial. The vial was sealed with a screw-top septum cap and removed from the glovebox. Diethylzinc ($0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$) was added dropwise over the course of 15 min at $60^{\circ} \mathrm{C}$ while stirring. After the addition, the septum cap was sealed with grease. The reaction was left to stir at $60^{\circ} \mathrm{C}$ for 20 h .

Table S1: Optimization of Reaction Conditions for Carbosulfenylation Using Et $\mathbf{Z n}_{2}$ as Nucleophile ${ }^{a}$

${ }^{a}$ The reactions were performed on 0.1 mmol scale. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Comparison Between Batchwise and Single-batch Addition with S10 as Electrophile

Using General Procedure B, a series of sulfenylating agents were evaluated (see manuscript Table 1), with $\mathbf{S 1 0}$ giving the best yield. ${ }^{7}$ The following experiments were performed with $\mathbf{S 1 0}$ to test the importance of portionwise addition. In all cases diethylzinc solution was added in a dropwise fashion.

Table S2: Comparison Between Batchwise and Single-batch Addition with S10 as Electrophile ${ }^{a}$

$\overline{{ }^{a} \text { The reactions were performed on } 0.1 \mathrm{mmol} \text { scale. }{ }^{b} \text { Yields were determined by }{ }^{1} \mathrm{H} \text { NMR analysis of the }}$ crude reaction mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Comparison between S10, S23, S25, and Corresponding Aryldisulfides

90\%

90\%

88\%

71\%

67\%

Optimization of Reaction Conditions for Carbosulfenylation Using Alkylzinc Bromide as Nucleophile

Using (3-ethoxy-3-oxopropyl)zinc bromide or cyclohexylzinc bromide as nucleophile, we briefly optimized the reaction condition according to General Procedure B.

Table S3: Optimization of Reaction Conditions for Carbosulfenylation Using Alkylzinc Bromide as Nucleophile ${ }^{a}$

${ }^{a}$ The reactions were performed on 0.1 mmol scale. ${ }^{b}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Table S4: Optimization of Reaction Conditions for Carbosulfenylation Using Alkylzinc Bromide as Nucleophile ${ }^{a}$

${ }^{a}$ The reactions were performed on 0.1 mmol scale. ${ }^{b} \mathrm{Cy}_{2} \mathrm{Zn}$ in place of CyZnBr . ${ }^{c}$ Yields were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Reactions of Internal Alkene 1g with S18 and S19 as Electrophiles

Using 1 g as alkene substrate and $\mathbf{S 1 8}$ or $\mathbf{S 1 9}$ as the electrophile, the following experiments were carried out following General Procedure B. Yields and diastereoselectivities were determined by ${ }^{1} \mathrm{H}$ NMR analysis of the crude reaction mixture with $\mathrm{CH}_{2} \mathrm{Br}_{2}$ as internal standard.

Scheme S3. Reactions of Internal Alkene 1g with S18 and S19 as Electrophiles

Representative Procedures and Analytical Data

N-methyl- N-(p-tolylthio)propane-2-sulfonamide (S6): The reaction was carried out following a literature procedure ${ }^{8}$ using N-methylpropane-2-sulfonamide (685 $\mathrm{mg}, 5 \mathrm{mmol}$), 4-methylbenzenesulfenyl chloride, triethylamine ($1.4 \mathrm{~mL}, 10 \mathrm{mmol}$), and $\mathrm{CCl}_{4}(10 \mathrm{~mL})$. The reaction was run for 30 min at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 6}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.47-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.20-7.17(\mathrm{~m}, 2 \mathrm{H})$, 3.52 (hept, $J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 2.35(\mathrm{~s}, 3 \mathrm{H}), 1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{~ N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 138.91,132.56,130.04,128.91,53.45,42.78,21.31,16.72$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{11} \mathrm{H}_{18} \mathrm{NO}_{2} \mathrm{~S}_{2}{ }^{+}$ $[\mathrm{M}+\mathrm{H}]$ 260.0779, found 260.0770.

N-phenyl- N-(p-tolylthio)acetamide (S8): The reaction was carried out following General Procedure A using N-phenylacetamide (675 mg , 5 mmol), 4methylbenzenesulfenyl chloride, $\mathrm{KH}(300 \mathrm{mg}, 7.5 \mathrm{mmol})$, and THF $(10 \mathrm{~mL})$. The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 8}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ § 7.35-7.29 (m, 2H), 7.28-7.24 (m, 3H), 7.18-7.11 (m, 4H), 2.35-2.18 (m, $6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.10$, 145.17, 138.41, 133.75, 130.00, 129.25, 128.27, 127.54, 126.99, 22.97, 21.19. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 258.0953, found 258.0949.

$N, 4$-dimethyl- N-(p-tolylthio)benzamide (S11): The reaction was carried out following General Procedure A using $N, 4$-dimethyl-benzamide ($745 \mathrm{mg}, 5$ mmol), 4-methylbenzenesulfenyl chloride, $\mathrm{KH}(300 \mathrm{mg}, 7.5 \mathrm{mmol})$, and THF $(10 \mathrm{~mL})$. The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 1 1}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.45-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 4 \mathrm{H})$, $7.03(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.66$, 140.68, 137.56, 133.84, 132.36, 130.20, 128.59, 128.03, 125.79, 40.65, 21.61, 21.19. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}] 272.1109$, found 272.1104.

4-(tert-butyl)- N -methyl- N -(\boldsymbol{p}-tolylthio)benzamide (S12): The reaction was carried out following General Procedure A using 4-(tert-butyl)- N methylbenzamide ($955 \mathrm{mg}, 5 \mathrm{mmol}$), 4-methylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 1 2}$ as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.50-$ $7.45(\mathrm{~m}, 2 \mathrm{H}), 7.38-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 2 \mathrm{H}), 7.06-7.01(\mathrm{~m}, 2 \mathrm{H}), 3.38(\mathrm{~s}, 3 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}$, $9 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.52,153.72,137.45,133.91,132.23,130.17,127.86,125.69$, $124.85,40.58,34.94,31.28,21.16$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}] 314.1579$, found 314.1577 .

2,6-dimethoxy- N-methyl- N -(\boldsymbol{p}-tolylthio)benzamide (S14): The reaction was carried out following General Procedure A using 2,6-dimethoxy-Nmethylbenzamide ($975 \mathrm{mg}, 5 \mathrm{mmol}$), 4-methylbenzenesulfenyl chloride, KH (300 $\mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 1 4}$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.23(\mathrm{t}, J=8.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.09(\mathrm{~s}, 4 \mathrm{H}), 6.50(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 172.45,156.77,136.93,133.76,130.26,129.69,129.55,126.19,103.62,55.62,38.74$, 21.05. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NO}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 318.1164$, found 318.1163.

N -ethyl- N -(\mathbf{p}-tolylthio)benzamide (S15): The reaction was carried out following General Procedure A using N-ethylbenzamide ($745 \mathrm{mg}, 5 \mathrm{mmol}$), 4methylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford S15 as a white solid. ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{qd}, J=1.5,0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 3.78(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.20,138.99,136.97,135.10,130.07,128.73,127.63,127.45,121.73$, 40.39, 21.21. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 272.1109, found 272.1107.

N-isopropyl- N-(p-tolylthio)benzamide (S16): The reaction was carried out following General Procedure A using N-isopropylbenzamide ($815 \mathrm{mg}, 5 \mathrm{mmol}$), 4methylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford S16 as a white solid. ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.33(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.29(\mathrm{~m}, 2 \mathrm{H})$, $7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 4.89(\mathrm{~s}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 6 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.83,136.77,136.71,136.49,129.87$, 129.77, 127.94, 127.30, 124.88, 51.76, 21.20, 21.12. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 286.1266, found 286.1268.

N-benzyl- N-(p-tolylthio)benzamide (S17): The reaction was carried out following General Procedure A using N-benzylbenzamide (1.1 g , 5 mmol), 4methylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford S17 as a white solid. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.29(\mathrm{~m}, 7 \mathrm{H})$, $7.14-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.99(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathbf{C} \mathbf{~ N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 176.43, 137.71, 137.42, 135.48, 133.64, 130.36, 130.18, 128.86, 128.67, 127.97, 127.83, 127.80, 126.17, 54.10, 21.22. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{20} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 334.1266, found 334.1263.

N -((4-(tert-butyl)phenyl)thio)- N -methylbenzamide (S22): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5$ mmol), 4-(tert-butyl)-benzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF $(10 \mathrm{~mL})$. The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 2}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.55-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.32$ $(\mathrm{m}, 4 \mathrm{H}), 7.06(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 1.30(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 176.57, 150.90, 135.39, 133.67, 130.33, 127.93, 127.89, 126.51, 125.62, 40.53, 34.70, 31.35. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 300.1422, found 300.1414 .

N -((4-methoxyphenyl)thio)- N -methylbenzamide (S23): The reaction was carried out following General Procedure A using N-methylbenzamide (675 mg , 5 mmol), 4-methoxybenzenesulfenyl chloride, $\mathrm{KH}(300 \mathrm{mg}, 7.5 \mathrm{mmol})$, and THF $(10 \mathrm{~mL})$. The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 3}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.54-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36$ $(\mathrm{m}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.88-6.82(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 176.46,160.45,135.76,131.48,130.26,128.15,127.96,127.08,114.96,55.52,40.35$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 274.0902, found 274.0901.

N -((4-fluorophenyl)thio)- N -methylbenzamide (S24): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 4fluorobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S} 24$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 2 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 3.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.43,163.40,135.22,132.20$ $\left(\mathrm{d}, J_{C-F}=3.4 \mathrm{~Hz}\right), 130.51,128.85,128.04,127.89,116.71\left(\mathrm{~d}, J_{C-F}=22.4 \mathrm{~Hz}\right), 40.64 .{ }^{19}$ F NMR $(471 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta-113.56$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FNOS}^{+}[\mathrm{M}+\mathrm{H}]$ 262.0702, found 262.0703.

N-((4-chlorophenyl)thio)- N-methylbenzamide (S25): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 4chlorobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 5}$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8 7.50-7.45 (m, 2H), 7.42-7.36 (m, 1H), 7.35-7.26 (m, 4H), 7.01 (d, J= 8.2 $\mathrm{Hz}, 2 \mathrm{H}$), $3.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.21,135.98$, 134.85, 133.00, 130.46, 129.56, 127.92, 127.54, 125.88, 40.56. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNOS}^{+}[\mathrm{M}+\mathrm{H}]$ 278.0406, found 278.0406 .

N-((4-bromopheny)thio)- N-methylbenzamide (S26): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 4bromobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 6}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ 8 7.50-7.45 (m, 4H), 7.44-7.39 (m, 1H), 7.36-7.32 (m, 2H), $6.97(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}$), 3.42 ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.41,136.82,134.90,132.58,130.59,128.04$, 127.61, 125.97, 120.89, 40.65. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNOS}^{+}[\mathrm{M}+\mathrm{H}]$ 321.9901, found 321.9898.

N-methyl- N-((4-(trifluoromethyl)phenyl)thio)benzamide (S27): The reaction was carried out following General Procedure A using N-methylbenzamide (675 $\mathrm{mg}, 5 \mathrm{mmol}$), 4-trifluoromethylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 7}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.62-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.51-7.45(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=8.3,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.35,143.12,134.60\left(\mathrm{~d}, J_{C-F}=2.2 \mathrm{~Hz}\right), 130.76\left(\mathrm{~d}, J_{C-F}=2.1 \mathrm{~Hz}\right), 128.63\left(\mathrm{q}, J_{C-F}\right.$ $=32.6 \mathrm{~Hz}), 128.11\left(\mathrm{~d}, J_{C-F}=2.2 \mathrm{~Hz}\right), 127.46\left(\mathrm{~d}, J_{C-F}=2.1 \mathrm{~Hz}\right), 126.44\left(\mathrm{q}, J_{C-F}=4.2,3.6 \mathrm{~Hz}\right), 124.02(\mathrm{q}$, $J_{C-F}=271.7 \mathrm{~Hz}$), 122.68, 40.70. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.74$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 312.0670, found 312.0670.

N-((3-methoxyphenyl)thio)- N-methylbenzamide (S28): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5$ mmol), 3-methoxybenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF $(10 \mathrm{~mL})$. The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 8}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.27$ (m, 2H), $7.23(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{ddd}, J=8.3,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.60$ $(\mathrm{d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.28,160.33,138.92$, 135.01, 130.30, 130.28, 127.79, 127.51, 116.06, 112.46, 109.29, 55.23, 40.56. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 274.0902, found 274.0906.

N-((3-fluorophenyl)thio)- N-methylbenzamide (S29): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 3fluorobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 2 9}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 3 \mathrm{H}), 6.90(\mathrm{tdd}, J=$ $8.4,2.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{dt}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{dt}, J=9.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.39,163.41\left(\mathrm{~d}, J_{C-F}=249.9 \mathrm{~Hz}\right), 140.37\left(\mathrm{~d}, J_{C-F}=7.2 \mathrm{~Hz}\right), 134.83,131.00(\mathrm{~d}$, $\left.J_{C-F}=8.7 \mathrm{~Hz}\right), 130.61,128.04,127.55,119.14,113.78\left(\mathrm{~d}, J_{C-F}=21.5 \mathrm{~Hz}\right), 110.73\left(\mathrm{~d}, J_{C-F}=24.6 \mathrm{~Hz}\right)$, 40.76. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-110.99$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{FNOS}^{+}[\mathrm{M}+\mathrm{H}]$ 262.0702, found 262.0702.

N -((2-chlorophenyl)thio)- N -methylbenzamide (S30): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 2chlorobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 3 0}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.49-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.40(\mathrm{ddt}, J=8.8,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.28(\mathrm{~m}, 4 \mathrm{H})$, 7.15 (ddd, $J=8.0,7.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{dd}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , CDCl_{3}) $\delta 176.54,137.13,134.57,130.69,130.11,128.02,127.80,127.45,126.96,122.88,40.45$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClNOS}^{+}[\mathrm{M}+\mathrm{H}]$ 278.0406, found 278.0407.

N -((2-bromophenyl)thio)- N -methylbenzamide (S31): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 2bromobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 3 1}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.50-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.43-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{dd}, J=8.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-$ $7.02(\mathrm{~m}, 2 \mathrm{H}), 3.46(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.51,138.97$, 134.55, 133.28, 130.72, 128.39, 128.04, 127.46, 127.13, 122.86, 116.34, 40.41. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{BrNOS}^{+}[\mathrm{M}+\mathrm{H}]$ 321.9901 , found 321.9897 .

N-methyl- N-(o-tolylthio)benzamide (S32): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5 \mathrm{mmol}$), 2methylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 3 2}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 7.51-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.39(\mathrm{ddt}, J=8.0,6.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 2 \mathrm{H})$, 7.28-7.26(m, 1H), 7.14-7.08(m, 3H), $3.43(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.59$, $136.65,135.06,132.82,130.76,130.39,127.89,127.49,127.02,126.16,122.36,40.55,18.68$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}] 258.0953$, found 258.0954.

N-((3-chloro-4-fluorophenyl)thio)- N-methylbenzamide (S33): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5$ mmol), 3-chloro-4-fluorobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 3 3}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.33(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.11(\mathrm{~m}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.92,157.39\left(\mathrm{~d}, J_{C-F}=250.3 \mathrm{~Hz}\right), 134.75,133.79\left(\mathrm{~d}, J_{C-F}=3.8 \mathrm{~Hz}\right)$, $130.53,127.98,127.71,127.65,125.62\left(\mathrm{~d}, J_{C-F}=7.0 \mathrm{~Hz}\right), 122.23\left(\mathrm{~d}, J_{C-F}=18.6 \mathrm{~Hz}\right), 117.62\left(\mathrm{~d}, J_{C-F}=\right.$ 22.0 Hz), 40.66. ${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.23$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{ClFNOS}^{+}$ [M+H] 296.0312, found 296.0310 .

\boldsymbol{N}-((2,5-dichlorophenyl)thio)- N-methylbenzamide (S34): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5$ mmol), 2,5-dichlorobenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF (10 mL). The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 3 4}$ as a white solid. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H})$, $7.19(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{ddd}, J=8.3,2.4,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.00,139.04,134.24,134.15,131.05,130.80,128.10,127.30,126.98$, 125.75, 122.38, 40.55. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{Cl}_{2} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}] 312.0017$, found 312.0013.

N -((3,5-dimethylphenyl)thio)- N -methylbenzamide (S35): The reaction was carried out following General Procedure A using N-methylbenzamide ($675 \mathrm{mg}, 5$ mmol), 3,5-dimethylbenzenesulfenyl chloride, KH ($300 \mathrm{mg}, 7.5 \mathrm{mmol}$), and THF $(10 \mathrm{~mL})$. The reaction was run for 1 h at room temperature, and the product was purified by column chromatography using silica gel to afford $\mathbf{S 3 5}$ as a white solid. ${ }^{1} \mathbf{H ~ N M R ~ (~} 600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.24$ $(\mathrm{m}, 2 \mathrm{H}), 6.80(\mathrm{qd}, J=1.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 2 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.24(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) $\delta 176.20,138.99,136.97,135.10,130.07,128.73,127.63,127.45,121.73,40.39$, 21.21. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NOS}^{+}[\mathrm{M}+\mathrm{H}]$ 272.1109, found 272.1109.

N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (2a): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), S10 ($53.8 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thinlayer chromatography (PTLC) to afford 30.9 mg (85%) of 2a as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 2 \mathrm{H})$, $7.10-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=14.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28$ $(\mathrm{s}, 3 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR (151 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.63,148.25,138.47,137.58,136.44,134.52,133.57,130.38,129.83,128.04,127.50$, 121.72, 121.65, 116.68, 45.77, 44.15, 36.94, 21.20, 20.36, 13.98. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 365.1688$, found 365.1680 .

3-((4-(tert-butyl)phenyl)thio)- N-(quinolin-8-yl)hexanamide (2b): The reaction was carried out following General Procedure B using $1(21.2 \mathrm{mg}$, 0.1 mmol), $\mathbf{S 2 2}$ ($53.8 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene $), \mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $36.1 \mathrm{mg}(89 \%)$ of 2b as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}$, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.27(\mathrm{~m}$, $2 \mathrm{H}), 3.70(\mathrm{dtd}, J=7.8,6.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.78-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.63(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.27(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}$ ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.67,150.62,148.26,138.49,136.46,134.53,132.94,130.58,128.05,127.52$, 126.10, 121.73, 121.65, 116.69, 45.51, 44.30, 36.95, 34.63, 31.36, 20.39, 14.00. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 407.2157$, found 407.2155.

3-((4-methoxyphenyl)thio)- N -(quinolin-8-yl)hexanamide (2c): The reaction was carried out following General Procedure B using 1 (21.2 mg , $0.1 \mathrm{mmol})$, $\mathbf{S 2 3}$ ($49.1 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $34.2 \mathrm{mg}(90 \%)$ of 2c as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.76$ (dd, J $=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.83-6.79(\mathrm{~m}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.9,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}$, $J=14.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.52(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.67$, $159.74,148.26,138.48,136.46,136.26,134.53,128.05,127.52,124.08,121.73,121.64,116.70,114.62$, $55.38,46.46,44.12,36.88,20.35,13.98$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 381.1637, found 381.1632.

3-((4-fluorophenyl)thio)- N -(quinolin-8-yl)hexanamide (2d): The reaction

was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$),
S24 ($47.0 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 31.3 mg (85%) of $\mathbf{2 d}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74$ (dd, $J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 4 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.00-6.92(\mathrm{~m}, 2 \mathrm{H}), 3.67-3.61(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.75-1.68(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.60-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.43,162.59\left(\mathrm{~d}, J_{C-F}=247.7 \mathrm{~Hz}\right)$, $148.29,138.44,136.52,135.67\left(\mathrm{~d}, J_{C-F}=8.3 \mathrm{~Hz}\right), 134.39,129.20\left(\mathrm{~d}, J_{C-F}=3.3 \mathrm{~Hz}\right), 128.06,127.51,121.79$, $121.77,116.74,116.13\left(\mathrm{~d}, J_{C-F}=21.5 \mathrm{~Hz}\right), 46.42,44.12,37.05,20.32,13.95 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-116.72. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 369.1437, found 369.1431.

3-((4-chlorophenyl)thio)- N -(quinolin-8-yl)hexanamide (2e): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathbf{S 2 5}(50.0 \mathrm{mg}, 1.8 \mathrm{mmol})$, diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thinlayer chromatography (PTLC) to afford $30.3 \mathrm{mg}(79 \%)$ of $\mathbf{2 e}$ as a colorless oil. ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}$, $1 \mathrm{H}), 8.73$ (dd, $J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48$ (m, 2H), 7.46 (dd, $J=8.2,4.2$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.18(\mathrm{~m}, 2 \mathrm{H}), 3.72(\mathrm{dtd}, J=7.9,6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H})$, $1.79-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.50(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $(151 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 169.29,148.30,138.43,136.51,134.36,134.00,133.42,133.08,129.19,128.06,127.51,121.81$, 121.77, 116.71, 45.85, 44.17, 37.13, 20.35, 13.96. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 385.1141, found 385.1134 .

3-((4-bromophenyl)thio)- N -(quinolin-8-yl)hexanamide (2f): The reaction was carried out following General Procedure B using $\mathbf{1}(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, S26 ($57.8 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})$ (DMFU) $(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $33.4 \mathrm{mg}(78 \%)$ of $\mathbf{2 f}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.49(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 3.74$ (dtd, $J=7.9,6.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.71(\mathrm{~m}, 2 \mathrm{H}), 1.80-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.58-1.49(\mathrm{~m}$, $1 \mathrm{H}), 0.94(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.27, 148.30, 138.43, 136.51, 134.35,
134.11, 133.81, 132.11, 128.06, 127.52, 121.82, 121.77, 121.39, 116.72, 45.70, 44.18, 37.14, 20.36, 13.97. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 429.0636$, found 429.0632 .

N-(quinolin-8-yl)-3-((4-(trifluoromethyl)phenyl)thio)hexanamide (2g): The reaction was carried out following General Procedure B using 1 (21.2 $\mathrm{mg}, 0.1 \mathrm{mmol}$), S27 ($56.0 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 25.1 mg (60%) of $\mathbf{2 g}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{dd}$, $J=6.1,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 3.91$ (dtd, $J=$ $8.1,6.8,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.89-2.79(\mathrm{~m}, 2 \mathrm{H}), 1.81(\mathrm{ddt}, J=14.0,10.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.63$ (dddd, $J=13.1,10.2,7.6,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.56$ (dddd, $J=13.2,10.2,7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13}$ C NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.10,148.32,140.65\left(\mathrm{~d}, J_{C-F}=1.4 \mathrm{~Hz}\right), 138.42,136.53,134.29,130.54$, 128.47 (q, $J_{C-F}=32.5 \mathrm{~Hz}$), 128.06, $127.49,125.80\left(\mathrm{q}, J_{C-F}=3.9 \mathrm{~Hz}\right), 124.20\left(\mathrm{q}, J_{C-F}=271.8 \mathrm{~Hz}\right), 121.88$, 121.80, 116.71, 44.68, 44.25, 37.23, 20.39, 13.97. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-65.19$. HRMS (ESITOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 419.1405$, found 419.1402.

3-((3-methoxyphenyl)thio)- N -(quinolin-8-yl)hexanamide (2h): The reaction
 was carried out following General Procedure B using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, S28 ($49.1 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 23.9 mg (63%) of $\mathbf{2 h}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75$ (dd, $J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 8.16 (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.48$ (m, 2H), 7.46 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.18 (dd, $J=8.3,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (ddd, $J=7.6,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{dd}, J=2.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (ddd, $J=8.3,2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dtd}, J=8.0,6.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{dd}, J=14.9,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.77(\mathrm{dd}, J=15.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.54,159.89,148.30,138.49,136.47,135.83,134.50,129.86$, 128.06, 127.52, 124.55, 121.76, 121.71, 117.48, 116.70, 113.20, 55.38, 45.28, 44.20, 37.05, 20.39, 14.02. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 381.1637, found 381.1628.

3-((3-fluorophenyl)thio)- N-(quinolin-8-yl)hexanamide (2i): The reaction was carried out following General Procedure B using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, S29 ($47.0 \mathrm{mg}, \quad 1.8 \mathrm{mmol}$), diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $25.0 \mathrm{mg}(68 \%)$ of $\mathbf{2 i}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}$, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 7.24-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.91-6.86(\mathrm{~m}, 1 \mathrm{H}), 3.80(\mathrm{dtd}, J=8.0,6.8,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{dd}, J=15.0$, $6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.79$ (dd, $J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.78$ (ddt, $J=13.7,9.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.15,162.71\left(\mathrm{~d}, J_{C-F}=248.7 \mathrm{~Hz}\right)$, $148.23,138.35,137.12\left(\mathrm{~d}, J_{C-F}=7.7 \mathrm{~Hz}\right), 136.39,134.28,130.18\left(\mathrm{~d}, J_{C-F}=8.8 \mathrm{~Hz}\right), 127.96,127.40,127.35$ $\left(\mathrm{d}, J_{C-F}=3.2 \mathrm{~Hz}\right), 121.70,121.68,118.57\left(\mathrm{~d}, J_{C-F}=22.5 \mathrm{~Hz}\right), 116.61,113.94\left(\mathrm{~d}, J_{C-F}=21.0 \mathrm{~Hz}\right), 45.28$, 43.99, 36.97, 20.26, 13.87. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-112.10$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{FN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 369.1437, found 369.1433.

3-((2-chlorophenyl)thio)- N -(quinolin-8-yl)hexanamide (2j): The reaction was carried out following General Procedure B using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, S30 ($50.0 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $22.7 \mathrm{mg}(59 \%)$ of $\mathbf{2} \mathbf{j}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{dd}, J=7.9,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.34(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.18(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{tt}, J=7.9$, $5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=15.1,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=15.1,7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.83(\mathrm{ddt}, J=13.9,10.2,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.69-1.62(\mathrm{~m}, 1 \mathrm{H}), 1.58(\mathrm{dddd}, J=13.3,10.2,7.3,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.33,148.33,138.45,136.46,135.50,134.61,134.39$, 131.67, 130.02, 128.03, 127.56, 127.46, 127.36, 121.79, 121.77, 116.68, 44.11, 43.94, 36.94, 20.35, 14.03. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{ClN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 385.1141$, found 385.1140 .

3-((2-bromophenyl)thio)- N -(quinolin-8-yl)hexanamide (2k): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), S31 ($57.8 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $20.5 \mathrm{mg}(48 \%)$ of $\mathbf{2 k}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.73$ (dd, $J=6.7,2.3 \mathrm{~Hz}, 1 \mathrm{H}$), 8.15 (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.24(\mathrm{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{td}, J=7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{tt}, J=7.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{dd}, J=$ $15.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.81(\mathrm{dd}, J=15.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\mathrm{ddt}, J=14.0,10.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.78-1.71(\mathrm{~m}$, $1 \mathrm{H}), 1.66(\mathrm{dddd}, J=15.2,10.3,7.4,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.60-1.54(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.34,148.34,138.45,136.79,136.47,134.39,133.32,131.12,128.04,128.03$, 127.54, 127.46, 125.72, 121.81, 121.78, 116.69, 44.22, 44.01, 36.87, 20.37, 14.05. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{BrN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 429.0636, found 429.0631.

N -(quinolin-8-yl)-3-(o-tolylthio)hexanamide (21): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathbf{S 3 2}$ (46.3 mg , $1.8 \mathrm{mmol})$, diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})$ (DMFU) (3.1 $\mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $26.2 \mathrm{mg}(72 \%)$ of $\mathbf{2 l}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.88(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09(\mathrm{td}, J=7.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81$ ($\mathrm{tt}, J=7.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}$), $2.86(\mathrm{dd}, J=15.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=15.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (ddt, $J=13.7,10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.66(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.54(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.59,148.27,139.65,138.47,136.46,134.48,134.34,131.58,130.46,128.04$, 127.51, 126.87, 126.61, 121.74, 121.70, 116.67, 44.32, 44.06, 37.06, 20.91, 20.36, 14.08. HRMS (ESITOF) Calcd for $\mathrm{C}_{22} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 365.1688, found 365.1682.

3-((3-chloro-4-fluorophenyl)thio)- N -(quinolin-8-yl)hexanamide (2m):
 The reaction was carried out following General Procedure B using $1(21.2 \mathrm{mg}$, 0.1 mmol), $\mathbf{S 3 3}$ ($53.1 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 30.2 mg (75%) of $\mathbf{2 m}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.82(\mathrm{dd}, J=4.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=6.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{dd}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{ddd}, J=8.5,4.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{t}, J=8.7 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.71-3.66(\mathrm{~m}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=14.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.76(\mathrm{dd}, J=14.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77-1.70(\mathrm{~m}$, $1 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.52(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.13$, $158.61,148.36,138.43,136.53,135.20,134.30,133.21\left(\mathrm{~d}, J_{C-F}=7.1 \mathrm{~Hz}\right), 130.99\left(\mathrm{~d}, J_{C-F}=4.3 \mathrm{~Hz}\right), 128.08$, $127.50,121.86,121.80,121.41\left(\mathrm{~d}, J_{C-F}=18.1 \mathrm{~Hz}\right), 117.08\left(\mathrm{~d}, J_{C-F}=21.4 \mathrm{~Hz}\right), 116.71,46.65,44.23,37.16$, $20.33,13.96 .{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-116.38$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClFN}_{2} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}] 403.1047$, found 403.1031 .

3-((2,5-dichlorophenyl)thio)- \boldsymbol{N}-(quinolin-8-yl)hexanamide (2n): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathbf{S 3 4}(56.0 \mathrm{mg}, 1.8 \mathrm{mmol})$, diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $20.9 \mathrm{mg}(50 \%)$ of $\mathbf{2 n}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=6.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ (dd, $J=8.5,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=15.1,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=15.1,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 1.84$ (ddt, $J=14.0,10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.74$ (dddd, $J=14.1,10.2,7.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ (dddd, $J=$ $14.4,7.0,5.1,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $168.94,148.36,138.45,136.67,136.48,134.31,133.52,133.08,130.87,130.76,128.04,127.49,127.48$, $121.85,121.79,116.75,44.18,44.10,36.99,20.30,14.03$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{Cl}_{2} \mathrm{~N}_{2} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}] 419.0752$, found 419.0741 .

3-((3,5-dimethylphenyl)thio)- \boldsymbol{N}-(quinolin-8-yl)hexanamide (20): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathbf{S 3 5}$ ($48.8 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $24.2 \mathrm{mg}(64 \%)$ of $\mathbf{2 o}$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.76$ $(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.11(\mathrm{dd}, J=1.5,0.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.81(\mathrm{dt}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=14.9,6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.74(\mathrm{dd}, J=14.9,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.23(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.79-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.61-$ $1.52(\mathrm{~m}, 1 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.67,148.26,138.59$, 138.48, $136.45,134.53,133.77,130.40,129.15,128.05,127.50,121.71,121.65,116.66,45.33,44.31,36.96,21.27$, 20.36, 14.01. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 379.1844$, found 379.1836.

3-(phenylselanyl)- \boldsymbol{N}-(quinolin-8-yl)hexanamide (2p): The reaction was carried out following General Procedure B using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), diphenyldiselenide ($56.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $20.2 \mathrm{mg}(51 \%)$ of $\mathbf{2 p}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.76-8.66(\mathrm{~m}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.81-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.20(\mathrm{~m}, 3 \mathrm{H}), 3.94-3.66(\mathrm{~m}$, $1 \mathrm{H}), 2.88(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 1.87-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.69-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.49(\mathrm{~m}, 1 \mathrm{H}), 0.93(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.79,148.26,138.49,136.49,135.60,134.47,129.15,128.50$, 128.06, 127.85, 127.54, 121.75, 121.68, 116.71, 45.07, 41.15, 37.76, 21.27, 13.90. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OSe}^{+}[\mathrm{M}+\mathrm{H}] 393.1035$, found 393.1021.

N -(quinolin-8-yl)-3-(p-tolylthio)pentanamide (2q): The reaction was carried out following General Procedure B using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{S 1 0}(46.3 \mathrm{mg}$, 1.8 mmol), dimethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})$ (DMFU) (3.1 $\mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $28.4 \mathrm{mg}(81 \%)$ of $\mathbf{2 q}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15$ (dd, $J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48$ (m, 2H), 7.45 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.06(\mathrm{~m}, 2 \mathrm{H}), 3.62(\mathrm{qd}, J=7.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=$ $14.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=15.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.79(\mathrm{dqd}, J=14.7,7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-$ $1.65(\mathrm{~m}, 1 \mathrm{H}), 1.12(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.63,148.26,138.48,137.60$, $136.46,134.51,133.59,130.39,129.84,128.05,127.51,121.73,121.67,116.69,47.62,43.68,27.71,21.20$, 11.62. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 351.1531, found 351.1529.

N -(quinolin-8-yl)-3-(p-tolylthio)heptanamide (2r): The reaction was carried out following General Procedure C using 1 ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathbf{S 1 0}$ (46.3 mg , 1.8 mmol), n-propylzinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8$ $\mathrm{mg}, 0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $18.1 \mathrm{mg}(48 \%)$ of $\mathbf{2 r}$ as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75$ (dd, $J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dtd}, J=8.0,6.8,5.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.99-2.58(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.88-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.50(\mathrm{~m}, 3 \mathrm{H}), 1.41-1.29(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=7.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.65$, 148.27, 138.51, 137.61, 136.47, 134.55, 133.60, 130.41, 129.86, 128.07, 127.54, 121.74, 121.66, 116.71, 46.01, 44.15, 34.48, 29.28, 22.64, 21.22, 14.15. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 379.1844, found 379.1832.

5-phenyl- N-(quinolin-8-yl)-3-(p-tolylthio)pentanamide (2s): The reaction was carried out following General Procedure C using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol})$, S10 ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), benzylzinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}$ $(2.8 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $29.0 \mathrm{mg}(68 \%)$ of 2 s as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=$ $4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}$, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.17(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.12(\mathrm{~m}, 1 \mathrm{H})$, $7.11-7.04(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.07-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.92-2.81(\mathrm{~m}, 2 \mathrm{H}), 2.76(\mathrm{dd}, J=14.9,6.8 \mathrm{~Hz}$, $1 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.02(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.91(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.36, 148.26, $141.65,138.49,137.82,136.47,134.48,133.77,129.99,129.92,128.62,128.52,128.06,127.52,126.04$, 121.74, 121.71, 116.74, 45.64, 44.12, 36.43, 33.36, 21.23. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}] 427.1844$, found 427.1842 .

6-(1,3-dioxolan-2-yl)- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (2t): The reaction was carried out following General Procedure C using $\mathbf{1}$ ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathbf{S 1 0}$ ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), (2 -(1,3 -dioxolan-2yl)ethyl)zinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8 \mathrm{mg}$, $0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $10.9 \mathrm{mg}(25 \%)$ of $\mathbf{2 t}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J$ $=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.59-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.02-4.74(\mathrm{~m}, 1 \mathrm{H}), 4.10-3.90(\mathrm{~m}, 2 \mathrm{H}), 3.87-3.74(\mathrm{~m}, 2 \mathrm{H})$, 3.68-3.61 (m, 1H), 2.91-2.57 (m, 2H), 2.29(s,3H), 1.89-1.75 (m, 2H), 1.76-1.65 (m, 4H). ${ }^{13}$ C NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.49,148.27,138.50,137.71,136.46,134.53,133.75,130.22,129.87,128.06,127.53$, $121.74,121.67,116.72,104.50,65.00,64.99,46.03,44.03,34.57,33.66,21.60,21.23$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 437.1899, found 437.1883.
ethyl 7-oxo-7-(quinolin-8-ylamino)-5-(p-tolylthio)heptanoate (2u):
 The reaction was carried out following General Procedure C using 1 (21.2 $\mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathbf{S 1 0}$ ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), (3-ethoxy-3-oxopropyl)zinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 8.3 mg (19%) of $\mathbf{2 u}$ as a colorless oil. ${ }^{1}$ H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=7.1,1.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.74-3.52(\mathrm{~m}, 1 \mathrm{H}), 3.01-2.65(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.31$ (m, 2H), $2.29(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.92-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.23$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 173.46,169.38,148.29,138.49,137.83,136.48,134.48$, $133.80,130.04,129.91,128.07,127.52,121.76,121.73,116.73,60.44,45.74,43.96,34.15,34.12,22.59$, 21.23, 14.36. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 437.1899$, found 437.1897.

ethyl 8-oxo-8-(quinolin-8-ylamino)-6-(p-tolylthio)octanoate (2v): The reaction was carried out following General Procedure C using $\mathbf{1}$ ($21.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), $\mathbf{S 1 0}$ ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), (4-ethoxy-4oxobutyl)zinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8 \mathrm{mg}$, $0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 8.1 mg (18%) of 2v as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.87(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.74$ (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.81-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46$ (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40$ (d, $J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.24-4.02(\mathrm{~m}, 2 \mathrm{H}), 3.81-3.51(\mathrm{~m}, 1 \mathrm{H}), 2.93-2.61(\mathrm{~m}, 2 \mathrm{H})$, $2.36-2.19(\mathrm{~m}, 5 \mathrm{H}), 1.95-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (150 MHz , CDCl_{3}) $\delta 173.74,169.48,148.29,138.50,137.78,136.48,134.50,133.74,130.13,129.90,128.07,127.54$, 121.76, 121.71, 116.73, 60.37, 45.87, 44.08, 34.37, 26.66, 24.89, 21.23, 14.39. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 451.2055$, found 451.2055 .

4-cyclobutyl- N -(quinolin-8-yl)-3-(p-tolylthio)butanamide (2w): The
 reaction was carried out following General Procedure C using 1 ($21.2 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathbf{S 1 0}(46.3 \mathrm{mg}, 1.8 \mathrm{mmol})$, cyclobutylzinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $19.5 \mathrm{mg}(50 \%)$ of $\mathbf{2 w}$ as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.87(\mathrm{~s}, 1 \mathrm{H}), 8.81(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.58-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.01(\mathrm{~m}, 2 \mathrm{H}), 3.72-3.47$ $(\mathrm{m}, 1 \mathrm{H}), 3.01-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.28(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.92-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.73-1.61(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.59,148.26,137.55,136.46,134.55,133.47,130.50,129.84,128.07$, 127.54, 121.73, 121.65, 116.71, 44.34, 44.13, 42.06, 33.94, 28.80, 28.62, 21.22, 18.69. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{2} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 391.1844, found 391.1842.

4-cyclohexyl- N-(quinolin-8-yl)-3-(p-tolylthio)butanamide ($\mathbf{2 x}$): The reaction was carried out following General Procedure C using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{S 1 0}$ $(46.3 \mathrm{mg}, 1.8 \mathrm{mmol})$, cyclohexylzinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 7.5 mg (18%) of $\mathbf{2 x}$ as a white solid. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.87$ (s, 1H), 8.81 (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.75 (dd, $J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16$ (dd, $J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-$ 7.48 (m, 2H), 7.46 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.10-7.01$ (m, 2H), 3.80-3.70 (m, $1 \mathrm{H}), 3.04-2.59(\mathrm{~m}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.83-1.61(\mathrm{~m}, 4 \mathrm{H}), 1.59-1.51(\mathrm{~m}, 2 \mathrm{H})$, $1.30-1.20(\mathrm{~m}, 3 \mathrm{H}), 1.19-1.04(\mathrm{~m}, 1 \mathrm{H}), 1.01-0.69(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.66,148.26$, 138.52, 137.62, 136.47, 134.56, 133.67, 130.24, 129.85, 128.07, 127.55, 121.74, 121.64, 116.73, 44.64,

4-phenyl- \boldsymbol{N}-(quinolin-8-yl)-3-(p-tolylthio)butanamide (2y): The reaction was carried out following General Procedure C using $1(21.2 \mathrm{mg}, 0.1 \mathrm{mmol}), \mathbf{S 1 0}$ (46.3 $\mathrm{mg}, 1.8 \mathrm{mmol})$, phenylzinc bromide ($0.15 \mathrm{mmol}, 0.5 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})_{2}(2.8$ $\mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $11.5 \mathrm{mg}(28 \%)$ of $\mathbf{2 y}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J$ $=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.30-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.23-7.17(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}), 4.10-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.35-2.90(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.66(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.08(\mathrm{~m}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 169.35,148.25,138.68,138.49,137.77,136.48,134.49,133.63,130.33,129.90,129.64,128.53$, 128.06, 127.54, 126.73, 121.74, 121.68, 116.75, 47.09, 42.61, 41.18, 21.24. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 413.1688$, found 413.1682.

2-methyl- \boldsymbol{N}-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3a): The reaction was carried out following General Procedure B using 1a ($22.6 \mathrm{mg}, 0.1 \mathrm{mmol}$), S1 $(58.9 \mathrm{mg}, \quad 1.8 \mathrm{mmol})$, diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $28.4 \mathrm{mg}\left(75 \%, 1.3: 1\right.$ d.r.) of $\mathbf{3 a}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, CDCl_{3}) (major) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.79(\mathrm{~m}, 1 \mathrm{H}), 8.76(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.64-3.54(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.31(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}$, $2 \mathrm{H}), 1.41(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; (minor) $\delta 10.1(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.79(\mathrm{~m}, 1 \mathrm{H}), 8.76(\mathrm{~d}$, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.41-3.37(\mathrm{~m}, 1 \mathrm{H}), 2.87-2.74(\mathrm{~m}, 1 \mathrm{H})$, $2.28(\mathrm{~s}, 3 \mathrm{H}), 1.87-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 4 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) (major) $\delta 173.26,148.26,138.65,137.09,136.44,134.55,132.63,131.89$, $129.88,128.05,127.54,121.70,121.55,116.64,52.44,46.48,33.01,21.23,20.45,14.09,13.63$; (minor) δ $173.00,148.25,138.70,137.27,136.39,134.65,133.00,131.54,129.83,128.07,127.52,121.69,121.56$, $116.67,53.92,46.82,34.62,21.20,20.93,15.74,13.95$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 379.1844 , found 379.1830 .

2-ethyl- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3b): The reaction was
 carried out following General Procedure B using 1b ($24.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), S1 ($58.9 \mathrm{mg}, \quad 1.8 \mathrm{mmol}$), diethylzinc $(0.15 \mathrm{mmol}, \quad 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $24.3 \mathrm{mg}\left(62 \%, 3.1: 1\right.$ d.r.) of $\mathbf{3 b}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right)$ (major) $\delta 9.90(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.77(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.13(\mathrm{dt}, J$ $=7.9,0.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.34-3.30(\mathrm{~m}, 1 \mathrm{H}), 2.54(\mathrm{ddd}, J=9.2,6.7,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.75(\mathrm{~m}, 3 \mathrm{H})$, $1.57-1.50(\mathrm{~m}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; (minor) $\delta 10.02(\mathrm{~s}, 1 \mathrm{H}), 8.85-8.77(\mathrm{~m}$, $2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.32(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.00(\mathrm{~m}, 2 \mathrm{H}), 3.45(\mathrm{ddd}, J=8.7,6.7,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.59(\mathrm{ddd}, J=10.0,6.7,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.75(\mathrm{~m}, 3 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 0.89(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl_{3}) (major) $\delta 172.53,148.25,138.64,137.13$, $136.42,134.54,132.89,132.08,129.84,128.06,127.57,121.69,121.52,116.70,54.79,52.56,33.79,22.46$, $21.26,20.25,14.08,12.55$; (minor) $\delta 172.42,148.27,138.66,137.33,136.41,134.58,132.96,131.64$, $129.93,128.11,127.56,121.71,121.61,116.67,54.87,52.84,34.10,24.34,21.26,20.87,13.97,12.31$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{24} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 393.2001$, found 393.2011.

2-isopentyl- \boldsymbol{N}-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3c): The reaction
 was carried out following General Procedure B using 1c ($28.2 \mathrm{mg}, 0.1 \mathrm{mmol}$), S1 ($58.9 \mathrm{mg}, \quad 1.8 \mathrm{mmol}$), diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $22.6 \mathrm{mg}\left(52 \%, 1.8: 1\right.$ d.r.) of $\mathbf{3 c}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, CDCl_{3}) (major) $\delta 9.89(\mathrm{~s}, 1 \mathrm{H}), 8.84-8.76(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44$ $(\mathrm{m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.09(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.49-3.43(\mathrm{~m}, 1 \mathrm{H}), 2.64-2.60(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}$, $3 \mathrm{H}), 1.96-1.64(\mathrm{~m}, 4 \mathrm{H}), 1.58-1.49(\mathrm{~m}, 3 \mathrm{H}), 1.33-1.15(\mathrm{~m}, 2 \mathrm{H}), 0.96-0.82(\mathrm{~m}, 9 \mathrm{H})$; (minor) $\delta 10.02(\mathrm{~s}$, $1 \mathrm{H}), 8.84-8.76(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.33-3.29(\mathrm{~m}, 1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.64(\mathrm{~m}, 4 \mathrm{H})$, 1.58-1.49 (m, 3H), 1.33-1.15 (m, 2H), 0.96-0.82 (m, 9H). ${ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major) $\delta 172.61$, $148.24,138.65,137.10,136.41,134.57,132.79,132.17,129.86,128.07,127.58,121.70,121.51,116.69$, $53.31,52.86,37.15,33.75,28.36,26.87,22.85,22.46,21.27,20.41,14.09$; (minor) $\delta 172.49,148.26$, $138.69,137.34,136.40,134.61,133.04,131.67,129.92,128.11,127.57,121.71,121.57,116.67,53.27$, 52.85, 36.82, 34.06, 28.96, 26.87, 22.74, 22.52, 20.93, 20.41, 13.98. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 435.2470$, found 435.2463.

2-(cyclopropylmethyl)- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3d):

The reaction was carried out following General Procedure B using 1d (26.6 mg , 0.1 mmol), S1 ($58.9 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 21.7 mg ($52 \%, 2.9: 1$ d.r.) of $\mathbf{3 d}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 9.05-8.60(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 3.64-3.36$ $(\mathrm{m}, 1 \mathrm{H}), 2.96-2.66(\mathrm{~m}, 1 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H}), 1.99-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56-$ $1.44(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.84(\mathrm{~m}, 3 \mathrm{H}), 0.80-0.71(\mathrm{~m}, 1 \mathrm{H}), 0.51-0.32(\mathrm{~m}, 2 \mathrm{H}), 0.20-0.10(\mathrm{~m}, 1 \mathrm{H}), 0.08-0.01(\mathrm{~m}$, $1 \mathrm{H})$; (minor) $\delta 10.09(\mathrm{~s}, 1 \mathrm{H}), 9.05-8.60(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 2 \mathrm{H}), 7.46$ $(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.11(\mathrm{~m}, 2 \mathrm{H}), 3.42-3.32(\mathrm{~m}, 1 \mathrm{H}), 2.76-2.67(\mathrm{~m}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.68-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56-1.44(\mathrm{~m}, 3 \mathrm{H}), 1.01-0.84$ $(\mathrm{m}, 3 \mathrm{H}), 0.71-0.66(\mathrm{~m}, 1 \mathrm{H}), 0.36-0.28(\mathrm{~m}, 2 \mathrm{H}), 0.13-0.07(\mathrm{~m}, 1 \mathrm{H}), 0.08-0.01(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 172.77,148.26,138.66,137.11,136.42,134.64,132.82,132.13,129.86,128.08$, $127.60,121.69,121.49,116.71,53.38,52.49,34.20,33.76,21.28,20.23,14.09,9.74,5.37,4.30$; (minor) $\delta 172.70,148.28,138.68,137.29,136.40,134.68,132.87,131.58,129.91,128.11,127.57,121.71,121.57$, $116.67,53.55,52.48,36.14,34.08,21.26,20.82,13.98,9.47,4.98,4.51$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 419.2157$, found 419.2153.

2-(cyclobutylmethyl)- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3e): The
 reaction was carried out following General Procedure B using 1 e $(28.0 \mathrm{mg}, 0.1$ $\mathrm{mmol})$, S1 ($58.9 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $22.5 \mathrm{mg}(52 \%, 3.7$ d.r.) of 3 e as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ (major) $\delta 9.83(\mathrm{~s}, 1 \mathrm{H}), 8.98-8.68(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, $7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{ddd}, J=$ $8.5,6.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.94(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.71$ $(\mathrm{m}, 4 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; (minor) $\delta 10.00(\mathrm{~s}, 1 \mathrm{H}), 8.98-$ $8.68(\mathrm{~m}, 2 \mathrm{H}), 8.16(\mathrm{dd}, J=8.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $2 \mathrm{H}), 7.13(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 0 \mathrm{H}), 3.30-3.26(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.11-$ $1.94(\mathrm{~m}, 3 \mathrm{H}), 1.86-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.69-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.49(\mathrm{~m}, 2 \mathrm{H}), 0.88(\mathrm{t}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{\mathbf{1 3}} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) (major) $\delta 172.59,148.28,138.64,137.08,136.41,134.56,132.82,132.15,129.83$, $128.07,127.58,121.70,121.51,116.68,52.79,51.03,36.32,34.62,33.70,28.78,28.22,21.27,20.18$,
18.49, 14.12; (minor) $\delta 172.53,148.31,138.67,137.34,136.41,134.62,133.00,131.62,129.91,128.12$, $127.58,121.72,121.60,116.67,53.07,51.14,38.38,34.48,34.12,28.63,28.31,20.88,20.18,18.54,13.98$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{27} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 433.2314$, found 433.2307.

2-(3-phenylpropyl)- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3f): The reaction was carried out following General Procedure B using $1 f(33.0 \mathrm{mg}, 0.1$ mmol), S1 ($58.9 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $24.6 \mathrm{mg}\left(51 \%, 1.7: 1\right.$ d.r.) of $\mathbf{3 f}$ as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right)$ (major) $\delta 9.93(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49(\mathrm{dd}, J=8.2$, $4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.44$ $(\mathrm{m}, 1 \mathrm{H}), 2.72-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.36(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$; (minor) $10.06(\mathrm{~s}, 1 \mathrm{H}), 8.92-8.70(\mathrm{~m}, 2 \mathrm{H}), 8.23-8.14(\mathrm{~m}, 1 \mathrm{H}), 7.60-7.51(\mathrm{~m}, 2 \mathrm{H}), 7.49$ (dd, $J=8.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.20(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.10(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.27(\mathrm{~m}$, $1 \mathrm{H}), 2.72-2.56(\mathrm{~m}, 3 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.63(\mathrm{~m}, 6 \mathrm{H}), 1.58-1.51(\mathrm{~m}, 2 \mathrm{H}), 0.91(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (151 MHz, CDCl_{3}) (major) $\delta 172.42,148.26,142.23,138.62,137.16,136.42,134.50,132.85$, $132.07,129.88,128.52,128.37,128.06,127.55,125.84,121.70,121.58,116.71,52.97,52.74,36.12,33.74$, $29.89,28.88,21.27,20.35,14.06$; (minor) $\delta 172.29,148.28,142.23,138.65,137.45,136.41,134.54$, $133.19,131.53,129.97,128.54,128.36,128.11,127.55,125.82,121.72,121.65,116.69,53.26,52.96$, 35.95, 33.98, 30.84, 29.54, 21.28, 20.94, 13.96. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 483.2470, found 483.2465.

4-methyl- N -(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3g): The reaction was carried out following General Procedure B using $1 \mathrm{~g}(22.6 \mathrm{mg}, 0.1 \mathrm{mmol})$, $\mathbf{S 1 0}$ $(46.3 \mathrm{mg}, \quad 1.8 \mathrm{mmol})$, diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $33.6 \mathrm{mg}(89 \%)$ of $\mathbf{3 g}$ as a white solid. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.92(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.79(\mathrm{ddd}, J=$ $8.8,5.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{dd}, J=15.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.67(\mathrm{dd}, J=15.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.81$ (dddd, $J=13.4,6.6,4.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.63-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.38-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.92$ $(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.99,148.24,138.49,137.10,136.42,134.58,132.72$, $131.71,129.75,128.03,127.49,121.70,121.59,116.68,51.83,40.52,38.82,26.68,21.12,16.00,12.15$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 379.1844$, found 379.1838. X-ray (single-crystal) Colorless crystals of X-ray diffraction quality were obtained by vapor diffusion of hexane to a saturated solution of $\mathbf{4 g}$ in ethyl acetate (CCDC 2154909). ${ }^{7}$

4-methyl- N -(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3h): The reaction was carried out following General Procedure B using 1h ($24.0 \mathrm{mg}, 0.1 \mathrm{mmol}$), S10 ($46.3 \mathrm{mg}, \quad 1.8 \mathrm{mmol}$), dimethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in THF), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $29.1 \mathrm{mg}(77 \%)$ of $\mathbf{3 h}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.87(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=7.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.99(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{ddd}, J=$ $7.8,6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=15.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.79(\mathrm{dd}, J=15.0,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.87-$ $1.78(\mathrm{~m}, 1 \mathrm{H}), 1.73(\mathrm{dqd}, J=12.8,7.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36(\mathrm{ddq}, J=13.4,8.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.05(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 3 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 169.91,148.26,138.46,137.05,136.43$, 134.54, 132.72, 131.80, 129.78, 128.03, 127.48, 121.71, 121.61, 116.65, 52.17, 42.39, 39.00, 27.18, 21.12, 15.71, 12.15. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{23} \mathrm{H}_{27} \mathrm{~N}_{2} \mathrm{OS}^{+}$[M+H] 379.1844, found 379.1834.

4-ethyl- N-(quinolin-8-yl)-3-(p-tolylthio)octanamide (3i): The reaction was carried out following General Procedure B using 1i ($26.8 \mathrm{mg}, 0.1 \mathrm{mmol}$), S10 (46.3 mg, 1.8 mmol$)$, diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $31.1 \mathrm{mg}(74 \%)$ of $\mathbf{3 i}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.89(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.52-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.01-6.97(\mathrm{~m}, 2 \mathrm{H}), 3.91(\mathrm{ddd}, J=$ $8.5,5.7,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dd}, J=15.0,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.74(\mathrm{tt}$, $J=13.6,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.60(\mathrm{pd}, J=6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.50-1.22(\mathrm{~m}, 7 \mathrm{H}), 0.95(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{t}, J$ $=7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR $\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.98,148.22,138.47,137.07,136.41,134.55,132.72$, $131.75,129.75,128.03,127.48,121.69,121.58,116.66,49.86,43.94,41.48,30.44,30.09,24.00,23.07$, 21.11, 14.18, 12.43. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{21} \mathrm{H}_{21} \mathrm{ClN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 421.2314$, found 421.2305 .

4-ethyl-6-phenyl- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3j): The reaction was carried out following General Procedure B using 1j ($31.6 \mathrm{mg}, 0.1$ mmol), S10 ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $34.6 \mathrm{mg}(74 \%)$ of $\mathbf{3 j}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.85(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{dd}, J=7.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.54-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.18(\mathrm{tt}, J=7.6,1.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.14-$ $7.11(\mathrm{~m}, 2 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 7.01-6.98(\mathrm{~m}, 2 \mathrm{H}), 3.96(\mathrm{ddd}, J=8.1,5.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=$ $15.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{dd}, J=15.1,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.84-1.71(\mathrm{~m}, 3 \mathrm{H})$, $1.71-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.41(\mathrm{~m}, 1 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz, CDCl ${ }_{3}$) $\delta 169.81$, $148.23,142.41,138.45,137.21,136.42,134.51,132.90,131.54,129.81,128.53,128.39,128.02,127.47$, $125.79,121.71,121.61,116.67,49.68,43.31,41.47,34.01,32.70,23.86,21.13,12.29$. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{33} \mathrm{~N}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}] 469.2314$, found 469.2310 .

4-benzyl- N-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (3k): The reaction was carried out following General Procedure B using 1k (30.2 mg , 0.1 mmol), S10 (46.3 mg, 1.8 mmol$)$, diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60{ }^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $23.2 \mathrm{mg}(51 \%)$ of $\mathbf{3 k}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.85(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.73(\mathrm{dd}, J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.45(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 4 \mathrm{H}), 7.18-7.14(\mathrm{~m}, 3 \mathrm{H}), 6.98-6.90(\mathrm{~m}$, $2 \mathrm{H}), 3.90(\mathrm{ddd}, J=8.6,5.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{dd}, J=15.0,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.72(\mathrm{~m}, 2 \mathrm{H}), 2.69(\mathrm{dd}, J=$ $13.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.98(\mathrm{pd}, J=6.9,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.77(\mathrm{ddd}, J=13.7,7.4,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.35$ $(\mathrm{dp}, J=14.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 0.94(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C} \mathbf{N M R}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.70,148.22,140.84$, $138.48,136.89,136.41,134.52,132.16,131.54,129.75,129.36,128.47,128.03,127.49,126.04,121.71$, 121.64, 116.72, 48.62, 46.16, 41.35, 37.12, 23.56, 21.11, 12.27. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{29} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{OS}^{+}$ $[\mathrm{M}+\mathrm{H}] 455.2157$, found 455.2151 .

4-phenyl- \boldsymbol{N}-(quinolin-8-yl)-3-(p-tolylthio)hexanamide (31): The reaction was carried out following General Procedure B using $11(28.8 \mathrm{mg}, 0.1 \mathrm{mmol})$, S10 ($46.3 \mathrm{mg}, \quad 1.8 \mathrm{mmol})$, diethylzinc $(0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $15.4 \mathrm{mg}(35 \%)$ of $\mathbf{3 1}$ as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.78(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.72(\mathrm{dd}, J=7.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.15(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.53-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.24(\mathrm{~m}$, $1 \mathrm{H}), 7.05-7.00(\mathrm{~m}, 2 \mathrm{H}), 4.03(\mathrm{td}, J=7.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{dt}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.75(\mathrm{dd}, J=15.2,6.8$
$\mathrm{Hz}, 1 \mathrm{H}), 2.66(\mathrm{dd}, J=15.2,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.03-1.93(\mathrm{~m}, 1 \mathrm{H}), 0.83(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H}$). ${ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.77,148.25,141.11,138.49,137.19,136.43,134.52$, $132.69,131.91,129.87$, 129.31, 128.38, 128.05, 127.49, 126.95, 121.73, 121.66, 116.71, 52.32, 51.20, 42.47, 25.64, 21.17, 12.52. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{28} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]$ 441.2001, found 441.1989 .

N-(quinolin-8-yl)-3-(p-tolylthio)-4-(2-
((triisopropylsilyl)oxy)benzyl)hexanamide (3m): The reaction was carried out following General Procedure B using 1m ($47.4 \mathrm{mg}, 0.1$ $\mathrm{mmol}), \mathbf{S 1 0}(46.3 \mathrm{mg}, 1.8 \mathrm{mmol})$, diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF $(1.0 \mathrm{~mL})$. The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $35.1 \mathrm{mg}(56 \%)$ of $\mathbf{3 m}$ as a colorless oil. ${ }^{1} \mathbf{H} \mathbf{N M R}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.85(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{dd}, J=6.7,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50-7.46$ (m, 2H), 7.44 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.15(\mathrm{dd}, J=7.5,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.00$ (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.96-6.93$ (m, 2H), $6.80(\mathrm{td}, J=7.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (dd, $J=8.1,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.91 (ddd, $J=8.5,5.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 3 \mathrm{H}), 2.73(\mathrm{dd}, J=14.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.16-$ $2.09(\mathrm{~m}, 1 \mathrm{H}), 1.55(\mathrm{dp}, J=14.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.46$ (ddd, $J=14.1,7.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.28$ (dq, $J=14.9,7.4$ $\mathrm{Hz}, 3 \mathrm{H}), 1.07(\mathrm{dd}, J=7.5,4.6 \mathrm{~Hz}, 18 \mathrm{H}), 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.74$, $154.45,148.18,138.48,136.87,136.35,134.60,132.32,131.66,131.01,130.81,129.71,127.98,127.45$, $126.85,121.63$, 121.47, 120.70, 118.05, 116.65, 49.41, 44.52, 41.56, 31.52, 23.56, 21.09, 18.26, 18.23, 13.32, 12.50. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{SSi}^{+}[\mathrm{M}+\mathrm{H}] 627.3441$, found 627.3432.

tert-butyl
(4-ethyl-7-oxo-7-(quinolin-8-ylamino)-5-(p-
tolylthio)heptyl)carbamate (3n): The reaction was carried out following General Procedure B using 1n ($36.9 \mathrm{mg}, 0.1 \mathrm{mmol}$), S10 ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $14.1 \mathrm{mg}(27 \%)$ of $\mathbf{3 n}$ as a colorless oil. ${ }^{1} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.88(\mathrm{~s}, 1 \mathrm{H}), 8.81$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 8.72 (dd, $J=7.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.47(\mathrm{~m}, 2 \mathrm{H})$, 7.46 (dd, $J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.04-6.99(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{~s}, 1 \mathrm{H}), 3.91$ (ddd, $J=8.5,5.6$, $3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{~s}, 2 \mathrm{H}), 2.84(\mathrm{dd}, J=15.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.72(\mathrm{dd}, J=15.2,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.22(\mathrm{~s}, 3 \mathrm{H}), 1.71$ (ddd, $J=12.9,10.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.61-1.40(\mathrm{~m}, 13 \mathrm{H}), 1.37-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 169.83,156.13,148.29,138.48$, 137.24, 136.45, 134.52, 132.71, 131.64, $129.86,128.05,127.50,121.74,121.67,116.70,79.15,49.62,43.77,41.14,40.83,28.60,28.25,28.01$, 23.79, 12.40. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{30} \mathrm{H}_{40} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]$ 522.2790, found 522.2791.

7-(1,3-dioxoisoindolin-2-yl)-4-ethyl- N -(quinolin-8-yl)-3-(ptolylthio)heptanamide (30): The reaction was carried out following General Procedure B using $10(39.9 \mathrm{mg}, 0.1 \mathrm{mmol})$, S10 ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})$ (DMFU) ($3.1 \mathrm{mg}, 0.01 \mathrm{mmol}$), and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $39.7 \mathrm{mg}(72 \%)$ of $\mathbf{3 o}$ as a colorless oil. ${ }^{\mathbf{1}} \mathbf{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.86(\mathrm{~s}, 1 \mathrm{H}), 8.80$ (dd, $J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{dd}, J=6.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.83(\mathrm{dd}, J=5.4$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{dd}, J=8.2,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.34$ (m, 2H), 7.01-6.97 (m, 2H), 3.90 (ddd, $J=8.5,5.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.64$ (m, 2H), 2.83 (dd, $J=15.2,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.70(\mathrm{dd}, J=15.1,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.83-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.68-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.41$ $(\mathrm{m}, 2 \mathrm{H}), 1.42-1.34(\mathrm{~m}, 1 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 169.73, 168.51, $148.24,138.44,137.22,136.39,134.50,133.94,132.83,132.29,131.45,129.81,128.00,127.46,123.28$, 121.68, 121.59, 116.68, 49.59, 43.71, 41.02, 38.36, 28.09, 27.05, 23.76, 21.12, 12.39. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 552.2321$, found 552.2325.

9-(1,3-dioxoisoindolin-2-yl)-4-ethyl- N -(quinolin-8-yl)-3-(ptolylthio)nonanamide (3p): The reaction was carried out following General Procedure B using $\mathbf{1 p}(42.7 \mathrm{mg}, 0.1 \mathrm{mmol})$, S10 ($46.3 \mathrm{mg}, 1.8 \mathrm{mmol}$), diethylzinc ($0.15 \mathrm{mmol}, 1.0 \mathrm{M}$ in toluene), $\mathrm{Ni}(\mathrm{COD})(\mathrm{DMFU})(3.1 \mathrm{mg}, 0.01 \mathrm{mmol})$, and THF (1.0 mL). The reaction was run for 20 h at $60^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford 35.9 mg (62%) of $\mathbf{3 p}$ as a colorless oil. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.88(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{dd}, J=4.2,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.71(\mathrm{dd}, J=7.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.14(\mathrm{dd}, J=8.2,1.7 \mathrm{~Hz}, 1 \mathrm{H})$, 7.84 (dd, $J=5.4,3.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.53-7.45(\mathrm{~m}, 2 \mathrm{H}), 7.44$ (dd, $J=8.2,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.02-6.94(\mathrm{~m}, 2 \mathrm{H}), 3.91$ (ddd, $J=8.5,5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69-3.64(\mathrm{~m}, 2 \mathrm{H}), 2.82$ (dd, $J=15.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.69$ (dd, $J=15.2,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~s}, 3 \mathrm{H}), 1.74-1.63(\mathrm{~m}, 3 \mathrm{H}), 1.59(\mathrm{pd}, J=$ $6.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.24(\mathrm{~m}, 5 \mathrm{H}), 0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathbf{C}$ NMR (151 MHz , CDCl_{3}) $\delta 169.91,168.55,148.22,138.44,137.08,136.38,134.54,133.93,132.72,132.31,131.69,129.74$, 128.00 , 127.47, 123.26, 121.67, 121.55, 116.65, 49.66, 43.99, 41.09, 38.16, 30.67, 28.66, 27.44, 27.31, 23.82, 21.09, 12.39. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{35} \mathrm{H}_{38} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}] 580.2634$, found 580.2643.

3-(p-tolylthio)hexanoic acid (4): The reaction was carried out following a modified literature procedure ${ }^{1}$ using $\mathbf{2 a}(36.4 \mathrm{mg}, 0.1 \mathrm{mmol})$ and $\mathrm{HCl}(6 \mathrm{M}, 1 \mathrm{~mL})$. The reaction was run for 40 h at $70^{\circ} \mathrm{C}$, and the product was purified by preparative thin-layer chromatography (PTLC) to afford $20.0 \mathrm{mg}(84 \%)$ of 4 as a colorless oil. ${ }^{1} \mathbf{H}$ NMR (600
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.19(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.44(\mathrm{~m}, 2 \mathrm{H})$, $2.33(\mathrm{~s}, 3 \mathrm{H}), 1.75-1.42(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}){ }^{13} \mathbf{C}$ NMR ($\left.151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 177.81, 138.01, 134.07, 129.88, 129.67, 44.97, 40.36, 36.67, 21.27, 20.23, 13.90. HRMS (ESI-TOF) Calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{O}_{2} \mathrm{~S}^{-}$ [M-H] 237.0949, found 237.0941.

X-Ray Crystallography

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker APEX II Ultra diffractometer equipped with Mo K radiation $(\lambda=0.71073)$. Crystals of the subject compound were used as received (grown from Hexane). A $0.200 \times 0.035 \times 0.035 \mathrm{~mm}$ colorless crystal was mounted on a Cryoloop with Paratone oil.
Data were collected in a nitrogen gas stream at 100(2) K using ϕ and ϖ scans. Crystal-to-detector distance was 45 mm using exposure time 2.0 s (depending on the detector $2 \square$ position) with a scan width of 0.70°. Data collection was 99.7% complete to 25.242° in θ. A total of 13350 reflections were collected. 2508 reflections were found to be symmetry independent, with a $\mathrm{R}_{\mathrm{int}}$ of 0.0422 . Indexing and unit cell refinement indicated a Primitive, Monoclinic lattice. The space group was found to be $\boldsymbol{P} \boldsymbol{2}_{1} / \boldsymbol{n}$. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.
All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Crystallographic data are summarized in Table S5.

Notes: Excellent data and refinement.

Table S5: Crystal data and structure refinement for S10 (CCDC 2149662).

Report date	2022-02-01
Identification code	Engle389
Empirical formula	C15 H15 N O S
Molecular formula	C15 H15 N O S
Formula weight	257.34
Temperature	100.0 K
Wavelength	0.71073 A
Crystal system	Monoclinic
Space group	P 1 21/n 1
Unit cell dimensions	$\begin{array}{ll} \mathrm{a}=15.7788(18) \AA & \alpha=90^{\circ} . \\ \mathrm{b}=5.6659(7) \AA & \beta=116.848(3)^{\circ} . \\ \mathrm{c}=16.0675(19) \AA & \gamma=90^{\circ} . \end{array}$
Volume	1281.6(3) \AA^{3}
Z	4
Density (calculated)	$1.334 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.239 \mathrm{~mm}^{-1}$
F(000)	544
Crystal size	$0.2 \times 0.035 \times 0.035 \mathrm{~mm}^{3}$
Crystal color, habit	colorless plank
Theta range for data collection	1.501 to 26.029°.
Index ranges	$-19<=\mathrm{h}<=14,-7<=\mathrm{k}<=7,-19<=1<=19$
Reflections collected	13350
Independent reflections	$2508[\mathrm{R}(\mathrm{int})=0.0422]$
Completeness to theta $=25.242^{\circ}$	99.7 \%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.6465 and 0.6136
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	2508 / 0 / 165
Goodness-of-fit on F^{2}	1.087
Final R indices [I>2sigma(I)]	$\mathrm{R} 1=0.0403, \mathrm{wR} 2=0.0912$
R indices (all data)	$\mathrm{R} 1=0.0456, \mathrm{wR} 2=0.0935$
Largest diff. peak and hole	0.314 and -0.276e. \AA^{-3}

Table S6: Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{S 1 0}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	$\mathrm{U}(\mathrm{eq})$
$\mathrm{S}(1)$	$6197(1)$	$5994(1)$	$8282(1)$	$14(1)$
$\mathrm{O}(1)$	$4514(1)$	$7166(3)$	$9317(1)$	$18(1)$
$\mathrm{N}(1)$	$5587(1)$	$7492(3)$	$8749(1)$	$15(1)$
$\mathrm{C}(1)$	$6124(2)$	$9283(4)$	$9456(1)$	$19(1)$
$\mathrm{C}(2)$	$4773(1)$	$6564(3)$	$8742(1)$	$13(1)$
$\mathrm{C}(3)$	$4212(1)$	$4804(4)$	$7997(1)$	$13(1)$
$\mathrm{C}(4)$	$3937(1)$	$5214(4)$	$7053(1)$	$15(1)$
$\mathrm{C}(5)$	$3348(1)$	$3619(4)$	$6391(1)$	$17(1)$
$\mathrm{C}(6)$	$3037(1)$	$1598(4)$	$6658(1)$	$18(1)$
$\mathrm{C}(7)$	$3316(1)$	$1173(4)$	$7599(1)$	$18(1)$
$\mathrm{C}(8)$	$3898(1)$	$2775(4)$	$8264(1)$	$16(1)$
$\mathrm{C}(9)$	$6134(1)$	$7901(4)$	$7381(1)$	$14(1)$
$\mathrm{C}(10)$	$5638(1)$	$10024(4)$	$7156(1)$	$16(1)$
$\mathrm{C}(11)$	$5642(1)$	$11417(4)$	$6446(1)$	$16(1)$
$\mathrm{C}(12)$	$6125(1)$	$10733(4)$	$5942(1)$	$16(1)$
$\mathrm{C}(13)$	$6604(1)$	$8576(4)$	$6170(1)$	$17(1)$
$\mathrm{C}(14)$	$6619(1)$	$7175(4)$	$6883(1)$	$15(1)$
$\mathrm{C}(15)$	$6146(2)$	$12275(4)$	$5188(1)$	$20(1)$

Table S7: Bond lengths [\AA] and angles [${ }^{\circ}$] for $\mathbf{S 1 0}$.

S(1)-N(1)	1.6924(17)	$\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(2)$	122.54(18)
S(1)-C(9)	1.771(2)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(2)$	117.76(17)
$\mathrm{O}(1)-\mathrm{C}(2)$	1.217(2)	$\mathrm{C}(8)-\mathrm{C}(3)-\mathrm{C}(4)$	119.52(18)
$\mathrm{N}(1)-\mathrm{C}(1)$	1.472(3)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$	120.1
$\mathrm{N}(1)-\mathrm{C}(2)$	1.383(3)	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$	119.85(19)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	0.9800	$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$	120.1
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$	119.7
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	0.9800	$\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$	120.58(19)
$\mathrm{C}(2)-\mathrm{C}(3)$	1.502(3)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.7
$\mathrm{C}(3)-\mathrm{C}(4)$	$1.395(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	120.1
$\mathrm{C}(3)-\mathrm{C}(8)$	$1.394(3)$	$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	119.73(19)
$\mathrm{C}(4)-\mathrm{H}(4)$	0.9500	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	120.1
$\mathrm{C}(4)-\mathrm{C}(5)$	$1.385(3)$	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$	120.1
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$	119.89(19)
$\mathrm{C}(5)-\mathrm{C}(6)$	1.389(3)	$\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$	120.1
$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500	$\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8
$\mathrm{C}(6)-\mathrm{C}(7)$	$1.392(3)$	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(3)$	120.43(18)
$\mathrm{C}(7)-\mathrm{H}(7)$	0.9500	$\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$	119.8
$\mathrm{C}(7)-\mathrm{C}(8)$	$1.386(3)$	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{S}(1)$	123.91(15)
$\mathrm{C}(8)-\mathrm{H}(8)$	0.9500	$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(14)$	119.67(18)
$\mathrm{C}(9)-\mathrm{C}(10)$	1.391(3)	$\mathrm{C}(14)-\mathrm{C}(9)-\mathrm{S}(1)$	116.42(16)
$\mathrm{C}(9)-\mathrm{C}(14)$	1.396 (3)	$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$	120.2
$\mathrm{C}(10)-\mathrm{H}(10)$	0.9500	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$	119.59(19)
$\mathrm{C}(10)-\mathrm{C}(11)$	1.390 (3)	$\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$	120.2
$\mathrm{C}(11)-\mathrm{H}(11)$	0.9500	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$	119.1
$\mathrm{C}(11)-\mathrm{C}(12)$	1.393 (3)	$\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$	121.72(19)
$\mathrm{C}(12)-\mathrm{C}(13)$	1.396 (3)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$	119.1
$\mathrm{C}(12)-\mathrm{C}(15)$	$1.506(3)$	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(13)$	117.65(19)
$\mathrm{C}(13)-\mathrm{H}(13)$	0.9500	$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{C}(15)$	121.46(19)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.385(3)	$\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{C}(15)$	120.89(19)
$\mathrm{C}(14)-\mathrm{H}(14)$	0.9500	$\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$	119.2
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	0.9800	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$	121.61(19)
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	0.9800	$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$	119.2
$\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	0.9800	$\mathrm{C}(9)-\mathrm{C}(14)-\mathrm{H}(14)$	120.1
		$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(9)$	119.75(19)
$\mathrm{N}(1)-\mathrm{S}(1)-\mathrm{C}(9)$	102.88(9)	$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14)$	120.1
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{S}(1)$	116.34(13)	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$	109.5
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{S}(1)$	121.20(14)	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{C}(2)-\mathrm{N}(1)-\mathrm{C}(1)$	118.48(16)	$\mathrm{C}(12)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~A})$	109.5	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$	109.5
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5	$\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5	$\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$	109.5
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	109.5		
$\mathrm{H}(1 \mathrm{~A})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5		
$\mathrm{H}(1 \mathrm{~B})-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{C})$	109.5		
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{N}(1)$	121.13(18)		
$\mathrm{O}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	120.82(18)		
$\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(3)$	118.05(16)		

Table S8: Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for S10. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$\mathrm{~S}(1)$	$15(1)$	$14(1)$	$16(1)$	$1(1)$	$9(1)$	$2(1)$
$\mathrm{O}(1)$	$22(1)$	$19(1)$	$18(1)$	$-3(1)$	$13(1)$	$-1(1)$
$\mathrm{N}(1)$	$16(1)$	$15(1)$	$15(1)$	$-3(1)$	$9(1)$	$-2(1)$
$\mathrm{C}(1)$	$20(1)$	$19(1)$	$18(1)$	$-6(1)$	$9(1)$	$-5(1)$
$\mathrm{C}(2)$	$14(1)$	$12(1)$	$13(1)$	$4(1)$	$6(1)$	$3(1)$
$\mathrm{C}(3)$	$13(1)$	$13(1)$	$16(1)$	$-1(1)$	$8(1)$	$2(1)$
$\mathrm{C}(4)$	$15(1)$	$15(1)$	$17(1)$	$2(1)$	$9(1)$	$2(1)$
$\mathrm{C}(5)$	$16(1)$	$20(1)$	$15(1)$	$1(1)$	$7(1)$	$3(1)$
$\mathrm{C}(6)$	$15(1)$	$17(1)$	$22(1)$	$-5(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(7)$	$16(1)$	$14(1)$	$25(1)$	$3(1)$	$12(1)$	$0(1)$
$\mathrm{C}(8)$	$15(1)$	$18(1)$	$16(1)$	$4(1)$	$8(1)$	$3(1)$
$\mathrm{C}(9)$	$13(1)$	$15(1)$	$13(1)$	$-2(1)$	$6(1)$	$-5(1)$
$\mathrm{C}(10)$	$15(1)$	$18(1)$	$17(1)$	$-3(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(11)$	$16(1)$	$13(1)$	$19(1)$	$0(1)$	$7(1)$	$-2(1)$
$\mathrm{C}(12)$	$15(1)$	$17(1)$	$15(1)$	$-2(1)$	$6(1)$	$-6(1)$
$\mathrm{C}(13)$	$17(1)$	$18(1)$	$18(1)$	$-5(1)$	$11(1)$	$-5(1)$
$\mathrm{C}(14)$	$15(1)$	$14(1)$	$17(1)$	$-2(1)$	$8(1)$	$-1(1)$
$\mathrm{C}(15)$	$24(1)$	$21(1)$	$18(1)$	$1(1)$	$11(1)$	$-4(1)$

Table S9: Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{S 1 0}$.

	x	y	U(eq)	
$H(1 A)$	6604	8504	10015	29
$H(1 B)$	5688	10176	9619	29
$H(1 C)$	6437	10361	9205	29
$H(4)$	4153	6584	6866	18
$H(5)$	3156	3911	5749	21
$H(6)$	2635	509	6200	22
$H(7)$	3108	-213	7786	21
$H(8)$	4083	2488	8906	19
$H(10)$	5298	10520	7485	19
$H(11)$	5308	12872	6300	20
$H(13)$	6926	8056	5828	20
$H(14)$	6959	5727	7033	18
$H(15 A)$	5560	13208	4901	31
$H(15 B)$	6196	11283	4713	31
$H(15 C)$	6694	13337	5460	31

Experimental Summary

The single crystal X-ray diffraction studies were carried out on a Bruker ApexII-Ultra CCD diffractometer equipped with Mo K α radiation $(\lambda=0.7107 \AA)$.

Crystals of the subject compound were used as received. A $0.21 \times 0.18 \times 0.17 \mathrm{~mm}$ piece of a colorless crystal was mounted on a Cryoloop with Paratone oil. Data were collected in a nitrogen gas stream at 100 (2) K using ω scans. Crystal-to-detector distance was 50 mm and exposure time was 5 seconds per frame using a scan width of 0.70°. Data collection was 100% complete to 25.242° in θ. A total of 44094 reflections were collected covering the indices, $-9<=\mathrm{h}<=9,-13<=\mathrm{k}<=13,-31<=1<=31.8011$ reflections were found to be symmetry independent, with a $\mathrm{R}_{\mathrm{int}}$ of 0.0445 . Indexing and unit cell refinement indicated a Primitive, Monoclinic lattice. The space group was found to be $\boldsymbol{P}_{\boldsymbol{n}}$. The data were integrated using the Bruker SAINT Software program and scaled using the SADABS software program. Solution by direct methods (SHELXT) produced a complete phasing model consistent with the proposed structure.

All nonhydrogen atoms were refined anisotropically by full-matrix least-squares (SHELXL-2014). All carbon bonded hydrogen atoms were placed using a riding model. Their positions were constrained relative to their parent atom using the appropriate HFIX command in SHELXL-2014. Crystallographic data are summarized in Table S10.

Notes: Great data! Absolute stereochemistry was conclusively assigned (Flack $=-0.03(4))$. There are two copies of the compound in the asymmetric unit. The crystal was a pseudomerohedral twin. There is excess electron density near the H17 hydrogen that could not be modeled. The chemical formula of the compound is: $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{~N} 2 \mathrm{OS}$

Table S10: Crystal data and structure refinement for 3a (CCDC 2154909).

Identification code	p
Empirical formula	C23 H26 N2 O S
Formula weight	378.52
Temperature	100.15 K
Wavelength	0.71073 Å
Crystal system	Monoclinic
Space group	P 1 n 1
Unit cell dimensions	$a=7.7413(14) \AA \quad \alpha=90^{\circ}$.
	$\mathrm{b}=10.5757(19) \AA \AA^{\circ} \quad \beta=98.727(5)^{\circ}$.
	$\mathrm{c}=25.507(5) \AA \quad \gamma=90^{\circ}$.
Volume	2064.1(7) \AA^{3}
Z	4
Density (calculated)	$1.218 \mathrm{Mg} / \mathrm{m}^{3}$
Absorption coefficient	$0.171 \mathrm{~mm}^{-1}$
F(000)	808
Crystal size	$0.21 \times 0.18 \times 0.17 \mathrm{~mm}^{3}$
Theta range for data collection	1.615 to 26.066°.
Index ranges	$-9<=\mathrm{h}<=9,-13<=\mathrm{k}<=13,-31<=\mathrm{l}<=31$
Reflections collected	19359
Independent reflections	$8011[\mathrm{R}(\mathrm{int})=0.0445]$
Completeness to theta $=25.242^{\circ}$	100.0\%
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	0.7453 and 0.5793
Refinement method	Full-matrix least-squares on F^{2}
Data / restraints / parameters	8011 / 2 / 494
Goodness-of-fit on F^{2}	1.072
Final R indices [$\mathrm{I}>2 \operatorname{sigma}$ (I]	$\mathrm{R} 1=0.0529, \mathrm{wR} 2=0.1285$
R indices (all data)	$\mathrm{R} 1=0.0541, \mathrm{wR} 2=0.1298$
Absolute structure parameter	-0.03(4)
Largest diff. peak and hole	1.357 and -0.293 e. \AA^{-3}

Table S11: Atomic coordinates ($\times 10^{4}$) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 a}$. $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized U^{ij} tensor.

	x	y	z	U(eq)
S(1A)	4789(2)	2278(1)	6091(1)	20(1)
$\mathrm{O}(1 \mathrm{~A})$	6362(6)	2606(5)	7445(2)	37(1)
$\mathrm{N}(1 \mathrm{~A})$	3533(6)	2154(4)	7512(2)	19(1)
$\mathrm{N}(2 \mathrm{~A})$	712(6)	771(4)	7605(2)	18(1)
$\mathrm{C}(9 \mathrm{~A})$	4843(9)	4930(5)	6073(2)	22(1)
$\mathrm{C}(6 \mathrm{~A})$	6874(10)	1174(5)	5454(2)	25(1)
C(19A)	2276(8)	-508(5)	8324(2)	22(1)
C(20A)	746(10)	-1201(5)	8329(2)	26(1)
$\mathrm{C}(16 \mathrm{~A})$	5240(9)	953(6)	8226(2)	27(1)
C(14A)	4799(7)	2790(6)	7311(2)	20(1)
C (7A)	6833(7)	1745(5)	5947(2)	16(1)
C(23A)	2207(8)	478(5)	7936(2)	19(1)
$\mathrm{C}(15 \mathrm{~A})$	3718(7)	1201(5)	7901(2)	16(1)
$\mathrm{C}(21 \mathrm{~A})$	-753(9)	-908(6)	8001(3)	30(1)
$\mathrm{C}(8 \mathrm{~A})$	5231(8)	3791(5)	6443(2)	17(1)
C(18A)	3881(10)	-733(6)	8661(2)	29(2)
$\mathrm{C}(11 \mathrm{~A})$	2920(9)	5026(6)	5823(2)	28(1)
$\mathrm{C}(4 \mathrm{~A})$	11496(8)	-16(6)	5549(3)	27(1)
$\mathrm{C}(22 \mathrm{~A})$	-715(9)	111(6)	7644(2)	26(1)
$\mathrm{C}(13 \mathrm{~A})$	4125(8)	3780(5)	6894(2)	18(1)
$\mathrm{C}(3 \mathrm{~A})$	9907(8)	596(5)	5684(2)	21(1)
$\mathrm{C}(1 \mathrm{~A})$	8361(8)	1753(6)	6309(2)	22(1)
C (10A)	6112(10)	4995(7)	5662(3)	33(2)
$\mathrm{C}(17 \mathrm{~A})$	5330(10)	1(7)	8626(3)	40(2)
$\mathrm{C}(5 \mathrm{~A})$	8367(8)	612(5)	5327(2)	19(1)
$\mathrm{C}(12 \mathrm{~A})$	2477(13)	6230(8)	5505(3)	45(2)
$\mathrm{C}(2 \mathrm{~A})$	9877(8)	1208(6)	6172(2)	23(1)
S(1)	5986(2)	4725(1)	3886(1)	23(1)
$\mathrm{O}(1)$	6070(9)	5504(7)	2472(2)	69(2)
N (2)	573(6)	3238(4)	2451(2)	18(1)
$\mathrm{N}(1)$	3441(6)	4653(4)	2542(2)	19(1)

$\mathrm{C}(6)$	$8664(8)$	$3696(5)$	$4560(2)$	$19(1)$
$\mathrm{C}(8)$	$6139(8)$	$6278(5)$	$3579(2)$	$19(1)$
$\mathrm{C}(22)$	$-839(8)$	$2529(6)$	$2418(2)$	$24(1)$
$\mathrm{C}(15)$	$3311(8)$	$3703(5)$	$2155(2)$	$19(1)$
$\mathrm{C}(23)$	$1758(7)$	$2949(5)$	$2122(2)$	$17(1)$
$\mathrm{C}(16)$	$4532(8)$	$3450(6)$	$1824(2)$	$28(1)$
$\mathrm{C}(13)$	$4555(9)$	$6356(5)$	$3131(2)$	$21(1)$
$\mathrm{C}(3)$	$11493(7)$	$3168(5)$	$4347(2)$	$18(1)$
$\mathrm{C}(9)$	$6231(8)$	$7389(5)$	$3972(2)$	$22(1)$
$\mathrm{C}(2)$	$11029(8)$	$3694(5)$	$3853(2)$	$23(1)$
$\mathrm{C}(7)$	$8173(8)$	$4220(5)$	$4056(2)$	$20(1)$
$\mathrm{C}(11)$	$4596(10)$	$7497(6)$	$4239(2)$	$29(1)$
$\mathrm{C}(1)$	$9379(8)$	$4206(5)$	$3698(2)$	$20(1)$
$\mathrm{C}(5)$	$10268(8)$	$3174(6)$	$4695(2)$	$22(1)$
$\mathrm{C}(18)$	$2783(10)$	$1701(6)$	$1420(2)$	$32(2)$
$\mathrm{C}(21)$	$-1203(9)$	$1516(6)$	$2062(2)$	$28(1)$
$\mathrm{C}(19)$	$1502(8)$	$1934(5)$	$1752(2)$	$23(1)$
$\mathrm{C}(17)$	$4226(9)$	$2462(7)$	$1458(2)$	$31(2)$
$\mathrm{C}(4)$	$43232(8)$	$2536(7)$	$4497(3)$	$27(1)$
$\mathrm{C}(14)$	$4772(8)$	$5475(6)$	$2686(2)$	$25(1)$
$\mathrm{C}(20)$	$-18(10)$	$1211(5)$	$1742(2)$	$30(1)$
$\mathrm{C}(10)$	$7311(7)$	$4382(3)$	$30(2)$	$53(2)$
$\mathrm{C}(12)$	$8631(8)$	$4605(3)$		

Table S12: Bond lengths [\AA] and angles [$\left[^{\circ}\right.$] for 3a.

$\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.770(5)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	1.521(9)
$\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	1.840(5)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AA})$	0.9800
$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	1.222(7)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	0.9800
$\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	0.8800	$\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AC})$	0.9800
$\mathrm{N}(1 \mathrm{~A})$-C(14A)	1.352(7)	$\mathrm{C}(4 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	1.477(9)
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.405(7)	$\mathrm{C}(22 \mathrm{~A})-\mathrm{H}(22 \mathrm{~A})$	0.9500
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	1.360(8)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$	0.9900
$\mathrm{N}(2 \mathrm{~A})$-C(22A)	1.323(8)	$\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	0.9900
$\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	1.0000	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.386 (8)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	1.531(7)	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.406(8)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	$1.532(10)$	$\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	0.9500
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	1.543(9)	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	1.398(9)
$\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A})$	0.9500	$\mathrm{C}(10 \mathrm{~A})$-H(10A)	0.9800
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	1.398(8)	C(10A)-H(10B)	0.9800
$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})$	1.381(9)	C(10A)-H(10C)	0.9800
C(19A)-C(20A)	1.394(9)	$\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	0.9500
C(19A)-C(23A)	1.432(8)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A})$	0.9500
C(19A)-C(18A)	1.419(9)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	0.9800
$\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{~A})$	0.9500	$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	0.9800
C(20A)-C(21A)	1.360(10)	$\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	0.9800
$\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	0.9500	$\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$	0.9500
C(16A)-C(15A)	1.360(8)	$\mathrm{S}(1)-\mathrm{C}(8)$	1.832(6)
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	1.426(8)	$\mathrm{S}(1)-\mathrm{C}(7)$	1.766 (6)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	1.528(7)	$\mathrm{O}(1)-\mathrm{C}(14)$	1.215(8)
$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})$	1.387(8)	$\mathrm{N}(2)$-C(22)	1.317(7)
$\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	1.412(8)	$\mathrm{N}(2)-\mathrm{C}(23)$	1.369(7)
$\mathrm{C}(21 \mathrm{~A})-\mathrm{H}(21 \mathrm{~A})$	0.9500	$\mathrm{N}(1)-\mathrm{H}(1)$	0.8800
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$	1.414(9)	$\mathrm{N}(1)-\mathrm{C}(15)$	1.401(7)
$\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A})$	1.0000	$\mathrm{N}(1)-\mathrm{C}(14)$	1.355(7)
$\mathrm{C}(8 \mathrm{~A})$ - $\mathrm{C}(13 \mathrm{~A})$	1.534(7)	$\mathrm{C}(6)-\mathrm{H}(6)$	0.9500
$\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	0.9500	$\mathrm{C}(6)-\mathrm{C}(7)$	1.400 (8)
C(18A)-C(17A)	1.378 (10)	$\mathrm{C}(6)-\mathrm{C}(5)$	1.355(9)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	0.9900	$\mathrm{C}(8)-\mathrm{H}(8)$	1.0000
$\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	0.9900	$\mathrm{C}(8)-\mathrm{C}(13)$	$1.546(8)$

$\mathrm{C}(8)-\mathrm{C}(9)$	1.540(7)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{D})$	0.9800
$\mathrm{C}(22)-\mathrm{H}(22)$	0.9500	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{E})$	0.9800
$\mathrm{C}(22)-\mathrm{C}(21)$	1.405(9)	$\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~F})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(23)$	$1.435(8)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{D})$	0.9800
$\mathrm{C}(15)-\mathrm{C}(16)$	$1.385(8)$	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{E})$	0.9800
$\mathrm{C}(23)-\mathrm{C}(19)$	1.424(7)	$\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~F})$	0.9800
$\mathrm{C}(16)-\mathrm{H}(16)$	0.9500		
$\mathrm{C}(16)-\mathrm{C}(17)$	1.398(9)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	105.8(3)
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	0.9900	$\mathrm{C}(14 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	115.8
$\mathrm{C}(13)-\mathrm{H}(13 \mathrm{D})$	0.9900	$\mathrm{C}(14 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	128.4(5)
$\mathrm{C}(13)-\mathrm{C}(14)$	1.497(8)	$\mathrm{C}(15 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{~A})$	115.8
$\mathrm{C}(3)-\mathrm{C}(2)$	1.373(8)	$\mathrm{C}(22 \mathrm{~A})-\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	118.4(5)
$\mathrm{C}(3)-\mathrm{C}(5)$	$1.395(8)$	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	106.1
$\mathrm{C}(3)-\mathrm{C}(4)$	1.500(8)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})$	113.3(5)
$\mathrm{C}(9)-\mathrm{H}(9)$	1.0000	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	111.6(5)
$\mathrm{C}(9)-\mathrm{C}(11)$	1.530(9)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	106.1
$\mathrm{C}(9)-\mathrm{C}(10)$	1.547(9)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})$	113.1(5)
$\mathrm{C}(2)-\mathrm{H}(2)$	0.9500	$\mathrm{C}(10 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})-\mathrm{H}(9 \mathrm{~A})$	106.1
$\mathrm{C}(2)-\mathrm{C}(1)$	1.389(9)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A})$	119.0
$\mathrm{C}(7)-\mathrm{C}(1)$	1.400(8)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{H}(6 \mathrm{~A})$	119.0
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	0.9900	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})$	122.0(6)
$\mathrm{C}(11)-\mathrm{H}(11 \mathrm{D})$	0.9900	$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	116.5(5)
$\mathrm{C}(11)-\mathrm{C}(12)$	1.519(9)	$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})$	124.9(5)
$\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	0.9500	$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	118.5(5)
$\mathrm{C}(5)-\mathrm{H}(5)$	0.9500	$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{~A})$	119.3
$\mathrm{C}(18)-\mathrm{H}(18)$	0.9500	$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	121.4(5)
$\mathrm{C}(18)-\mathrm{C}(19)$	1.419(9)	$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(20 \mathrm{~A})-\mathrm{H}(20 \mathrm{~A})$	119.3
$\mathrm{C}(18)-\mathrm{C}(17)$	1.368(10)	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	119.5
$\mathrm{C}(21)-\mathrm{H}(21)$	0.9500	$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})$	121.1(6)
$\mathrm{C}(21)-\mathrm{C}(20)$	1.357(10)	$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})-\mathrm{H}(16 \mathrm{~A})$	119.5
$\mathrm{C}(19)-\mathrm{C}(20)$	1.400(9)	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	124.0(5)
$\mathrm{C}(17)-\mathrm{H}(17)$	0.9500	$\mathrm{O}(1 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	121.5(5)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	0.9800	$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	114.5(5)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	0.9800	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})$	117.9(5)
$\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	0.9800	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})$	123.9(4)
$\mathrm{C}(20)-\mathrm{H}(20)$	0.9500	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(6 \mathrm{~A})$	117.9(5)

$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	122.2(5)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$	109.5
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	118.2(5)	$\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	109.5
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	119.6(5)	$\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	108.0
$\mathrm{N}(1 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	115.9(5)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	121.0(5)
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{N}(1 \mathrm{~A})$	123.7(5)	$\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	116.6(6)
$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(23 \mathrm{~A})$	120.4(5)	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})$	122.4(5)
$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{H}(21 \mathrm{~A})$	120.9	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	120.1
$\mathrm{C}(20 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$	118.1(6)	$\mathrm{C}(7 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})$	119.7(5)
$\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})-\mathrm{H}(21 \mathrm{~A})$	120.9	$\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(1 \mathrm{~A})-\mathrm{H}(1 \mathrm{AA})$	120.1
$\mathrm{S}(1 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A})$	108.5	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~A})$	109.5
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})$	112.3(3)	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A})$	108.5	$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	112.8(5)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{~B})$	109.5
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{S}(1 \mathrm{~A})$	106.0(4)	$\mathrm{H}(10 \mathrm{~A})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})-\mathrm{H}(8 \mathrm{~A})$	108.5	$\mathrm{H}(10 \mathrm{~B})-\mathrm{C}(10 \mathrm{~A})-\mathrm{H}(10 \mathrm{C})$	109.5
$\mathrm{C}(19 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	119.6	$\mathrm{C}(16 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	120.3
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(19 \mathrm{~A})$	120.8(6)	$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	119.4(7)
$\mathrm{C}(17 \mathrm{~A})-\mathrm{C}(18 \mathrm{~A})-\mathrm{H}(18 \mathrm{~A})$	119.6	$\mathrm{C}(18 \mathrm{~A})-\mathrm{C}(17 \mathrm{~A})-\mathrm{H}(17 \mathrm{~A})$	120.3
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	108.8	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	121.2(5)
$\mathrm{C}(9 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	108.8	$\mathrm{C}(6 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A})$	119.4
$\mathrm{H}(11 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	107.7	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(5 \mathrm{~A})-\mathrm{H}(5 \mathrm{~A})$	119.4
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(9 \mathrm{~A})$	113.8(6)	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~A})$	109.5
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~A})$	108.8	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{H}(11 \mathrm{~B})$	108.8	$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(4 \mathrm{AA})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{~B})$	109.5
$\mathrm{H}(4 \mathrm{AA})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AC})$	109.5	$\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{H}(4 \mathrm{AB})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AC})$	109.5	$\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12 \mathrm{~A})-\mathrm{H}(12 \mathrm{C})$	109.5
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AA})$	109.5	$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$	118.8
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AB})$	109.5	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{C}(3 \mathrm{~A})$	122.5(5)
$\mathrm{C}(3 \mathrm{~A})-\mathrm{C}(4 \mathrm{~A})-\mathrm{H}(4 \mathrm{AC})$	109.5	$\mathrm{C}(1 \mathrm{~A})-\mathrm{C}(2 \mathrm{~A})-\mathrm{H}(2 \mathrm{~A})$	118.8
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})-\mathrm{C}(21 \mathrm{~A})$	123.3(6)	$\mathrm{C}(7)-\mathrm{S}(1)-\mathrm{C}(8)$	104.7(3)
$\mathrm{N}(2 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})-\mathrm{H}(22 \mathrm{~A})$	118.4	$\mathrm{C}(22)-\mathrm{N}(2)-\mathrm{C}(23)$	117.4(5)
$\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})-\mathrm{H}(22 \mathrm{~A})$	118.4	$\mathrm{C}(15)-\mathrm{N}(1)-\mathrm{H}(1)$	115.8
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(8 \mathrm{~A})$	110.9(5)	$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{H}(1)$	115.8
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~A})$	109.5	$\mathrm{C}(14)-\mathrm{N}(1)-\mathrm{C}(15)$	128.4(5)
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{H}(13 \mathrm{~B})$	109.5	$\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$	119.8

$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$	119.8	$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$	121.3(5)
$\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$	120.4(5)	$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3
$\mathrm{S}(1)-\mathrm{C}(8)-\mathrm{H}(8)$	108.0	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{S}(1)$	117.5(4)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{S}(1)$	105.5(4)	$\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(1)$	118.7(5)
$\mathrm{C}(13)-\mathrm{C}(8)-\mathrm{H}(8)$	108.0	$\mathrm{C}(1)-\mathrm{C}(7)-\mathrm{S}(1)$	123.5(4)
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{S}(1)$	113.9(4)	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	108.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$	108.0	$\mathrm{C}(9)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{D})$	108.7
$\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(13)$	113.2(5)	$\mathrm{H}(11 \mathrm{C})-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{D})$	107.6
$\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{H}(22)$	118.0	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{C}(9)$	114.3(7)
$\mathrm{N}(2)-\mathrm{C}(22)-\mathrm{C}(21)$	124.0(6)	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{C})$	108.7
$\mathrm{C}(21)-\mathrm{C}(22)-\mathrm{H}(22)$	118.0	$\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11 \mathrm{D})$	108.7
$\mathrm{N}(1)-\mathrm{C}(15)-\mathrm{C}(23)$	114.2(5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{C}(7)$	119.6(5)
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{N}(1)$	125.8(5)	$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	120.2
$\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(23)$	120.0(5)	$\mathrm{C}(7)-\mathrm{C}(1)-\mathrm{H}(1 \mathrm{~B})$	120.2
$\mathrm{N}(2)-\mathrm{C}(23)-\mathrm{C}(15)$	118.3(5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(3)$	121.7(5)
$\mathrm{N}(2)-\mathrm{C}(23)-\mathrm{C}(19)$	122.5(5)	$\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$	119.2
$\mathrm{C}(19)-\mathrm{C}(23)-\mathrm{C}(15)$	119.3(5)	$\mathrm{C}(3)-\mathrm{C}(5)-\mathrm{H}(5)$	119.2
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{H}(16)$	120.3	$\mathrm{C}(19)-\mathrm{C}(18)-\mathrm{H}(18)$	120.3
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	119.3(6)	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{H}(18)$	120.3
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{H}(16)$	120.3	$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	119.5(5)
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.4	$\mathrm{C}(22)-\mathrm{C}(21)-\mathrm{H}(21)$	120.6
$\mathrm{C}(8)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{D})$	109.4	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{C}(22)$	118.8(6)
$\mathrm{H}(13 \mathrm{C})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{D})$	108.0	$\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21)$	120.6
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(8)$	111.0(6)	$\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(23)$	119.2(5)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$	109.4	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(23)$	117.1(5)
$\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{D})$	109.4	$\mathrm{C}(20)-\mathrm{C}(19)-\mathrm{C}(18)$	123.8(5)
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(5)$	118.3(5)	$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{H}(17)$	118.6
$\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$	121.0(5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{C}(16)$	122.8(6)
$\mathrm{C}(5)-\mathrm{C}(3)-\mathrm{C}(4)$	120.7(5)	$\mathrm{C}(18)-\mathrm{C}(17)-\mathrm{H}(17)$	118.6
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$	107.0	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~A})$	109.5
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$	110.5(5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(8)$	112.8(5)	$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{H}(9)$	107.0	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{~B})$	109.5
$\mathrm{C}(11)-\mathrm{C}(9)-\mathrm{C}(10)$	112.0(5)	$\mathrm{H}(4 \mathrm{~A})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5
$\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$	107.0	$\mathrm{H}(4 \mathrm{~B})-\mathrm{C}(4)-\mathrm{H}(4 \mathrm{C})$	109.5
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$	119.3	$\mathrm{O}(1)-\mathrm{C}(14)-\mathrm{N}(1)$	122.8(5)

$\mathrm{O}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$121.4(6)$
$\mathrm{N}(1)-\mathrm{C}(14)-\mathrm{C}(13)$	$115.9(5)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(19)$	$120.2(5)$
$\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{H}(20)$	119.9
$\mathrm{C}(19)-\mathrm{C}(20)-\mathrm{H}(20)$	119.9
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{D})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{E})$	109.5
$\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~F})$	109.5
$\mathrm{H}(10 \mathrm{D})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{E})$	109.5
$\mathrm{H}(10 \mathrm{D})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~F})$	109.5
$\mathrm{H}(10 \mathrm{E})-\mathrm{C}(10)-\mathrm{H}(10 \mathrm{~F})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{D})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{E})$	109.5
$\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{E})$	109.5
$\mathrm{H}(12 \mathrm{D})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~F})$	109.5
$\mathrm{H}(12 \mathrm{E})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~F})$	109.5

Symmetry transformations used to generate equivalent atoms

Table S13: Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 3a. The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 \mathrm{hka}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}\right]$.

	U^{11}	U^{22}	U^{33}	U^{23}	U^{13}	U^{12}
$S(1 A)$	20(1)	15(1)	27(1)	-5(1)	4(1)	-1(1)
$\mathrm{O}(1 \mathrm{~A})$	$21(2)$	$44(3)$	$43(2)$	$21(2)$	$-3(2)$	$-11(2)$
$\mathrm{N}(1 \mathrm{~A})$	$22(2)$	$21(2)$	$16(2)$	$5(2)$	$2(2)$	$7(2)$
$\mathrm{N}(2 \mathrm{~A})$	$19(2)$	$16(2)$	$19(2)$	$4(2)$	$7(2)$	$1(2)$
$\mathrm{C}(9 \mathrm{~A})$	$39(3)$	$11(2)$	16(2)	$-3(2)$	$11(2)$	$-1(3)$
$\mathrm{C}(6 \mathrm{~A})$	$37(4)$	$12(3)$	$22(2)$	$0(2)$	$-4(3)$	$0(3)$
$\mathrm{C}(19 \mathrm{~A})$	$25(3)$	$10(2)$	$32(3)$	$0(2)$	$9(2)$	6(2)
$\mathrm{C}(20 \mathrm{~A})$	42(4)	$12(2)$	$26(3)$	$3(2)$	$15(3)$	$1(3)$
$\mathrm{C}(16 \mathrm{~A})$	$28(4)$	$25(3)$	$28(3)$	9(2)	5(3)	4(3)
$\mathrm{C}(14 \mathrm{~A})$	$21(3)$	$17(3)$	$21(2)$	$2(2)$	$-2(2)$	$-1(2)$
$\mathrm{C}(7 \mathrm{~A})$	$13(3)$	$15(2)$	$19(2)$	5(2)	3(2)	4(2)
$\mathrm{C}(23 \mathrm{~A})$	$27(3)$	$13(3)$	$19(2)$	-3(2)	3(2)	4(2)
$\mathrm{C}(15 \mathrm{~A})$	$17(3)$	$10(2)$	22(2)	2(2)	8(2)	6(2)
$\mathrm{C}(21 \mathrm{~A})$	$33(4)$	$21(3)$	$40(3)$	-2(3)	15(3)	-11(3)
$\mathrm{C}(8 \mathrm{~A})$	25(3)	11(2)	14(2)	-2(2)	3(2)	2(2)
$\mathrm{C}(18 \mathrm{~A})$	44(4)	24(3)	21(3)	7(2)	9(3)	9(3)
$\mathrm{C}(11 \mathrm{~A})$	38(3)	16(3)	29(3)	6(2)	6(3)	2(3)
$\mathrm{C}(4 \mathrm{~A})$	24(3)	15(3)	42(4)	0 (2)	2(3)	-1(2)
$\mathrm{C}(22 \mathrm{~A})$	31(4)	24(3)	25(3)	-6(2)	10(3)	$0(3)$
$\mathrm{C}(13 \mathrm{~A})$	21(3)	15(3)	20(3)	0(2)	7(2)	-3(2)
$\mathrm{C}(3 \mathrm{~A})$	22(3)	12(2)	29(3)	8(2)	3(2)	-2(2)
$\mathrm{C}(1 \mathrm{~A})$	26(3)	23(3)	17(2)	0 (2)	1(2)	-10(2)
$\mathrm{C}(10 \mathrm{~A})$	41(4)	34(4)	26(3)	2(3)	10(3)	-13(3)
$\mathrm{C}(17 \mathrm{~A})$	39(4)	31(4)	57(4)	28(3)	28(3)	21(3)
C(5A)	23(3)	12(2)	22(3)	-6(2)	2(2)	0(2)
$\mathrm{C}(12 \mathrm{~A})$	54(5)	41(4)	40(4)	20(3)	12(4)	14(4)
$\mathrm{C}(2 \mathrm{~A})$	20(3)	24(3)	21(3)	2(2)	-5(2)	-10(3)
$S(1)$	19(1)	12(1)	39(1)	5(1)	8(1)	-2(1)
$\mathrm{O}(1)$	66(4)	94(5)	59(3)	-55(4)	47(3)	-56(4)
$\mathrm{N}(2)$	17(2)	17(2)	19(2)	3(2)	-1(2)	-2(2)

$\mathrm{N}(1)$	$18(2)$	$20(2)$	$19(2)$	$-10(2)$	$5(2)$	$-9(2)$
$\mathrm{C}(6)$	$23(3)$	$19(3)$	$16(2)$	$0(2)$	$9(2)$	$-2(2)$
$\mathrm{C}(8)$	$19(3)$	$14(3)$	$26(3)$	$1(2)$	$5(2)$	$-1(2)$
$\mathrm{C}(22)$	$25(3)$	$23(3)$	$24(3)$	$4(2)$	$5(2)$	$-8(3)$
$\mathrm{C}(15)$	$27(3)$	$14(2)$	$16(2)$	$0(2)$	$1(2)$	$1(2)$
$\mathrm{C}(23)$	$23(3)$	$9(2)$	$18(2)$	$4(2)$	$-3(2)$	$4(2)$
$\mathrm{C}(16)$	$23(3)$	$35(3)$	$27(3)$	$-11(3)$	$9(3)$	$-4(3)$
$\mathrm{C}(13)$	$35(4)$	$11(2)$	$16(2)$	$3(2)$	$-3(2)$	$-5(2)$
$\mathrm{C}(3)$	$18(3)$	$15(3)$	$20(2)$	$-1(2)$	$-2(2)$	$-4(2)$
$\mathrm{C}(9)$	$27(3)$	$12(2)$	$25(3)$	$-5(2)$	$1(2)$	$-3(2)$
$\mathrm{C}(2)$	$22(3)$	$24(3)$	$23(2)$	$0(2)$	$6(2)$	$-7(3)$
$\mathrm{C}(7)$	$21(3)$	$12(3)$	$27(3)$	$1(2)$	$5(2)$	$-1(2)$
$\mathrm{C}(11)$	$44(4)$	$24(3)$	$22(3)$	$-5(2)$	$11(3)$	$3(3)$
$\mathrm{C}(1)$	$31(3)$	$15(2)$	$14(2)$	$3(2)$	$7(2)$	$7(2)$
$\mathrm{C}(5)$	$28(3)$	$25(3)$	$15(2)$	$0(2)$	$4(2)$	$-7(3)$
$\mathrm{C}(18)$	$40(4)$	$24(3)$	$30(3)$	$-9(2)$	$1(3)$	$8(3)$
$\mathrm{C}(21)$	$35(4)$	$20(3)$	$29(3)$	$6(2)$	$4(3)$	$-15(3)$
$\mathrm{C}(19)$	$26(3)$	$17(3)$	$21(3)$	$-4(2)$	$-5(2)$	$6(2)$
$\mathrm{C}(17)$	$31(3)$	$48(4)$	$18(3)$	$-4(3)$	$15(2)$	$-1(3)$
$\mathrm{C}(4)$	$20(3)$	$31(3)$	$29(3)$	$11(3)$	$4(2)$	$7(3)$
$\mathrm{C}(14)$	$30(3)$	$21(3)$	$23(3)$	$-7(2)$	$6(3)$	$-13(3)$
$\mathrm{C}(20)$	$45(4)$	$11(3)$	$31(3)$	$-4(2)$	$-3(3)$	$-3(3)$
$\mathrm{C}(10)$	$35(4)$	$20(3)$	$36(3)$	$0(3)$	$3(3)$	$3(3)$
$\mathrm{C}(12)$	$91(7)$	$40(4)$	$33(3)$	$-17(3)$	$27(4)$	$-11(4)$

Table 14. Hydrogen coordinates $\left(\times 10^{4}\right)$ and isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $\mathbf{3 a}$.

	x	y	z	U(eq)
H(1A)	2452	2365	7383	23
H(9A)	5089	5697	6302	26
H(6A)	5843	1172	5199	29
H(20A)	752	-1893	8567	31
H(16A)	6259	1422	8187	32
H(21A)	-1796	-1374	8011	36
H(8A)	6493	3815	6602	20
H(18A)	3957	-1398	8914	35
H(11A)	2623	4289	5588	33
H(11B)	2184	4983	6108	33
H(4AA)	12085	563	5333	41
H(4AB)	11172	-792	5348	41
H(4AC)	12285	-223	5875	41
H(22A)	-1767	332	7420	31
H(13A)	4165	4626	7061	22
H(13B)	2893	3593	6747	22
H(1AA)	8378	2126	6648	27
H(10A)	5972	4236	5439	50
H(10B)	7317	5041	5847	50
H(10C)	5853	5747	5440	50
H(17A)	6381	-126	8865	48
H(5A)	8338	230	4989	23
H(12A)	3021	6203	5183	67
H(12B)	2919	6963	5719	67
H(12C)	1207	6300	5408	67
H(2A)	10927	1252	6419	27
H(1)	2543	4725	2714	23
H(6)	7868	3706	4809	23
H(8)	7226	6292	3411	23
H(22)	-1661	2714	2648	29

H(16)	5566	3944	1846	33
H(13C)	3476	6136	3275	26
H(13D)	4432	7233	2995	26
H(9)	6306	8182	3764	26
H(2)	11854	3708	3613	27
H(11C)	3559	7549	3961	35
H(11D)	4484	6718	4447	35
H(1B)	9070	4545	3352	23
H(5)	10566	2802	5036	27
H(18)	2639	1021	1174	38
H (21)	-2261	1052	2046	34
H(17)	5055	2312	1226	38
H(4A)	13443	1957	4214	40
H(4B)	13235	2060	4827	40
H(4C)	14154	3179	4549	40
H(20)	-219	506	1510	36
H(10D)	8141	8131	4558	46
H(10E)	8907	7089	4201	46
H(10F)	7781	6663	4647	46
H(12D)	4874	9397	4418	79
H(12E)	5468	8507	4921	79
H(12F)	3434	8722	4711	79

DFT Calculations

Computational Details

All calculations were performed with Gaussian 16, Revision B.01. The M052X density functional and a basis set of $6-31+G^{*}$ were used in geometry optimizations. Single-point energies were calculated with M052X and a mixed basis set of $6-311+\mathrm{G}^{* *}$. For bond dissociation energy calculation, all structures have been optimized considering solvent effects using the SMD model for acetonitrile. The reported Gibbs free energies and enthalpies include zero-point vibrational energies and thermal corrections at 298 K .

Complete Citation for Gaussian 16

Gaussian 16, Revision B.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Scalmani, G.; Barone, V.; Petersson, G. A.; Nakatsuji, H.; Li, X.; Caricato, M.; Marenich, A. V.; Bloino, J.; Janesko, B. G.; Gomperts, R.; Mennucci, B.; Hratchian, H. P.; Ortiz, J. V.; Izmaylov, A. F.; Sonnenberg, J. L.; Williams-Young, D.; Ding, F.; Lipparini, F.; Egidi, F.; Goings, J.; Peng, B.; Petrone, A.; Henderson, T.; Ranasinghe, D.; Zakrzewski, V. G.; Gao, J.; Rega, N.; Zheng, G.; Liang, W.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Vreven, T.; Throssell, K.; Montgomery, Jr., J. A.; Peralta, J. E.; Ogliaro, F.; Bearpark, M. J.; Heyd, J. J.; Brothers, E. N.; Kudin, K. N.; Staroverov, V. N.; Keith, T. A.; Kobayashi, R.; Normand, J.; Raghavachari, K.; Rendell, A. P.; Burant, J. C.; Iyengar, S. S.; Tomasi, J.; Cossi, M.; Millam, J. M.; Klene, M.; Adamo, C.; Cammi, R.; Ochterski, J. W.; Martin, R. L.; Morokuma, K.; Farkas, O.; Foresman, J. B.; Fox, D. J. Gaussian, Inc., Wallingford CT, 2016.

Data Analysis for DFT Calculation

Table S15: Calculated BDE ($\mathrm{kcal} / \mathrm{mol}$) of Sulfenylating Agents ${ }^{a}$

$\mathbf{S 1}, \mathrm{R}^{1}=\mathrm{OMe}, 50.8$
S2, $R^{1}=M e, \quad 50.8$
S3, $\mathrm{R}^{1}=\mathrm{Cl}, \quad 51.2$

S4, 50.6

S8, 43.4

S18, 39.8

S5, 49.1

S9, $\quad R^{2}=F, \quad 52.2$
S10, $R^{2}=H, \quad 52.4$
S11, $R^{2}=M e, \quad 51.9$
S12, $R^{2}=t$ - $\mathrm{Bu}, 52.7$
S13, $R^{2}=O M e, 51.0$

S20, 73.6

S6, 49.8

$\mathrm{S} 14, \mathrm{R}^{3}=\mathrm{OMe}, 58.4$

S21, 79.2
${ }^{a}$ Solution phase BDE (kcal/mol) calculated at SMD (acetonitrile)//M05-2X/6-311+G(d,p), SMD(acetonitrile)//M05-2X/6-31+G(d) level of theory. ${ }^{8}$

Cartesian Coordinates (\AA) and Energies of Optimized Structures

S8
 SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 1108.932349
 Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.221796$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1108.710553 a.u.

01			
N	1.26682200	0.95803800	0.19418800
S	0.10637500	1.18079700	1.43644400
C	-1.35656100	0.47191300	0.69821600
C	-2.24703800	-0.19672800	1.54208300
C	-1.64772100	0.60318800	-0.65854800
C	-3.43160100	-0.71362900	1.02505000
H	-2.01591800	-0.32064800	2.59436100
C	-2.82520000	0.05618800	-1.16588900
H	-0.96258900	1.11612500	-1.32332500
C	-3.73738300	-0.60154600	-0.33570800
H	-4.12008300	-1.22894200	1.68646200
H	-3.04025500	0.15190000	-2.22451900
C	-5.01501100	-1.18281100	-0.88299900
H	-5.09340700	-1.01065100	-1.95721900

H	-5.06085400	-2.25975000	-0.70299700
H	-5.88552900	-0.73299100	-0.39909300
C	1.68056100	1.98294400	-0.64235700
O	2.56281000	1.78266600	-1.46672300
C	1.83576400	-0.35327700	0.04631700
C	1.52348000	-1.11771300	-1.07650700
C	2.66960700	-0.85772900	1.04201300
C	2.05906800	-2.39822200	-1.20398900
H	0.87650200	-0.70658200	-1.84150900
C	3.19545200	-2.14158000	0.91242700
H	2.89884800	-0.24796600	1.90841700
C	2.89209700	-2.91251100	-0.21038400
H	1.82082000	-2.99375500	-2.07698200
H	3.84423400	-2.53602200	1.68502700
H	3.30330000	-3.90973900	-0.31003700
C	1.02720200	3.33062000	-0.47770600
H	-0.05962000	3.26525200	-0.54099700
H	1.28277300	3.76387600	0.49123400
H	1.40325900	3.97490000	-1.26956900

S11

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 1148.249908
a.u.

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.247741$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1148.002167 a.u.

01			
C	-3.44971200	0.48136600	0.10157500
C	-4.13526900	-0.72531300	0.22339600
C	-3.49929000	-1.94160200	-0.04122200
C	-2.15438300	-1.91850200	-0.43209100
C	-1.45716600	-0.72013700	-0.53443900
C	-2.10225200	0.48985500	-0.26032900
H	-3.95810700	1.41900000	0.29178700
H	-5.17882600	-0.72123500	0.51840400
H	-1.64905400	-2.85091800	-0.65968000
H	-0.41955800	-0.73023300	-0.84568600
N	-0.16121600	2.00762400	0.02924800
S	0.44440100	1.12510600	1.36097300
C	1.81546400	0.25233700	0.62925600
C	2.62993400	-0.47790900	1.50194600
C	2.10475700	0.28033900	-0.73210700
C	3.71848800	-1.18227400	1.00155400
H	2.41772700	-0.49827500	2.56600200
C	3.20608500	-0.42938000	-1.21593600
H	1.48276500	0.84605100	-1.41565400
C	4.02757700	-1.16971000	-0.36508800
H	4.34260600	-1.74847300	1.68493600
H	3.42392800	-0.40154500	-2.27805400
C	0.47710500	3.29659800	-0.26239400
H	0.04591200	4.09213700	0.34849000
H	1.54074000	3.20658000	-0.05207000
H	0.33529600	3.53158900	-1.31522100
C	5.21601200	-1.93430300	-0.88837700
H	5.31026100	-1.81559400	-1.96869500
H	6.14100500	-1.58373200	-0.42375700
H	5.12288200	-3.00065600	-0.66765400
C	-1.43748700	1.81552500	-0.45248500
O	-2.00815300	2.72102400	-1.05448600
C	-4.23148300	-3.24993300	0.10102900
H	-3.92157800	-3.76487800	1.01474900
H	-5.30962200	-3.09200400	0.15072100
H	-4.01333400	-3.91281900	-0.73875900
		-2	

S12

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 1266.205428
a.u

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.332122$ a.u Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1265.873306 a.u.

01			
C	-2.28757100	1.86199600	0.08666700
C	-3.31954900	0.93730200	0.19346700
C	-3.11721000	-0.42125700	-0.09687100
C	-1.83456400	-0.81460900	-0.49572700
C	-0.78834300	0.10292500	-0.58329900
C	-1.00649700	1.44703800	-0.28644300
H	-2.46993300	2.90846500	0.30057900
H	-4.29868700	1.28490100	0.50059100
H	-1.63080100	-1.84702500	-0.74520200
H	0.18998100	-0.23747500	-0.90074600
N	1.31046200	2.26834700	0.04475800
S	1.57968300	1.22745300	1.37162100
C	2.58127800	-0.05305100	0.63853900
C	3.05117700	-1.05279400	1.49761000
C	2.91178600	-0.08718700	-0.71329600
C	3.83768400	-2.08164700	0.99277200
H	2.80485300	-1.03330300	2.55446700
C	3.70686500	-1.12650300	-1.20148900
H	2.55491700	0.68253300	-1.38722000
C	4.17964700	-2.13825100	-0.36486600
H	4.19341300	-2.85440500	1.66603900
H	3.95914400	-1.14409200	-2.25629000
C	2.32980900	3.29115900	-0.21955500
H	2.16428900	4.17475000	0.40019000
H	3.30653200	2.86511500	-0.00030600
H	2.28534000	3.57240300	-1.26971900
C	5.02771900	-3.26531300	-0.89573300
H	5.24865200	-3.12122500	-1.95418100
H	5.97369700	-3.33231200	-0.35296800
H	4.51633800	-4.22463000	-0.78116400
C	0.04838700	2.49237800	-0.46022800
O	-0.19532200	3.53166800	-1.06662600
C	-4.28357000	-1.40199300	0.01954100
C	-3.87481800	-2.83642200	-0.32714800
H	-3.52100800	-2.91996200	-1.35821200
H	-3.09210500	-3.20635300	0.34056200
H	-4.74483600	-3.48921900	-0.21810900
C	-4.82020200	-1.38914800	1.46037600
H	-5.17867400	-0.39876300	1.74933800
H	-5.65639100	-2.08920200	1.54697900
H	-4.04332100	-1.69354900	2.16738400
C	-5.40495100	-0.97284800	-0.94131500
H	-6.23919400	-1.67697300	-0.87094300
H	-5.78202400	0.02351000	-0.70026900
H	-5.04822700	-0.96487400	-1.97504000

S14

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 1338.016432

Thermal correction to Gibbs free energy at 298 K : 0.285951 a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1337.730481 a.u.

01			
C	-1.44189200	1.72977300	0.19886300
C	-1.94203600	2.53006200	-0.83319300
C	-2.85866400	1.97440300	-1.72234700
C	-3.28642600	0.65188800	-1.61674800

-2.76820800	-0.13615900	-0.58649300
-1.84257100	0.39663600	0.31501200
-1.63231900	3.55930400	-0.94417700
-3.99944000	0.25392900	-2.32433400
-0.30867000	-1.30525100	1.20014000
0.21227100	-1.66149500	-0.39028800
1.84067400	-0.93002800	-0.38866400
2.84274000	-1.57024100	-1.11641000
2.11449600	0.27085400	0.27069200
4.11277400	-0.99733000	-1.19692200
2.64283600	-2.51284400	-1.61406300
3.39229600	0.81571700	0.20107600
1.33778400	0.77295600	0.83530000
4.40967600	0.19727700	-0.53788200
4.88627500	-1.49973500	-1.76733400
3.60112600	1.74426600	0.72250500
0.18514800	-2.14046600	2.29778700
-0.48654200	-2.98364100	2.47207400
1.17504500	-2.50695300	2.03457300
0.25134100	-1.53790900	3.20130200
5.78509000	0.80887500	-0.60622600
6.22966000	0.88086000	0.38956700
6.44682600	0.21118300	-1.23441800
5.74114600	1.82025800	-1.01793500
-1.33576800	-0.43863100	1.45611600
-1.81660800	-0.34467700	2.58060500
-3.25329500	2.59045900	-2.52146900
-0.55041300	2.15507100	1.13003100
-3.08276500	-1.44033800	-0.38423600
0.02451700	3.45249800	0.96378700
0.73936400	3.56210400	1.77527000
0.54029600	3.52501400	0.00408700
-0.73872500	4.22846500	1.04132700
-3.98275200	-2.05824500	-1.30628600
-4.95615000	-1.56543800	-1.28303600
-3.5729200	-2.03604300	-2.31763700
-4.08421600	-3.08728700	-0.97215000

S15

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 1148.249608
a.u.

Thermal correction to Gibbs free energy at 298 K : 0.250117 a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1147.999491 a.u.

01			
C	-3.57974700	-0.76418600	0.10194100
C	-3.99915300	-2.06725800	0.36137100
C	-3.11051100	-3.12991100	0.20095300
C	-1.80110700	-2.88738900	-0.21627500
C	-1.37261400	-1.58405300	-0.45534500
C	-2.26197000	-0.51921600	-0.28997500
H	-4.26848800	0.06549400	0.20730600
H	-5.01788300	-2.25187200	0.68021400
H	-1.11264500	-3.71212700	-0.35516500
H	-0.35569600	-1.40263100	-0.78179700
N	-0.74996800	1.44072500	-0.09787600
S	0.02237300	0.79826700	1.28273100
C	1.56225400	0.21625500	0.59657500
C	2.53020900	-0.22056600	1.50500200
C	1.83149400	0.19163000	-0.77090500
C	3.75408600	-0.69092100	1.03789300
H	2.33737900	-0.19210800	2.57246900
C	3.06671000	-0.27523600	-1.22019200
H	1.09130800	0.53596500	-1.48342600
C	4.04426400	-0.72756200	-0.33047800
H	4.49841500	-1.02805700	1.75111800

H	3.26930200	-0.28436000	-2.28585400
C	-0.39749600	2.82257200	-0.47724600
H	0.68030400	2.91995100	-0.34613900
H	-0.62442700	2.93294200	-1.53617200
C	5.36273300	-1.25922800	-0.83067300
H	5.66459100	-0.75460500	-1.75012600
H	6.14774400	-1.12310300	-0.08488900
H	5.29185700	-2.32931200	-1.04691100
C	-1.89415100	0.89382400	-0.62946200
O	-2.60571200	1.55210600	-1.38329200
H	-3.43773400	-4.14452500	0.39423600
C	-1.14339500	3.85679600	0.35313500
H	-0.91996600	3.73466200	1.41565800
H	-0.83588000	4.86140200	0.05427300
H	-2.22031500	3.76478500	0.20505500

S16

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): -
1187.566341

Thermal correction to Gibbs free energy at 298 K : 0.27579 a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1187.290551 a.u.

Thermal correction to Gibbs free energy at 298 K : 0.297119 a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1339.727293 a.u.

01			
C	-0.66671100	3.59225800	-0.01146900
C	0.04265900	4.69258800	-0.48808200
C	1.43661600	4.66353900	-0.51612600
C	2.12050100	3.53176300	-0.07023100
C	1.41450200	2.42146500	0.38584000
C	0.01822500	2.45043800	0.40954400
H	-1.74954400	3.61146900	0.02717300
H	-0.49124900	5.57114600	-0.82947400
H	3.20359300	3.51235100	-0.07880600
H	1.94903700	1.54501300	0.73156600
N	-0.61338400	0.05226900	0.47381200
S	0.14138000	-0.25457900	-1.02750100
C	1.67163000	-1.02221800	-0.52524900
C	2.49736500	-1.49068700	-1.55291500
C	2.05855500	-1.17779300	0.80305600
C	3.70573200	-2.10309800	-1.24146700
H	2.20179600	-1.38095500	-2.59135800
C	3.27277200	-1.80243700	1.09672800
H	1.42805200	-0.81871500	1.60794800
C	4.11460400	-2.27199000	0.08766900
H	4.34026900	-2.46096200	-2.04533300
H	3.56431500	-1.92282800	2.13443800
C	-1.39906900	-1.03984000	1.05391700
H	-0.79851600	-1.94804400	0.99129600
C	5.42921200	-2.93628400	0.40645200
H	5.52566600	-3.11645300	1.47805100
H	5.51978000	-3.89254700	-0.11372000
H	6.26824200	-2.31068200	0.09012900
C	-0.79651400	1.32576100	0.97104300
O	-1.61907500	1.53477100	1.85592600
H	1.98923100	5.52206800	-0.87869300
H	-1.54448000	-0.80726900	2.10871500
C	-2.73848100	-1.26595700	0.38073000
C	-3.33906300	-0.31390100	-0.44387500
C	-3.40341300	-2.47329200	0.61843000
C	-4.58489800	-0.56437200	-1.02144300
H	-2.84321500	0.62883100	-0.64548700
C	-4.64928900	-2.72274700	0.04787300
H	-2.93853300	-3.22173500	1.25219500
C	-5.24493900	-1.76682000	-0.77639300
H	-5.03724800	0.18350100	-1.66203600
H	-5.15135100	-3.66337000	0.24124100
H	-6.21160600	-1.95986300	-1.22609800

S20

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 1029.336635
a.u.

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.161871$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -1029.174764 a.u.

01			
C	3.15916200	-0.76500100	-1.35343300
C	3.15906700	0.76507700	-1.35347900
H	2.80065700	-1.19416100	-2.28929000
H	4.13736400	-1.19437900	-1.13432000
H	2.80040600	1.19412200	-2.28932900
H	4.13723300	1.19460300	-1.13450200
C	2.20749700	-1.16690000	-0.25118700
C	2.20744400	1.16692700	-0.25117900
O	1.90068100	-2.28799000	0.08543900
O	1.90060600	2.28799800	0.08548300
N	1.70990400	-0.00000100	0.34312300

S	0.62557200	-0.00002800	1.67842700
C	-0.93900800	-0.00001600	0.82156300
C	-1.55639200	1.21058100	0.49802700
C	-1.55637200	-1.21060900	0.49796500
C	-2.78286300	1.20354800	-0.16100200
H	-1.07704500	2.14745000	0.75501100
C	-2.78284200	-1.20356200	-0.16106300
H	-1.07700400	-2.14748000	0.75489900
C	-3.41250400	-0.00000300	-0.49782000
H	-3.25799600	2.14414200	-0.41692800
H	-3.25796200	-2.14414900	-0.41703700
C	-4.75185800	0.00000000	-1.18607800
H	-5.55907300	0.00000600	-0.44767200
H	-4.87166600	0.88751100	-1.80939800
H	-4.87167100	-0.88751300	-1.80939300

N6
SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): -
761.7852733
a.u.

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.111984$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -761.6732893 a.u.

02

N	-1.01828600	-0.87294000	-0.14507800
C	-2.12083600	-0.02486200	-0.19636100
O	-2.32556100	0.70722800	-1.15335700
C	0.22433200	-0.39142200	-0.05901800
C	1.30181200	-1.32684500	-0.15009400
C	0.53727400	0.99106800	0.14523800
C	2.61070500	-0.90152400	-0.05678700
H	1.05582600	-2.37088200	-0.29805500
C	1.85319000	1.39465300	0.23936500
H	-0.26338700	1.71460700	0.22726000
C	2.89531700	0.45899200	0.13667400
H	3.41967200	-1.61728600	-0.13210700
H	2.08432200	2.44088100	0.39592700
H	3.92323400	0.78955800	0.21107900
C	-3.06963400	-0.17397600	0.95817100

H	-3.43538300	-1.20238100	0.99885900
H	-2.54084800	0.02625500	1.89357800
H	-3.90389900	0.51549700	0.84274400

N11
SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 478.9844197
a.u.

Thermal correction to Gibbs free energy at 298 K : 0.133837 a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -478.8505827 a.u.

02			
C	0.54083700	1.28942900	0.06433100
C	1.91739300	1.13667900	0.13867000
C	2.50755400	-0.13289400	0.04615700
C	1.67783000	-1.24499900	-0.12178500
C	0.29459700	-1.10212300	-0.19691000
C	-0.28133400	0.16863500	-0.10755100
H	0.09143200	2.27182900	0.14014900
H	2.54962500	2.00799200	0.27153900
H	2.11894900	-2.23214800	-0.20006400
H	-0.33230800	-1.97325600	-0.33850100
N	-2.51626700	-0.79382800	-0.21370600
C	-3.79449600	-0.72760400	0.43926200
H	-4.53377500	-0.41562400	-0.31120900
H	-4.07617800	-1.73120000	0.75920700
H	-3.82646400	-0.02199100	1.27142200
C	-1.75047900	0.36394200	-0.16916000
O	-2.27874600	1.47037300	-0.23957000
C	4.00267200	-0.28063800	0.13176500
H	4.49686400	0.36593100	-0.59718900
H	4.36101400	0.01077600	1.12262600
H	4.30723200	-1.31105700	-0.05415800

N12
SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 596.9398151
a.u.

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.215538$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -596.7242771 a.u.

02			
C	0.58329200	-1.33338500	0.04337300
C	-0.79729400	-1.21975100	0.09897800
C	-1.43476100	0.02936900	-0.01211400
C	-0.62755600	1.16005700	-0.17794700
C	0.76151600	1.05597400	-0.23349600
C	1.37681400	-0.19262000	-0.12686900
H	1.05726900	-2.30291400	0.13440700
H	-1.38785400	-2.11808300	0.23308300
H	-1.07180200	2.14149800	-0.27147400
H	1.36036300	1.94692200	-0.37351300
N	3.58380700	0.83534200	-0.20023800
C	4.85443000	0.80437200	0.46988600
H	5.60895800	0.49497400	-0.26643500
H	5.11266700	1.81733500	0.77923600
H	4.88928000	0.11076800	1.31201400
C	2.85176600	-0.34462300	-0.16597700
O	3.41280500	-1.43536000	-0.22587800
C	-2.95939800	0.10471400	0.04877100
C	-3.47731700	1.53813000	-0.09713500
H	-3.11227200	2.18508900	0.70493700
H	-3.18832700	1.97601200	-1.05623800
H	-4.56927600	1.52748400	-0.04891600
C	-3.55819000	-0.74208000	-1.08713300
H	-3.27462500	-1.79327700	-1.00204800
H	-4.64991700	-0.68321100	-1.04986000

H	-3.22823900	-0.37486100	-2.06279600
C	-3.44270500	-0.44973200	1.40007700
H	-4.53443900	-0.39798500	1.44565600
H	-3.14829500	-1.49241500	1.53872500
H	-3.03617000	0.13559600	2.22942900

N14

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 668.7436483

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.168988$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -668.5746603 a.u.

02			
C	0.65557200	1.07901600	0.05573700
C	0.08101900	2.34980600	-0.01031800
C	-1.30635200	2.44440400	-0.07860800
C	-2.12852100	1.32121300	-0.08270100
C	-1.54426100	0.05204800	-0.01065900
C	-0.14686700	-0.07240200	0.06489900
H	0.68703500	3.24404300	-0.00571500
H	-3.19988300	1.44095600	-0.14768500
N	1.47852500	-1.66407000	-0.79986000
C	2.71510500	-2.24291900	-0.34888600
H	3.05435800	-2.98963800	-1.06663300
H	3.46329900	-1.44007600	-0.32731400
H	2.63092900	-2.67110900	0.65264400
C	0.51110400	-1.40655900	0.16181800
O	0.18573300	-2.27129300	0.96374400
H	-1.76215500	3.42585000	-0.13175300
O	1.98946500	0.85542700	0.14562700
O	-2.25059600	-1.09824700	-0.04431600
C	2.86346800	1.98704000	0.12540300
H	3.86909300	1.58056300	0.19252600
H	2.75002400	2.54327200	-0.80628000
H	2.66986400	2.63559500	0.98104100
C	-3.67200800	-1.00856100	-0.15972700
H	-4.09729000	-0.48368200	0.69727600
H	-3.95414100	-0.50759200	-1.08749900
H	-4.02718500	-2.03530000	-0.17376000

N15

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 478.9837656

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.133678$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -478.8500876 a.u.

02			
C	1.72040400	1.14580700	0.08526000
C	3.02701800	0.68501100	0.20294600
C	3.29311300	-0.68401800	0.12655300
C	2.25253900	-1.59232900	-0.06670900
C	0.94240100	-1.13521900	-0.18742900
C	0.67635100	0.23600600	-0.11171700
H	1.49834100	2.20381200	0.14586200
H	3.83667100	1.38827600	0.35417300
H	2.46091600	-2.65338500	-0.12739400
H	0.13411200	-1.83805400	-0.34670300
N	-1.71409200	-0.18637000	-0.39430300
C	-2.81401500	-0.13776900	0.53795500
H	-2.46261700	-0.59366400	1.47546200
H	-3.03443000	0.91097200	0.76942900
C	-0.71286200	0.75971800	-0.21129700
O	-0.97904100	1.95609900	-0.20704900
H	4.31176900	-1.04161600	0.21726800
C	-4.03363700	-0.87079500	0.00729800

H	-3.79353500	-1.91450000	-0.20407500
H	-4.83642900	-0.84261200	0.74660200
H	-4.39169600	-0.40190100	-0.91126400

N16

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 518.3026912

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.162384$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -518.1403072 a.u.

02			
C	1.73797100	1.20237100	0.32864500
C	3.05552100	0.80746700	0.53381700
C	3.46131000	-0.48026000	0.17664900
C	2.55005500	-1.37332300	-0.38685200
C	1.22988200	-0.98169700	-0.59492100
C	0.82341100	0.30767900	-0.23585400
H	1.40776100	2.19607800	0.60398400
H	3.76510700	1.49886500	0.97145800
H	2.86665500	-2.37053200	-0.66637500
H	0.52395400	-1.67263600	-1.04041100
N	-1.46162400	-0.18007800	-0.96025600
C	-2.47815100	-0.76771000	-0.09586900
H	-2.82477200	-1.66332600	-0.61297200
C	-0.58749400	0.75283900	-0.41734300
O	-0.95999400	1.89602000	-0.18261000
H	4.48827300	-0.78617100	0.33695600
C	-3.66104300	0.21306300	-0.00210100
H	-4.00798300	0.50475900	-0.99456700
H	-4.47676100	-0.28795600	0.52316200
H	-3.37606500	1.10735900	0.55229200
C	-1.95578300	-1.13695100	1.29133100
H	-1.63677200	-0.24537700	1.83829600
H	-2.75581200	-1.61752100	1.85832800
H	-1.11633900	-1.83202500	1.22750700

N17

SCF energy [M05-2X]/6-311+G**/SMD (acetonitrile): 670.7581486
a.u.

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.181717$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -670.5764316 a.u.

02			
C	3.59527800	0.87592200	0.17134100
C	4.77565800	0.14351000	0.11588800
C	4.73607800	-1.22069400	-0.18137700
C	3.51664600	-1.85261700	-0.42388000
C	2.33144100	-1.12295900	-0.37124100
C	2.37185500	0.24357900	-0.07412600
H	3.60970700	1.93295300	0.40524500
H	5.72388500	0.63156400	0.30463900
H	3.48852800	-2.90998400	-0.65650600
H	1.38414000	-1.60969900	-0.56744000
N	-0.06563200	0.36238600	-0.18833100
C	-1.05979000	0.51652600	0.84410600
H	-0.75333800	-0.09206600	1.70641700
C	1.12691700	1.05104700	0.01741600
O	1.12201400	2.26284600	0.19454600
H	5.65679600	-1.79006000	-0.22481300
H	-1.04478300	1.56074200	1.18452400
C	-2.43646000	0.11760000	0.37718100
C	-2.96551900	0.67076900	-0.79318900
C	-3.20364400	-0.78689300	1.11200000

C	-4.24349500	0.32120500	-1.222	72700					
H	-2.37352300	1.37572900	-1.367	48500		02			
C -	-4.48599600	-1.13598000	0.685	37100		C	-0.76440700	1.23533900	-0.00003900
H	-2.79655000	-1.22205200	2.018	24300		C	0.76442500	1.23533900	0.00006900
C -	-5.00774800	-0.58349200	-0.482	86000		H	-1.19827600	1.70617000	0.88305600
H -	-4.64467400	0.75488100	-2.131	06500		H	-1.19817500	1.70608000	-0.88323300
H -50	-5.07203100	-1.84109400	1.262	86300		H	1.19817200	1.70606400	0.88328600
H	-6.00216500	-0.85552000	-0.81	07900		H	1.19832700	1.70616300	-0.88301100
						C	-1.13322400	-0.23129600	0.00001700
						C	1.13322900	-0.23129900	0.00004000
N20						O	-2.25282200	-0.70848600	-0.00013700
SCF energy	gy ${ }^{\text {M05-2 }}$]/6-311+G	MD	(acetonitrile):		O	2.25280700	-0.70850400	-0.00019100
360.0374169						N	-0.00001100	-1.07672100	0.00028600

Thermal correction to Gibbs free energy at $298 \mathrm{~K}: 0.048217$ a.u. Gibbs free energy at 298 K [M05-2X]/6-311+G**/SMD (acetonitril)]: -359.9891999 a.u.

References

1. J. A., Gurak Jr., K. S. Yang, Z. Liu and K. M. Engle, J. Am. Chem. Soc. 2016, 138, 5805-5808
2. X. Wang, Z.-Q. Li, B. K. Mai, J. A., Gurak Jr., J. E. Xu, V. T. Tran, H.-Q. Ni, Z. Liu, Z. Liu, K. S. Yang, R. Xiang, P. Liu and K. M. Engle, Chem. Sci. 2020, 11, 11307-11314.
3. D. N. Harpp, B. T. Friedlander and R. A. Smith, Synthesis 1979, 181-182.
4. R. H. Li, Y. Zhou, K. Y. Yoon, Z. Dong and G. B. Dong, Nat. Commun. 2019, 10, 8.
5. N. Kim, V. T. Tran, O. Apolinar, S. R. Wisniewski, M. D. Eastgate and K. M. Engle, Synlett 2021, 32, 1570-1754.
6. V. T. Tran, N. Kim, C. Z. Rubel, X. Wu, T. Kang, T. C. Jankins, Z.-Q. Li, M. V. Joannou, S. Ayers, M. Gembicky, J. Bailey, E. J. Sturgell, B. B. Sanchez, J. S. Chen, S. Lin, M. D. Eastgate, S. R. Wisniewski and K. M. Engle, ChemRxiv 2022, DOI: 10.26434/chemrxiv-2022-7zjvh.
7. CCDC $2149662(\mathbf{S 1 0})$ and 2154909 (4a) contain the supplementary crystallographic data for this paper. These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via www.ccdc.cam.ac.uk/data_request/cif.
8. Z.-Q. Li, Y. Cao, T. Kang and K. M. Engle, ChemRxiv 2021, DOI: 10.26434/chemrxiv-2021-bj205.

NMR Spectra

