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1.  Summary of experimental data of glycerol hydrogenolysis on Cu-based catalyst 
 

Table S1 Representative experimental data of glycerol hydrogenolysis on Cu-based catalysts 

Catalyst Conversion (%) 1,2-PDO HA EG 1,3-PDO 

Cu/Al2O3
1 100 96.1 0.8 2.2 - 

Raney Cu2 100 95.0 0.5 1.9 0 

Cu/SiO23 100 98.3 - - - 

Cu/MMO4,7 38.9 90.9 - ~5 - 

Cu-H4SiW12O40/SiO2 
5 83.4 22.2 2.9 - 32.1 

Cu-WOx-TiO2
6 12.7 27.6 - - 32.3 

1. Ref. 1: Reaction conditions: Gradient temperatures, 200–130 ℃, 1atm 

2. Ref. 2: Reaction conditions: 205 ℃, 14 atm 

3. Ref. 3: Reaction conditions: 200 °C, 50 atm 

4. Ref. 4: Reaction conditions: 200 °C, liquid phase glycerol and 2.0 MPa of H2 pressure 

5. Ref. 5: Reaction conditions: 210 °C, 5.4 atm 

6. Ref. 6: Reaction conditions: 180 °C, 35 atm, liquid phase glycerol (10 % wt) 

7. Ref. 4: MMO: mixed metal oxides (CuMgAl–MMO) 
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2. SSW-NN method for dataset generation and G-NN potential training  

2.1 Architecture of G-NN potential and the double-net architecture 

Figure S1. Scheme for the HDNN architecture. The subscripts (1, i and N) are atom indices, representing the total 

number of atoms in a structure. The inputs to NN are a set of structural descriptors {G} constructed from the 

Cartesian coordinates {R} of the structure, and the outputs are the atomic properties { Ei, Fi, Si }, i.e. energies, forces 

and stresses. The overall properties Etot, Ftot, and Stot are calculated from the individual atomic contribution. 

 

Our LASP code (website: www.lasphub.com) utilized the high dimensional neural network (HDNN) scheme 

to construct the global NN (G-NN) potential7–10, as shown in Figure S1. The input nodes to NN are a set of power-

type structural descriptors {Gi} for a structure, as proposed in our previous works9,10. The total energy Etot is 

decomposed as a linear combination of atomic energy Ei from the output of NN 

𝐸!"! = ∑ 𝐸##                               (S1) 

The atomic force can be analytically derived according to Eq. S2, where the force component Fk,a (α=x, y or z) 

acting on atom k is the derivative of total energy with respect to the coordinate Rk,a. In combination with Eq. 1, the 

force component could be further related to the derivatives of the atomic energy with respect to jth structural 

descriptors of atom i, Gj,i 
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Similarly, the element σαβ of static stress tensor matrix can be analytically derived as 
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where rd and rd are the distance vector constituting Gj,i and its module, respectively, and V is the volume of the 
structure.  

In this work, we utilized the recently-proposed double-net architecture10 for constructing the Cu-C-H-O G-NN 

potential. This approach can inherite the previous trained C-H-O G-NN potential and reuse the related dataset. In 

the training of Cu-C-H-O G-NN potential, the G-NN potential for C-H-O is incorporated as the auxiliary NN to the 

four element Cu-C-H-O NN, where the total energy is now expanded as the sum of the atomic energy from both NN. 

The main advantage of the double-net approach is the reusage of the previously obtained G-NN potentials and thus 

the reduction in the training time of the new G-NN with more elements. By this approach, the double-network 

potential is composed of two set of NNs for C, H and O elements and only one NN for Cu element.  

 
2.2 Dataset generation and self-learning of G-NN potential  

Undoubtedly, the training dataset largely determines the quality of the potential energy surface (PES) of G-NN. 

Our previous works have shown that, the stochastic surface walking (SSW) global optimzation11,12 can fast 
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generate a global PES dataset, which incorporates different structural patterns on the global PES. Because the vast 

reaction space of heterogenous reactions, we design an automated procedure for self-learning G-NN potential, not 

only for relatively simple small molecules (with C, H, O elements) but also for glycerol hydrogenolysis reactions. 

The procedure is elaborated in the following. 

Step 1: Building the initial NN potential The first dataset for Cu-C-H-O is inherited from our previous SW 

global sampling data for simple reactions on Cu surfaces (~10000 structures) and organic reactions (~12000 

structures, on which the C-H-O NN was previously trained)10. By carrying out DFT calculations on these data, we 

trained the first double-net NN potential for Cu-C-H-O system. 

Step 2: Self-learning of G-NN potential Using the NN potential generated from the first step, we can accelerate 

greatly the PES sampling of organic molecules, which provide the chance to sample the reaction space of small 

molecules and glycerol. In the iterative self-learning procedure, the SSW global optimization using G-NN potential 

is utilized to expand the PES dataset and the G-NN potential is then gradually improved by learning the new dataset 

from SSW global optimization. For each cycle, a small additional dataset, less than 500 structures, is obtained from 

the SSW sampling trajectories, containing the structures on PES either randomly selected or exhibiting unknown 

atomic environment that are labelled as exotic structures. More than 100 cycles are performed to finally generate the 

Cu-C-H-O quaternary G-NN potential. 

The exotic structures produced from SSW trajectory are often poorly predicted ones from the NN potentials. They 

need to be added to the training dataset to improve NN predictability. These structures are found to have either one 

or all of the following features: (i) the value of the structural descriptor for these structures is out of the boundary 

defined by existing structures in the train dataset, (ii) the second derivative (frequency) of the structure is either too 

high or too low, and (iii) the energy (per atom) of the structure is far higher or lower than the structures in the dataset. 

For example, these structures often have highly unreasonable geometry, such as very high coordination, very short 

bond distance or a ring structure with too high tension. While these structures are generally not low energy minima, 

they define the high energy boundary of the PES and thus are essential in practical simulations to be avoided. 
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3. Methodology for reaction rule extraction 
The reaction rules are automatically extracted from the reaction data collected from SSW-NN simulation. We 

followed the shell-based scheme to extract reaction rules as described by Christ al.13, and Saller and coworkers14, 

and an example is illustrated in Figure S2. A reaction rule contains (i) the reaction centers (O1 and H2), which 

include the atoms and bonds changed in the reaction; (ii) the atoms that are the first neighbors to atoms in the reaction 

center (the C atom attached to O1). It should be noted that, for the same reasons in generating s-ECFP, all H atoms 

are explicitly represented and treated as the same as heavy atoms. In this work, the same reaction rule that occurs at 

least two times in rule dataset will be finally recorded in the reaction database, leading to 5575 rules in total for 

molecular reaction on Cu surfaces. 

 

 
  

 
Figure S2. The algorithmic rule extraction scheme as illustrated by the example of the HCOO+Hà HCOOH 
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4. Training of NN models for R-Pat and K-info units 
In training NN models for R-Pat and K-info units, we utilize the keras API as implemented in Tensorflow15. 

The hyperparameters in training R-Pat NN are as follows, number of hidden layers: 2 (512 nodes per layer); 

Activation function: elu; Dropout fraction 0.2; Loss function type: categorical cross entropy; Optimizer: Adam 

optimizer (step size 0.001); Batch size: 128. The hyperparameters in training K-Info NN are as follows, Number of 

hidden layers: 2 (256 nodes per layer); Activation function: sigmoid; Dropout fraction 0.2; Loss function type: Mean 

squared error; Optimizer: Adam optimizer (step size 0.001); Batch size: 128. The learning curve is plotted in Figure 

S3. 

  

 

Figure S3. The learning curve of two NN models. A) R-Pat NN B) K-Info NN. 
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5. Reaction database analysis for catalytic reactions on Cu surfaces 

To give an overview of the reaction data, we applied the principal components analysis (PCA) on the dataset, 

which examines the distinction between data. The PCA results projected onto the leading principal components (PC1 

to PC3) are shown in Figure S4a and b. Figure S4a shows the results for 7776 reactants, where the input vectors of 

R-Pat unit are utilized as the basis in PCA. It is found that similar data points tend to cluster with each other, 

demonstrating our descriptors can distinguish different reactants. PC1 reflects majorly the difference in carbon atom 

numbers of reactants according to the chemical formula of the largest fragment in reactants, as labelled by different 

color points. The points at the right-bottom corner correspond solely to the reactants with CO molecule (C1). In 

addition, PC2 distinguishes the local chemical environment of these molecules, where the type of coadsorbate and 

the surface coverage make the difference. Similarly, Figure S4b illustrates the PCA results for 6225 simple 

dissociation reactions on Cu surfaces by using the s-ECFP of reaction center atoms as the basis in PCA. These 

dissociation reactions involve only one chemical bond breaking at the TS and thus contain only two reaction center 

atoms. The data points in different colors in Figure S4b correspond to different chemical bond in dissociation. Not 

surprisingly, similar reactions tend to cluster, suggesting s-ECFP4 can distinguish different reaction center. For the 

H-H bond breaking, all reaction patterns are the same and thus only yields one point (red), while the C-O and C-C 

  
Figure S4 Reaction database for catalytic reactions on Cu surfaces (A) Principal components analysis (PCA) for reactants of 
reaction database; (B) PCA for reaction patterns of reaction database; (C) the BEP relations between the reaction barrier and the 
reaction energy for twelve different reactions on Cu surfaces using 6225 simple dissociation reactions in the reaction database; 
(D) the AI-Cat predicted profile for the lowest energy pathway of CO+H2O reaction on Cu(111) as compared with that from DFT.  
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bond breaking reactions are more diverse due to more complex chemical environments. 

     We would also like to emphasize that the BEP relation commonly used for activity estimation can indeed 

be observed from our dataset, as shown in Figure S4c for the reaction barrier vs. reaction energy for 6225 simple 

dissociation reactions. However, the linearity in correlation is rather poor, even when the correlation is applied to 

the same type of bond dissociation reaction, reflecting the reaction complexity in large reaction database (e.g. 

multiple pathways and the variation of surface sites). This is evidenced by low correlation coefficient R2 of the fitted 

lines in the Figure (all fitted functions are listed in Table S2). The mean absolute error (MAE) in the predicted barrier 

is 0.15, 0.20, 0.19 and 0.38 eV for H-H, C-H, O-H and C-O dissociation reaction on Cu(111) surface, respectively. 

The C-H dissociation reactions on (111) surface have the best linearity in all fitted functions with R2 being 0.82. The 

largest error occurs at the C-O bond dissociation reaction, which is reasonable considering that the chemical 

environment can be vastly different for different C-O bonds, e.g C-O bond breaking in carboxyl group being very 

different from that in CO molecule. As a result, the MAE and R2 of C-O dissociation reaction on (111) surface are 

0.38 eV and 0.45 respectively, which are the worst of all fitted functions. For the stepped (211) surface, the BEP 

linearity is similarly poor, in which the MAE is 0.19, 0.26, 0.26 and 0.37 eV for H-H, C-H, O-H and C-O dissociation 

reactions, respectively, with the R2 typically below 0.7. In short, although the general presence of BEP relation, the 

accuracy of MAE up to 0.4 eV and the large R2 deviation suggest a poor reliability in predicting the catalytic activity 

with BEP correlation even if the reaction energy is available. In contrast, for these simple 6225 dissociation reactions 

in Figure S4c, the MAE of K-Info model for reaction barrier and reaction energy is 0.055 eV and 0.049 eV 

respectively, which is improved markedly over the BEP linear relationship. 

  

 

 
 
 
Table S2 Linear fitted BEP relation for simple dissociation reactions on Cu surfaces in the reaction database. Nreact 

is the number of the same type of reactions that can be utilized for linear fitting. 

Reaction Type Surface Fitted Linear Func. MAE/ eV R2 Nreact 

H-H dissociation （111） Y= 0.449X+0.808 0.151 0.180 573 

C-H dissociation （111） Y= 0.835X+0.851 0.197 0.820 1110 

O-H dissociation （111） Y= 0.859X+1.111 0.194 0.697 814 

C-O dissociation （111） Y= 0.813X+1.254 0.378 0.454 342 

H-H dissociation （100） Y= 0.646X+0.678 0.154 0.179 298 

C-H dissociation （100） Y= 0.893X+0.721 0.178 0.804 391 

O-H dissociation （100） Y= 0.913X+0.987 0.209 0.749 359 

C-O dissociation （100） Y=0.598X+1.023 0.342 0.428 244 

H-H dissociation （211） Y= 0.337X+0.835 0.188 0.089 583 

C-H dissociation （211） Y=0.655X+1.077 0.261 0.647 613 

O-H dissociation （211） Y=0.722X+1.224 0.264 0.674 473 

C-O dissociation （211） Y=0.745X+1.364 0.369 0.499 224 

others - - - - 201 

Total - Y=0.773X+1.023 0.28 0.64 6225 
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6. Validation of AI-Cat predicted reactions on Cu surfaces  
In our AI-Cat model, the R-Pat unit learns 7776 intermediates and 5136 reaction patterns associated with them, 

90% of them being set as the training set and the left as the testing set. The probability to occur a reaction pattern is 

determined by the weighted rate constant in Eq. 1, which is used to supervise the training. After training the model, 

the top 3 accuracy for predicting most probable reaction pattern is perfect (99%) for the training set and 57% for the 

testing set; and the top 15 accuracy for the testing set reaches to 79%. 

The K-info unit learns the reaction dataset of 30508 reactions on three different Cu surfaces. By splitting the 

dataset into 90% training set and 10% testing set, the NN finally achieves the accuracy of prediction with MAE of 

0.061 and 0.054 eV for the reaction barrier and reaction energy on the training dataset, and MAE of 0.157 and 0.149 

eV for the barrier and reaction energy on the testing dataset, respectively. For the simple 6225 dissociation reactions 

as mentioned above in Figure S4c, the MAE for reaction barrier and reaction energy is 0.055 eV and 0.049 eV 

respectively, which is improved markedly over the BEP linear relationship.  

To better understand the accuracy of AI-Cat model for catalytic reactions with consecutive elementary steps, 

we have tested 21 different compositions by mixing 7 common small molecules, including H2, CO, CO2, H2O, 

CH3OH, CH4 and CH2=CH2 and AI-Cat have yielded correct prediction for the known reactions (see Table S3 for 

all the data in details). To give an example, we present the AI-Cat predicted results for water gas shift reaction on 

Cu(111) and benchmarked them against DFT results, as shown in Figure S4d. This reaction has been studied by 

DFT-based SSW reaction sampling previously16 and thus is a good benchmarking example. The lowest energy 

pathway is known to follow the mechanism of CO+H2O à HCO+OH à CO+OH+H à COOH+H à HCOOH 

à HCOO+H à CO2+H+H. The major competing pathway is the formation of formate (HCOO) via the 

hydrogenation of CO2 product that can alternatively be produced by direct COOH dehydrogenation17. Therefore, the 

key challenge in reaction prediction is thus to predict correctly the small barrier difference between COOH 

dehydrogenation and COOH hydrogenation, which differs by only 0.15 eV in DFT. Obviously, our AI-Cat model 

performs well in distinguish the two pathways with the predicted barrier difference being 0.08 eV and thus yields 

the same mechanism as DFT results. By comparing the energetics in the whole pathway, we found that the MAE of 

predicted barrier and reaction energy is 0.087 eV and 0.074 eV with respect to the DFT counterparts, whilst the 

barrier of the rate-determining step, the water dissociation step, from the AI-Cat prediction (1.21 eV) is almost 

identical to the DFT value (1.23 eV). The good accuracy of AI-Cat prediction also suggests the high accuracy of G-

NN PES in reproducing the DFT PES (also see Figure S5 for comparison between G-NN and DFT). 

It might be mentioned that the explicit kinetics data from K-Info prediction greatly improves the convergence 

of MC tree search in finding the correct pathway. We have compared two search modes with or without the kinetics 

data from K-info unit. With K-info prediction, only 97 nodes are generated in tree search until no more low energy 

pathway (overall barrier within 0.3 eV above the lowest energy pathway) is identified. In contrast, in the absence of 

the K-info unit AI-Cat has to enumerate all the likely pathway that gives a few tens thousands of nodes until no more 

pathways can be found. The searching speed thus differs by more than two orders of magnitude. 

Table S4 lists the feasible catalytic reactions predicted by our AI-Cat model with the predicted overall barrier 

and the reaction site for the rate determining step. The feasible reaction is considered as an exothermal reaction 

(without zero-point-energy correction) at 0 K with the overall barrier lower than 1.2 eV. Interestingly, these results 

do reflect the characteristics of Cu catalysts commonly known in heterogeneous catalysis, for example, the low/no 

activity towards methane conversion; the low catalytic ability towards growing higher hydrocarbons; and the high 

tendency to retain C-O bond of molecule in catalysis. It is worth mentioning that because our AI-Cat model learns 

all reaction data on three different Cu surfaces, the rate-determining step predicted generally prefers the open (100) 

or the stepped (211) surfaces, suggesting the higher activity of these surfaces compared to the close-packed Cu (111) 

surface. Below we briefly discuss these reactions in the context of the related experimental catalytic conditions in 
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literatures.  

 

CO+2H2→CH3OH: The syngas conversion on Cu catalyst is widely utilized in industry, where Cu/ZnO/Al2O3 

catalysts operated under 200-300 ℃ can efficiently covert CO and H2 to methanol18. From our AI-Cat, the rate-

determining step occurs at the CHO+H→CH2O with a 0.80 eV overall barrier on Cu (100) surface. 

 

CH2=CH2+H2→CH3CH3: Ethene hydrogenolysis is known to occur on reduced Cu surface under 150-250 ℃ and 1 

atm19. From our AI-Cat, the rate-determining step occurs at the first H addition reaction, CH2=CH2+H→CH2CH3, 

with a 0.92 eV overall barrier on Cu(211) surface. 

 

CO+H2O→CO2+H2: Cu/ZnO/Al2O3 is widely used as low-temperature water-gas-shift reaction catalyst in industry 

for producing clean H2 under 190-230 ℃20. From our AI-Cat, the rate-determining step is COOH+H→CO2+H2, with 

a 0.97 eV barrier on (100) surface. Recent research also shows that Cu(100) surface is the most active facet in low-

temperature WGSR21.  

 

CO+CH3OH→HC(=O)OCH3: Carbonylation of methanol with CO to generate methyl formate (MF), is reported to 

occur on Cu nanocluster catalyst with 100% MF selectivity under 100-160 ℃, 0.3–3.0 MPa CO22. From our AI-Cat, 

the rate-determining step is synergistic methanol dissociation reaction, CO+CH3OH→CH3O+CHO, with a 1.03 eV 

barrier on Cu(100) surface. 

 

CH2=CH2+H2O→CH2CH3OH: The hydration of ethylene on metal surface was not investigated for economic 

reasons. Nevertheless, ethylene and ethanol are common competitive products in the electroreduction of CO2 on Cu, 

which indicates the possibility of mutual conversion on Cu surfaces. From our AI-Cat, the rate-determining step is 

CH2CH3+OH→CH3CH2OH, with a 1.06 eV barrier on Cu(211) surface. 

 

 

 

 

Table S3 All the reactions (21 in total) tested on Cu surfaces predicted by AI-Cat, starting from the combination of 

reactants CO, H2, CH3OH, CH4, CO2, C2H4, and CH2=CH2. The likely reactions are highlighted, where the overall 

reaction energy DE is exothermic or less than 0.1 eV endothermic. The overall barrier Ea predicted by AI-Cat, the 

rate-determining step and its reaction site (surface) of the likely reactions are also listed. 

No. Input Name Predicted Product Ea/eV DE/eV Surface Rate-deter. step 

1 CO+H2 CH3OH 0.80 -0.98 (100) CHO+H→CH2O 

2 CH2=CH2+H2 CH3CH3 0.92 -1.41 (211) CH2=CH2+H→CH2CH3 

3 CO+H2O CO2+H2 0.97 -0.43 (100) COOH+H→CO2+H2 

4 CO+CH3OH HC(=O)OCH3 1.03 -0.35 (100) CO+CH3OH →CH3O+CHO 

5 CH2=CH2+H2O CH2CH3OH 1.06 -0.46 (211) CH2CH3+OH→CH3CH2OH 

6 CO2 +CH3OH H3COC(=O)OH 1.02 -0.09 (100) CH3O+CO2 →H3COC(=O)O 

7 CO2+H2 HCOOH 0.82 0.10 (211) CO2+H2→COOH+H 

8 CH3OH+H2 - - - - - 

9 CO+CO2 - - - - - 

10 CH2=CH2+CO2 - - - - - 

11 CH2=CH2+CO - - - - - 
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12 CH2=CH2+CH3OH CO+CH3CH3 1.76 -1.85 (111) H2C=O→HC=O+H 

13 H2O+H2 - - - - - 

14 H2O+CO2 H2CO3 0.98 -0.17 (211) C(=O)(OH)O+H →H2CO3 

15 CH3OH+H2O - - - - - 

16 CH4+ H2O - - - - - 

17 CO2+CH4 - - - - - 

18 CH4+ H2 - - - - - 

19 CH4+ CO - - - - - 

20 CH4+ CH3OH - - - - - 

21 CH4+ CH2=CH2 - - - - - 

 

 

Table S4 Feasible reactions on Cu surfaces as predicted by AI-Cat, starting from the combination of reactants CO, 

H2, CH3OH, CH4, CO2, C2H4 (CH2=CH2). The feasible reaction is considered to be those being exothermal (without 

ZPE) at 0 K with the overall barrier lower than 1.2 eV. The overall reaction barrier Ea together with the rate-

determining step and its reaction site (surface) are listed. The references of the related experiments that support AI-

Cat prediction are also provided. 

Reaction Ea/eV      Rate-deter. step Surface Expt.*  

CO+2H2→CH3OH 0.80 CHO+H→CH2O (100) 1 

CH2=CH2+H2→CH3CH3 0.92 CH2=CH2+H→CH2CH3 (211) 2 

CO+H2O→CO2+H2 0.97 COOH+H→CO2+H2 (100) 3 

CO+CH3OH→HC(=O)OCH3 1.03 CO+CH3OH →CH3O+CHO (100) 4 

CH2=CH2+H2O→CH2CH3OH 1.06 CH2CH3+OH→CH3CH2OH (211) - 

*Reaction conditions known in experiment:  

1. Ref. 18: Cu/ZnO/Al2O3 200-300 ℃ and 50-100 atm;  

2. Ref. 19: Cu 150-250 ℃ 1 atm;  

3. Ref. 20: Cu/ZnO/Al2O3 150-300 ℃; 

4. Ref. 22: Cu nanocluster 100-160 ℃, 0.3–3.0 MPa CO 
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7. Benchmark of G-NN PES Accuracy 
 Our AI-Cat model is trained based on the dataset collected from G-NN potential energy surface (PES). This 

introduces the first source of error, i.e. the error between G-NN PES and DFT PES. To illustrate this in catalytic 

reaction prediction, we plot the energy profiles of lowest energy pathway for CO+H2O reaction on Cu(111) between 

G-NN and DFT results in Figure S5. By comparing the energetics in the whole pathway, we found that the MAE of 

NN PES barrier and reaction energy is 0.07 eV and 0.09 eV with respect to the DFT counterparts, which is quite 

typical for G-NN accuracy. The accuracy of G-NN PES is generally good enough to ensure the AI-Cat prediction on 

energetics. 

 
Figure S5 Energy profile of lowest energy pathway for CO+H2O reaction on Cu(111) from G-NN and DFT 

calculations. 
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8. All pathway data on glycerol hydrogenolysis from AI-Cat and from DFT 
 

Table S5 Low energy pathway products starting from glycerol and H2 on Cu(111) predicted from AI-Cat with 

energetics from AI-Cat and from DFT for comparison. These products belong to exothermal products (after ZPE 

correction) in energy (0 K) with the overall barrier lower than 1.6 eV. The listed data include the ZPE-corrected 

overall barrier Ea (AI) (Ea from AI-Cat plus approximated ZPE, i.e. 0.15 eV for X-H bond, X=C, O), the ZPE-

corrected overall barrier (Ea) computed from DFT (Ea
1), that with further van der Waals correction (Ea

2) and also 

with the free energy correction (Ga) that include the thermal correction DU(T), the pressure term DPV and the entropy 

term TDS (see the equations below). The same overall Ea (Ga) of products indicates they share the same rate-

determining step. 

Ea = ETS - EIS 

Ea
1
 = Ea +DZPE  

Ea
2
 = Ea1+DEvdw  

Ga = Ea2 +DU(T)+ DPV - TDS 

 

No name Molecule structure 
Ea(AI) 

/eV 

Ea1  

/ eV 

Ea2 

/eV 

Ga 

/eV 

1 dihydroxyacetone 
 

1.10 1.03 0.98 1.06 

2 acetol 
 

1.36 1.42 1.32 1.25 

3 1,2-PDO 
 

1.36 1.42 1.32 1.25 

4 
prop-2-ene-1,2-

diol  
1.36 1.42 1.32 1.25 

5 2-oxopropanal 
 

1.36 1.42 1.32 1.25 

6 glyceraldehyde 
 

1.45 1.13 1.09 1.28 

7 
3-

hydroxypropanal  1.53 1.53 1.28 1.44 

8 1,3-PDO  1.53 1.53 1.28 1.44 
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Figure S6 Energy profile of lowest energy pathway from glycerol to 1,2-PDO on Cu(111) from AI-Cat and DFT 

energetics (with ZPE correction). The MAE of AI-Cat barrier and reaction energy are 0.09 eV and 0.07 eV with 

respect to the DFT counterparts.  
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Figure S7 DFT-based Free energy profiles for glyceraldehyde to break its C-O bond at the secondary C atom and 

the primary C atom that leads to 1,3-PDO and 1,2-PDO, respectively. The energy zero refers to glycerol in the gas 

phase under 473 K and 0.0065 atm. 

 

The retro-Michael addition pathway bifurcating from glyceraldehyde competes with the dehydrogenation pathway 

to 1,3-PDO. As shown in Figure S7, once the glyceraldehyde is generated, there is a two-step retro-Michael addition 

dehydration pattern to generate 2-hydroxyacrylaldehyde (blue lines) with a barrier that is 0.32 eV lower than the C-

O bond break on secondary C atom (red lines). As we mentioned in section 3.3, for each C-O breaking, there are a 

series of dehydrogenation/hydrogenation fast equilibrium. Obviously, the 2-hydroxyacrylaldehyde will finally 

transfer to 1,2-PDO by hydrogenation. As a result, even if glyceraldehyde forms, the presence of a low-barrier 

dehydration channel via the retro-Michael addition reaction will still favor the selectivity to 1,2-PDO. 
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Figure S8 DFT-based Free energy profile for acetol hydrogenation and further dehydration. The energy zero refers 

to acetol in the gas phase under 473 K and 0.0065 atm. 
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9. Kinetics data used in microkinetics simulation 
Table S6 Free energy barrier and reaction rate constant of elementary reactions at 473 K and a total 

pressure of 1 atm. (p1(=1 bar; Pglycerol= Pacetol= P1,2-PDO= P1,3-PDO= P3-hydroxypropanal= Pwater =0.0065 bar) 

No name Ga,+ Ga,- k+ k- 
0  glycerol* ->glycerol+* 0 0.249 9.86E+12 2.19E+10 
1  acetol* ->acetol+* 0 0.408 9.86E+12 4.43E+08 

2 
3-hydroxypropanal* ->3-hydroxypropanal 

+* 
0 0.512 9.86E+12 3.45E+07 

3  H2O* ->H2O+* 0 0.549 9.86E+12 1.39E+07 
4  OH*+H* ->H2O*+* 0.69 0.871 4.38E+05 5.17E+03 
5  H2+*+* ->H*+H* 0.751 0.831 9.81E+04 1.38E+04 
6  glycerol*+* ->2*+H* 0.809 1.14 2.37E+04 7.03E+00 
7  2*+* ->8*+H* 0.847 0.414 9.31E+03 3.82E+08 
8  8*+* ->6*+OH* 0.813 1.238 2.14E+04 6.35E-01 
9  6*+H* ->acetol*+* 0.426 0.864 2.85E+08 6.14E+03 
10  acetol*+H* ->11*+* 0.363 0.768 1.34E+09 6.47E+04 
11  11*+H* ->1,2-PDO+*+* 0.938 1.088 9.99E+02 2.52E+01 
12  glycerol*+* ->3*+H* 1.031 1.095 1.02E+02 2.12E+01 
13  3*+* ->9*+H* 1.019 0.415 1.37E+02 3.73E+08 
14  9*+* ->10*+OH* 0.653 1.397 1.09E+06 1.28E-02 
15  10*+H*->3-hydroxypropanal *+* 0.217 0.69 4.80E+10 4.38E+05 
16  3-hydroxypropanal*+H* ->12*+* 0.424 0.826 2.99E+08 1.56E+04 
17  12*+H* ->1,3-PDO+*+* 1.082 1.432 2.92E+01 5.44E-03 
18  glycerol*+H* ->7*+* 0.837 0.006 1.19E+04 8.51E+12 
19  7*+* ->13*+H2O* 0.684 1.581 5.08E+05 1.41E-04 
20  13*+H* ->1,2-PDO +* 0.425 1.766 2.92E+08 1.50E-06 
21  glycerol*+H* ->1*+* 0.781 0.044 4.70E+04 3.35E+12 
22  1*+* ->14*+H2O* 0.719 1.204 2.15E+05 1.46E+00 
23  14*+H* ->1,3-PDO +* 0.032 1.559 4.50E+12 2.41E-04 

*The structure number corresponds to Figure 5   
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