Supporting Information

Hydroxy-Directed Fluorination of Remote Unactivated C(sp³)-H Bonds: A New Age of Diastereoselective Radical Fluorination

Stefan Andrew Harry, Michael Richard Xiang, Eric Holt, Andrea Zhu, Fereshte Ghorbani, Dhaval Patel, and Thomas Lectka*

Department of Chemistry, Johns Hopkins University, 3400 N. Charles St., Baltimore, MD, 21218, United States

Contents:

General Information, S1 General Fluorination Procedures, S2 Procedure for the NMR Experiment, S2 Starting Material Syntheses and Characterization Data, S2-S24 NMR Spectral Data, S25-S98 Computational Data, S99-S115 Mass Spectral Data, S116-S139 References, S140

General Information

Unless otherwise stated, all reactions were carried out under strictly anhydrous conditions and N₂ atmosphere. All solvents were dried and distilled by standard methods. All ¹H spectra were acquired on a 400 MHz NMR spectrometer in CD₃CN or CDCl₃, ¹⁹F spectra were acquired on a 300 MHz NMR spectrometer in CDCl₃, and ¹³C NMR spectra were acquired on a 400 MHz NMR spectrometer in CDCl₃. The ¹H and ¹³C NMR chemical shifts are given in parts per million (δ) with respect to an internal tetramethylsilane (TMS, δ = 0.00 ppm) standard. NMR data are reported in the following format: chemical shift (integration, multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet), coupling constants (Hz)). Spectral data were processed with Bruker software. Photochemical reactions were run in front of a 72-LED work light (Designers Edge L1923). HPLC purification (if necessary) was conducted on a Teledyne Isco CombiFlash EZ Prep system using a Dynamax-60A SiO₂ column and HPLC grade EtOAc and hexanes. The Gaussian '09 package was used for all calculations.¹

General Fluorination Procedure

Selectfluor (177 mg, 0.50 mmol), benzil (5.0 mg, 0.025 mmol), NaHCO₃ (21 mg, 0.25 mmol), and the substrate (0.25 mmol) were added to an oven-dried $\mu\omega$ vial equipped with a stir bar; the vial was then sealed with a cap with a septum using a crimper and evacuated/refilled with N₂ multiple times. Anhydrous CH₃CN (4 mL) was added, and the reaction mixture was irradiated with a cool white LED work light while stirring. After 14 h, a 0.3 mL aliquot was taken for ¹⁹F NMR yield determination, and the rest of the reaction mixture was transferred to a separatory funnel, diluted with H₂O, and extracted into CH₂Cl₂. The combined organic layers were washed with H₂O and brine, then dried with MgSO₄, filtered through Celite, and concentrated. The crude reaction mixture was purified via gradient column chromatography on silica gel eluting with EtOAc and hexanes.

Procedure for the NMR Experiment

Selectfluor (20 mg, 0.056 mmol, 1.0 equiv.) was dissolved in 0.6 mL CD3CN in a small glass vial. The hydrogen bond acceptor (1.0 or 5.0 equiv.) was added to the vial and the contents were mixed before being transferred into an NMR tube. The ¹H NMR spectrum was obtained.

Starting Material Syntheses and Characterization

(1S,3S)- and (1R,3R)-1-(4-chlorophenyl)-3-methylcyclohexan-1-ol²

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added FeCl₃ (4.37 g, 27.0 mmol) and a suspension of 3-methylcyclohexanone (1.00 g, 8.93 mmol) in THF (30.0 mL). The reaction mixture was cooled to -78 °C and 1M 4-chlorophenylmagnesium bromide in Et₂O (27.0 mL, 27.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (1S,3S)- and (1R,3R)-1-(4-chlorophenyl)-3-methylcyclohexan-1-ol (1.70 g, 85%).

White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.44-7.40 (m, 2H), 7.31-7.27 (m, 2H), 1.95-1.82 (m, 1H), 1.80-1.65 (m, 7H), 1.43-1.33 (m, 1H), 0.98-0.91 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃):

 δ 148.3, 132.4, 128.3, 126.1, 73.7, 47.7, 38.5, 34.30, 28.3, 22.6, 22.0. FTMS (ESI) m/z C₁₃H₁₇OCI: calc 224.0968, observed 224.0964.

(2R,5S)-4,4,8-trimethyltricyclo[6.3.1.0^{2,5}]dodecan-1-ol

Obtained from Prof. Alex Nickon's (JHU) chemical reserves.

Spectral data matches what is reported in the literature.³

(3aR,4R,8S,8aR,9R)-2,2,4,8,9-pentamethyldecahydro-4,8-methanoazulen-9-ol^{4, 5}

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added apollanol (2.00 g, 9.01 mmol), DCM (25.0 mL), and PCC (2.90 g, 13.5 mmol). The reaction mixture was stirred at RT for 14 h. The reaction mixture was quenched with H_2O and extracted into CH_2Cl_2 repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated.

To a flame-dried three-neck round-bottom equipped with a stir bar under N₂ were added crude mixture from the previous reaction (1.98 g, 9.01 mmol) and THF (30.0 mL). The reaction mixture was cooled to 0 °C and 1M methylmagnesium bromide in Et₂O (18.0 mL, 18.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (3a*R*,4*R*,8*S*,8a*R*,9*R*)-2,2,4,8,9-pentamethyldecahydro-4,8-methanoazulen-9-ol (1.66 g, 78% over two steps).

White solid. ¹H NMR (400 MHz, CDCl₃): δ 2.30-2.26 (m, 2H), 1.78-1.44 (m, 6H), 1.40-1.32 (m, 1H), 1.29 -1.24 (m, 2H), 1.21-1.15 (m, 2H), 1.03 (d, *J* = 1.9 Hz, 6H), 0.91 (s, 3H), 0.88 (s, 6H).

¹³C{¹H} NMR (100 MHz, CDCl₃): δ 86.1, 50.8, 46.2, 43.9, 40.6, 38.9, 29.4, 26.9, 18.39, 18.35, 16.9. FTMS (ESI) m/z C₁₆H₂₈O: calc 236.2140, observed 219.2112 (corresponds to loss of -OH).

(3aR,4S,8R,8aS,9r)-2,2,4,8-tetramethyldecahydro-4,8-methanoazulen-9-ol

Obtained from Prof. Alex Nickon's chemical reserves.

White solid. ¹H NMR (400 MHz, CDCl₃): δ 3.26 (d, J = 4.8 Hz, 1H), 2.21-2.14 (m, 2H), 1.56-1.34 (m, 6H), 1.22 (d, J = 5.3 Hz, 1H), 1.07-0.98 (m, 7H), 0.89 (s, 3H), 0.85 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 79.2, 46.7, 43.9, 41.7, 39.6, 31.8, 29.0, 25.5, 21.0, 18.8. FTMS (ESI) m/z C₁₅H₂₆O: calc 222.1984, observed 222.1985.

(5S,8R,9S,10S,13S,14S,17S)-17-hydroxy-10,13,17-trimethylhexadecahydro-3*H*-cyclopenta[*a*]phenanthren-3-one^{5, 6, 7}

A balloon filled with hydrogen was placed over a round-bottom flask containing a solution of DHEA (5.00 g, 17.4 mmol), and 10% Pd/C (184 mg), and EtOAc (100 mL). The reaction was then stirred at RT for 14 h. The catalyst was removed by filtration through Celite, and the filtrate was concentrated. The crude residue was subjected to the next reaction without purification.

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added crude mixture from the previous reaction (5.03 g, 17.4 mmol) and THF (60.0 mL). The reaction mixture was cooled to -78 °C and 1M methylmagnesium bromide in Et₂O (52.0 mL, 52.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (3S, 8R, 9S, 10S, 13S, 14S, 17S)-10,13,17-trimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-3,17-diol (3.72 g, 70% over two steps).

To a flame-dried three-neck round-bottom equipped with a stir bar under N₂ were added (3S, 8R, 9S, 10S, 13S, 14S, 17S)-10,13,17-trimethylhexadecahydro-1*H*-cyclopenta[*a*]phenanthrene-3,17-diol (3.72 g, 12.2 mmol), DCM (50.0 mL), and PCC (3.92 g, 18.2 mmol). The reaction mixture was stirred at RT for 14 h. The reaction mixture was quenched with H₂O and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (8*R*,9*S*,10*S*,13*S*,14*S*,17*S*)-17-hydroxy-10,13,17-trimethylhexadecahydro-3*H* cyclopenta[*a*]phenanthren-3-one (3.14 g, 85%).

White solid. ¹H NMR (400 MHz, CDCl₃): δ 2.44-2.24 (m, 3H), 2.11-2.00 (m, 2H), 1.85-1.70 (m, 3H), 1.65-1.41 (m, 6H), 1.38-1.15 (m, 10H), 1.03 (s, 3H), 0.94-0.84 (m, 4H), 0.75-0.69 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 212.1, 81.7, 53.9, 50.6, 46.9, 45.6, 44.8, 39.0, 38.7, 38.2, 36.4, 35.9, 31.7, 31.5, 29.0, 25.9, 23.4, 21.2, 14.1, 11.6. FTMS (ESI) m/z C₂₀H₃₃O₂ (M+H⁺): calc 305.2472, observed 305.2476.

(8R,9S,10R,13S,14S,17R)-17-acetyl-17-hydroxy-10,13-dimethyl-1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one

Obtained from Sigma-Aldrich.

Spectral	data	matches	what	is	reported	in	literature.8
----------	------	---------	------	----	----------	----	--------------

(1R,2S,5R)-2-isopropyl-5-methylcyclohexan-1-ol

Obtained from Sigma-Aldrich.

Spectral data matches what is reported in literature.9

(1S,2S,5R)-2-isopropyl-1,5-dimethylcyclohexan-1-ol⁶

To a flame-dried three-neck round-bottom equipped with a stir bar under N₂ were added menthone (2.00 g, 13.0 mmol) and THF (30.0 mL). The reaction mixture was cooled to -78 °C and 1M methylmagnesium bromide in Et₂O (26.0 mL, 26.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (1*S*,2*S*,5*R*)-2-isopropyl-1,5-dimethylcyclohexan-1-ol (1.61 g, 73%).

Spectral data matches what is reported in literature.¹⁰

(1*R*,3a*R*,5*S*,6*R*,7a*S*)-6-acetyl-7a-hydroxy-1-isopropyl-3a-methyloctahydro-1*H*-inden-5-yl acetate^{11, 12}

To a flame-dried three-neck round-bottom flask equipped with a stir bar were added caratol (3.00 g, 13.5 mmol) and DCM (25.0 mL). The solution was then cooled to -78 °C, purged with oxygen for 5 minutes, and then a stream of ozone gas was bubbled through the solution for 10 minutes (excess ozone was quenched by bubbling through a saturated aqueous NaSO₃). Subsequently, the solution was purged with oxygen for 5 minutes, warmed to RT under N₂, and concentrated. Excess dimethyl sulfide (3.0 mL) was added to the flask and stirred for 14 h. The crude mixture was concentrated and purified via column chromatography on silica gel eluting with EtOAc and hexanes to afford 1-((3R,3aS,5R,6S,7aR)-3a,6-dihydroxy-3-isopropyl-7a-methyloctahydro-1H-inden-5-yl)ethan-1-one (2.50 g, 73%).

To a flame-dried three-neck round-bottom flask equipped with a stir bar under N₂ were added 1-((3R,3aS,5R,6S,7aR)-3a,6-dihydroxy-3-isopropyl-7a-methyloctahydro-1H-inden-5-yl)ethan-1one (2.50 g, 9.84 mmol), acetic anhydride (10.0 mL), and pyridine (10.0 mL). The reaction mixture was stirred for 21 h and then diluted with CH₂Cl₂ (20 mL). The organic layer was washed with 1M HCl, saturated aq. NaHCO₃, and H₂O. The organic layer was dried over MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography on silica gel eluting with EtOAc and hexanes to provide (1R,3aR,5S,6R,7aS)-6acetyl-7a-hydroxy-1-isopropyl-3a-methyloctahydro-1H-inden-5-yl acetate (2.68 g, 92%) as a white solid. White solid. ¹H NMR (400 MHz, CDCl₃): δ 5.17-5.11 (m, 1H), 2.89-2.82 (m, 1H), 2.20-2.15 (m, 4H), 2.05-1.86 (m, 5H), 1.81-1.72 (m, 2H), 1.67-1.44 (m, 5H), 1.43-1.34 (m, 1H), 1.10-1.07 (m, 6H), 0.96 (d, J = 6.6 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 208.4, 170.1, 81.8, 70.6, 53.0, 49.2, 47.8, 40.5, 36.9, 33.7, 29.8, 29.1, 25.7, 23.2, 22.7, 21.2, 19.7. FTMS (ESI) m/z C₁₇H₂₈O₄: calc 296.1988, observed 296.1985.

(1R, 3aR, 5S, 6R, 7aS)-6-acetyl-7a-hydroxy-1-isopropyl-3a-methyloctahydro-1H-inden-5-yl 4-methylbenzenesulfonate^{12, 13}

To a flame-dried three-neck round-bottom flask equipped with a stir bar were added caratol (3.00 g, 13.5 mmol) and DCM (25.0 mL). The solution was then cooled to -78 °C, purged with oxygen for 5 minutes, and then a stream of ozone gas was bubbled through the solution for 10 minutes (excess ozone was quenched by bubbling through a saturated aqueous NaSO₃). Subsequently, the solution was purged with oxygen for 5 minutes, warmed to RT under N₂, and concentrated. Excess dimethyl sulfide (3.0 mL) was added to the flask and stirred for 14 h. The crude mixture was concentrated and purified via column chromatography on silica gel eluting with EtOAc and hexanes to afford 1-((3R,3aS,5R,6S,7aR)-3a,6-dihydroxy-3-isopropyl-7a-methyloctahydro-1H-inden-5-yl)ethan-1-one (2.50 g, 73%).

To a flame-dried three-neck round-bottom flask equipped with a stir bar under N₂ were added 1-((3R, 3aS, 5R, 6S, 7aR)-3a, 6-dihydroxy-3-isopropyl-7a-methyloctahydro-1H-inden-5-yl)ethan-1one (2.50 g, 9.84 mmol), tosyl chloride (2.10 g, 11.0 mmol), and pyridine (10.0 mL). The reaction mixture was stirred for 21 h at 40 °C and then diluted with CH₂Cl₂ (20.0 mL). The organic layer was washed with 1M HCl, saturated aq. NaHCO₃, and H₂O. The organic layer was dried over MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography on silica gel eluting with EtOAc and hexanes to provide (1R, 3aR, 5S, 6R, 7aS)-6-acetyl-7a-hydroxy-1-isopropyl-3a-methyloctahydro-1H-inden-5-yl methylbenzenesulfonate (3.73 g, 93%) as a white solid.

White solid. ¹H NMR (400 MHz, CDCl₃): δ 7.69 (d, J = 8.3 Hz, 2H), 7.30 (d, J = 8.0 Hz, 2H), 4.82-4.75 (m, 1H), 2.88 (ddt, J = 20.1, 13.6, 6.8 Hz, 1H), 2.41 (s, 3H), 2.07-2.02 (m, 1H), 2.00 (s, 3H), 1.93-1.80 (m, 4H), 1.73-1.41 (m, 6H), 1.36-1.30 (m, 2H), 1.00-0.98 (m, 6H), 0.90 (m, 3H). ¹³C{1H} NMR (100 MHz, CDCl3): δ 207.3, 144.8, 133.8, 129.7, 127.8, 81.1, 79.3, 53.5, 52.6, 49.1, 47.9, 41.5, 36.7, 33.6, 29.8, 29.6, 25.6, 23.0, 22.5, 21.7, 19.4. FTMS (ESI) m/z C₂₁H₃₂O₅S (M+H⁺): calc 409.2040, observed 409.2046.

To a flame-dried three-neck round-bottom equipped with a stir bar under N₂ were added (3aR,5aS,9aS,9bR)-3a,6,6,9a-tetramethyldecahydronaphtho[2,1-*b*]furan-2(1*H*)-one (3.00 g, 12.0 mmol) and THF (30.0 mL). The reaction mixture was cooled to -78 °C and 1M LAH in THF (24.0 mL, 24.0 mmol) was added dropwise. The reaction mixture was slowly warmed to RT over 3 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (1*R*,2*R*,4a*S*,8a*S*)-1-(2-hydroxyethyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (2.80 g, 92%).

To a flame-dried three-neck round-bottom flask equipped with a stir bar under N2 were added (1R,2R,4aS,8aS)-1-(2-hydroxyethyl)-2,5,5,8a-tetramethyldecahydronaphthalen-2-ol (2.80 g, 11.0 mmol), acetic anhydride (10.0 mL), and pyridine (10.0 mL). The reaction mixture was stirred for 14 h and then diluted with CH₂Cl₂ (20.0 mL). The organic layer was washed with 1M HCl, saturated aq. NaHCO₃, and H₂O. The organic layer was dried over MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography on silica gel eluting with EtOAc and hexanes to provide 2-((1*R*,2*R*,4a*S*,8a*S*)-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethyl acetate (3.10 g, 95%).

White solid. ¹H NMR (400 MHz, CDCl₃) δ 4.16-4.05 (m, 2H), 2.04 (s, 3H), 1.88 (dt, J = 12.2, 3.1 Hz, 1H), 1.78-1.52 (m, 6H), 1.46-1.34 (m, 3H), 1.31-1.20 (m, 1H), 1.17-1.07 (m, 5H), 0.93-0.86 (m, 5H), 0.78 (s, 6H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 171.2, 73.6, 66.7, 58.1, 56.1, 44.4, 42.0, 39.7, 38.8, 33.5, 33.3, 24.6, 24.0, 21.5, 21.2, 20.5, 18.5, 15.4. FTMS (ESI) m/z C₁₈H₃₂O₃: calc 296.2351, observed 279.2319 (corresponds to loss of -OH).

2-((1R,2S)-2-hydroxy-2,6,6-trimethylcyclohexyl)ethyl acetate^{13, 14}

To a flame-dried three-neck round-bottom equipped with a stir bar under N₂ were added (3aR, 7aS)-4,4,7a-trimethylhexahydrobenzofuran-2(3H)-one (2.50 g, 13.7 mmol) and THF (30.0 mL). The reaction mixture was cooled to -78 °C and 1M LAH in THF (27.5 mL, 27.5 mmol) was added

dropwise. The reaction mixture was slowly warmed to RT over 3 h. The reaction mixture was quenched with 1M HCl and extracted into CH_2Cl_2 repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (1S,2R)-2-(2-hydroxyethyl)-1,3,3-trimethylcyclohexan-1-ol (2.48 g, 97%).

To a flame-dried three-neck round-bottom flask equipped with a stir bar under N₂ were added (1S,2R)-2-(2-hydroxyethyl)-1,3,3-trimethylcyclohexan-1-ol (2.48 g, 13.3 mmol), acetic anhydride (10.0 mL), and pyridine (10.0 mL). The reaction mixture was stirred for 14 h and then diluted with CH₂Cl₂ (20 mL). The organic layer was washed with 1M HCl, saturated aq. NaHCO₃, and H₂O. The organic layer was dried over MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography on silica gel eluting with EtOAc and hexanes to provide 2-((1*R*,2*S*)-2-hydroxy-2,6,6-trimethylcyclohexyl)ethyl acetate (2.74 g, 90%).

Clear oil. ¹H NMR (400 MHz, CDCl₃): δ 4.07 (dm, J = 17.9, 2H), 2.05 (s, 3H), 1.89-1.62 (m, 4H), 1.47-1.35 (m, 3H), 1.21-1.13 (m, 4H), 0.97 (s, 4H), 0.90-0.88 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 170.9, 72.1, 66.1, 49.9, 41.6, 41.0, 34.2, 31.8, 30.6, 24.6, 21.2, 20.8, 18.0. FTMS (ESI) m/z C₁₃H₂₄O₃: calc 228.1725, observed 211.1694 (corresponds to loss of -OH).

1-(4-chlorophenyl)cycloheptane-1-ol

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added a suspension of cycloheptanone (2.00 g, 17.9 mmol) in THF (30.0 mL). The reaction mixture was cooled to 0 °C and 1M 4-chlorophenylmagnesium bromide in Et₂O (35.0 mL, 35.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide 1-(4-chlorophenyl)cycloheptane-1-ol (2.10 g, 53%).

Spectral data matches what is reported in literature.¹⁵

1-(4-chlorophenyl)cyclopentane-1-ol

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added a suspension of cyclopentanone (2.00 g, 23.8 mmol) in THF (30.0 mL). The reaction mixture was cooled to 0 °C and 1M 4-chlorophenylmagnesium bromide in Et₂O (45.0 mL, 45.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH_2Cl_2 repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide 1-(4-chlorophenyl)cyclopentane-1-ol (1.90 g, 41%).

Spectral data matches what is reported in literature. ¹⁶

(S)- and (R)-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added a suspension of 1-tetralone (2.00 g, 13.7 mmol) in THF (30.0 mL). The reaction mixture was cooled to 0 °C and 3M methylmagnesium bromide in Et₂O (10.0 mL, 30.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide 1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (1.55 g, 70%).

Spectral data matches what is reported in literature.¹⁶

(S)- and (R)-1-phenyl-2,3-dihydro-1H-inden-1-ol

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added indanol (1.20 g, 9.01 mmol), DCM (25.0 mL), and PCC (2.90 g, 13.5 mmol). The reaction mixture was stirred at RT for 14 h. The reaction mixture was then filtered through Celite and concentrated.

To a flame-dried three-neck round-bottom equipped with a stir bar under N_2 were added crude mixture from the previous reaction (1.98 g, 9.01 mmol) and THF (30.0 mL). The reaction mixture was cooled to 0 °C and 1M phenylmagnesium bromide in Et₂O (18.0 mL, 18.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH₂Cl₂ repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide (S)- and (R)-1-phenyl-2,3-dihydro-1H-inden-1-ol.

Spectral data matches what is reported in literature¹⁷

Fenchyl alcohol

Me Me Mé OH

Obtained from Sigma-Aldrich.

Spectral data matches what is reported in literature.¹⁸ <u>9-(4-chlorophenyl)bicyclo[3.3.1]nonan-9-ol</u>

To a flame-dried three-neck round-bottom equipped with a stir bar under N₂ were added a suspension of bicyclo[3.3.1]nonan-9-one (1.00 g, 7.25 mmol) in THF (20.0 mL). The reaction mixture was cooled to 0 °C and 1M 4-chlorophenylmagnesium bromide in Et₂O (15.0 mL, 15.0 mmol) was added. The reaction mixture was slowly warmed to RT over 5 h. The reaction mixture was quenched with 1M HCl and extracted into CH_2Cl_2 repeatedly. The combined organic layers were dried with MgSO₄, filtered through Celite, and concentrated. The crude residue was purified via gradient column chromatography to provide 9-(4-chlorophenyl)bicyclo[3.3.1]nonan-9-ol (1.20 g, 66%).

Clear Oil. ¹H NMR (400 MHz, CDCl₃): δ 7.51 (d, J = 8.70 Hz, 2H) 2.51 (s, 1H), 2.44-2.34 (m, 2H), 2.12-2.07 (m, 2H), 1.99-1.63 (m, 9H), 1.38-1.33 (m, 1H); ¹³C{1H} NMR (100 MHz, CDCl₃):

 δ 143.55, 133.00, 128.85, 127.17, 74.02, 35.43, 29.64, 27.18, 20.98, 20.55. FTMS (ESI) m/z $C_{15}H_{19}O:$ calc 250.1124, observed 233.1086 (corresponds to loss of -OH).

Product Characterization Data

(1S,3R)- and (1R,3S)-1-(4-chlorophenyl)-3-fluoro-3-methylcyclohexan-1-ol (compound 6)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift of the ¹⁹F NMR signal, indicative of a tertiary fluoride on a cyclohexane ring, 2) disappearance of the diagnostic tertiary proton signal (1.88 ppm) in the ¹H NMR spectrum, 3) diagnostic methyl ¹H signal shift (1.40 ppm) and coupling constant (J = 22.10 Hz), 4) -OH ¹H signal has a chemical shift (3.62 ppm) and coupling (J = 19.1 Hz) indicative of intramolecular hydrogen bonding, 5) absence of a downfield ¹H signal with approximately ² $J_{\text{HF}} = 50 \text{ Hz}$ coupling suggest no secondary or primary fluorides present, 6) chemical shift and splitting in the ¹⁹F NMR spectrum that indicates F_{ax} (for example: the F_{ax} and F_{eq} diastereomers of 1-fluoro-1-methyl-4-tbutylcyclohexane have a chemical shift of -154 ppm and -127 ppm, respectively), and 7) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): 7.45 (m, 2H), 7.31 (m, 2H), 3.62 (d, J = 19.1 Hz, 1H), 2.16-2.01 (m, 3H), 1.90-1.69 (m, 4H), 1.40 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 146.6, 132.6, 128.4, 126.3, 97.9 (d, J = 141.9 Hz), 73.2, 48.0, 47.8, 37.8, 35.9, 35.7, 28.5, 28.3, 17.5. ¹⁹F NMR (282 MHz, CDCl₃): δ -145.5 - (-146.0) (m). FTMS (ESI) m/z C₁₃H₁₆OClF: calc 242.0874, observed 242.0861.

(2R,5S)-3-fluoro-4,4,8-trimethyltricyclo[6.3.1.0^{2,5}]dodecan-1-ol (compound 7)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification. Regiochemical assignment was made on the basis of 1) chemical shift of the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclobutane ring, 2) ¹H signals of the adjacent dimethyl group are separate (in comparison to the starting material) and shifted downfield (1.04 ppm), 3) the chemical shift and coupling constant (${}^{2}J_{HF} = 50.1 \text{ Hz}$) of the ¹H signal at 4.38 ppm are indicative of a proton with a geminal fluoride, 4) ¹³C signal of the carbon attached to fluorine has a ${}^{1}J_{CF} =$ 225.6 Hz, which is characteristic of a fluorocyclobutane (for example: the ${}^{1}J_{CF}$ of fluorocyclohexane, fluorocyclopentane, and fluorocyclobutane are 170, 174, and 215 Hz, respectively), and 5) -OH ¹H signal (taken in dry CHCl₃) at 1.88 ppm is shifted downfield relative to the starting material (indicative of hydrogen bonding), and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (${}^{2}J_{CF}$ - and ${}^{3}J_{CF}$ -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 4.38 (dm, J = 50.1 Hz, 1H), 2.17-1.87 (m, 4H), 1.73-1.46 (m, 6H), 1.38-1.14 (m, 5H), 1.02 (s, 3H), 0.98 (s, 3H), 0.92 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 93.70 (dd, J = 225.6, 3.77 Hz), 72.0, 71.8, 44.9, 43.19, 43.18, 43.16, 38.22, 38.18, 36.8, 35.32, 35.30, 34.63, 34.55, 34.4, 33.08, 33.06, 32.4, 30.5, 26.4, 26.3, 26.2, 26.1, 21.98, 21.95, 20.8. ¹⁹F NMR (282 MHz, CDCl₃): δ -190.4 - (-190.8) (m). FTMS (ESI) m/z C₁₅H₂₅OF: calc 240.1889, observed 240.1882.

(3aR,4R,8S,8aR,9S)-1-fluoro-2,2,4,8,9-pentamethyldecahydro-4,8-methanoazulen-9-ol (compound **8**)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift of the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclopentane ring, and coupling (doublet of doublets) agree with the proposed regioisomer, 2) -OH ¹H signal (taken in dry CHCl₃) at 3.43 ppm is shifted downfield relative to the starting material (indicative of hydrogen bonding), 3) diagnostic tertiary ¹H signal (alpha to the designated fluorine) signal (2.58 ppm) is shifted downfield, 4) one of the diagnostic dimethyl ¹H signal shift (1.07 ppm) and coupling constant (J = 1.47 Hz), 5) the absence of a strong interaction within the ¹H-¹H NOESY and ¹⁹F-¹H HOESY spectrum between the fluorine/geminal proton to fluorine and methyl at the alcohol bridgehead, suggesting the assigned regio- and stereoisomer, and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (²J_{CF}- coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 4.40 (dm, J = 50.4 Hz, 1H), 2.65-2.56 (m, 1H), 2.29-2.20 (m, 1H), 1.95-1.87 (m, 1H), 1.82-1.58 (m, 3H) 1.42-1.28 (m, 4H), 1.06-1.05 (m, 6H) 0.97-0.93 (m, 10H)¹³C{¹H} NMR (100 MHz, CDCl₃): δ 96.5 (d, J = 176.7 Hz), 84.9 (d, J = 8.2 Hz), 51.3, 51.2, 51.1, 45.17, 45.16, 43.9, 43.5, 40.6, 35.3, 35.2, 29.3, 26.8, 25.3, 25.1, 18.2, 16.3, 12.23, 12.18. ¹⁹F NMR (282 MHz, CDCl₃): δ -181.2 (dd, J = 50.4, 20.9 Hz). FTMS (ESI) m/z C₁₆H₂₇OF: calc 254.2046, observed 235.2056 (corresponds to loss of fluorine).

(3aS,4R,8S,8aR,9R)-5-fluoro-2,2,4,8-tetramethyldecahydro-4,8-methanoazulen-9-ol (compound 9)

The reaction was run according to the general procedure (with the exception: 1.2 equiv. of Selectfluor used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Stereochemical and regiochemical assignment reasoning discussed within manuscript.

¹H NMR (400 MHz, CDCl₃): δ 4.64 (dm, J = 50.3 Hz, 1H), 3.44-3.41 (t, J = 4.5 Hz, 1H), 2.48 (dd, J = 19.54, 9.94 Hz, 1H), 2.23-2.16 (m, 1H), 1.94-1.88 (m, 1H), 1.74-1.59 (m, 2H), 1.45-1.38 (m, 2H), 1.34 (d, J = 4.3 Hz, 1H), 1.20-1.11 (m, 1H), 1.07, 1.03 (m, 7H), 0.92-0.87 (m, 7H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 95.80, 95.77, 94.08, 94.05, 81.14, 81.11, 81.06, 81.03, 47.2, 46.5, 46.4, 44.1, 43.7, 41.31, 41.30, 40.8, 39.6, 30.8, 30.7, 29.0, 25.7, 25.5, 25.4, 19.84, 19.81, 16.7, 16.6. ¹⁹F NMR (282 MHz, CDCl₃): δ -194.2 - (-195.2) (m). FTMS (ESI) m/z C₁₅H₂₅OF: calc 240.1889, observed 240.1901.

(5S,8R,9S,10S,12R,13S,14S,17S)-12-fluoro-17-hydroxy-10,13,17-trimethylhexadecahydro-3*H*-cyclopenta[*a*]phenanthren-3-one (compound **10**)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification. Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift of the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclohexane ring, 2) the C18 methyl ¹H signal (0.88 \rightarrow 0.99 ppm) is shifted downfield relative to the starting material, 3) the chemical shift and coupling constant (doublet of doublet of doublets, J = 50.2, 11.2, 5.0 Hz) of the ¹H signal at 4.63 ppm are indicative of a proton with a geminal fluoride and corroborates the designated regioisomer's chemical environment, 4) strong interaction within the ¹H-¹H NOESY spectrum between the geminal proton to the fluoride and methyl upon the C17 carbon supports evidence for the beta-fluoro configuration, 5) the absence of a strong interaction within the ¹⁹F-¹H NOESY spectrum between the fluorine and methyl upon the C17 carbon infer the beta-fluoro configuration, and 6) ¹³C signal associated with F-C; ¹J_{CF} = 179.2 Hz is indicative of a secondary fluoride on a cyclohexane ring.

¹H NMR (400 MHz, CDCl₃): δ 4.63 (ddd, J = 50.2, 11.2, 5.0 Hz, 1H), 2.47-2.22 (m, 3H), 2.14-1.87 (m, 4H), 1.77-1.13 (m, 13H), 1.06 (s, 3H), 0.99 (s, 3H), 0.91-0.77 (s, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 211.4, 95.4 (d, J = 179.2 Hz), 81.6, 52.1, 52.0, 50.3, 50.1, 49.3, 49.2, 46.6, 44.6, 38.6, 38.1, 35.9, 35.3, 30.9, 28.8, 27.9, 27.7, 26.3, 23.3, 11.6, 9.1. ¹⁹F NMR (282 MHz, CDCl₃): δ -183.5 (d, J = 50.3 Hz). FTMS (ESI) m/z C₂₀H₃₂O₂F (M+H⁺): calc 323.2378, observed 323.2381.

 $\frac{(8R,9S,10R,12S,13S,14S,17R)-17-acetyl-12-fluoro-17-hydroxy-10,13-dimethyl}{1,2,6,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-3H-cyclopenta[a]phenanthren-3-one (compound 11)$

The reaction was run according to the general procedure (with the exception: 0.0 equiv. of NaHCO₃ used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift of the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclohexane ring, 2) -OH ¹H signal (3.12 ppm) is shifted downfield relative to the starting material (indicative of hydrogen bonding, thus alpha-fluoro configuration), 3) ¹H signal with the coupling constant (doublet of doublet of doublets, J = 49.52, 11.09, 5.16 Hz) at 4.96 ppm are indicative of a proton with a geminal fluoride and corroborates the designated regioisomer's chemical environment, 4) the absence of a strong interaction within the ¹H-¹H NOESY spectrum between the geminal proton to the fluoride and -OH infers the alpha-fluoro configuration, and 5) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 5.75 (s, 1H), 4.96 (ddd, J = 49.52, 11.09, 5.16 Hz, 1H), 3.12 (s, 1H), 2.77-2.66 (m, 1H), 2.48-2.28 (m, 7H), 2.05-1.85 (m, 4H), 1.76-1.67 (m, 2H), 1.61 (s, 3H), 1.59-1.48 (m, 3H), 1.21 (s, 3H), 1.12-1.01 (m, 2H), 0.88 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 211.87, 199.37, 169.97, 169.96, 124.29, 92.04, 90.27, 89.00, 88.99, 53.21, 53.04, 51.65, 51.56, 48.74, 48.68, 38.40, 38.39, 35.64, 35.20, 34.28, 34.27, 33.80, 32.62, 31.24, 31.22, 27.17. 26.98, 26.87, 26.82, 23.49, 23.47, 17.23, 9.79, 9.75; ¹⁹F NMR (282 MHz, CDCl₃): δ -176.37 – (-176.55) (m). FTMS (ESI) m/z C₁₃H₂₃O₃F (M+H⁺): calc 349.2179, observed 349.2163.

(1R,2R,5R)-2-(2-fluoropropan-2-yl)-5-methylcyclohexan-1-ol (compound 12)

The reaction was run according to the general procedure (with the exception: 1.2 equiv. of Selectfluor used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Spectral data matches what is reported in literature.¹⁹

(15,25,55)-5-fluoro-2-isopropyl-1,5-dimethylcyclohexan-1-ol (compound 13)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) the chemical shift of the ¹⁹F NMR signal, highly indicative of an axial tertiary fluoride on a cyclohexane ring, 2) disappearance of the diagnostic tertiary proton signal (1.4 ppm) in the ¹H NMR spectrum, 3) absence of a downfield ¹H signal with approximately 50 Hz coupling suggests no secondary or primary fluorides present, 4) diagnostic isopropyl ¹H signals are still present at the approximately 0.93 ppm methyl, 5) methyl ¹H signal alpha to the fluoride has a drastic shift (compared to the starting material) to 1.51 ppm and coupling constant of J = 23.3 Hz, and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 2.14-2.07 (m, 1H), 1.95-1.92 (m, 1H), 1.87 -1.73(m, 2H), 1.54-1.43 (m, 6H), 1.29 (s, 3H), 1.13 (dm, *J* = 11.2, 1H), 0.96 (dm, *J* = 7.0 Hz, 3H), 0.90 (dm, *J* = 6.9 Hz, 3H), 0.85 (s, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 96.1 (d, *J* = 167.0 Hz), 74.2 (d, *J* =

13.1 Hz), 51.9, 51.8, 50.6, 38.3 (d, J = 20.4 Hz), 30.5, 26.5, 26.3, 26.0, 24.3, 19.7 (d, J = 10.7 Hz), 18.7. ¹⁹F NMR (282 MHz, CDCl₃): δ -118.8 - (-119.3) (m). FTMS (ESI) m/z: 188.1576 calc, observed 172.16 (corresponds to loss of $-OH + H^+$).

(1*S*,3a*R*,5*S*,6*R*,7a*S*)-6-acetyl-1-(2-fluoropropan-2-yl)-7a-hydroxy-3a-methyloctahydro-1*H*-inden-5-yl acetate (compound 14)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical assignment was made on the basis of 1) the chemical shift of the ¹⁹F NMR signal, indicative of a tertiary fluoride, 2) ¹⁹F signal coupling (dqd, J = 44.0, 21.9, 11.2 Hz) agrees with the chemical environment of the regioisomer, 3) absence of a downfield ¹H signal with approximately 50 Hz coupling implies no secondary or primary fluorides are present, 4) diagnostic ¹H methyl signal shift from isopropyl group (1.56 ppm) and coupling constant (J = 22.04 Hz) for the isopropyl group, and 5) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 5.16 (td, J = 11.4, 4.7 Hz, 1H), 2.84-2.77 (m, 1H), 2.56-2.45 (m, 1H), 2.30 (dd, J = 13.9, 3.7 Hz, 1H), 2.17-2.12 (m, 4H), 1.97 (s, 3H), 1.95-1.80 (m, 2H), 1.72-1.63 (m, 2H), 1.58-1.50 (m, 6H), 1.45-1.37 (m, 3H), 1.11 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 208.2, 170.1, 99.8 (d, J = 164.3 Hz), 82.0, 70.3, 53.3, 50.0, 49.8, 48.0, 40.2, 36.8, 33.93, 33.90, 28.8, 28.3, 28.1, 27.0, 26.7, 22.9, 22.8, 21.2, 19.5. ¹⁹F NMR (282 MHz, CDCl₃): -142.0 (dqd, J = 44.0, 21.9, 11.2 Hz). FTMS (ESI) m/z C₁₇H₂₇O₄F (M+H⁺): calc 315.1900, observed 315.1966.

(1*S*,3a*R*,5*S*,6*R*,7a*S*)-6-acetyl-1-(2-fluoropropan-2-yl)-7a-hydroxy-3a-methyloctahydro-1*H*-inden-5-yl 4-methylbenzenesulfonate (compound **15**)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification. Regiochemical assignment was made on the basis of 1) the chemical shift (142.5 ppm) of the ¹⁹F NMR signal, indicative of a tertiary fluoride, 2) ¹⁹F signal coupling (dqd, J = 55.7, 33.7, 11.4 Hz) agrees with the chemical environment of the regioisomer, 3) absence of a downfield ¹H signal with approximately 50 Hz coupling implies no secondary or primary fluorides are present, 4) diagnostic methyl ¹H signal shift (1.53 and 1.48 ppm) and coupling constant (J = 21.9 Hz) for the fluoro-isopropyl group, and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃) δ 7.73 (d, J = 8.3 Hz, 2H), 7.33 (d, J = 8.2 Hz, 2H), 4.87-4.81 (m, 1H), 2.90-2.83 (m, 1H), 2.48- 2.38 (m, 4H), 2.22 (dd, J = 14.1, 3.9 Hz, 1H), 2.10-1.99 (m, 5H), 1.92-1.75 (m, 2H), 1.71-1.54 (m, 5H), 1.48-1.42 (m, 5H), 1.03 (s, 3H). ¹³C{1H} NMR (100 MHz, CDCl₃): δ 207.1, 144.9, 133.8, 129.8, 128.0, 99.7 (d, J = 164.7 Hz), 81.5, 79.0, 52.9, 50.2, 50.0, 48.1, 41.4, 36.7, 34.0, 29.6, 28.4, 28.1, 26.8, 26.5, 22.9, 22.8, 21.9, 19.4. ¹⁹F NMR (282 MHz, CDCl₃): δ -142.5 (dqd, J = 55.7, 33.7, 11.4 Hz). FTMS (ESI) m/z C₂₁H₃₁O₅SF (M+H⁺): calc 427.1950, observed 427.1950.

2-((1*R*,2*R*,8a*R*)-4-fluoro-2-hydroxy-2,5,5,8a-tetramethyldecahydronaphthalen-1-yl)ethylacetate (compound **16**)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclohexane ring, 2) the chemical shift and coupling constant (J = 55.7 Hz) of the ¹H signal at 4.49 ppm are indicative of a proton with a geminal fluoride, 3) the -OH ¹H signal shifts downfield (2.15 ppm) relative to the starting material and has a 5.7 Hz coupling constant (indicative of the alpha-fluoro configuration hydrogen bonding), 4) strong interaction within the ¹⁹F-¹H HOESY spectrum between the -OH and fluoride infers the alpha-fluoro configuration, 5) interaction within the ¹H-¹H NOESY spectrum between the geminal proton to the fluorine and the methyl attached to the same carbon as the hydroxy group in the 3 position, 6) absence of a through-space coupling to the two methyl groups on the cyclohexane core infers the alpha-fluoro configuration, and 7) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (²*J*_{CF}- coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 4.49 (dm, *J* = 55.7 Hz, 1H), 4.19-4.05 (m, 2H), 2.15 (dm, *J* = 6.8 Hz, 1H), 2.09-2.01 (m, 4H), 1.84-1.75 (m, 1H), 1.69-1.60 (m, 3H), 1.54-1.34 (m, 5H), 1.24-1.15

(m, 1H), 1.13-1.12 (m, 3H), 0.98-0.90 (m, 1H), 0.87 (s, 3H), 0.80 (m, 6H).¹³C{¹H} NMR (100 MHz, CDCl₃): 171.3, 96.2 (d, J = 171.2 Hz), 73.6, 73.4, 66.5, 52.9, 47.12, 47.11, 41.9, 39.4, 38.4, 33.1, 32.9, 25.5, 25.3, 24.0, 21.49, 21.48, 21.3, 21.2, 21.1, 18.5, 14.94, 14.92. ¹⁹F NMR (282 MHz, CDCl₃): δ -189.3 - (-189.7) (m). FTMS (ESI) m/z C₁₈H₃₁O₃F: calc 314.2257, observed 298.2303 (corresponds to loss of $-OH + H^+$).

2-((1R,2S)-4-fluoro-2-hydroxy-2,6,6-trimethylcyclohexyl)ethyl acetate (compound 17)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclohexane ring, 2) the chemical shift and coupling constant (J = 49.4 Hz) of the ¹H signal at 4.91 ppm are indicative of a proton with a geminal fluoride, 3) absence of a strong interaction between -OH and geminal proton to the fluorine in the ¹H-¹H NOESY, as well as interaction between the geminal proton and the methyl geminal to the alcohol, suggest the indicated diastereomer, 4) the ¹H signal at 4.91 ppm (doublet of triplets of triplets) agrees with the proposed regioisomer, and 5) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (${}^{2}J_{CF}$ - and ${}^{3}J_{CF}$ -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 4.91 (dtt, J = 49.4, 11.5, 4.5 Hz, 1H), 4.18-3.98 (m, 2H), 2.22-2.12 (m, 1H), 2.05 (s, 3H), 2.01-1.92 (m, 1H), 1.86-1.59 (m, 2H), 1.40-1.28 (m, 4H), 1.03-1.01 (m, 4H), 0.98 (s, 4H), 0.95-0.92 (m. 1H).¹³C {¹H} NMR (100 MHz, CDCl₃): δ 171.2, 88.1 (d, J = 167.1), 75.0, 74.9, 65.9, 49.6, 49.6, 47.7, 47.5, 47.4, 47.3, 36.6, 36.4, 32.1, 31.3, 27.1, 24.3, 22.2, 21.2. ¹⁹F NMR (282 MHz, CDCl₃): δ -180.7 (dm, J = 49.4 Hz). FTMS (ESI) m/z C₁₃H₂₃O₃F: calc 246.1631, observed 229.1602 (corresponds to loss of -OH).

(1R,3S)- and (1S,3R)-1-(4-chlorophenyl)-3-fluorocycloheptan-1-ol (compound 18)

The reaction was run according to the general procedure (with the exception: 0.0 equiv. of NaHCO₃ used), and the major diastereomer was isolated. The crude material was subjected to

gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride on a cycloheptane ring, 2) ¹H signal coupling constants (doublet of doublet of doublets, J = 44.66, 13.07, 2.17 Hz) at 4.86 ppm agrees with the chemical environment of the regioisomer, 3) through-space coupling between the -OH and F (J = 4.05 Hz) for the ¹H peak at 2.56 ppm and a very strong interaction between -OH and -F in the ¹⁹F-¹H HOESY spectrum (suggestive of a through-space coupling and intramolecular hydrogen bonding -OH---F-), 4) computational modeling at B3LYP 6-311++G** show that only the 3-beta-fluoro has the geometrical possibility for intramolecular hydrogen bonding, and a strong interaction within the ¹⁹F-¹H HOESY spectrum is observed, 5) ¹H signal alpha to the alcohol shifted downfield (2.26 ppm), and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} - coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 7.47-7.45 (m, 2H), 7.37-7.35 (m, 2H), 4.86 (ddd, J = 44.66, 13.07, 2.17 Hz, 1H), 2.57 (d, J = 4.05 Hz, 1H), 2.31-2.22 (m, 1H), 1.99-1.76 (m, 5H), 1.74-1.48 (m, 4H). ¹³C {¹H} NMR (100 MHz, CDCl₃): δ 145.91 (d, J = 1.52 Hz), 132.76, 128.43, 126.18, 96.81 (d, J = 172.29 Hz), 76.66 (d, J = 18.89 Hz), 39.09 (d, J = 4.87 Hz), 27.94 (d, J = 20.86 Hz), 26.58, 21.51 (d, J = 13.63 Hz), 19.97; ¹⁹F NMR (282 MHz, CDCl₃): δ -176.85 – (-177.03) (m). FTMS (ESI) m/z C₁₃H₁₆OF: calc 242.0874, observed 225.0832 (corresponds to loss of -OH).

(1R,3S)- and (1S,3R)-1-(4-chlorophenyl)-3-fluorocyclopentan-1-ol (compound 19)

The reaction was run according to the general procedure (with the exception: 0.0 equiv. of NaHCO₃ used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride on a cycloheptane ring, 2) ¹H signal at 4.80 ppm has a diagnostic geminal fluoride coupling (${}^{2}J_{HF} = 51.82$ Hz), 3) absence of a strong interaction between the geminal proton to fluorine and the -OH within the ¹H-¹H NOESY spectrum suggests the cis fluoro/hydroxy conformation, 4) ¹H signal alpha to the alcohol shifted downfield (2.50 ppm), suggestive of intramolecular hydrogen bonding, and 5) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (${}^{2}J_{CF}$ - and ${}^{3}J_{CF}$ -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 7.50-7.46 (m, 2H), 7.36-7.33 (m, 2H), 4.80 (dm, J = 51.82Hz, 1H), 2.47-2.26 (m, 2H), 2.10-1.94 (m, 4H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.14, 133.71, 128.39, 128.14 (d, J = 2.20 Hz), 99.28 (d, J = 180.35 Hz), 83.37 (d, J = 23.47). 36.02 (d, J = 1.10 Hz), 30.74 (d, J = 21.63 Hz), 20.65. ¹⁹F NMR (282 MHz, CDCl₃): δ -173.90 – (-174.23) (m). FTMS (ESI) m/z C₁₁H₁₂OF: calc 214.0561, observed 179.0428 (corresponds to loss of (-OH and -F) plus H⁺).

(1S,3S)- and (1R,3R)-3-fluoro-1-methyl-1,2,3,4-tetrahydronaphthalen-1-ol (compound 20)

The reaction was run according to the general procedure (with the exception: 0.0 equiv. of NaHCO₃ used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride on a cyclohexane ring, 2) ¹H signal coupling constants (doublet of doublet of doublets, J = 49.85, 10.16, 3.40 Hz,) agrees with the chemical environment of the regioisomer, 3) absence of a strong interaction between -OH and geminal proton to the fluorine in the ¹H-¹H NOESY spectrum suggests the cis fluoro/hydroxy conformation, 4) benzylic ¹H signals shifted downfield to 2.95 ppm, and 5) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (² J_{CF} - and ³ J_{CF} -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 7.62-7.60 (m, 1H), 7.24-7.19 (m, 2H), 7.10-7.08 (m, 1H), 4.80 (ddd, J = 49.85, 10.16, 3.40 Hz, 1H), 3.05-2.80 (m, 2H), 2.31-2.09 (m, 2H), 2.07 (s, 1H), 1.58 (d, J = 2.57 Hz, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 140.48, 134.22, 128.31, 127.66, 126.85, 126.37, 96.84, 95.06, 72.95, 72.75, 26.50, 26.40, 25.70, 25.51, 25.34, 25.28. ¹⁹F NMR (282 MHz, CDCl₃): \Box -191.36 – (-191.57) (m). FTMS (ESI) m/z C₁₁H₁₃OF: calc 180.0950, observed 163.0910 (corresponds to loss of -OH).

(1S, 3S)- and (1R,3R)-3-fluoro-1-phenyl-2,3-dihydro-1H-inden-1-ol (compound 21)

The reaction was run according to the general procedure, and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride, 2) ¹H signal at 5.15 ppm has a diagnostic geminal fluoride coupling (${}^{2}J_{HF} = 54.2 \text{ Hz}$), 3) diagnostic -OH in the starting material (2.13 ppm, broad singlet) shifts downfield (3.21 ppm, doublet, J = 3.2 Hz), 4) very strong interaction between -OH and -F in the ¹⁹F-¹H HOESY spectrum (suggestive of a through-space coupling and intramolecular hydrogen bonding -OH---F-), and 5) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (${}^{2}J_{CF}$ - and ${}^{3}J_{CF}$ -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 7.40-7.28 (m, 7H), 7.23-7.20 (m, 2H), 5.15 (dm, J = 54.2 Hz, 1H), 3.21, (d, J = 3.80 Hz, 1H), 3.17-3.12 (m, 2H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 144.19. 141.59, 141.57, 139.37, 139.36, 129.23, 128.36, 128.01, 127.93 126.55, 126.54, 125.28, 125.07, 101.37, 99.50, 85.19, 85.02, 35.99, 35.76. ¹⁹F NMR (282 MHz, CDCl₃): \Box -186.21 - -186.51 (m). TOF MS(Cl) m/z C₁₁H₁₃OF: calc 228.0950, observed 211.0596 (corresponds to loss of -OH).

(1S,2S,4R,6R)-6-fluoro-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol (compound 22)

The reaction was run according to the general procedure (with the exception: 1.2 equiv. of Selectfluor used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride, 2) ¹H signal at 4.83 ppm has a diagnostic geminal fluoride coupling (${}^{2}J_{HF} = 56.4 \text{ Hz}$), 3) diagnostic -OH in the starting material (1.36 ppm, broad singlet) shifts downfield (1.78 ppm, doublet, J = 3.2 Hz), 4) very strong interaction between -OH and -F in the ¹⁹F-¹H HOESY spectrum (suggestive of a through-space coupling and intramolecular hydrogen bonding -OH---F-), 5) C10 methyl at the ring junction has a drastic shift to 1.23 ppm and coupling of 1.7 Hz, and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (${}^{2}J_{CF}$ - and ${}^{3}J_{CF}$ -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 4.83 (dm, J = 56.44 Hz, 1H), 3.41 (dd, J = 6.70, 3.90 Hz, 1H), 2.39-2.30 (m, 1H), 1.78 (d, J = 4.13 Hz, 1H), 1.45-1.44 (m, 2H), 1.32-1.30 (m, 1H), 1.23 (d, J = 1.70 Hz, 3H), 1.05 (s, 3H), 0.92-0.89 (m, 2H), 0.86 (s, 3H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 93.73, 91.94, 84.16, 84.08, 46.69. 39.26, 36.85, 36.28, 36.08, 30.36, 19.99, 14.37, 14.32. ¹⁹F

NMR (282 MHz, CDCl₃): \Box m (-183.85 - -184.27). TOF MS (Cl) m/z C₁₁H₁₃OF: calc 172.1270, observed 172.1263

(1R,2R,4S,5S,9s)-9-(4-chlorophenyl)-2,4-difluorobicyclo[3.3.1]nonan-9-ol (compound 23)

The reaction was run according to the general procedure (with the exception: 3.0 equiv. of Selectfluor used), and the major diastereomer was isolated. The crude material was subjected to gradient column chromatography on silica gel eluting with hexanes and EtOAc, followed by HPLC purification.

Regiochemical and stereochemical assignments were made on the basis of 1) chemical shift in the ¹⁹F NMR signal, indicative of a secondary fluoride, 2) the ¹H signal at 5.05 ppm has a diagnostic geminal fluoride coupling (${}^{2}J_{\rm HF} = 48.06$ Hz), 3) considering the symmetry of the molecule—the ¹³C and ¹H spectra agree with the proposed structure (e.g. integrations, # of peaks, and coupling) 4) diagnostic -OH is a triplet due to through-space coupling with the two fluorines, 5) ¹H signal alpha to the alcohol is shifted downfield (3.28 ppm), suggestive of intramolecular hydrogen bonding, and 6) identification of distinguishable peaks (quaternary, C-F, etc.) in the ¹³C NMR spectrum are in agreement with the regioisomer assignment (${}^{2}J_{\rm CF}$ - and ${}^{3}J_{\rm CF}$ -coupling and chemical shifts).

¹H NMR (400 MHz, CDCl₃): δ 7.49-7.47 (m, 2H), 7.40-7.38 (m, 2H), 5.06 (dd, J = 48.06, 5.81 Hz, 2H), 3.28 (t, J = 19.20, 9.60 Hz, 1H), 3.08 (d, J = 17.07 Hz, 2H), 2.78-2.37 (m, 2H), 1.83-1.71 (m, 2H), 1.62-1.56 (m, 2H), 1.37-1.30 (m, 1H), 1.27-1.13 (m, 1H). ¹³C{¹H} NMR (100 MHz, CDCl₃): δ 141.47, 133.39, 129.02, 127.23, 93.56 (d, J = 170.74 Hz) 73.38, 40.58 (d, J = 8.02 Hz) 34.81 (t, J = 46.50, 23.25 Hz), 29.72, 25.58 (d, J = 10.35 Hz), 17.56. ¹⁹F NMR (282 MHz, CDCl₃): \Box -152.62 – (-153.00) (m). FTMS (ESI) m/z C₁₅H₁₇OF₂: calc 286.0986, observed 269.0900 (corresponds to loss of -OH).

Spectral Data for Starting Materials

Fig. S1. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 5.

Fig. S2. $^{13}C\{^{1}H\}$ NMR spectrum (CDCl₃, 100 MHz) of compound 5.

Fig. S3. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 8.

Fig. S4. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 8.

Fig. S5. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 9.

Fig. S6. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 9.

Fig. S7. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 10.

Fig. S8. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 10.

Fig. S9. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 14.

Fig. S10. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 14.

Fig. S11. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 15.

Fig. S12. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 15.

Fig. S13. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 16.

Fig. S14. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 16.

Fig. S15. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 17.

Fig. S16. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 17.

Fig. S17. ¹H NMR spectrum (CDCl₃, 400 MHz) of starting material for compound 23.

Fig. S18. ¹³C{¹H} NMR spectrum (CDCl₃, 100 MHz) of starting material for compound 23.

Spectral Data for Fluorinated Materials

Fig. S19. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 6.

Fig. S20. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 6.

Fig. S21. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 6.

Fig. S22. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 7.

Fig. S23. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 7.

Fig. S24. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 7.

Fig. S25. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 8.

Fig. S26. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 8.

Fig. S27. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 8.

-194.92 -194.98 -195.10

Fig. S28. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 9.

Fig. S29. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 9.

Fig. S30. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 9.

183.45 183.45 183.58 183.61 183.61 183.61

Fig. S31. $^{19}\mathrm{F}$ NMR spectrum (CDCl_3, 282 MHz) of compound 10.

Fig. S32. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 10.

Fig. S33. $^{13}C\{^{1}H\}$ NMR spectrum (CDCl₃, 100 MHz) of compound 10.

Fig. S34. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 11.

Fig. S35. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 11.

Fig. S36. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 11.

Fig. S37. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 13.

Fig. S38. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 13.

Fig. S39. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 13.

Fig. S40. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 14.

Fig. S41. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 14.

Fig. S42. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 14.

Fig. S43. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 15.

Fig. S44. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 15.

Fig. S45. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 15.

Fig. S47. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 16.

Fig. S48. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 16.

Fig. S49. HOESY spectrum (CDCl₃, 300 MHz) of compound 16.

Fig. S50. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 17.

Fig. S51. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 17.

Fig. S52. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 17.

Fig. S53. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 18.

Fig. S54. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 18.

Fig. S55. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 18.

Fig. S56. HOESY (CDCl₃, 300 MHz) of compound 18.

Fig. S57. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 19.

Fig. S58. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 19.

Fig. S59. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 19.

Fig. S60. NOESY (CDCl₃, 300 MHz) of compound 19.

Fig. S61. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 20.

Fig. S62. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 20.

Fig. S63. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 20.

Fig. S64. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 21.

Fig. S65. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 21.

Fig. S66. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 21.

Fig. S67. ¹⁹F-¹H HOESY (CDCl₃, 300 MHz) of compound **21**.

Fig. S68. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 22.

Fig. S69. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 22.

Fig. S70. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 22.

Fig. S71. ¹⁹F-¹H HOESY (CDCl₃, 300 MHz) of compound **22**.

Fig. S72. ¹⁹F NMR spectrum (CDCl₃, 282 MHz) of compound 23.

Fig. S73. ¹H NMR spectrum (CDCl₃, 400 MHz) of compound 23.

Fig. S74. ${}^{13}C{}^{1}H$ NMR spectrum (CDCl₃, 100 MHz) of compound 23.

Computational Data

Table S1. Starting material for compound 6 geometry optimization ($B3LYP/6-311++G^{**}$).

 Center	 Δ 1	tomic	Fo	rces (Hartrees/	Bohr)	
Number	1	Number	X	Y	Z	
1	6	-0.00000	9341	0.00000377	0.00	0012144
2	6	0.00000	0854	-0.000000990	-0.00	0007473
3	6	-0.00000	7527	-0.000009624	0.00	0010466
4	6	-0.00001	4961	-0.000017677	-0.00	0007326
5	6	0.00001	7283	-0.000009083	-0.00	0006966
6	6	-0.00000	8860	-0.000002709	-0.00	0002734
7	1	-0.00000	1510	-0.000005680	-0.00	0005619
8	1	-0.00000	4347	-0.000006844	0.00	0006262
9	1	-0.00000	4010	-0.000008615	0.00	0004479
10	1	-0.0000	06474	-0.00000371	1 -0.00	00000239
11	1	0.00000)3761	0.000006116	5 -0.00	00004803
12	1	0.00000)6084	0.000002111	-0.00	00008124
13	1	0.00000	04872	0.000003918	8 0.00	0001061
14	1	-0.0000	02289	-0.000001834	4 0.00	00006822
15	1	-0.0000	04100	-0.00000692	0.00	00006956
16	6	-0.0000	10918	-0.00000313	3 -0.00	00000168
17	1	-0.0000	04020	-0.00000252	2 0.00	00009077
18	1	-0.0000	08054	-0.00000183	6 0.00	00009709
19	1	-0.0000	06429	-0.00000178	3 0.00	00007144
20	6	-0.0000	06470	0.000004663	3 0.00	0009046
21	6	-0.0000	01790	0.00001017	7 -0.00	00001368
22	6	0.00000)7896	0.000001423	0.00	0001021
23	6	0.0000	0579	0.000001835	5 -0.00	0007293
24	1	0.0000)3216	0.000004702	2 -0.00	0000211
25	6	-0.0000	02399	0.00001287	-0.00	00004477
26	1	0.0000)3377	0.000005353	-0.00	0004769
<u>-</u> © 27	6	0.00001	4631	0.000002098	0.00 O	0001349
28	1	0.0000)7074	0.000008526	5 -0.00	0003306
29	1	0.00000)8550	0.000007838	3 -0.00	0001745
30	8	0.00000)5412	-0.000000231	-0.00	00000471
31	1	0.00000)0998	-0.000003436	5 -0.00	00001488

 Table S2. Starting material for compound 7 geometry optimization (B3LYP/6-311++G**).

Contor	 ^	tomia E	oroog (Hartroog/E	
Venter N1	A		orces (nartrees/r	7
Number		Number X	Ŷ	L
1	6	0.000010683	0.000020438	0.000004752
2	1	0.000000998	-0.000011461	-0.000006563
3	6	-0.000007114	-0.000007830	-0.000017815
4	1	0.000012294	0.000001940	-0.000006995
5	6	-0.000008699	-0.00000038	0.000012674
6	1	0.000004839	-0.000001928	0.000001341
7	6	0.000006974	-0.000015725	-0.000008584
8	1	0.000000923	-0.000007320	-0.000004840
9	6	0.000002307	-0.000007369	0.000004029
10	1	-0.000001810	0 -0.000009747	0.000003303
11	1	-0.000003419	9 -0.000007043	0.000010201
12	1	0.000001025	5 -0.000010243	0.000004526
13	6	-0.000005180	0.000003840	0.000003192
14	1	0.000000585	5 0.000003146	0.000001738
15	1	-0.000001206	6 -0.000000649	0.000007647
16	1	0.00000851	0.00000764	0.00000534
17	6	0.000004510	0.000012685	0.00000782
18	6	-0.00007801	-0.00002875	0.000005841
19	1	-0.000001594	4 0.000001711	0.000007540
20	1	-0.00000858	8 0.00006243	0.000003008
21	6	0.000001984	0.000007384	0.000008517
22	1	-0.000006197	7 0.000002048	0.000006418
23	1	-0.000001996	6 -0.000005199	0.000004911
24	6	-0.000006919	9 -0.000004798	0.000007826
25	6	0.000005444	0.00000311	0.000007791
26	1	-0.000002239	0.000002999	0.000005812
27	1	0.000000540	0.00000027	-0.000002776
28	1	-0.000001158	3 -0.000005998	0.000001921
29	6	-0.000001920	0.000001041	-0.000002958
30	1	-0.000000468	8 0.000011643	0.000003795
31	1	0.00000367	0.00008030	-0.000002664

32	6	-0.000008582	0.000003000	0.000006510
33	1	-0.000001488	0.000008087	-0.000003758
34	1	-0.000008231	0.000011793	-0.000004266
35	6	0.000004375	0.000009366	-0.000015622
36	1	0.000004741	0.000002293	-0.000007582
37	1	0.000002766	0.000007253	-0.000006436
38	6	-0.000002410	-0.000005427	-0.000004856
39	1	0.000005337	-0.000002213	-0.000009433
40	1	0.000003366	-0.000002762	0.000001567
41	8	-0.00000303	-0.000019048	-0.000016443
42	1	0.000004683	0.000001632	-0.000004587

 Table S3. Starting material for compound 8 geometry optimization (B3LYP/6-311++G**).

Center	Atom	ic	Forc	es (Har	trees/B	ohr)	
Number	Num	nber	Х	Ŷ		Ź	
1	6	0.0000067	09	0.00000		0.0000	09759
2	6	0.0000057	03 -	0.00000)4947	0.0000	010110
3	6	-0.0000028	91 -	0.0000	10948	-0.000	016994
4	6	-0.0000033	00	0.00001	1207	-0.0000)16986
5	6	-0.0000020	30	0.00000)3207	0.0000)10487
6	6	-0.0000021	20 -	0.0000	02974	0.0000	010006
7	6	-0.0000059	53 -	0.0000	00092	0.0000	01312
8	1	-0.0000007	72 -	0.0000	01733	0.0000	05196
9	1	-0.0000007	06	0.00000)1346	0.0000	01091
10	1	-0.0000004	99	-0.0000	01128	0.000	000613
11	1	-0.0000006	526	0.0000	01737	0.000	004865
12	1	-0.0000032	210	0.0000	02851	0.000	001301
13	1	-0.0000033	304	-0.0000	02913	0.000	001163
14	1	0.0000012	.91 .	-0.0000	00055	0.000	003856
15	1	-0.0000089	918	-0.0000	00063	0.000	003913
16	6	0.0000059	36	0.0000	00141	0.000	003421
17	6	0.0000028	92 ·	-0.0000	06023	-0.000	002548
18	1	0.0000006	54	-0.0000	02354	0.000	004355
19	1	-0.0000010	000	-0.0000	04134	-0.000	000130
20	1	-0.0000003	806	0.0000	01074	0.000	003414

21	6	0.000002957	0.000005926	-0.000002862
22	1	0.000000655	0.000002290	0.000004325
23	1	0.00000016	-0.000000997	0.000003448
24	1	-0.000000973	0.000004114	-0.000000111
25	6	0.000001563	-0.000000873	-0.000010428
26	1	-0.000006064	-0.000001056	0.000002532
27	1	0.000000859	-0.000004205	-0.000003444
28	6	0.000001730	0.000000217	-0.000010740
29	1	-0.000006039	0.000000959	0.000002408
30	1	0.000000632	0.000004257	-0.000003901
31	6	-0.000002192	0.000000010	-0.000009193
32	6	0.000001030	0.000000003	-0.000013631
33	1	0.000001633	0.000001474	-0.000001564
34	1	0.000001655	-0.000001463	-0.000001569
35	1	0.000004538	-0.00000036	0.000000584
36	6	0.000002026	0.00000084	0.000004154
37	1	-0.00000064	-0.000000669	-0.000004078
38	1	-0.00000033	0.000000651	-0.000004096
39	1	-0.000005378	0.000000043	-0.000004208
40	8	0.000012179	0.000000167	0.000016024
41	1	0.000002634	0.000000127	0.000001819
42	6	0.000002855	-0.00000248	-0.000006074
43	1	0.000002814	0.000007556	0.000002695
44	1	0.000002855	-0.000007453	0.000002708
45	1	-0.000009439	-0.000000180	-0.000003002

Table S4. Starting material for compound 9 geometry optimization ($B3LYP/6-311++G^{**}$).

Center	Center Atomic		Forces (Hartrees/Bohr)			
Number		Number	Х	Y	Ζ	
						-
1	6	0.000003	3550	-0.000025675	-0.0000)07088
2	6	0.000003	3377	0.000025600	-0.0000	06942
3	6	-0.000003	3112	-0.000013770	0.0000)09305
4	6	-0.000003	3313	0.000013324	0.0000	09312
5	6	0.00002	2192	-0.000007665	0.0000	03675
6	6	0.00002	2725	0.000007319	0.0000	03487

7	6	0.000019956	-0.00000089	0.000003998
8	1	-0.000004367	0.000003106	-0.000007465
9	1	-0.000003008	-0.000006243	0.000008566
10	1	-0.000003406	0.000006497	0.000008411
11	1	-0.000004339	-0.000003077	-0.000007478
12	1	-0.000000939	0.000004167	0.000003378
13	1	-0.000001100	-0.000004054	0.000003517
14	1	-0.000002765	0.000000005	0.000008422
15	1	0.000006593	0.000000045	-0.000008458
16	6	0.000024659	0.000000552	-0.000017521
17	1	-0.000010598	0.000000299	0.000013189
18	6	-0.000007938	0.000006565	-0.000003544
19	1	0.000000990	-0.000004920	0.000005217
20	1	-0.000000958	-0.000001109	0.000002538
21	1	0.000003148	-0.000000180	-0.000005155
22	6	-0.000008098	-0.000006603	-0.000003426
23	1	0.000001003	0.000005118	0.000005176
24	1	0.000003242	0.000000174	-0.000005150
25	1	-0.000000914	0.000001102	0.000002560
26	6	0.000016675	0.000008513	-0.000008099
27	1	-0.000007513	-0.000000540	-0.000001154
28	1	0.000000562	-0.000005448	0.000007326
29	6	0.000016716	-0.000008415	-0.000008145
30	1	-0.000007525	0.000000527	-0.000001142
31	1	0.000000548	0.000005422	0.000007335
32	6	-0.000028355	-0.00000035	-0.000007758
33	6	0.00000346	0.00000014	-0.000008699
34	1	0.00000348	-0.000000147	-0.000004437
35	1	0.00000344	0.000000152	-0.000004436
36	1	0.000004162	0.000000000	-0.000003282
37	6	0.00000049	0.00000008	-0.00000938
38	1	0.000000464	-0.000002259	-0.000002437
39	1	0.000000469	0.000002250	-0.000002440
40	1	-0.000009225	-0.00000006	-0.000001279
41	8	-0.000008597	-0.000001638	0.000015790
42	1	0.000003954	0.000001114	0.000005273

Center	Atom	nic A	tomic	Coordinate	s (Angstroms
Number	Nur	nber	Туре	X Y	Z
1	6	0	1.936887	-0.389950	0.314988
2	6	0	2.706365	-1.558553	-0.352904
3	6	0	4.232623	-1.521053	-0.133180
4	1	0	2.331393	-2.518486	0.010116
5	1	0	4.460486	-1.724203	0.921050
6	1	0	4.738113	-2.288043	-0.723156
7	1	0	2.508076	-1.535514	-1.431496
8	6	0	0.437784	-0.405359	-0.151776
9	1	0	0.473715	-0.346936	-1.251411
10	6	0	-0.348701	0.856852	0.311673
11	1	0	-0.391315	0.869149	1.407495
12	6	0	-0.317081	-1.710259	0.193101
13	1	0	0.198710	-2.562690	-0.256934
14	1	0	-0.296003	-1.881161	1.272891
15	6	0	-1.783133	0.778566	-0.227147
16	1	0	-1.684625	0.718852	-1.320792
17	6	0	-2.551276	-0.492801	0.211941
18	6	0	-1.779269	-1.719838	-0.298448
19	1	Ō	-1.773562	-1.724251	-1.393428
20	6	0	2.042702	-0.517664	1.851005
21	1	Ő	3.073101	-0.428138	2.200370
22	1	Ő	1.461655	0.244269	2.372.523
23	1	Ő	1.678640	-1.492462	2.183553
24	6	0	-2.714633	-0.583743	1.747530
25	1	Ő	-3.272160	0.260701	2.156056
26	1	0 0	-3 268226	-1 486891	2 006835
27	1	Ő	-1.750969	-0.618110	2.256499
28	6	0	4 844423	-0 173390	-0 469609
20	6	0	4 089699	1 029705	0.065172
30	1	0	4 513221	1 929086	-0 387688
31	1	0	4 275272	1.093935	1 145263
32	8	0	5 861374	-0.065721	-1 122690
33	6	0	0 356351	2 144974	-0 141600
34	1	0	0.292980	2.144974	-1 236308
35	1	0	-0 168388	3 018586	0.257593
36	6	0	1 829474	2 184721	0.237373
30	1	0	1.027474	2.104721	1 36/15/2
38	1 1	0	2 310015	2.272041	-0.1/0256
30	6	0	2.510015	0 935665	-0.1-0350
<u></u> ⊿0	1	0	2.574425	0.000000	-0.200003
40 //1	1 6	0	2.459094 _7 761770	1 021084	0.068105
41 42	1	0	-2.701729	1.731004	1 102246

43	1	0	-2.582748	2.799907	-0.568849
44	1	0	-2.269512	-2.646380	0.019115
45	6	0	-4.166300	1.308997	-0.169126
46	1	0	-4.810973	1.440005	0.702075
47	1	0	-4.676893	1.773051	-1.017667
48	6	0	-3.961547	-0.223100	-0.415835
49	8	0	-4.934803	-1.016946	0.286246
50	1	0	-5.783447	-0.921714	-0.158341
51	6	0	-4.065083	-0.562269	-1.908540
52	1	0	-3.941870	-1.633916	-2.074751
53	1	0	-5.054435	-0.271878	-2.280248
54	1	0	-3.328437	-0.026714	-2.511833

Table S6. Starting material for compound 12 geometry optimization (B3LYP/6-311)	++G**).
---	---------

-

Center	Atomic	2	Forces (H	Hartrees/B	ohr)	
Number	Numł	ber X	K	Y	Ζ	
1	6	0.00000432	7 0.000	0005308	0.00000)7415
2	6	0.0000029	1 -0.000	0004518	0.00000	07822
3	6	0.00000137	4 -0.000	0007737	0.00000)6029
4	6	0.00000699	2 0.000	012907	-0.0000)3059
5	6	-0.00000907	1 0.000	0015155	0.0000	14155
6	6	0.00000050	0 -0.000	0005745	-0.0000	02070
7	1	-0.0000031	2 -0.00	0002317	0.0000	02563
8	1	0.0000030	7 0.000	0001182	0.00001	1441
9	1	0.00000310	3 -0.000	0008102	0.0000	12764
10	1	0.00000252	25 -0.00	0009550	0.0000	04835
11	1	-0.0000298	84 0.00	0003723	0.0000	02261
12	1	-0.0000302	0.00	0008262	0.0000	05329
13	1	-0.0000092	28 0.00	0003646	-0.0000	00082
14	1	0.00000160	05 -0.00	0007362	0.0000	00140
15	6	-0.0000030	72 -0.00	0008796	-0.0000	02542
16	1	-0.0000273	35 0.00	0008168	-0.0000	08280
17	6	0.00000165	51 0.00	0002014	-0.0000	17398
18	1	-0.0000006	71 -0.00	00006084	-0.0000)11290
19	1	0.00000050	02 -0.00	0002681	-0.0000	16532
20	1	0.00000250	03 -0.00	0008688	-0.0000	10642
21	6	0.00000278	81 0.00	0006150	-0.0000	04742

22	1	-0.000004005	0.000005171	-0.000009104
23	1	-0.000003297	0.000006896	-0.000002276
24	1	0.000000116	-0.000001681	-0.000003820
25	6	-0.000000399	-0.000008807	0.000014637
26	1	0.000000681	-0.000001334	0.000011459
27	1	0.000003855	-0.000006336	0.000014830
28	1	0.000001197	0.000002187	0.000016619
29	1	-0.000001614	-0.00000382	-0.000010778
30	8	0.000000390	0.000001002	-0.000020801
31	1	-0.000002588	0.000008348	-0.000008885

Table S7. Starting material for compound 13 geometry optimization ($B3LYP/6-311++G^{**}$).

Center	Atomic	Fo	Forces (Hartrees/Bohr)		
Number	Numb	ber X	Ŷ	Ź	
1	6	0.000011992	0.000012963	-0.000001122	
2	6	-0.000001525	-0.000003847	-0.000001569	
3	6	0.000004784	-0.000007121	0.000017894	
4	6	0.000006770	0.000023229	-0.000014700	
5	6	-0.000007417	-0.000026299	0.000021266	
6	6	0.000012887	0.000023159	-0.000003637	
7	1 .	-0.000002423	0.000000167	-0.00000838	
8	1 .	-0.000000198	0.000001491	0.000005895	
9	1	0.000006193	-0.000003918	0.000012502	
10	1	0.000002961	-0.000011317	0.000005542	
11	1	-0.000005498	0.000002719	0.000007325	
12	1	-0.000009404	-0.00000045	0.000000437	
13	1	-0.000001150	0.000002342	-0.000004005	
14	1	0.000003933	-0.000003210	0.000002465	
15	6	0.000001337	0.000007508	-0.000002845	
16	1	-0.000004879	0.000005965	-0.000008418	
17	1	-0.000009455	0.000002354	-0.000005547	
18	1	-0.000004819	0.000004461	-0.000001701	
19	6	0.000000421	-0.00008897	-0.000010678	
20	1	-0.000004352	0.000005043	-0.000001116	
21	6	0.000014814	-0.000005521	-0.000016891	
22	1	-0.000004508	-0.000003122	-0.000001521	
23	1	-0.00000239	0.000004579	-0.000004145	
24	1	0.000003820	-0.000003397	0.000002776	

25	6	-0.00000862	0.000001674	-0.000005226
26	1	-0.000004420	0.000006735	-0.00000333
27	1	-0.000004352	0.000002926	0.000003314
28	1	0.000004350	-0.000002565	0.000001100
29	6	-0.000002357	-0.000017456	0.000010515
30	1	-0.000000583	-0.000000623	0.000004708
31	1	0.000004923	-0.000004432	0.000005411
32	1	0.000003051	0.000001967	0.000010290
33	8	-0.000012685	-0.000012223	-0.000024884
34	1	-0.000001107	0.000004711	-0.000002264

Table S8. Starting material for compound 14 geometry optimization ($B3LYP/6-311++G^{**}$).

Center	Ate	omic F	orces (Hartrees/F	Bohr)
Number	N	lumber X	Y	Z
1	6	0.000004895	0.000001375	-0.00000843
2	6	-0.000002462	-0.000000015	0.000001846
3	6	0.000002234	0.000002055	0.000000218
4	6	-0.000007764	-0.000003800	-0.000001398
5	6	0.000002140	0.000003595	-0.000005180
6	6	0.00000300	-0.000002166	0.000005644
7	1	0.000000645	-0.000000196	0.000001042
8	1	0.000003091	-0.000002414	0.000000096
9	1	0.000000615	0.00000300	-0.000002663
10	1	-0.00000335	7 0.000002534	-0.000002593
11	1	0.000000317	0.000001775	-0.000004036
12	1	-0.00000112	0.000001982	-0.000004807
13	6	-0.000001584	4 -0.000005286	0.000004607
14	1	-0.000002903	3 0.000002703	0.00000358
15	1	-0.000002932	2 0.000002458	0.000002321
16	6	0.00000287	-0.00002796	-0.000007356
17	1	-0.000000454	4 -0.000002625	0.000002474
18	6	0.000000414	0.000002835	-0.000003406
19	1	-0.00000250	5 -0.000000452	0.000003620
20	1	-0.00000241	0.000002873	0.000003267
21	6	0.000000656	5 0.000010785	0.000006527
22	1	-0.000000569	9 0.000000180	-0.000003574

23	1	-0.000000594	0.000000050	-0.000003489
24	1	-0.000006168	-0.000001531	0.000002741
25	8	0.000002170	-0.000003895	0.00000273
26	1	0.000002373	-0.000001348	-0.00000624
27	6	0.00000045	-0.000002252	0.000010980
28	1	0.000009682	-0.000002021	0.000001264
29	6	0.000004166	0.000002888	0.000001901
30	1	0.000001765	-0.000003284	0.000004255
31	1	-0.000000116	-0.000002772	0.000001549
32	1	-0.000000408	-0.000002903	0.000004679
33	6	0.000006362	-0.000010311	-0.000006519
34	1	0.000006165	-0.000004096	0.000003117
35	1	0.000004124	-0.000002486	0.000005907
36	1	0.000004302	0.000002221	0.000006160
37	6	-0.000003127	-0.000003422	0.000001110
38	8	-0.000006824	-0.000000210	-0.000011050
39	6	-0.000003283	0.000005554	0.000005307
40	8	-0.000004403	0.000004547	0.000001132
41	6	-0.000004887	-0.000004119	-0.000012951
42	1	-0.000002855	0.000005570	-0.000001158
43	1	-0.000003932	0.000004042	-0.00000640
44	1	-0.000005950	0.000004656	-0.000001778
45	8	0.000007003	0.000003671	-0.000006644
46	6	-0.000003507	0.000001842	-0.000003995
47	1	0.000002617	-0.000000765	0.000000149
48	1	0.000004654	-0.000003108	-0.000000090
49	1	0.000003094	-0.000002218	0.000002250
Table S9. Compound 8 geometry optimization (B3LYP/6-311++G**) shows intramolecularhydrogen bonding.

Center Number	Atom Nun	ic A nber	Atomic Type	Coordinate X Y	s (Angstroms) Z
1	6	0	-0.276126	-1.075286	0.307629
2	6	0	-0.357963	0.380759	0.888756
3	6	0	0.995542	1.075427	0.498373
4	6	0	1.117563	-1.180387	-0.392191
5	6	0	2.018846	0.740730	1.622135
6	6	0	2.146910	-1.636559	0.675882
7	6	0	2.131071	-0.760023	1.939931
8	1	0	-0.303455	-1.804368	1.122043
9	1	0	2.994504	1.139084	1.329687
10	1	0	3.145757	-1.644308	0.230807
11	1	0	-0.414325	0.358423	1.981091
12	1	0	1.729910	1.286629	2.527725
13	1	0	1.931613	-2.675976	0.949685
14	1	0	3.027696	-0.946388	2.539526
15	1	0	1.288799	-1.057611	2.572979
16	6	0	1.427689	0.305770	-0.800123
17	6	0	1.148071	-2.155576	-1.571719
18	1	0	2.166476	-2.273306	-1.954081
19	1	0	0.800834	-3.146571	-1.261553
20	1	0	0.523652	-1.810185	-2.395395

21	6	0	0.939832	2.603034	0.355612
22	1	0	1.948688	3.009506	0.242875
23	1	0	0.348003	2.934008	-0.495246
24	1	0	0.509584	3.052271	1.256723
25	6	0	-1.568966	-1.250265	-0.520469
26	1	0	-1.920054	-2.285689	-0.536433
27	1	0	-1.416979	-0.942803	-1.557099
28	6	0	-1.726742	0.934837	0.441199
29	1	0	-2.172876	1.625365	1.159368
30	6	0	-2.600126	-0.302687	0.144369
31	6	0	-3.795825	0.011807	-0.763640
32	1	0	-4.359973	-0.903441	-0.965877
33	1	0	-4.478745	0.724752	-0.290598
34	1	0	-3.475765	0.432756	-1.717229
35	6	0	-3.120910	-0.883731	1.475875
36	1	0	-3.786306	-0.173978	1.977182
37	1	0	-3.694136	-1.794805	1.282869
38	1	0	-2.319885	-1.141085	2.172601
39	8	0	0.633277	0.674820	-1.940166
40	1	0	-0.182370	1.108174	-1.663199
41	6	0	2.860364	0.569000	-1.274140
42	1	0	3.028447	0.029847	-2.209204
43	1	0	2.981700	1.632600	-1.490917
44	1	0	3.630061	0.270524	-0.564452
45	9	0	-1.625827	1.704102	-0.765270

Table S10. Compound 9 geometry optimization $(B3LYP/6-311++G^{**})$ shows intramolecular hydrogen bonding.

Center Number	Atom Nur	ic A	tomic Type	Coordinate X Y	es (Angstroms) Z
	1 (41		1 y p c		<i>L</i>
1	6	0	-0.485260	-0.769434	0.495654
2	6	0	-0.639707	0.803363	0.575741
3	6	0	0.648879	1.389535	-0.080360
4	6	0	0.884741	-1.028947	-0.210126
5	6	0	1.771556	1.501077	0.977780
6	6	0	1.965687	-1.033643	0.891322
7	6	0	1.971658	0.204395	1.775797
8	1	0	-0.468376	-1.209019	1.497378
9	1	0	2.701756	1.775605	0.470189
10	1	0	-0.695612	1.131475	1.617358
11	1	0	1.542819	2.321293	1.666338
12	1	0	1.884669	-1.945303	1.490184
13	1	0	2.909907	0.225557	2.337155
14	1	0	1.175551	0.090144	2.517573
15	6	0	1.017029	0.254672	-1.074192
16	1	0	0.243650	0.217354	-1.849957
17	6	0	0.973673	-2.326329	-1.018916
18	1	0	1.966594	-2.439083	-1.457758
19	1	0	0.784520	-3.199305	-0.385535

20	1	0	0.250290	-2.338671	-1.835899
21	6	0	0.481366	2.743152	-0.773188
22	1	0	1.428879	3.048945	-1.224289
23	1	0	-0.263238	2.710235	-1.571680
24	1	0	0.178713	3.517759	-0.061020
25	6	0	-1.754643	-1.264092	-0.233554
26	1	0	-2.064524	-2.262180	0.089589
27	1	0	-1.584228	-1.316373	-1.313118
28	6	0	-1.992214	1.102717	-0.109255
29	1	0	-2.491330	1.980128	0.312345
30	1	0	-1.849943	1.300487	-1.176138
31	6	0	-2.832944	-0.187636	0.033305
32	6	0	-3.977166	-0.249980	-0.985627
33	1	0	-4.521898	-1.196758	-0.911090
34	1	0	-4.697177	0.558130	-0.820893
35	1	0	-3.600674	-0.159430	-2.009239
36	6	0	-3.409818	-0.320463	1.455646
37	1	0	-4.118322	0.487705	1.662760
38	1	0	-3.944059	-1.268944	1.570398
39	1	0	-2.633052	-0.283179	2.223954
40	8	0	2.230959	0.427350	-1.788675
41	1	0	2.956838	0.065256	-1.267680
42	9	0	3.258172	-1.126771	0.268702

Table S11. Compound **13** geometry optimization (B3LYP/6-311++ G^{**}) shows intramolecular hydrogen bonding.

Center	Atomic Atomic		tomic	Coordinates (Angstroms)			
Number	Num	ber	Туре	X Y	Z		
1	6	0	2 084107	-0 354771	-0.076989		
2	6	0	1 234710	-1 605653	-0 278073		
3	6	0	-0 205341	-1 413449	0.208727		
4	6	0	-0.885750	-0 200998	-0.453843		
5	6	Ő	-0.068277	1.102345	-0.173830		
6	6	Ő	1.395835	0.891935	-0.632009		
7	1	Ő	-0.774017	-2.323664	0.000408		
8	1	Ő	1.238705	-1.844554	-1.348503		
9	1	Õ	1.713032	-2.443691	0.238233		
10	1	0	-0.806089	-0.348335	-1.541548		
11	1	0	1.416488	0.821000	-1.725091		
12	1	0	1.979435	1.775756	-0.355780		
13	1	0	-0.204388	-1.294831	1.295712		
14	6	0	-0.639007	2.315641	-0.913125		
15	1	0	-1.585261	2.626194	-0.468983		
16	1	0	0.053385	3.157044	-0.831504		
17	1	0	-0.802614	2.098267	-1.972325		
18	6	0	-2.410668	-0.116340	-0.153112		
19	1	0	-2.754609	0.857607	-0.515160		
20	6	0	-2.781696	-0.203309	1.336614		
21	1	0	-2.260251	0.552436	1.923715		
22	1	0	-3.859183	-0.056291	1.460662		
23	1	0	-2.540813	-1.186710	1.752549		
24	6	0	-3.187526	-1.173465	-0.957900		
25	1	0	-4.264428	-1.056653	-0.804628		
26	1	0	-2.993016	-1.085594	-2.031459		
27	1	0	-2.927180	-2.191721	-0.652450		
28	6	0	3.512350	-0.509583	-0.570521		
29	1	0	4.095357	0.385734	-0.343412		
30	1	0	3.988864	-1.366815	-0.089387		
31	1	0	3.526993	-0.667685	-1.651960		
32	8	0	-0.096817	1.466222	1.217786		
33	1	0	0.574473	0.955068	1.685471		
34	9	0	2.185247	-0.165161	1.357501		

Table S12. Starting material for compound **21** geometry optimization (B3LYP/6-311++G**) shows hydroxy group in a suboptimal position.

Center	Atomi	с	Forces (Hartrees/Bohr)				
Number	Num	lber	Х	Y	7	Ζ	
1	6	0.0000081	.98	-0.0000	04749	0.000	 000703
2	6	0.0000038	391	0.0000	20685	-0.000	006828
3	6	0.0000001	77	-0.0000	00302	-0.000	000384
4	6	0.0000052	237	-0.0000	01930	0.000	007244
5	6	-0.0000065	581	0.0000	02370	0.000	003846
6	6	-0.000038	310	0.0000	08267	0.000	004048
7	6	0.0000226	641	-0.0000	28546	0.000	007367
8	6	-0.0000562	203	0.0000	36975	-0.000	009946
9	6	0.0000311	22	-0.0000	22348	-0.000	011698
10	1	-0.000000	441	0.000	001069	0.000)002475
11	1	0.000002	956	0.0000	002410	0.000	004628
12	1	0.000007	379	0.0000	002944	0.000	004397
13	1	0.000001	670	-0.000	000493	0.000)001093
14	1	0.000001	883	0.0000	001055	-0.000	011985
15	1	-0.000002	165	-0.000	000092	0.000	0001811
16	1	0.000013	350	-0.000	005497	-0.000	0003986
17	1	-0.000000	796	0.000	009882	-0.000	0006496
18	8	-0.000000	202	-0.000	007348	0.000	0015984
19	1	-0.000008	388	0.000	011194	-0.000	0005039
20	6	-0.000036	392	0.000	007843	-0.000	0000202
21	6	0.000029	886	-0.000	011690	0.000)030391
22	6	0.000005	806	0.0000	004093	-0.000	010757
23	6	-0.000001	728	0.000	004829	-0.000	0039702
24	1	-0.000004	864	0.000	008212	-0.000	0003036
25	6	0.000019	429	-0.000	007030	0.000	013865
26	1	-0.000002	502	-0.000	003240	0.000	0003513
27	6	-0.000028	676	-0.000	011139	0.000	0013716
28	1	-0.000000	668	-0.000	010023	0.000	0004473
29	1	-0.000004	843	-0.000	004203	-0.00	0005050

 Table S13. Isodesmic equation data for Scheme 3 within manuscript.

Mass Spectral Data

Fig. S75. High-resolution mass spectrum of compound 5.

Elemental Composition Report

Single Mass Analysis

Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0 Element prediction: Off

Monoisotopic Mass, Odd and Even Electron lons 2 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass) Elements Used: C: 13-17 H: 10-76 O: 1-1 F: 1-1 Cl: 1-2 Lectka_Stefan_SAH_K_Fluoro_06232021-GCMS 488 (10.194) TOF MS EI+ 4.40e+002 242.0861 100 244.0845 243.0983 245.0878 0 - m/z 242.00 242.50 243.00 243.50 244.00 244.50 245.00 -1.5 Minimum: 5.0 100.0 50.0 Maximum: Mass Calc. Mass mDa PPM DBE i-FIT Formula 242.0861 242.0874 -1.3 -5.4 5.0 10.8 C13 H16 O F Cl

Page 1

Fig. S78. High-resolution mass spectrum of the starting material for compound 8.

Fig. S79. High-resolution mass spectrum of compound 8.

Elemental Composition Report

Fig. S80. High-resolution mass spectrum of the starting material for compound 9.

Fig. S81. High-resolution mass spectrum of compound 9.

Fig. S82. High resolution mass spectrum of the starting material for compound 10.

Fig. S83. High-resolution mass spectrum of compound 10.

Fig. S84. High-resolution mass spectrum of compound 11.

Fig. S85. Mass spectrum of compound 13.

Elemental Composition Report

```
Single Mass Analysis
Tolerance = 100.0 PPM / DBE: min = -1.5, max = 50.0
Element prediction: Off
Monoisotopic Mass, Odd and Even Electron Ions
2 formula(e) evaluated with 1 results within limits (up to 50 best isotopic matches for each mass)
Elements Used:
C: 13-17 H: 14-76 O: 4-4
Lectka_Stefan_SAH-M-SM_06232021_LIFDI_2 62 (1.034)
TOF MS FD+
                                                                                                                                         1.32e+001
                          296.1985
 100-
  %-
                                                                                                                 297.1983
   297.20 297.40 m/z
                           296.20 296.40 296.60 296.80 297.00
                                                                                                                 ...
                                                              -1.5
Minimum:
                                                 100.0
                                     5.0
Maximum:
Mass
               Calc. Mass
                                     mDa
                                                 PPM
                                                              DBE
                                                                           i-FIT
                                                                                          Formula
296.1985 296.1988
                                                                           2773012.8 C17 H28 O4
                                    -0.3
                                                 -1.0
                                                              4.0
```

Fig. S86. High-resolution mass spectrum of starting material for compound 14.

Page 1

Fig. S87. High-resolution mass spectrum of compound 14.

Fig. S88. High resolution mass spectrum of the starting material for compound 15.

Fig. S89. High resolution mass spectrum of compound 15.

Fig. S90. High-resolution mass spectrum of the starting material for compound 16.

· 😤 🐝 🕹 😵 😽 🕹 🖓 🕹 🖓 🖓

Fig. S91. High-resolution mass spectrum of compound 16.

Fig. S92. High resolution mass spectrum of the starting material for compound 17.

Fig. S93. High-resolution mass spectrum of compound 17.

Fig. S94. High-resolution mass spectrum of compound 18.

Fig. S95. High-resolution mass spectrum of compound 19.

Fig. S96. High-resolution mass spectrum of compound 20.

Fig. S97. High-resolution mass spectrum for compound 21.

Fig. S98. High-resolution mass spectrum for compound 22.

Fig. S99. High-resolution mass spectrum of the starting material for compound 23.

Fig. S100. High-resolution mass spectrum of compound 23.

References

- ¹ A. Huczynski, J. Rutkowski, B. Brzezinski, Struct. Chem. 2011, 22, 627-634.
- ² M. T. Reetz, S. Stanchev, J. Chem. Soc. Chem. Commun. 1993, 3, 328-330.

³ C. Oberhauser, V. Harms, K. Seidel, B. Schröder, K. Ekramzadeh, S. Beutel, S. Winkler, L. Lauterbach, J. Dickschat, A. Kirschning, *Angew. Chem.* **2018**, *57*, 11802-11806.

⁴ R. Fernandes, D. Chaudhari, Eur. J. Org. Chem. 2012, 10, 1945-1952.

⁵ C. Karmel, B. Li, J. Hartwig, J. Am. Chem. Soc. 2018, 140, 1460-1470.

⁶ R. Deslauriers, F. Hasan, B. Lodge, I. Smith, Ian, J. Pharm. Sci. 1978, 67, 1187-1189.

⁷ R. Fernandes, D. Chaudhari, Eur. J. Org. Chem. 2012, 10, 1945-1952.

⁸ E. Bratoeff, P. García, Y. Heuze, J. Soriano, A. Mejía, A. Labastida, N. Valencia, M. Cabeza, *Steroids*, **2010**, *75*, 499-505.

⁹ P. Kathe, A. Berkefeld, I. Fleischer, *Synlett* 2021, 32, 1629-1632.

¹⁰ M. Magre, E. Paffenholz, B. Maity, L. Cavallo, M. Rueping, *J. Am. Chem. Soc.* **2020**, *142*, 14286-14294.

¹¹ J. Kula, R. Bonikowski, M. Staniszewska, A. Krakowiak, M. Wieczorek, W. Majzner, G. Bujacz, *Eur. J. Org. Chem.* **2002**, *11*, 1826-1829.

¹² R. Saleem, J. Meinwald, J. Chem. Soc. 2000, 3, 391-394.

¹³ M. Jackson, C. Moody, P. Shah, J. Am. Chem. Soc. 1990, 11, 2909-2918.

¹⁴ T. Duvold, M. Sorensen, F. Bjorkling, A. Henriksen, N. Rastrup-Anderson, J. Med. Chem. **2001**, 44, 3125-3131.

¹⁵ G. Lee, H. Lee, W. Wang, C. Cherng, *Tetrahedron* 2014, 70, 2956-2961.

¹⁶ D. Özdemirhan, Synth. Commun. 2017, 47, 629-645.

¹⁷ C. Nielsen, A.White, D. Sale, J. Bures, A. Spivey, J. Org. Chem. 2019, 84, 14965-14973.

¹⁸ F. Bohlmann, R. Zeisberg, Org. Mag. Reson. 1975, 7, 426.

¹⁹ E. Hayashi, S. Hara, H. Shirato, T. Hatekeyama, T. Fukuhara, N. Yoneda, *Chem. Lett.* **1995**, *3*, 205-206.