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Experimental Section

Materials and methods

Zinc nitrate hexahydrate, IR 780, and 2-methylimidazole were obtained from Sinopharm 

Chemical Reagent Co., Ltd. The sodium phosphate monobasic and sodium phosphate dibasic 

were purchased from Shanghai Yuanye Bio-Technology Co., Ltd. Roswell Park Memorial 

Institute 1640 (RAPI 1640), fetal bovine serum (FBS), penicillin/streptomycin, phosphate buffer 

(PBS), the cell counting kit-8 (CCK-8), the Hocheest 33342, propidium iodide (PI) and calcein 

acetoxymethyl ester (Calcein AM) were purchased from Beyotime Biotechnology Co., Ltd. The 

siRNAs and RNase A were acquired from Sangon Biotech Co., Ltd. (Shanghai, China).

siRNA: 5’-CGACGGAGACAAGCCCAAGdTdT-3’

FAM-labeled-siRNA: 5’-FAM-CGACGGAGACAAGCCCAAGdTdT-3’

Aptamer: 5’-TTGGTGGTGGTGGTTGTGGTGGTGGTGG-3’

Apparatus 

Mass Spectroscopy (MS) measurements were performed on a Quattro Premier XE system 

(Waters) with an electrospray interface. 1H NMR spectra were recorded on Bruker AV400 

spectrometers using solvent as internal standard at room temperature. Transmission electron 

micrographs (TEM) were obtained using the field emission transmission electron microscope 

(Hitachi HT7700, Japan). Powder X-ray diffraction experiments (XRD) were performed on 

PANalytical X’Pert diffractometer with Cu Kα irradiation. Fourier-transform infrared spectra (FT-

IR) were recorded on an FT-IR-8400S spectrometer (Shimadzu, Japan) using the KBr pellet 

technique. Thermogravimetry (TG) was carried out on a Netzsch Thermoanalyzer STA 409 

instrument in an atmospheric environment with a heating rate of 10 ℃ min-1. The X-ray 
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photoelectron spectra (XPS) were taken on an ESCALAB 250Xi XPS (Thermo Fisher Scientific, 

USA) electron spectrometer. The hydrodynamic particle sizes and zeta potential values were 

examined on the Malvern Zetasizer Nano ZS series instrument. Fluorescent spectrum analyses 

were performed on a Luminous spectrofluorometer (Thermo Fisher Scientific, China). The 

quartz cuvette has a thickness of 1 cm, and both excitation and emission slits were set at 5.0 

nm with a 500 V PMT voltage. Under ambient conditions, the confocal fluorescence images 

were acquired with a confocal laser scanning microscopy (Olympus FluoView 1000, Japan). 

Synthesis of the designed IR 780-1

5-aminoisophthalic acid (a) (10 g, 55 mM) was added to 100 mL of anhydrous ethanol and 

sulfoxide chloride thionyl chloride (12 mL, 165 mM, 3 equiv) was dropped at 0 oC. After 

dripping, the mixture was heated and refluxed for 5 h, and the ethanol solution was removed 

by vacuum distillation. The crude product was dissolved in ethyl acetate, washed with saturated 

sodium bicarbonate aqueous solution, dried by adding anhydrous sodium sulfate, and the 

solvent was distilled off under reduced pressure to obtain a solid white product (b). Then, (b) 

(2.0 g, 10.6 mM, 1 equiv) in 170 mL hydrochloric acid solution (6 M) and the sodium sulfite (870 

mg, 12.7 mM, 1.2 equiv) were dissolved in 2 mL water solution at the temperature below 5 oC. 

The potassium iodide (2.6 g, 16 mM, 1.5 equiv) was added to 10 mL of water and dropwise to 

the stirring solution. After the dropwise addition, the resulting mixture was warmed to room 

temperature and stirred for 4 h. After completion of the reaction, the solution was added to a 

separatory funnel. The organic phase obtained by extracting twice with dichloromethane was 

washed twice, dried, and then distilled under reduced pressure to remove the solvent. The 

eluent composed of petroleum ether and ethyl acetate was purified by silica gel flash column 
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chromatography to obtain a pale yellow solid (c). The product (c) (5.0 g, 23 mM, 1 equiv) was 

dissolved in 20 mL piperidine and trimethylsiloxyne (3.9 mL, 27.4 mM, 1.2 equiv) were added. 

Pd(PPH3)4 (658 mg, 0.57 mM, 2.5 mol %) and cuprous iodide (43 mg, 0.23 mM, 1 mol %) were 

added at 0 oC. After stirring for 3 h at room temperature, it was quenched with saturated 

aqueous ammonium chloride solution, and then the mixture was added to a separatory funnel 

extracted twice with dichloromethane. The organic phase was collected and washed with brine, 

dried by adding anhydrous sodium sulfate, and the solvent was distilled off under reduced 

pressure. Using the eluent composed of petroleum ether and dichloromethane, purified by 

silica gel flash column chromatography to obtain a light yellow solid (d). Then (d) (3.0 g, 9.4 

mM, 1 equiv) was dissolved in a mixed solution of ethanol/dichloromethane (1:1 volume ratio), 

Cesium carbonate (3.4 g, 10 mM, 1.1 equiv) was added, the solution was stirred at room 

temperature for 1 h, and the solvent was removed by distillation under reduced pressure. The 

remaining crude product was scatted in a mixed solution of water/dichloromethane (1:1 

volume ratio) and added in a separatory funnel, repeating the same extraction, drying, and 

distillation steps as described above, and purified by silica gel flash column chromatography 

using dichloromethane as the eluent, a light yellow solid (e) was obtained.

The purchased IR 780 dye (1 g, 1.49 mM, 1 equiv), 5-ethynyl terephthalate (e) (1.46 g, 5.96 mM, 

4 equiv), Pd(PPh3)2Cl2 (104 mg, 0.15 mM, 2.5 mmol%), PPh3 (77 mg, 0.3 mM, 5 mmol%) and CuI 

(56 mg, 0.3 mM, 5 mmol%) were mixed in a 100 mL two-neck solvent bottle, connected the 

reaction flask to a double-row tube with a vacuum pump. Turning on the vacuum pump to 

evacuate and pass in high-purity argon, then 5 mL of anhydrous triethylamine and 5 mL of DMF 

solution were added while passing in argon, and the mixture was heated to 80 ℃ for 5 h. After 
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the organic solvent was distilled off under the reduced pressure, dichloromethane/methanol 

(1:1 volume ratio) was used as an eluent and purified by silica gel flash column chromatography 

to obtain a purple final solid product (f, named as IR 780-1).

Synthesis of siRNA@PT-ZIF-8 

siRNA@PT-ZIF-8 was synthesized via a one-pot self-assembly approach. Briefly, a mixture of IR 

780-1 (1.5 mg) and 2-methylimidazole (4.1 mg) in 300 μL methanol was added to the water at 

room temperature. Then, 200 µL siRNA (input concentration 1.0 mg mL-1) were quickly added, 

and the mixture was stirred for one hour, followed by the slow addition of 500 µL zinc nitrate 

solution (2.98 mg) under mechanical agitation. After that, the product was left to stand for 

another 24 h and isolated by centrifugation at 13000 rpm for 30 min. Finally, the powdered 

siRNA@PT-ZIF-8 was obtained by freeze-drying. For in vitro or in vivo study, siRNA@PT-ZIF-8 

was dissolved in 1 × PBS (10 mM, pH = 7.4) at specific concentrations. 

PT-ZIF-8 or siRNA@ZIF-8 was prepared under the same conditions as the above, except that no 

siRNA or PT ligand was added. Besides, washed and centrifuged by mixing 200 µL aliquot of 500 

nM siRNA with the freshly prepared PT-ZIF-8 in methanol (2.0 mg/mL), the resulting solution 

was incubated for 30 min, washed, and centrifuged to obtain siRNA+PT-ZIF-8. 

Preparation of the aptamer modified siRNA@PT-ZIF-8 (Apt/siRNA@PT-ZIF-8) 

To immobilize the aptamer on siRNA@PT-ZIF-8, the nucleolin aptamer aqueous solution (5 μM) 

was quickly added to the siRNA@PT-ZIF-8 aqueous solution (1 mg/mL). After that, the mixed 

solution was heated to 37 ℃ and vibrated for 12 h to obtain Apt/siRNA@PT-ZIF-8.
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siRNA@PT-ZIF-8 mediated siRNA release 

To quantify siRNA release, 1.0 mg/mL siRNA@PT-ZIF-8 was dispersed in 10 mM PBS buffer with 

different pH values (pH = 7.4 and 5.5). At the set time intervals, aliquots from different 

treatments were centrifuged, and 200 μL of the released FAM-siRNA in the suspensions were 

collected by centrifuging at 13000 rpm for 10 min. The amount of siRNA or IR780-1 in the 

supernatant was further measured by fluorescent spectroscopy (siRNA excitation/emission 

wavelength: 488 nm/525 nm; IR780-1 excitation/emission wavelength: 552 nm/625 nm) by a 

standard curve method, while the loading capacity (LC) and loading efficiency (LE) were 

calculated using the following equations. 

Loading capacity = 𝑚𝑙𝑜𝑎𝑑𝑒𝑑/𝑚𝑠𝑖𝑅𝑁𝐴@𝑃𝑇 ‒ 𝑍𝐼𝐹 × 100%

Loading efficiency = 𝑚𝑙𝑜𝑎𝑑𝑒𝑑/𝑚𝑓𝑒𝑒𝑑𝑖𝑛𝑔 × 100%

The measured loading capacity of IR780-1 or siRNA in the siRNA@PT-ZIF-8 increased along with 

the rise of the fed amount of IR780-1 (0.2, 0.5, 1.0, 1.5, 2.0 mg mL-1) or siRNA (~0.2, 0.5, 1.0, 2.0 

mg mL-1). Finally, it reached a maximum loading capacity of 21.0% and 12.5% at an IR780-1 

amount of 1.5 mg/mL and siRNA 1.0 mg/mL, respectively.

1.0 mg/mL siRNA@PT-ZIF-8 in 10 μL PBS solution with different pH values (10 mM, pH 7.4 and 

pH 5.5) was mixed with 100 U/mL of RNase A (10 μL) and incubated for 30 min at 37 ℃ to 

evaluate the protective effect of siRNA@PT-ZIF-8 to siRNA. Then, 2 μL EDTA (100 mM) was 

added to inactivate RNase A and centrifuged at 8000 rpm for 5 min. The collected solids were 

re-suspended in 20 μL of an aqueous solution for following agarose gel electrophoresis. More 

specifically, 10 μL of sample solution was mixed with 6 loading buffer (2 μL) and then  ×  

injected into the pockets. Then electrophoresis was carried out at a constant voltage of 100 V 
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for 60 minutes, followed by staining with GelRed for 20 minutes. Finally, the gel was imaged by 

JS 680-D (Peiqing, Shanghai) under UV irradiation. 

In vitro photothermal performance of the siRNA@PT-ZIF-8

The siRNA@PT-ZIF-8 solutions of different concentration (0, 10, 20, 30, 40 μg/mL) were 

irradiated with an 808 nm laser (2.0 W·cm-2) in 10 mM PBS (pH = 7.4). And the temperature 

changes were recorded by using a digital thermometer. IR thermal images were obtained with 

an IR thermal camera at a certain time interval. To study the thermal stability of siRNA@PT-ZIF-

8, the siRNA@PT-ZIF-8 aqueous suspensions (50 μg/mL) were first exposed to 808 nm laser 

irradiation (2.0 W·cm-2) for 5 min. Then, the solutions were naturally cooled down to room 

temperature. This process was successively repeated five times under the same condition. And 

the photothermal conversion efficiency of the siRNA@PT-ZIF-8 was calculated according to the 

formula as follows:

𝜂 =

𝑚𝐷𝑐𝐷

𝜏𝑠
(𝑇𝑚𝑎𝑥 ‒ 𝑇𝑠𝑢𝑟𝑟) ‒ 𝑄𝑠

Ι(1 ‒ 10 ‒ 𝐴)

Where  means the equilibrium temperature,  is the ambient temperature of the 𝑇𝑚𝑎𝑥 𝑇𝑠𝑢𝑟𝑟

surroundings.  is the sample-system time constant,  and  are the solvent's mass and heat 𝜏𝑠 𝑚𝐷 𝑐𝐷

capacity (4.2 J·g-1). The  expresses the heat associated with light absorption by the solvent. 𝑄𝑠

The  represents incident laser power (2.0 W·cm-2),  is the absorbance of samples at 808 nm. Ι Α

Cell culture and cellular uptake

The 4T1 cells were cultured in RPMI 1640 medium containing 10% FBS and 0.1% penicillin-

streptomycin at 37 ℃ in a humidified 5% CO2 atmosphere. The cell counter calculated the cell 

number. For cellular uptake studies, the 4T1 cells were seeded in 96 wells plate at a density of 
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5.0 105 cells. After that, the free IR 780-1, as-prepared siRNA@PT-ZIF-8 and Apt/siRNA@PT-×

ZIF-8 (50 μg mL-1, with the same concentration of ~6.25 µg mL-1 of siRNA and ~ 10 µg mL-1 

IR780-1) were added to the wells at 37 ℃ with incubation for 12 h, respectively. After rinsing 

with PBS three times, the fluorescence was observed by CLSM from 505 to 545 nm with 

excitation at 488 nm for FAM and 600 to 650 nm with excitation at 552 nm for IR 780-1. 

Meanwhile, the cellular uptake of different groups was also analyzed by flow cytometry. 

Evaluation of cytotoxicity

The cytotoxicity for 4T1 cells with different treatments was determined by CCK-8 analysis. 

Briefly, 4T1 cells (1.0 105) were seeded in a 96-well plate for 24 h. After cell attachment, PT-×

ZIF-8, siRNA@PT-ZIF-8, or Apt/siRNA@PT-ZIF-8 with different concentrations (0, 10, 20, 30, 40, 

and 50 µg mL-1) was added to the medium, and the cells were incubated in 5% CO2 at 37 ℃ for 

24 h. Then the medium was discarded, and the prepared culture medium containing 10% CCK-8 

solution was added into each well at 37 ℃, including a negative control of the culture medium 

alone. After 12 hours of incubation, the absorbance was measured at 450 nm to calculate the 

cell viability, which the control group normalized without any treatment. Similarly, PBS + NIR, 

PT-ZIF-8 + NIR, siRNA@PT-ZIF-8 + NIR, and Apt/siRNA@PT-ZIF-8 + NIR groups were treated with 

laser irradiation (2.0 W cm-2, 808 nm) for 5 mins after 10 hours of incubation. The absorbance 

was measured at 450 nm for another 2 hours.

The cytotoxicity for human cervical carcinoma Hela cell, mouse pulmonary fibroma L929 and 

human alveolar epithelium cells A549 treated with Apt/siRNA@PT-ZIF-8 NPs were also 

determined by CCK-8 analysis.

Live/dead cell staining assay 
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4T1 cells were seeded into confocal plates at the density of 1.0 105 cells per well and  ×

incubated at 37 ℃ for 24 h. Then, the culture medium was replaced with the fresh RPMI 1640 

with specific concentrations of different nanocomposites and incubated continuously for about 

12 h in dark conditions. After 808 nm laser (2.0 W·cm-2) for 5 min irradiation, the cells were 

further cultured for 4 hours. Subsequently, the treated plates were washed with PBS, and the 

mixture of calcein-AM (1 μM) and PI (3 μM) was used to stain the live/dead cells. After 20 min 

of incubation, the residual dyes were removed by PBS three times. Next, the resulting cells 

were imaged by CLSM, where the green fluorescence was collected at 488 nm, and the red 

fluorescence was collected at 543 nm. Furthermore, the groups pre-incubated with Annexin V-

FITC and PI dyes were analyzed by flow cytometry.

Western blot assay

4T1 cells were seeded into a 6-well plate (5 × 106 per well) and incubated at 37 °C overnight. 

Then different formulas were added to the wells for 12 hours: (1) Apt/siRNA@PT-ZIF-8 + NIR, 

(2) PBS, (3) PBS + NIR, (4) siRNA, (5) PT-ZIF-8, and (6) PT-ZIF-8 + NIR. The group with laser 

irradiation was irradiated (808 nm, 2 W cm-2) for 5 min. Then, cells were cultivated for another 

2 h and extracted for western blotting. Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) 

was used as an internal reference protein. Heat shock protein (HSP) was a type of heat 

emergency protein that exists widely in organisms (such as HSP60, HSP70, HSP90, etc.). When it 

was stimulated by high temperature, hypoxia, etc., the expression level would increase rapidly.

Tumor models
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All animal experiments were approved and guided by the School of Pharmaceutical Science, 

Nanjing Tech University, in compliance with the relevant laws and institutional guidelines. The 

female Balb/c mice and nude mice (16-18 g, 4-5weeks) were purchased from the Comparative 

Medicine Centre of Yangzhou University. The 4T1 cells were inoculated on the right rear leg of 

the Balb/c mice with 50 μL of PBS containing 4.0 106 4T1 cells. When the tumor volumes  ×

approached 100-150 mm3, the mice were used to carry out the following in vivo experiments. 

Apt/siRNA@PT-ZIF-8 mediated fluorescence/photoacoustic/photothermal imaging

For in vivo fluorescence imaging (FI), the Balb/c mice bearing tumor (4T1 cells) were injected by 

tail vein with PBS (200 μL) or 200 μL Apt/siRNA@PT-ZIF-8 (400 μg/mL, IR780-1 ~0.8 mg Kg-1). At 

0, 2, 4, 8, 12, and 24 h post-injection, mice were anesthetized for imaging by the fluorescence-

imaging instrument. 

The 4T1-bearing nude mice models were intravenously injected with 200 μL Apt/siRNA@PT-ZIF-

8 (400 μg/mL, IR780-1 ~0.8 mg Kg-1) to measure the in vivo photoacoustic (PA) signals at the 

tumor site. Then the mice were put into the LOIS-3D machine to collect the PA signals of the 

tumor at different times (0, 2, 4, 8, 12, and 24 h) under an 808 nm laser.

The in vivo photothermal conversion properties were investigated using a FLIR thermal camera. 

Significantly, the mice with tumors were injected with PBS (200 μL) or 200 μL Apt/siRNA@PT-

ZIF-8 (400 μg/mL, IR780-1 ~0.8 mg Kg-1). After 8 h, the tumor region was irradiated with an 808 

nm laser, and a FLIR thermal camera recorded the variation of temperature and images with 

exposure times ranging from 0 to 10 min. 

In vivo antitumor efficiency 
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The 4T1 tumor-bearing mice with a tumor size of 125 mm3 were randomly divided into six 

groups (n = 4 for each group) for various treatments: (1) PBS, (2) PBS + NIR, (3) siRNA@PT-ZIF-8, 

(4) siRNA@PT-ZIF-8 + NIR, (5) Apt/siRNA@PT-ZIF-8, (6) Apt/siRNA@PT-ZIF-8 + NIR. The mice of 

the control group were injected with PBS (200 μL), and other groups were injected with 200 μL 

nanocomposites dispersion solution (400 μg/mL, IR780-1 ~0.8 mg kg-1, siRNA ~0.5 mg kg-1). 

After 8 h of injection, the whole tumor region was irradiated with an 808 nm laser (2.0 W·cm-2, 

5 min). Mice were treated every 2 days and repeated 3 times. The average temperature in the 

tumor region was monitored using an infrared thermal imaging system. Bodyweight changes 

and tumor volumes of each group were observed and recorded every two days by a digital scale 

and caliper, respectively. The tumor volume was obtained as the following formula: tumor 

volume = a × b2/2, where a is tumor length and b is tumor width. For the H&E analysis, these 

organs were embedded into the paraffin, stained by hematoxylin solution and eosin solution. 

The sections were observed by CLSM. 

Long-Term Toxicity Assessment in vivo

Healthy Balb/c mice were intravenously administrated with PBS and APT/siRNA@PT-ZIF-8 

(siRNA@PT-ZIF-8: 4 mg kg−1) to evaluate the long-term toxicity of the obtained formulation. 

Then 1 mL of blood from each mouse was collected for the blood biochemistry analysis at 0, 3, 

7, and 15 days post-injection. Liver function was tested by measuring serum levels of ALP 

(alkaline phosphatase), ALB (albumin), and ALT (glutamate transaminase). Kidney function was 

evaluated by determining BUN (blood urea nitrogen) and CREA (creatinine). Heart function 

markers were measured: creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate 

dehydrogenase 1 (LDH1).
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 Statistical Analysis: Quantitative data were exhibited as means ± standard deviation and 

performed by ANOVA. One-way ANOVA analyzed differences among multiple groups. Student- 

Newman-Keuls test was utilized as a post hoc test. P < 0.05 was identified to be statistically 

significant.

The synthetic route for IR 780-1

To functionalize the NIR organic dye IR 780 with the coordination sites, 5-ethynyl terephthalate 

was designed and synthesized with 5-Aminoisophthalic acid as raw material. Furthermore, it 

was conjugated with IR 780 by a one-step Pd-catalyzed reaction to obtain IR 780-1.

Scheme S1. The synthetic route for IR 780-1.

Schematic illustration of the control nano vehicles synthesis
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To investigate the role of photothermal ligand of IR 780-1 and siRNA and the encapsulation 

effect, the corresponding nano vehicles were synthesized. Without the addition of siRNA or IR 

780-1, PT-ZIF-8 or siRNA@ZIF-8 was obtained (Figure S1 A, B). Besides, by physical mixing siRNA 

with the prepared PT-ZIF-8, siRNA + PT-ZIF-8 was obtained. 

Scheme S2. The schematic synthesis route for PT-ZIF-8 (A), siRNA@ZIF-8 (B), and siRNA + PT-

ZIF-8 (C).
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1HNMR of IR780-1

1H NMR (400 MHz, CDCl3) δ 8.73 – 8.72 (m, 1H), 8.64 (dt, J = 10.4, 1.6 Hz, 1H), 8.30 (dd, J = 39.2, 

1.6 Hz, 1H), 8.17 (dd, J = 13.2, 1.6 Hz, 2H), 7.20 – 7.13 (m, 4H), 6.90 (td, J = 7.2, 0.8 Hz, 2H), 6.72 

– 6.64 (m, 2H), 5.46 (d, J = 13.2 Hz, 2H), 4.47 – 4.38 (m, 4H), 3.64 (t, J = 7.2 Hz, 4H), 2.65 – 2.56 

(m, 4H), 1.91 – 1.81 (m, 2H), 1.76 (q, J = 7.4 Hz, 4H), 1.67 (s, 12H), 1.46 – 1.38 (m, 6H), 1.00 (t, J 

= 7.2 Hz, 6H).

Figure S1. The 1H NMR of IR 780-1.
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13CNMR of IR 780-1

13C NMR (100 MHz, CDCl3) δ 186.48, 165.75, 165.64, 165.17, 162.55, 144.51, 139.80, 136.64, 

134.16, 134.04, 133.03, 131.58, 131.43, 131.26, 127.70, 126.59, 121.87, 120.50, 106.83, 92.65, 

61.78, 61.67, 61.56, 46.66, 44.24, 28.90, 25.95, 22.70, 19.87, 14.47, 14.42, 14.34, 11.86.

Figure S2. The 13C NMR of IR 780-1.
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Mass spectrum of IR 780-1

MS: calculated for 2 [M+H]: 750.44; obsvd. ESI-MS: m/z 750.58
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Figure S3. Mass spectrum of IR 780-1.
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Elemental mapping analyses of PT-ZIF-8

The control of PT-ZIF-8 was synthesized without the encapsulation of siRNA. As shown in Figure 

S4, the TEM of PT-ZIF-8 had a similar shape as siRNA@PT-ZIF-8 with prominent thin film grown 

on the surface. However, the corresponding elemental mapping displayed a uniform 

distribution of N, O, C, Zn, and I except P, which was in accordance with the experimental fact. 

Figure S4. Elemental mapping images of PT-ZIF-8. Scale bar: 100 nm.
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XPS analyses of PT-ZIF-8

The XPS wide scan of ZIF-8 and siRNA@PT-ZIF-8 and core-level of C1s, N1s, O1s, and Zn2p were 

studied (Figure S5). Compared with ZIF-8, the Zn2p possessed a positive shift, indicating the 

Zn2+ may coordinate with the PT ligand besides 2-MIM. 

Figure S5. XPS analyses of the ZIF-8 and siRNA@PT-ZIF-8.
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DLS analyses of PT-ZIF-8 and siRNA@PT-ZIF-8

As shown in Figure S6, with the siRNA encapsulation, the hydrodynamic size of siRNA@PT-ZIF-8 

increased compared with that of PT-ZIF-8.

Figure S6. DLS analyses of the PT-ZIF-8 (A) and siRNA@PT-ZIF-8 (B).
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CLSM photographs of siRNA + PT-ZIF-8

By physical mixing siRNA with the prepared PT-ZIF-8, siRNA+PT-ZIF-8 was obtained. The CLSM 

showed that nearly no green fluorescence from FAM-siRNA was observed in siRNA + PT-ZIF-8, 

implying the lower loading capacity of siRNA by a simple physical mixing method. 

Figure S7. Layer-by-layer CLSM photographs of siRNA + PT-ZIF-8 along with the z-axis position 

with gradual scanning time.
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DLS analyses of siRNA@PT-ZIF-8 in acid solution

As shown in Figure S8, with the incubation time increased, the DLS of siRNA@PT-ZIF-8 

decreased, which may be due to the acid sensitivity of ZIF-8 skeleton induced decomposition of 

the nanocomposites. 

Figure S8. DLS analysis of the siRNA@PT-ZIF-8 treated with the PBS (pH=5.5) for 15 min (A) and 

30 min (B).
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Stability of Apt/siRNA@PT-ZIF-8

Figure S9. UV-vis absorbance spectra (A, B) in PBS (A) and DMEM containing 10% FBS (B) with 

different concentrations of Apt/siRNA@PT-ZIF-8 (0, 40, 80, 120, 160, 200 µg mL-1) (Inset: 200 µg 

mL-1 of the corresponding solution before and after incubation of 12 h).
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Figure S10. Hydrodynamic size of Apt/siRNA@PT-ZIF-8 in PBS (black) and DMEM containing 

10% FBS (red)

Figure S11. (A) The fluorescence spectrum of the Apt/siRNA@PT-ZIF-8 supernatant before and 

after the NIR laser irradiation for 5 mins. (B) The fluorescence spectrum of Apt/siRNA@PT-

ZIF-8 before and after a 12 h incubation in PBS.
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The degradation behavior of the Apt/siRNA@PT-ZIF-8

Figure S12. TEM image of Apt/siRNA@PT-ZIF-8 NPs incubated with PBS (pH 7.4) under different 

periods of time (a, b, c, d: 1, 3, 5, 7 days) (A) and soultions of different pH value for 5 min (a, b, 

c, d: pH 6.5, 6.0, 5.5, 5.0) (B).
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Fluorescence spectra of siRNA@PT-ZIF-8

As shown in Figure S9, the fluorescence intensity of siRNA@PT-ZIF-8 kept no change in PBS (pH 

7.4) for 180 min. However, a noticeable fluorescence increment of its supernatant was 

observed after it was incubated in pH 5.5 PBS for 180 min., confirming the acid triggered 

release of the loaded siRNA from siRNA@PT-ZIF-8. 

Figure S13. The corresponding fluorescence spectra of the FAM-siRNA released from 50 μg mL-1 

siRNA@PT-ZIF-8 exposure to different pH stimuli (pH 7.4 for 0 min (red line) and 180 min (black 

line), and pH 5.5 for 180 min (blue line)).
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Agarose gel analysis

Figure S14. Agarose gel shifts of siRNA (lane 1), siRNA + RNase A (lane 2), siRNA@PT-ZIF-8 (lane 

3), siRNA@ZIF-8 (lane 4), siRNA@PT-ZIF-8 at pH 7.4 (lane 5) and at pH 5.5 (lane 6) when 

exposed to purified RNase A.
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The photothermal effect of siRNA@PT-ZIF-8

Figure S15. Heating and cooling curves of 50 μg mL-1 siRNA@PT-ZIF-8 upon being irradiated for 

10 min (808 nm, 2 Wcm-2) with the laser turned on and off (black). Linear time data from the 

cooling period versus the negative natural logarithm of driving force temperature (blue).
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The stability of the Apt/siRNA@PT-ZIF-8

Figure S16. Fluorescence spectra of Apt/siRNA@PT-ZIF-8 supernatant before and after (A) the 

NIR laser irradiation (2 W cm-2, 5 min), (B) incubated in PBS (pH = 7.4) for 12 h. 
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Fluorescent study of siRNA@PT-ZIF-8 in 4T1 cells

Figure S17. Fluorescent visualization of siRNA and IR780-1 localization in 4T1 cells 12 h after 

incubation with 50 μg mL-1 Apt/FAM-siRNA@PT-ZIF-8. Scale bar: 50 µm.
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The quantitative analyses of western blots

Figure S18. The quantitative analyses of HSP70.
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The cytotoxicity of Apt/siRNA@PT-ZIF-8

Figure S19. Cell Viability of 4T1/Hela/L929/A549 cells treated with Apt/siRNA@PT-ZIF-8 for 12 
hours.

31



Fluorescence images of main organs and tumor

Figure S20. Fluorescence intensity and images of main organs and tumor 24 h after injection 

from the sacrificed mice.
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Photographs of the harvested tumors

Figure S21. Photographs of the tumors in the six groups after 12 days of treatment and the 

blank space represent the tumor-free status.
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Half-time period of Apt/siRNA@PTZIF-8 NPs in blood 

Figure S22. The concentration-time curve of Apt/siRNA@PT-ZIF-8 in mice after i.v. injection.
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Blood biochemistry assays

Figure S23. (A-C) Blood biochemistry assays of liver function markers: alanine aminotransferase 

(ALT), albumin (ALB), and alkaline phosphatase (ALP). (D, E) Blood biochemistry assays of kidney 

function markers: urea nitrogen (BUN) and creatinine (CREA). (F) Blood biochemistry assays of 

heart function markers: creatine kinase (CK), creatine kinase isoenzyme (CK-MB), and lactate 

dehydrogenase 1 (LDH1).
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Histological analysis of major organs

Figure S24. Histological analysis of major organs (hearts, livers, spleens, lungs, and kidneys) of 

tumor-bearing mice from different treated groups (PBS, siRNA@PT-ZIF-8, siRNA@PT-ZIF-8 + 

NIR, Apt/siRNA@PT-ZIF-8 + NIR, PBS + NIR, and Apt/siRNA@PT-ZIF-8). H&E staining images of 

major organs. Scale bar: 100 µm.
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