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S1. Supplemental Methods 

S1.1 Problem formulation 

The DDI prediction task is to develop a computational model that receives two 

drugs with an interaction type as inputs and generates an output prediction indicating 

whether there exists an interaction between them. Formally, given a set of drugs  , a 

set of interaction types 1{ }i i
KI  , and a dataset 1{( , , )}N

x y id d r  , where xd  and 

yd  are sampled from   with interaction type r , and K  is the total interaction 

types and N   is the sample numbers, our goal is to find a model 

: {0,1}f       that maps the input into the binary decision. 

S1.2 Input representation 

The model takes DDI tuples ( , , )x yd d r  as input. A drug d  is represented as a 

molecular graph ( , )    , where   is the set of nodes and    is the set of 

edges/bonds. In a molecule, iv   is the i -th atom and ije   is the chemical bond 

between i  -th and j  -th atoms. Each node iv   has a corresponding feature vector 

d
ix   and each edge/bond ije  has a feature vector d

ijx  . The features used for 

atoms and bonds can be found in Tables S1 and S2 of ESI. 

S1.3 Directed message passing neural network for substructures extraction 

The D-MPNN1 is a variant of the generic message passing neural network 

(MPNN)2 architecture. Therefore, we first introduced the MPNN and then generalized 

it to D-MPNN.  

S1.3.1 Message passing neural network 

The MPNN is some type of GNN that maps an undirected graph  to a graph-



S3 
 

level vector h   usually with a message passing phase and a readout phase. The 

message passing phase updates each node by considering its neighboring nodes, and 

the readout phase computes a graph-level feature vector h   for the whole graph. 

Concretely, the message passing phase consists of T steps. On each step t , node-level 

hidden features ( )
i

th   and messages ( )t
im   associated with each node iv   are updated 

using the message function tM  and node update function tU  according to 

 1 ( ) ( )

( )

( , , )
j i

t t t
i t i j ij

v N v

m M h h e



   (1) 

( 1) ( ) ( 1)( , )t t t
i t i ih U h m   (2) 

where ( )iN v  represents the set of neighbors of iv  in the graph , and (0)
ih  is set to 

the initial atom features ix  . The readout phase then uses a readout function R   to 

obtain a graph-level feature vector based on the node-level features at the final step as 

follows 

 ( )({ | })T
i ih R h v    (3) 

The message function tM , node update function tU , and readout function R  are all 

learned differentiable functions.  

S1.3.2 Directed message passing neural network 

 In the MPNN, every node will have received a message from all of its neighbors. 

However, such a mechanism is likely to introduce noise into the graph representation1.  

Using Figure S1 (a) as an illustration, in node-level message passing, the node 1v  

aggregates the message from its neighbors (i.e., 2v , 3v , and 4v ); however, in the next 

iteration, the message of the node 1v  will be propagated to the node 4v  that already 

contains the information of node 1v   in the previous iteration, which creates an 
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unnecessary loop in the message passing trajectory. 

 The D-MPNN propagates messages along with directed bonds instead of nodes, as 

shown in Figure S1 (b). To highlight the difference between ije   and jie   (i.e., two 

different directions of a bond), we renamed them as i je   and j ie  . Formally, the D-

MPNN operates on bond-level hidden features ( )t
ijh   and messages ( )t

ijm   instead of 

( )t
ih  and ( )t

im  used in MPNN. Note that ( )t
ijh  and ( )t

ijm  are distinct from ( )t
jih  and 

( )t
jim , where the former is bond-level features along with the bond i je   while the latter 

are bond-level features along with the bond j ie  . The corresponding message passing 

update equations are thus  

 ( 1) ( )

( )\

( , , )
k i j

t t
ij t k i ki

v N v v

m M v v h



   (4) 

( 1) ( ) ( 1)( , )t t t
ij t ij ijh U h m   (5) 

Note that ( 1)t
ijm    does not depend on its reverse message ( )t

jim   from the previous 

iteration, which leads to a more efficient message passing compared with MPNN1. We 

implemented functions tM  and tU  as follows 

 ( ) ( )( , , )t t
t i j ij ijM v v h h  (6) 

( ) ( 1) (0) 1( , )t t t
t ij ij ij ijU h m h m    (7) 

Note that Equations (6) and (7) do not apply any transformations to feature vectors at 

each iteration t , which can be viewed as an instance of the concept of simplifying 

graph convolutions3. Besides, we proposed to initialize the bond-level hidden features 

as 

 (0)
ij i i j j ij ijh W x W x W x    (8) 

where h d
iW  , h d

iW  , and h d
ijW    are learnable weight matrices. After T  
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times updates of bond-level hidden features, we returned to the node-level hidden 

features of the molecule by summing the incoming bond-level features according to the 

following: 

 ( ) ( )

( )j i

T T
i ji

v N v

h h


   (9) 

The readout phase of the D-MPNN is the same as the readout phase of a generic MPNN 

as described in Equation (3). The original D-MPNN used a global sum pooling function 

to obtain the graph-level representation h  for a given molecule/graph . 
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S2. Supplemental Tables 

Table S1. Atom features. 

Name Description Dim 

Atom type Heavy atom type (e.g., C, O, N, S, I) 
Total number of heavy 

atoms in the dataset* 

Degree 
Number of covalent bonds [0, 1, 2, 3, 4, 5, 6, 

7, 8, 9, 10]  
11* 

Implicit valence 
Implicit valence of the atom [0, 1, 2, 3, 4, 5, 

6,]  
7* 

Hybridization [sp, sp2, sp3, sp3d, sp3d2]  5* 

Aromatic 
Whether the atom is part of an aromatic 

system 
1 

Formal charge Formal charge of the atom 1 

Radical electrons Number of radical electrons for the atom  1 

*One-hot representation 

 

Table S2. Bond features. 

Name Description Dim 

Bone type [single, double, triple, aromatic] 4* 

Conjugated 
Whether the bond is part of a conjugated 

system 
1 

Ring Whether the bond is part of a ring 1 

*One-hot representation 

 

Table S3. Search range and selected values of hyperparameters for SA-DDI. 

Hyperparameter Search range Selected value 

Number of iterations T  [1, 2, 3, 4, 5, 6, 10, 15, 20, 25] 10 

Number of hidden units for ih / ijh  [32, 64, 128] 64 

Learning rate  [1e-4, 5e-4, 1e-3, 1e-2] 1e-3 
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S3. Supplemental Figures 

 

Figure S1. The difference between MPNN and D-MPNN. The messages are propagated through (a) 

nodes for MPNN and (b) bonds for D-MPNN.  
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Figure S2. Distribution of DDI types of the (a) DrugBank dataset and (b) TWOSIDES dataset. 
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Figure S3. Visualization of the key substructures for DDIs (a) between dicoumarol and milnacipran, 

thiamylal, and (b) between apo-carbamazepine and cimetidine, verapamil. 
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Figure S4. Visualization of the key substructures for DDIs between dicoumarol and the other seven 

drugs using the cold start setting which removes dicoumarol from the training set. The center of the 

most important substructure and its receptive field are shown as blue and orange colors respectively. 

 


