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I) General Experimental Details 
All reagents were used as received unless otherwise noted. Solvents were purified under 

nitrogen using a solvent purification system (Innovative Technology, Inc. Model # SPS400-3 and 
PS-400-3). Ethyl acetate (Sigma-Aldrich, 99.8% anhydrous) was distilled over CaH2 (Sigma-
Aldrich) and then freeze, pumped, thawed three times before storing under N2. Aryl bromides 
(Oakwood) were dried on high vacuum or distilled over CaH2 prior to use. K3PO4 (Strem, 
anhydrous) was finely ground and then heated under vacuum at 100 ºC overnight before 
transferring to a glove box. Phenylpyridines and bipyridines were synthesized through known 
procedures.1 Iridium photocatalysts were synthesized by modified literature procedures for 
[Ir(dCF3(CF3)ppy)2(4,4’-di-t-buBpy)]PF6, [Ir(FCF3(CF3)ppy)2(4,4’-di-t-buBpy)]PF6, and 
[Ir(dF(CF3)ppy)2(4,4’-di-t-buBpy)]PF6,2  [Ir(dF(CF3)ppy)2(5,5’-di-CF3Bpy)]PF6.1a Bisoxazoline 
(BiOx) ligands were synthesized through known procedures.3  

Analytical thin layer chromatography (TLC) was performed on Kieselgel 60 F254 (250 μm 
silica gel) glass plates and compounds were visualized with UV light and potassium permanganate 
or ceric ammonium molybdate stains. Flash column chromatography was performed using 
Kieselgel 60 (230-400 mesh) silica gel. Eluent mixtures are reported as v:v percentages of the minor 
constituent in the major constituent. All compounds purified by column chromatography were 
sufficiently pure for use in further experiments unless otherwise indicated. 1H NMR spectra were 
collected at 400 MHz on a Varian MR400, at 500 MHz on a Varian Inova 500 or Varian vnmrs 
500, or at 700 MHz on a Varian vnmrs 700 instrument. The proton signal of the residual, non-
deuterated solvent (δ 7.26 for CHCl3) was used as the internal reference for 1H NMR spectra. 13C 
NMR spectra were completely heterodecoupled and measured at 100 MHz, 126 MHz or 176 MHz. 
Chloroform-d (δ 77.00) was used as an internal reference. High resolution mass spectra and LCMS 
traces were recorded on an Agilent 6545 Q-TOF LS/MS at the University of Michigan Life 
Sciences Institute. GCMS and GCFID was conducted on an Agilent 7890B GC system with HP-
5MS column (30 m x 0.250 mm x 0.25 μm). Infrared spectra were recorded using a Nicolet iS10 
FT-IR spectrometer as a neat solid. 
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II) Synthesis of Starting Materials: 
 
Synthesis of amines: 

 

 
2,2-dimethylhexanenitrile (S1) 

 
To a 25 mL oven-dried round-bottom flask equipped with a Teflon-coated magnetic stir bar was 
added diisopropylamine (1.40 mL, 10.00 mmol, 1.05 equiv) and THF (40 mL, 0.25 M). The 
reaction was cooled to -78 ºC and nBuLi (2.5 M in hexanes) (3.81 mL, 9.52 mmol, 1.00 equiv) was 
added and then the reaction was stirred for 1 h before adding isobutynitrile (0.85 mL, 9.52 mmol, 
1.00 equiv). The reaction was stirred for 1 h before adding 1-bromobutane (1.53 mL, 14.28 mmol, 
1.50 equiv). The reaction was then warmed to rt and was stirred overnight. The reaction was cooled 
to 0 ºC and carefully quenched with sat. NH4Cl and extracted 3 x 50 mL DCM. The organic layers 
were dried with 100 mL brine, then Na2SO4 and the solvent was removed by rotary evaporation to 
give the title compound as a yellow oil (1.05 g, 8.00 mmol, 84% yield), which was used without 
further purification in subsequent steps.4 
 
 

 
2,2-dimethylhexan-1-amine (S2) 
 
To a 100 mL oven-dried round-bottom flask equipped with a Teflon-coated magnetic stir bar was 
added LAH (0.95 g, 25.10 mmol, 3.00 equiv) and Et2O (40 mL, 0.21 M). The suspension was 
cooled to 0 ºC and nitrile (1.05 g, 8.39 mmol, 1.00 equiv) was added slowly as a solution in 10 mL 
Et2O. The reaction was then warmed to rt and stirred for 3 h. The reaction was then cooled to 0 ºC 
and carefully quenched with 1 M NaOH until a white precipitate formed. The slurry was then 
filtered through celite and the precipitate washed with Et2O. The organics were then concentrated 
by rotary evaporation to give the title compound as a clear oil (867 mg, 6.71 mmol, 80% yield), 
which was used without further purification in subsequent steps.4 
 
 
General procedures for the synthesis of benzamides: 
 

 
 
To a 100 mL oven-dried round-bottom flask equipped with a Teflon-coated magnetic stir bar was 
added benzoic acid (5.00 mmol, 1.00 equiv). The flask was backfilled with N2 three times before 
adding DCM (25 mL, 0.2 M) and cooling to 0 ºC in an ice bath. Oxalyl chloride (0.55 mL, 6.50 
mmol, 1.30 equiv) was then added followed by DMF (3-5 drops). The reaction was then allowed 
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to warm to rt and stirred for 4 h. The reaction was then concentrated under reduced pressure using 
rotary evaporation. The residue was then taken up in fresh DCM (25 ml, 0.2 M) and cooled to 0 ºC. 
Et3N (0.70 mL, 5.00 mmol, 1.00 equiv) was added dropwise followed by amine (5.00 mmol, 1.00 
equiv) and DMAP (12 mg, 0.1 mmol, 0.02 equiv). The reaction was then allowed to warm to rt and 
stirred for 16 h. The reaction was quenched with quenched with 10 mL H2O and 25 mL DCM and 
the organics were washed 2 x 25 mL 1M HCl, 2 x 25 mL 1M NaOH, dried with 25 mL brine, and 
then over Na2SO4. The solvent was removed by rotary evaporation and the crude reaction mixture 
was purified by silica gel chromatography.5 
 
 

 
N-benzylbenzamide (1a) 
 
To a 100 mL oven-dried round-bottom flask equipped with a Teflon-coated magnetic stir bar under 
N2 was added benzoylchloride (0.5 mL, 4.30 mmol, 1.00 equiv) and DCM (20 ml, 0.2 M). The 
flask was cooled to 0 ºC and Et3N (0.60 mL, 4.30 mmol, 1.00 equiv) was added dropwise followed 
by benzylamine (0.47 mL, 4.30 mmol, 1.00 equiv) and DMAP (12 mg, 0.10 mmol, 0.02 equiv). 
The reaction was then allowed to warm to rt and stirred for 16 h. The reaction was quenched with 
quenched with 10 mL H2O and 25 mL DCM and the organics were washed 2 x 25 mL 1M HCl, 2 
x 25 mL 1M NaOH, dried with 25 mL brine, and then over Na2SO4. The solvent was removed by 
rotary evaporation to give the title compound as a white powder (845 mg, 4.00 mmol, 93% yield). 
 
Rf: 0.15 (90:10 hexanes/EtOAc) 
 
1H NMR (401 MHz, Chloroform-d) δ 7.83 – 7.77 (m, 2H), 7.55 – 7.48 (m, 1H), 7.43 (dd, J = 8.2, 

6.9 Hz, 2H), 7.36 (d, J = 4.3 Hz, 4H), 7.31 (p, J = 4.6 Hz, 1H), 6.40 (s, 1H), 4.66 (d, J = 5.6 
Hz, 2H). 

 
13C NMR (126 MHz, Chloroform-d) δ 167.51, 138.36, 134.45, 131.56, 128.79, 128.60, 127.91, 

127.58, 127.10, 44.11. 
 
 

 
N-ethylbenzamide (1b) 
 
To an oven-dried 100-mL round-bottom flask containing a Teflon-coated magnetic stir bar and 
equipped to a reflux condenser was added benzamide (500 mg, 4.10 mmol, 1.00 equiv). The flask 
was backfilled with N2 three times before adding cyclopentyl ether (20 mL, 0.2 M) and 
triethylphosphate (2.10 mL, 12.40 mmol, 3.00 equiv). nBuLi (2.5 M in hexanes) (3.0 mL, 7.40 
mmol, 1.80 equiv) was added dropwise and the reaction was heated to 115 ºC for 24 h. The reaction 
was carefully quenched with 20 mL brine and then extracted 3 x 30 mL EtOAc. The organics were 
then dried over Na2SO4 and the solvent was removed by rotary evaporation. Purification by silica 
gel chromatography (70:30 hexanes/EtOAc to 1:1 hexanes/EtOAc) gave the title compound as a 
white sticky solid (274 mg, 1.84 mmol, 45% yield). The spectral data matched that previously 
reported in the literature.6 

O

N
H

1a

O

N
H

Me

1b



	 S5	

 
Rf: 0.10 (1:1 hexanes/EtOAc) 
 
1H NMR (401 MHz, Chloroform-d) δ 7.76 (d, J = 7.1 Hz, 2H), 7.54 – 7.35 (m, 3H), 6.11 (s, 1H), 

3.51 (qd, J = 7.3, 5.6 Hz, 2H), 1.26 (t, J = 7.3 Hz, 2H). 
 
13C NMR (126 MHz, Chloroform-d) δ 167.56, 134.62, 128.14, 126.90, 34.74, 14.62. 
 
 

 
N-hexyl-4-methoxybenzamide (1d) 
 
The general procedure for benzamide synthesis coupling was followed using 4-methoxybenzoic 
acid (600 mg, 3.94 mmol, 1.00 equiv), oxalyl chloride (0.43 mL, 5.13 mmol, 1.30 equiv), DCM 
(20 mL, 0.2 M), DMF (3 drops), Et3N (0.55 mL, 3.94 mmol, 1.00 equiv), n-hexylamine (0.52 mL, 
3.94 mmol, 1.00 equiv) and DMAP (10 mg, 0.10 mmol, 0.02 equiv). Purification by aqueous work-
up gave the title compound as a white solid (870 mg, 3.70 mmol, 94% yield over two steps). The 
spectral data matches that previously reported in the literature.7 
 
Rf: 0.20 (70:30 hexanes/EtOAc) 
 
1H NMR (400 MHz, Chloroform-d) δ 7.72 (d, J = 8.7 Hz, 2H), 6.92 (d, J = 8.5 Hz, 2H), 6.02 (s, 

1H), 3.84 (s, 3H), 3.43 (q, J = 6.7 Hz, 2H), 1.60 (p, J = 7.2 Hz, 2H), 1.53 – 1.19 (m, 6H), 1.06 
– 0.79 (t, J = 6.5 Hz, 3H). 

 
13C NMR (126 MHz, Chloroform-d) δ 167.12, 162.04, 128.73, 127.26, 113.70, 55.43, 40.15, 

31.62, 29.79, 26.78, 22.65, 14.10. 
 
 

  
N-(2,2-dimethylhexyl)-4-methoxybenzamide (1f) 
 
The general procedure for benzamide synthesis coupling was followed using 4-methoxybenzoic 
acid (1.40 g, 9.23 mmol, 1.10 equiv), oxalyl chloride (1.01 mL, 12.00 mmol, 1.43 equiv), DCM 
(37 mL, 0.2 M), DMF (3 drops), Et3N (1.17 mL, 8.39 mmol, 1.0 equiv), 23 (8.39 mmol, 1.00 equiv) 
and DMAP (15 mg, 0.15 mmol, 0.02 equiv). Purification by aqueous work-up followed by silica 
gel chromatography (80:20 to 70:30 hexanes/EtOAc) gave the title compound as a white crystalline 
solid (1.954 mg, 6.71 mmol, 80% yield over 4 steps) that was one spot by TLC and GCMS. NMR 
showed an equilibrium of rotamers. 
 
Rf: 0.30 (70:30 hexanes/EtOAc) 
 
1H NMR (401 MHz, Chloroform-d) δ 8.10 (d, J = 8.5 Hz, 1H), 7.73 (d, J = 8.4 Hz, 2H), 6.98 (d, 

J = 8.7 Hz, 1H), 6.93 (d, J = 8.5 Hz, 2H), 6.01 (s, 1H), 3.90 (s, 1H), 3.85 (s, 3H), 3.28 (d, J = 
6.2 Hz, 2H), 1.39 – 1.10 (m, 6H), 0.92 (d, J = 11.7 Hz, 9H). 
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13C NMR (126 MHz, Chloroform-d) δ 167.21, 162.05, 132.85, 128.65, 127.44, 114.19, 113.75, 

55.64, 55.42, 49.59, 39.91, 34.54, 26.20, 25.11, 23.62, 14.18. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C16H25NO2, 264.1963, found 264.1988. 
 
 
 

 
methyl 3-(hexylcarbamoyl)benzoate (1g) 
 
The general procedure for benzamide synthesis coupling was followed using 3-
(methoxycarbonyl)benzoic acid (900 mg, 5.00 mmol, 1.00 equiv), oxalyl chloride (0.55 mL, 6.50 
mmol, 1.3 equiv), DCM (25 mL, 0.2 M), DMF (3 drops), Et3N (0.70 mL, 5.00 mmol, 1.0 equiv), 
n-hexylamine (0.66 mL, 5.00 mmol, 1.0 equiv) and DMAP (12 mg, 0.10 mmol, 0.02 equiv). 
Purification by silica gel chromatography (70:30 hexanes/EtOAc to 1:1 hexanes/EtOAc) gave the 
title compound as a white solid (1.119 g, 4.25 mmol, 85% yield over two steps). 
 
Rf: 0.10 (70:30 hexanes/EtOAc) 
 
1H NMR (700 MHz, Chloroform-d) δ 8.34 (s, 1H), 8.10 (d, J = 7.8 Hz, 1H), 8.00 (d, J = 7.8 Hz, 

1H), 7.46 (t, J = 7.7 Hz, 1H), 6.57 – 6.34 (m, 1H), 3.89 (s, 3H), 3.42 (d, J = 6.9 Hz, 2H), 1.58 
(q, J = 7.5 Hz, 2H), 1.40 – 1.15 (m, 6H), 0.85 (t, J = 6.5 Hz, 3H). 

 
13C NMR (176 MHz, Chloroform-d) δ 166.56, 166.47, 135.24, 132.25, 131.89, 130.41, 128.87, 

127.60, 52.42, 40.35, 31.58, 29.67, 26.76, 22.64, 14.11. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C15H21NO3, 264.1600, found 264.1609. 
 
 

 
N-hexylbenzamide (1h) 
 
To a 100 mL oven-dried round-bottom flask equipped with a Teflon-coated magnetic stir bar under 
N2 was added benzoylchloride (1 mL, 8.60 mmol, 1.0 equiv) and DCM (25 ml, 0.2 M). The flask 
was cooled to 0 ºC and Et3N (1.20 mL, 8.60 mmol, 1.0 equiv) was added dropwise followed by n-
hexylamine (1.14 mL, 8.60 mmol, 1.0 equiv) and DMAP (20 mg, 0.17 mmol, 0.02 equiv). The 
reaction was then allowed to warm to room temperature and stirred overnight. The reaction was 
quenched with quenched with 10 ml H2O and 25 mL DCM and the organics were washed 2 x 25 
mL 1M HCl, 2 x 25 mL 1M NaOH, dried with 25 mL brine, and then over Na2SO4. The solvent 
was removed by rotary evaporation and the crude reaction mixture was purified by silica gel 
chromatography (100% hexanes to 80:20 hexanes/EtOAc) to give the title compound as a white 
solid (1.628 g, 7.91 mmol, 92% yield). The spectral data matches that previously reported in the 
literature.7 
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Rf: 0.15 (80:20 hexanes/EtOAc) 
 
1H NMR (400 MHz, Chloroform-d) δ 7.76 (d, J = 7.3 Hz, 2H), 7.61 – 7.38 (m, 3H), 6.09 (s, 1H), 

3.46 (q, J = 6.7 Hz, 2H), 1.61 (h, J = 7.2 Hz, 2H), 1.48 – 1.16 (m, 6H), 0.95 – 0.84 (t, J = 6.5 
Hz, 3H). 

 
13C NMR (126 MHz, Chloroform-d) δ 167.64, 134.89, 131.17, 128.40, 126.97, 40.17, 31.54, 

29.64, 26.71, 22.58, 14.03. 
 
Synthesis of i-PrBiOxNiCl2: 
 

 
 
To a 50 mL oven-dried round-bottom flask with a Teflon-coated magnetic stir bar in a glovebox 
was added NiCl2•DME (91.6 mg, 0.42 mmol, 1.0 equiv) and i-PrBiOx (112 mg, 0.5 mmol, 1.2 
equiv) and DCM (15 mL, 0.03 M). The mixture turned homogenous and reaction was stirred for 4 
hours before stripping the solvent by high vacuum. The brownish residue was then taken up in 3 
mL DCM and Et2O was added to precipitate a white solid, which was filtered off. Pentanes were 
then added to the mother liquor resulting in further precipitation. This precipitate was then washed 
with pentanes and Et2O and dried under high vacuum for 1 hour to give an off-white powder (94.8 
mg, 0.267 mmol, 64%). The powder was dissolved in C6D6 and was observed to be paramagnetic 
by NMR.8 
 
1H NMR (401 MHz, C6D6) δ 23.03 ppm (br, 2H) 19.02 ppm, (br, 2H) 2.63 ppm (br, 3H), 2.00 
(br, 4H), 1.70ppm (br, 6H), and 0.87 ppm (br, 1H). 
 
UV‐Vis (EtOAc, ambient temperature): λmax = 272 nm (4,100 M‐1cm‐1) and 228 nm (3,600 M‐

1cm‐1) 
 
IR (neat, ambient temperature): 1651 cm-1 (C=N) 
 
 

 
4-(tert-butyl)-3-fluoropyridine 1-oxide (S3)  
To an oven-dried round bottom flask under an N2 atmosphere with a Teflon stir bar was added 3-
fluoropyridine (0.26 mL, 3.0 mmol, 1.0 equiv) and DCM (18 mL). TIPSOTf (0.87 mL, 3.2 mmol, 
1.05 equiv) was added dropwise and the reaction was stirred for 15 minutes at rt. Cool solution to 
-78 ºC and 1,4-dioxane (1.14 mL) was added. Then, t-BuMgCl (1.7 M in THF) (7 mL, 12.0 mmol, 
4.0 equiv) was added and the reaction was warmed slowly to rt and stirred 16 h. Reaction was 
quenched with H2O and sat. NaHCO3 and then extracted 3x25 mL DCM. The organic layers were 
dried with 50 mL brine, then over Na2SO4. Organics were concentrated and the crude oil was 
carried on without further purification.  
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The crude oil was then added to a 25 mL round bottom flask under an N2 atmosphere with 
a Teflon stir bar and reflux condenser and dissolved in decaline (6 mL) and S8 (110 mg, 3.3 mmol, 
1.1 equiv) was added, and the reaction was placed under an N2 atmosphere. The solution was stirred 
at 190 ºC for 2 h. Cool reaction and load directly on to silica gel chromatography (2:1 pentane/Et2O, 
Rf: 0.15). Fractions were carefully concentrated via rotary evaporation (product is volatile!) and 
the clear oil was carried on directly to the next step.  

Crude oil from the previous step was added to a 25 mL round bottom flask under an N2 
atmosphere with a Teflon stir bar and DCM (7.5 mL) was added. m-CPBA (1.00g, 3.0 mmol, 1.0 
equiv) was added in a single portion and the reaction was stirred for 16 h. The reaction was partially 
concentrated (avoid concentrating to dryness since m-CPBA should not be completely dry) and 
then loaded on silica gel chromatography (100% EtOAc, then 100% DCM to 90:10 DCM/MeOH) 
to give 396 mg (78% yield over 3 steps) of an off-white powder. 
 
1H NMR (401 MHz, Methanol-d4) δ 8.34 (dd, J = 7.0, 2.0 Hz, 1H), 8.17 – 8.08 (m, 1H), 7.50 (dd, 

J = 9.5, 6.8 Hz, 1H), 1.40 (s, 9H).  
 
13C NMR (126 MHz, Methanol-d4) δ 136.68 (d, J = 3.0 Hz), 130.80, 130.66 – 129.77 (m), 125.71 

(d, J = 7.2 Hz), 35.59, 29.47 (d, J = 3.1 Hz).  
 
19F NMR (377 MHz, Methanol-d4) δ -118.66.  
 
HRMS: (ESI) (m/z): [M+H] calculated for C9H12FNO, 170.0981, found 170.0976.  
 
 

 
2-bromo-4-(tert-butyl)-3-fluoropyridine (S4)  
 
To an oven-dried 1-dram vial under an N2 atmosphere with a Teflon stir bar was added S3 (194 
mg, 1.15 mmol, 1.0 equiv), triethylamine (0.32 mL, 2.3 mmol, 2.0 equiv), and dibromomethane (2 
mL). The reaction was then cooled to -50 ºC and oxalyl bromide (0.22 mL, 2.3 mmol, 2.0 equiv) 
was added dropwise and the reaction was stirred for 30 minutes. The reaction was then quenched 
with MeOH (0.5 mL) and warmed to rt. The organics were washed with sat. NH4Cl (3 mL), H2O 
(3 mL), then dried over MgSO4 and the organics were concentrated. Purification by silica gel 
chromatography (1:1 hexanes/DCM) gave the title compound as a clear oil (238 mg, 89% yield).  
 
Rf: 0.20 (1:1 hexanes/DCM)  
 
1H NMR (401 MHz, Chloroform-d) δ 8.09 (d, J = 5.0 Hz, 1H), 7.18 (t, J = 5.4 Hz, 1H), 1.39 (s, 
9H). 
  
19F NMR (377 MHz, Chloroform-d) δ -109.27. 
 

N

Me Me
Me

F

Br

S4



	 S9	

 
4,4'-di-tert-butyl-3,3'-difluoro-2,2'-bipyridine (S5)  
 
To a round-bottom with equipped with a Teflon-coated magnetic stir bar and equipped to a reflux 
condenser was added Pd(OAc)2 (5.6 mg, 0.025 mmol, 2.5 mol%), indium powder (57 mg, 0.6 
mmol, 0.5 equiv), S4 (232 mg, 1.0 mmol, 1.0 equiv), and LiCl (64 mg, 1.5 mmol, 1.5 equiv). The 
flask was backfilled with N2 three times before adding DMF (2.3 mL, 0.44 M). The reaction was 
heated to 100 ºC for 40 minutes. The flask was cooled to rt and the mixture diluted with 25 mL 
H2O and extracted 3 x 30 mL Et2O, the organics were washed 2 x 50 mL H2O, then dried with 50 
mL brine and then MgSO4 before removing the solvent by rotary evaporation. The crude reaction 
mixture was purified by silica gel chromatography (90:10 hexanes/EtOAc to 1:1 hexanes/EtOAc) 
to give a tan solid (53 mg, 35% yield).  
 
1H NMR (400 MHz, Chloroform-d) δ 8.46 (d, J = 5.0 Hz, 1H), 7.50 – 7.28 (m, 1H), 1.42 (s, 9H). 
 
13C NMR (126 MHz, Chloroform-d) δ 158.35, 146.62, 145.73 (t, J = 2.9 Hz), 122.63, 34.80, 

29.45. 
 
19F NMR (376 MHz, Chloroform-d) δ -121.46. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C18H22F2N2, 305.1829, found 305.1827. 
 
 

 
[Ir(dF(CF3)ppy)2(4,4'-di-tert-butyl-3,3'-difluoro-2,2'-bipyridine)]PF6 (S6)  
 
Using the general procedure for iridium photocatalyst synthesis, cationic iridium acetonitrile adduct 
(168 mg, 0.18 mmol, 1.0 equiv) and S5 (56 mg, 0.189 mmol, 1.05 equiv) were added to a Schlenk 
flask with a Teflon stir bar. DCM (1.8 mL) and EtOH (0.6 mL) were added and the reaction was 
stirred at 50 ºC for 36 h. After the reaction was complete, the solution was filtered through Celite 
and concentrated. Purification by silica gel chromatography (100% DCM to 95:5 DCM/acetone) 
gave the title compound as a yellow powder (193 mg, 93% yield). 
 
1H NMR (401 MHz, Acetone-d6) δ 8.61 (dd, J = 8.9, 2.6 Hz, 1H), 8.42 (dd, J = 8.8, 2.1 Hz, 1H), 
8.15 (dd, J = 5.6, 1.2 Hz, 1H), 7.87 (dt, J = 6.2, 3.3 Hz, 1H), 7.72 (d, J = 2.0 Hz, 1H), 6.86 (ddd, J 
= 12.9, 9.3, 2.3 Hz, 1H), 5.94 (dd, J = 8.5, 2.3 Hz, 1H), 1.49 (s, 9H). 
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13C NMR (176 MHz, Acetone-d6) δ 168.40, 165.98, 164.51, 163.93 (d, J = 13.3 Hz), 162.48, 
161.91 – 160.37 (m), 159.11, 153.99, 152.79, 149.12, 147.22, 144.48, 138.31, 129.23, 127.81, 
126.35, 126.15, 124.77 (d, J = 20.9 Hz), 123.81, 122.27, 115.54 (d, J = 18.0 Hz), 102.07 – 98.38 
(m), 36.46, 29.14. 
 
19F NMR (377 MHz, Acetone-d6) δ -63.48 (d, J = 2.4 Hz), -71.72, -73.60, -104.46, -104.68 (d, J 
= 12.0 Hz), -106.68 – -108.71 (m). 
 
HRMS: (ESI) (m/z): [M+H] calculated for C42H32F12IrN4, 1013.2065, found 1013.2069. 
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III) General Procedures for the a-Arylation of Benzamides: 
 
To an oven-dried 1 dram vial equipped with a Teflon-coated magnetic stir bar in a N2 filled 
glovebox was added [Ir(dF(CF3)ppy)2(4,4’-di-t-buBpy)]PF6 (PC1) (4.4 mg, 0.004 mmol, 0.02 
equiv), NiCl2•DME (2.2 mg, 0.01 mmol, 0.05 equiv), bisoxazoline (BiOx) (1.4 mg, 0.01 mmol, 
0.05 equiv), K3PO4 (85 mg, 0.4 mmol, 2.0 equiv), and benzamide (0.2 mmol, 1.00 equiv) were 
combined and suspended in 1.0 mL of dry, degassed EtOAc at rt. The mixture was stirred for 10 
minutes before adding aryl bromide (1.5 mmol, 7.50 equiv). The vial was sealed with a Teflon cap 
before removing from the glovebox. The reaction was stirred at 900 rpm for 16 h in a 
recrystallization dish filled with water (for cooling) and irradiated with a 34 W blue LED lamp 
placed 1 cm away. Upon completion, the reaction mixture was quenched with 1 mL EtOAc and run 
through a silica gel plug with 5 mL EtOAc. The solvent was removed by rotary evaporation and 
the crude reaction mixture was purified by silica gel chromatography. 
 

  
N-benzhydrylbenzamide (2a) 
 
The general procedure for the a-arylation of benzamides was followed using 1a (42 mg, 0.200 
mmol, 1.00 equiv), PC1 (2.2 mg, 0.002 mmol, 0.01 equiv), NiCl2•DME (4.4 mg, 0.020 mmol, 0.10 
equiv), BiOx (2.8 mg, 0.020 mmol, 0.10 equiv), K3PO4 (85 mg, 0.400 mmol, 2.00 equiv), and 
bromobenzene (156 uL, 1.500 mmol, 7.50 equiv) in 1.0 mL DMAc. Purification by silica gel 
chromatography (100% hexanes to 90:10 hexanes/EtOAc) gave the title compound as a white solid 
(24.1 mg, 0.068 mmol, 18% yield). The spectral data matches that previously reported in the 
literature.9 
 
Rf: 0.25 (80:20 hexanes/EtOAc) 
 
1H NMR (700 MHz, Chloroform-d) δ 7.88 – 7.79 (m, 2H), 7.53 – 7.48 (m, 1H), 7.44 (td, J = 7.8, 

1.9 Hz, 2H), 7.39 – 7.34 (m, 5H), 7.34 – 7.27 (m, 5H), 6.73 (d, J = 7.9 Hz, 1H), 6.46 (d, J = 
7.8 Hz, 1H). 

 
13C NMR (176 MHz, Chloroform-d) δ 166.61, 141.56, 134.34, 131.82, 128.87, 128.75, 127.70, 

127.63, 127.18, 57.57. 
 
 

 
N-(1-phenylethyl)benzamide (2b) 
 
The general procedure for the a-arylation of benzamides was followed using 1b (32 mg, 0.200 
mmol, 1.00 equiv), [Ir(FCF3(CF3)ppy)2(4,4’-di-t-buBpy)]PF6 (5.1 mg, 0.004 mmol, 0.02 equiv), 
NiCl2•DME (2.2 mg, 0.010 mmol, 0.05 equiv), BiOx (1.4 mg, 0.010 mmol, 0.05 equiv), K3PO4 (85 
mg, 0.400 mmol, 2.00 equiv), and bromobenzene (156 uL, 1.500 mmol, 7.50 equiv) in 1 mL 
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EtOAc/DMAc (9:1). Purification by silica gel chromatography (80:20 hexanes/EtOAc) gave the 
title compound as a white solid (18.9 mg, 0.084 mmol, 42% yield). The spectral data matches that 
previously reported in the literature.10 
 
Rf: 0.40 (70:30 hexanes/EtOAc) 
 
1H NMR (700 MHz, Chloroform-d) δ 7.79 – 7.75 (m, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.40 (dd, J = 

14.2, 7.5 Hz, 3H), 7.35 (t, J = 7.6 Hz, 3H), 7.28 (d, J = 7.5 Hz, 1H), 6.48 (d, J = 11.1 Hz, 
1H), 5.34 (p, J = 7.1 Hz, 1H), 1.60 (d, J = 6.9 Hz, 3H). 

 
13C NMR (176 MHz, Chloroform-d) δ 166.69, 143.25, 134.67, 131.55, 128.83, 128.63, 127.53, 

127.05, 126.36, 49.31, 21.84. 
 
 

 
4-methoxy-N-(1-phenylhexyl)benzamide (2d) 
 
The general procedure for the a-arylation of benzamides was followed using 1d (96 mg, 0.400 
mmol, 2.00 equiv), PC1 (4.4 mg, 0.004 mmol, 0.02 equiv), NiCl2•DME (2.2 mg, 0.010 mmol, 0.05 
equiv), BiOx (1.4 mg, 0.010 mmol, 0.05 equiv), K3PO4 (85 mg, 0.400 mmol, 2.00 equiv), TBABr 
(64 mg, 0.200 mmol, 1.00 equiv), and bromobenzene (20.8 uL, 0.200 mmol, 1 equiv) in 1.0 mL 
EtOAc. Analysis by GCFID using tridecane as an internal standard showed 73% yield of the desired 
product. Purification by silica gel chromatography (70:30 hexanes/EtOAc) gave the title compound 
as a white solid (39.6 mg, 0.127 mmol, 64% yield). The spectral data matches that previously 
reported in the literature.11  
 
Rf: 0.35 (70:30 hexanes/EtOAc) 
 
1H NMR (500 MHz, Chloroform-d) δ 7.73 (d, J = 8.5 Hz, 2H), 7.49 – 7.14 (m, 5H), 6.91 (d, J = 

8.6 Hz, 2H), 6.21 (d, J = 8.1 Hz, 1H), 5.15 (q, J = 7.6 Hz, 1H), 3.84 (s, 3H), 2.01 – 1.76 (m, 
2H), 1.50 – 1.20 (m, 6H), 0.86 (t, J = 6.8 Hz, 3H). 

 
13C NMR (126 MHz, Chloroform-d) δ 166.27, 162.28, 142.74, 128.83 (two overlapping peaks), 

127.46, 127.12, 126.78, 113.87, 55.58, 53.96, 36.45, 31.75, 26.13, 22.65, 14.16. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C20H25NO2, 312.1963, found 312.1994. 
 
 

  
N-(2,2-dimethyl-1-phenylhexyl)-4-methoxybenzamide (2f) 
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The general procedure for the a-arylation of benzamides was followed 1f (50 mg, 0.200 mmol, 
1.00 equiv), PC1 (4.5 mg, 0.004 mmol, 0.02 equiv), NiCl2•DME (2.2 mg, 0.010 mmol, 0.05 equiv), 
BiOx (1.4 mg, 0.010 mmol, 0.05 equiv), K3PO4 (85 mg, 0.400 mmol, 2.00 equiv), TBABr (64 mg, 
0.200 mmol, 1.00 equiv), and bromobenzene (156 uL, 1.500 mmol, 7.50 equiv) in 1 mL EtOAc. 
Purification by silica gel chromatography (90:10 to 70:30 hexanes/EtOAc) gave the title compound 
as a white solid (3.8 mg, 0.011 mmol, 6% yield) and recovered 1f (38.6 mg, 0.154 mmol, 77% 
recovery). 
 
Rf: 0.25 (70:30 hexanes/EtOAc) 
 
1H NMR (700 MHz, Chloroform-d) δ 7.75 – 7.68 (m, 2H), 7.42 (d, J = 8.3 Hz, 1H), 7.32 – 7.18 

(m, 5H), 6.93 (d, J = 8.5 Hz, 2H), 6.63 (d, J = 8.4 Hz, 1H), 6.59 (d, J = 9.1 Hz, 1H), 5.05 (d, J 
= 9.1 Hz, 1H), 3.84 (s, 3H), 3.72 (s, 1H), 1.37 – 1.22 (m, 4H), 1.00 – 0.85 (m, 9H). 

 
13C NMR (176 MHz, Chloroform-d) δ 166.21, 162.23, 140.30, 131.14, 128.73, 128.40, 127.94, 

127.47, 127.12, 113.93, 113.56, 60.85, 55.56, 55.45, 41.14, 39.62, 37.55, 29.85, 26.23, 26.20, 
24.22, 23.89, 23.68, 14.28. 

 
HRMS: (ESI) (m/z): [M+H] calculated for C22H29NO2, 340.2276, found 340.2329. 
 
 

 
4-methoxy-N-(1-(o-tolyl)hexyl)benzamide (2g) 
 
The general procedure for the a-arylation of benzamides was followed using 1d (94 mg, 0.400 
mmol, 2.00 equiv), PC1 (4.4 mg, 0.004 mmol, 0.02 equiv), NiCl2•DME (2.2 mg, 0.010 mmol, 0.05 
equiv), BiOx (1.4 mg, 0.010 mmol, 0.05 equiv), K3PO4 (85 mg, 0.400 mmol, 2.00 equiv), TBABr 
(64 mg, 0.200 mmol, 1.00 equiv), and 2-methylbromobenzene (24 uL, 0.200 mmol, 1.00 equiv) in 
1 mL EtOAc. Analysis by 1H NMR using dibromomethane as an internal standard showed 54% 
yield of the desired product. Purification by silica gel chromatography (90:10 to 80:20 
hexanes/EtOAc) gave the title compound as a white solid (27.0 mg, 0.083 mmol, 41% yield). 
 
Rf: 0.40 (70:30 hexanes/EtOAc) 
 
1H NMR (400 MHz, Chloroform-d) δ 7.70 (d, J = 9.0 Hz, 2H), 7.28 (d, J = 7.4 Hz, 2H), 7.23 – 

7.10 (m, 3H), 6.88 (d, J = 8.8 Hz, 2H), 6.17 (d, J = 8.1 Hz, 1H), 5.36 (q, J = 7.6 Hz, 1H), 3.81 
(s, 3H), 2.43 (s, 3H), 1.84 (tdd, J = 15.3, 11.3, 5.7 Hz, 1H), 1.28 (p, J = 11.8 Hz, 6H), 0.84 (t, 
6.6 Hz, 3H). 

 
13C NMR (100 MHz, Chloroform-d) δ 166.12, 162.24, 140.89, 136.44, 130.89, 128.79, 127.26, 

127.03, 126.40, 125.04, 113.84, 55.54, 50.03, 36.20, 31.84, 26.20, 22.67, 19.63, 14.18. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C21H27NO2, 326.2120, found 326.2125. 
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4-methoxy-N-(1-(4-(trifluoromethyl)phenyl)hexyl)benzamide (2h) 
 
The general procedure for the a-arylation of benzamides was followed using 1d (47 mg, 0.200 
mmol, 2.00 equiv), PC1 (2.2mg, 0.002 mmol, 0.02 equiv), NiCl2•DME (1.1 mg, 0.005 mmol, 0.05 
equiv), BiOx (0.7 mg, 0.005 mmol, 0.05 equiv), K3PO4 (47 mg, 0.200 mmol, 2.00 equiv), TBABr 
(32 mg, 0.100 mmol, 1.00 equiv), and 4-bromobenzotrifluoride (14 uL, 0.100 mmol, 1.00 equiv) 
in 0.5 mL EtOAc. Analysis by 1H NMR using dibromomethane as an internal standard showed 
71% yield of the desired product. Purification by silica gel chromatography (90:10 to 80:20 
hexanes/EtOAc) gave the title compound as a white solid (24.1 mg, 0.064 mmol, 64% yield). The 
spectral data matches that previously reported in the literature.11 
 
Rf: 0.40 (70:30 hexanes/EtOAc) 
 
1H NMR (500 MHz, Chloroform-d) δ 7.85 (d, J = 8.0 Hz, 2H), 7.77 – 7.57 (m, 2H), 7.28 (q, J = 

4.5 Hz, 1H), 6.45 (d, J = 7.9 Hz, 1H), 5.15 (q, J = 7.7 Hz, 1H), 2.04 – 1.82 (m, 2H), 1.44 – 
1.14 (m, 8H), 0.86 (t, J = 6.7 Hz, 3H). 

 
13C NMR (126 MHz, Chloroform-d) δ 165.58, 142.14, 138.09, 133.41, 133.15, 128.93, 128.23, 

127.71, 127.54, 126.76, 125.71 (q, J = 3.6 Hz), 123.78 (q, J = 272.3 Hz), 54.40, 36.26, 31.68, 
26.13, 22.63, 14.13. 

 
19F NMR (377 MHz, Chloroform-d) δ -63.03. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C21H24F3NO2, 380.1837, found 380.1893. 
	
	

 
methyl 4-(1-(4-methoxybenzamido)hexyl)benzoate (2i) 
 
The general procedure for the 𝛼-arylation of benzamides was followed using 1d (47 mg, 
0.200 mmol, 2.00 equiv), PC1 (2.2 mg, 0.004 mmol, 0.02 equiv), NiCl2 •DME (1.1 mg, 
0.005 mmol, 0.05 equiv), BiOx (0.7 mg, 0.005 mmol, 0.05 equiv), K3PO4 (44 mg, 0.200 
mmol, 2.00 equiv), TBABr (32 mg, 0.100 mmol, 1.00 equiv), and methyl-3-bromobenzoate 
(22 mg, 0.1 mmol, 1.00 equiv) in 0.5 mL EtOAc. Analysis by 1H NMR using 
dibromomethane as an internal standard showed 75% yield of the desired product. 
Purification by silica gel chromatography (100% hexanes to 90:10 hexanes/Acetone) gave 
the title compound as a white solid (24.7 mg, 0.067 mmol, 67% yield).  
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Rf: 0.10 (10:90 Hexane/Acetone) 
 
1H NMR (600 MHz, CDCl3-d) δ 7.99 (d, J = 8.4 Hz, 2H), 7.73 (d, J = 8.8 Hz, 2H), 7.40 (d, J = 

8.4 Hz, 2H), 6.90 (d, J = 8.8 Hz, 2H), 6.35 (d, J = 7.9 Hz, 1H), 5.16 (q, J = 7.5 Hz, 1H), 3.89 
(s, 3H), 3.83 (s, 3H), 1.92 – 1.81 (m, 2H), 1.43 – 1.22 (m, 6H), 0.85 (t, J = 6.8 Hz, 3H). 

 
13C NMR (151 MHz, CDCl3-d) δ 166.86, 166.30, 162.26, 148.00, 129.99, 129.09, 

128.73, 126.60, 126.55, 113.76, 55.41, 53.68, 52.07, 36.24, 31.50, 25.90, 22.46, 
13.97. 

 

HRMS: (ESI) (m/z): [M+H] calculated for C22H27NO4, 370.2018, found 370.1994. 
	
	

 
methyl 3-((1-phenylhexyl)carbamoyl)benzoate (2j) 
 
The general procedure for the a-arylation of benzamides was followed using 1g (106 mg, 0.400 
mmol, 2.00 equiv), PC1 (4.4 mg, 0.004 mmol, 0.02 equiv), NiCl2•DME (2.2 mg, 0.010 mmol, 0.05 
equiv), BiOx (1.4 mg, 0.010 mmol, 0.05 equiv), K3PO4 (85 mg, 0.400 mmol, 2.00 equiv), TBABr 
(64 mg, 0.200 mmol, 1.00 equiv), and bromobenzene (21 uL, 0.200 mmol, 1.00 equiv) in 1 mL 
EtOAc. Analysis by 1H NMR using dibromomethane as an internal standard showed 58% yield of 
the desired product. Purification by silica gel chromatography (70:30 hexanes/EtOAc) gave the title 
compound as a white solid (37.6 mg, 0.092 mmol, 46% yield). 
 
Rf: 0.35 (80:20 hexanes/EtOAc) 
 
1H NMR (400 MHz, Chloroform-d) δ 8.35 (s, 1H), 8.14 (d, J = 7.6 Hz, 1H), 8.03 (d, J = 7.8 Hz, 

1H), 7.51 (t, J = 7.8 Hz, 1H), 7.40 – 7.30 (m, 5H), 7.28 (d, J = 3.1 Hz, 1H), 6.44 (d, J = 8.2 
Hz, 2H), 5.17 (q, J = 7.6 Hz, 2H), 3.93 (s, 3H), 1.93 (dq, J = 16.4, 9.4, 7.1 Hz, 2H), 1.33 (m, 
6H), 0.86 (t, J = 6.7 Hz, 3H). 

 
13C NMR (176 MHz, Chloroform-d) δ 166.55, 165.69, 142.26, 135.08, 132.52, 132.14, 130.54, 

129.08, 128.91, 127.66, 127.48, 126.84, 54.30, 52.57, 36.26, 31.71, 26.16, 22.65, 14.17. 
 
HRMS: (ESI) (m/z): [M+H] calculated for C21H25NO3, 340.1912, found 340.1913. 
 
 

 
N-(1-phenylhexyl)benzamide (2k) 
 
The general procedure for the a-arylation of benzamides was followed using 1h (86 mg, 0.400 
mmol, 2.00 equiv), PC1 (4.4 mg, 0.002 mmol, 0.01 equiv), NiBr2•DME (6.2 mg, 0.020 mmol, 0.10 
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equiv), 5,5’-diMeBpy (5.5 mg, 0.030 mmol, 0.15 equiv), K3PO4 (85 mg, 0.400 mmol, 2.00 equiv), 
TBABr (64 mg, 0.200 mmol, 1.00 equiv), and bromobenzene (21 uL, 0.200 mmol, 1.00 equiv) in 
1 mL 1,4-dioxane. Purification by silica gel chromatography (100% hexanes to 85:15 
hexanes/EtOAc) gave the title compound as a white solid (37.1 mg, 0.132 mmol, 66% yield). The 
spectral data matches that previously reported in the literature.11 
 
Rf: 0.60 (70:30 hexanes/EtOAc) 
 
1H NMR (500 MHz, Chloroform-d) δ 7.76 (d, J = 7.6 Hz, 2H), 7.48 (t, J = 7.5 Hz, 1H), 7.41 (t, J 

= 7.5 Hz, 2H), 7.38 – 7.31 (m, 5H), 7.27 (d, J = 8.0 Hz, 1H), 6.40 (d, J = 9.2 Hz, 1H), 5.16 
(q, J = 7.7 Hz, 1H), 1.90 (ddt, J = 23.5, 16.9, 8.3 Hz, 2H), 1.33 (q, J = 19.6, 11.8 Hz, 6H), 
0.86 (t, J = 6.3 Hz, 3H). 

 
13C NMR (126 MHz, Chloroform-d) δ 166.79, 142.56, 134.82, 131.53, 128.81, 128.65, 127.48, 

127.03, 126.75, 54.06, 36.38, 31.71, 26.12, 22.63, 14.15. 
 
 
 

 
 
To a suspension of KH (50% w/w in paraffin) (80.2 mg, 1.0 mmol, 1.0 equiv) in 5 mL DMF at 0 
ºC was added dropwise a solution of 1d (235 mg, 1.0 mmol, 1.00 equiv) in 5 mL DMF. The reaction 
was stirred at 0 ºC for 30 min, then warmed to 23 ºC for 30 min. The solution was used without 
purification.10  
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IV) Controls, Additive Screening, and Mechanistic Insights: 
 
We did not observe any regioisomers or olefin byproducts in our reaction that would suggest 
capture of a distal radical or b-hydride elimination/ reinsertion of a metal hydride.  
 
 

  
Discussion: α-arylation is still observed in substrates where a 1,5-HAT and/or chain walking is not 
possible such as N-benzylbenzamide or substrates containing a gem-dimethyl group in the alkyl 
chain. We believe the yield for the latter case is low due to sterics. 
 

 
Discussion: The Rovis group found that potassium salts of triflamides are viable substrate for α-
alkylation, and CV studies suggest direct oxidation of their substrate by the photocatalyst was a 
viable pathway. However, when testing the potassium salt of our benzamide, no product is observed 
suggesting that deprotonation of benzamide is not a viable pathway for α-amidyl radical 
formation.12 
 

 
Discussion: Use of a more soluble phosphate base did not lead to any product formation. This could 
suggest that the role of the base is to sequester acid generated during reaction. The lack of reactivity 
might be due to competitive association of phosphate with the photocatalyst, as observed by 
Knowles and Alexanian with related iridium photocatalysts.11 
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Discussion: Using conditions previously developed for the arylation of benzamides using a 
NiBr2•DME/ 5,5’-diMeByp catalytic system, modest increases in yield were observed. 
 
 

	
entry Deviation from above % yield a 

1 none 70 
2 10% TBAB 62 
3 NiBr2•dme, no TBAB 50 
4 NiBr2•dme, 1 eq TBAB 75 

a Reaction was carried out with 0.20 mmol PhBr, 0.40 mmol benzamide. Yield determined by 1H 
NMR using dibromoethane as an internal standard. 
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Discussion: The Knowles and Alexanian groups found that hydrogen-bonding of an HAT agent to 
the photocatalyst was necessary for C–H PCET to occur in specific systems. Blocking the 3,3’-
positions of a bipyridyl ligand on their photocatalyst resulted in no formation of product. When 
testing this hypothesis in our system, we observed some product formation when using a 
photocatalyst (S6) that was not able to engage in hydrogen bonding at the 3,3’-positions of a 
bipyridyl ligand. Based on these results, we hypothesis that hydrogen bonding is not necessary for 
productive catalysis to occur, though it may serve to more effectively generate an HAT agent 
through favorable complexation and electron transfer. Furthermore, the exceedingly low solubility 
of K3PO4 in EtOAc makes phosphate an unlike HAT agent in this reaction.13 
 

Conditions:
1) EtOAc, K3PO4
2) DMF, Cs2CO3
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CV data: 
Cyclic voltammetry was performed in a nitrogen-filled glovebox with a Biologic VSP 

multichannel potentiostat/galvanostat using a three electrode electrochemical cell, consisting of a 
glassy carbon disk working electrode (0.07 cm2, BASi), a Ag/Ag+ quasi-reference electrode (BASi) 
with 0.01 M AgBF4 (Sigma) in acetonitrile, and a platinum wire counter electrode (ALS). The 
glassy carbon disk electrode was polished in a nitrogen-filled glovebox using aluminum oxide 
polishing paper (9 micron and 0.3 micron, Fiber Instrument) and anhydrous acetonitrile. All 
experiments were run in the 0.5 M TBAPF6 stock electrolyte with a scan rate of 100mV/s. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Figure S1: CV of 1d 
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Ir(III/II)= -1.42V vs Ag/Ag+ (-1.12V vs SCE)  
Ir(III/IV)= 1.15V vs Ag/Ag+ (1.45V vs SCE)  
Ir(III*/II)= 1.16V vs Ag/Ag+ (1.47V vs SCE)  
Ir(III*/IV)= -1.43 vs Ag/Ag+ (-1.13V vs SCE) 
 
Discussion: 

The starting material, 1, and product, 1a, are both outside the oxidation potential of our 
photocatalyst, suggesting that a direct oxidation of 1 or 1a to yield an α-amidyl radical is not 
feasible. The oxidation potential of 1 does not change when an equal concentration of catalyst, 
29, was added. Lastly, 29 was shown to be within the range of reduction for our photocatalyst,  
  

Figure S2: CV of 2d 
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Figure S3: CV of i-PrBiOxNiCl2 
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Figure S4: CV of 1d and i-PrBiOxNiCl2 
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Ir(III/II)= -1.42V vs Ag/Ag+ (-1.12V vs SCE)  
Ir(III/IV)= 1.15V vs Ag/Ag+ (1.45V vs SCE)  
Ir(III*/II)= 1.16V vs Ag/Ag+ (1.47V vs SCE)  
Ir(III*/IV)= -1.43 vs Ag/Ag+ (-1.13V vs SCE)   
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VI) Stern-Volmer Quenching Experiment 
Stern-Volmer studies were carried out with a Horiba PTI QuantaMaster 8000. The standard 

solutions were prepared in EtOAc in a nitrogen-filled glovebox and sealed with a Teflon-lined cap 
prior to removing. The solutions (0.01 mM PC1 photocatalyst and varying concentrations of 
benzamide, PhBr, iPrBiOxNiCl2, and TBABr) were irradiated at 380 nm and luminescence was 
measured at 470 nm. I0/I values were determined from the average of three runs per quencher 
concentration. Potassium phosphate was not sufficiently soluble in EtOAc in order to run this 
analysis. 
  

amide conc. 0 0.6667mM 1.3333mM 2.0000mM 2.6667mM 3.3333mM 
Io/I 1 1.006289051 1.016982421 1.048302737 1.028892087 1.041263284 
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Figure S5: Quenching experiments with constant PC1 and varied 1d 
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PhBr conc. 0 6.6667mM 13.3333mM 20.0000mM 26.6667mM 33.3333mM 
Io/I 1 0.995529451 0.993125325 1.001485081 1.005943129 1.015730284 

 
  

Ni(II) conc. 0 0.4505mM 0.9010mM 1.3516mM 1.8021mM 2.2527mM 
Io/I Run 1 1 1.548728128 1.9748611 2.556606257 3.090001208 3.575230128 
Io/I Run 2 1 1.549864056 2.114234165 2.580339342 3.126187733 3.375772646 
Io/I Run 3 1 1.547807227 2.020428729 2.568158825 3.344921814 3.424462848 
Average 1 1.548799803 2.036507998 2.568368141 3.187036918 3.458488541 

y	=	0.5068x	+	0.9935
R²	=	0.6073

0
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Figure S6: Quenching experiments with constant PC1 and varied bromobenzene 
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Figure S7: Quenching experiments with constant iridium and varied iPrBiOxNiCl2 
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TBABr conc. 0 0.0002mM 0.0004mM 0.0006mM 0.0008mM 0.001mM 
Io/I Run 1 1 6.24154696 16.2213235 28.7356699 46.2204003 57.9773198 
Io/I Run 2 1 6.20156044 16.2949751 28.6717123 47.0402301 58.8707863 
Average 1 6.2215537 16.2581493 28.7036911 46.6303152 58.4240531 

 
Discussion: Stern-Volmer experiments show that 1d and bromobenzene do not quench the 
photocatalyst. i-PrBiOxNiCl2 and TBABr shows quenching by our photocatalyst. This is 
unsurprising since i-PrBiOxNiCl2 and TBABr are within the reduction potential of PC1. From this 
data we are unable to discern to what extent i-PrBiOxNiCl2 and TBABr respectively quench PC1 
in the reaction, though the high quenching constant of TBABr suggests that this is a more likely 
pathway. This data also suggests that i-PrBiOxNiCl2 quenches PC1 in the absence of TBABr, 
which explains why productive catalysis is observed in the absence of TBABr. The poor solubility 
of K3PO4 in EtOAc prohibited us from measuring any Stern-Volmer quenching. 
 
  

y	=	53496x	+	1
R²	=	0.9747
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VII) NMR Titration Studies 
 
The concentration of iridium-bromide complex in solution was calculated through measuring the 
change in 1H NMR in acetone-d6 of the 3,3’-position of the bipyridyl ligand on iridium (δ) and the 
chemical shift without any bromide (δ0). [Ir+ ]0 is the concentration of iridium added to solution, 
and [Br– ]0 is the concentration of TBABr added to the solution. The equilibrium constants at several 
concentrations were then calculated and averaged to give the Keq for iridium-bromide 
complexation.13 
 

𝛿 = 	
[𝐼𝑟!, 𝐵𝑟–] ×	𝛿#$%&' + ([𝐼𝑟!]( −	[𝐼𝑟!, 𝐵𝑟–]) × 𝛿(

[𝐼𝑟!](
 

 
 

𝐾)* =	
[𝐼𝑟!, 𝐵𝑟–]

([𝐼𝑟!]( −	[𝐼𝑟!, 𝐵𝑟–]) 	× ([𝐵𝑟–]( − [𝐼𝑟!, 𝐵𝑟–])
 

 
 
 

 
 
 

equiv TBABr NMR shift (ppm) change in ppm   [Ir+,Br-] Keq 
0.00 8.93 0.00       
0.31 9.07 0.14   0.00043675 1524.575056 
0.50 9.10 0.17   0.00053034 782.3765411 
1.15 9.23 0.30   0.00093589 648.9742213 
2.05 9.32 0.39   0.00121665 542.0392478 
3.07 9.39 0.46   0.00143503 542.928503 
5.30 9.48 0.55   0.00171579 687.1718 

10.17 9.57 0.64   0.00199656   
            
        Average 788.0108949 

 

y	=	0.1494ln(x)	+	9.221
R²	=	0.9943
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VIII) UV-Vis Titration Studies 
 
UV-Vis studies were carried out with a Varian, Cary 100 Bio UV-Vis Spectrometer.  

 
 

 
 
Discussion: 

 
UV-Vis shows that 29 does not strongly absorb light in the blue region. Similarly, there is 

no effect on PC1 when near equal molar quantities of 29 are present. 
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Discussion: To test the possibility of a multi-site C–H PCET in our system, we first undertook UV-
Vis titration experiments to see if it was feasible for a base to coordinate to the bipyridyl of PC1. 
Due to the poor solubility of K3PO4 in our reaction media, and the lack of reactivity observed with 
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more soluble potassium salts such as (NBu4)2OP(O)(OPh) and NBu4OP(O)(OBu)2, we opted to 
probe the complexation between Cs2CO3 and PC1. During our optimization we found that, when 
substituting K3PO4 for Cs2CO3, the desire product was formed, albeit in slightly lower yields), 
which led us to believe this would be a fair comparison. When performing UV-Vis titration 
experiments with Cs2CO3 and PC1, little change was observed in the MLCT region (350-450 nm). 
This is contrary to the studies done by Knowles and Alexanian, which show large changes in 
absorption in this region when titrating NBu4OP(O)(OBu)2 and PC2.13 
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IX) NMR Spectra of Starting Material:  
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X) NMR Spectra of Products:  
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