Supporting Information

Rhodium^{III}-Catalyzed Remote Difunctionalization of Arenes Assisted by a Relay Directing Group

Lincong Sun,¹ Yuyao Zhao,¹ Bingxian Liu,¹ Junbiao Chang,*¹ Xingwei Li*^{1,2}

¹NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.

²Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 250100, China

*E-mail: changjunbiao@zzu.edu.cn; lixw@snnu.edu.cn

Table of Contents

1. General Information	3
2. General Procedure for the Preparation of Substrates	4
3. Experimental Section	18
4. X-Ray Crystal Structure of 32 and intermidiate A.	37
5. References	40
6. Characterization Data	41
7. NMR spectrum and HPLC Chromatogram	59

1. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. The ¹H NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ¹³C NMR spectra were recorded at 100 MHz or 150 MHz. The ¹⁹F NMR spectra were recorded at 376 MHz or 565 MHz. Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane (TMS), and were reported as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), dt (doublets of triplet), and m (multiplet). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale (CDCl₃: δ H = 7.26 ppm, δ C = 77.16 ppm). The coupling constants *J* were given in Hz. High resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F254 0.25 mm), and components were visualized by observation under UV light (254 and 365 nm). X-ray measurements were performed on a Bruker D& Advance X-ray powder diffractometer with graphite monochromatized Cu K α radiation at 293 K. Column chromatography was performed on silica gel 200-300 mesh.

Alkynes¹, dioxazolones², *t*-AmOD³, $[Cp*RhCl_2]_2^4$ and chiral rhodium catalyst⁵ were prepared according to published procedures. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary.

2. General Procedure for the Preparation of Substrates

General Procedure A

Step 1: Compound **A** (3.5 mmol, 1.0 equiv) was dissolved in DME (15 mL) under an inert atmosphere and a solution of compound **B** (483.2 mg, 3.5 mmol, 1.0 equiv) in MeOH (4 mL) was added followed by a solution of Na₂CO₃ (742.0 mg, 7.0 mmol. 2.0 equiv) in water (4 mL). The mixture was degassed and subsequently Pd(PPh₃)₄ (121.3 mg, 0.105 mmol, 0.03 equiv) was added. The reaction mixture was heated up to 95 °C for 24 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:2) to obtain desired compound **C** as a white solid (80-90% yields).

Step 2: To a solution of compound **C** (2.0 mmol, 1.0 equiv), and potassium carbonate (552.9 mg, 4.0 mmol, 2.0 equiv), NaI (28 mg, 0.2 mmol, 0.1 equiv) in MeCN (10 mL), compound **D** (216.0 mg, 2.4 mmol, 1.2 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **1** as a white solid (90-95% yields).

General Procedure B: Mitsunobu reaction

Step : Diisopropyl azodicarboxylate (444.9 mg, 2.20 mmol, 1.1 equiv) was added dropwise to a solution of **C** (342.1 mg, 2.0 mmol, 1.0 equiv), triphenylphosphine (577.1 mg, 2.20 mmol, 1.10 equiv) and the respective allyl alcohol (2.20 mmol, 1.10 equiv) in anhydrous THF (20 mL) at 0 °C under an inert atmosphere. The cold bath was removed and the mixture was stirred at 23 °C for 12 hours. Then, the mixture was evaporated together with silica and the desired compound **1** was isolated by column chromatography (silica, EtOAc/petroleum ether = 1:3) on silica gel.

General Procedure C

Step 1: The compound **A** (1.570 g, 10 mmol, 1.0 equiv), **E** (1.210 g, 11 mmol, 1.1 equiv), CuI (190 mg, 10 mol%), K₃PO₄ (4.246 g, 20 mmol, 2.0 equiv), **F** (246.1 mg, 20 mol%), and DMSO (20 mL) were mixed and heated to 90 °C for 24 hours under an inert atmosphere. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:3) to obtain desired compound **G**.

Step 2: To a solution of compound **G** (374.1 mg, 2.0 mmol, 1.0 equiv), and potassium carbonate (552.8 mg, 4.0 mmol, 2.0 equiv), NaI (30.0 mg, 0.2 mmol, 0.1 equiv) in MeCN (10 mL), compound **D** (216.0 mg, 2.4 mmol, 1.2 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **1t** as a yellow oil. **General Procedure D**

Step 1: To a solution of compound **H** (1.720 g, 10.0 mmol, 1.0 equiv), and potassium carbonate (2.764 g, 20.0 mmol, 2.0 equiv), NaI (140 mg, 1.0 mmol, 0.1 equiv) in MeCN (10.0 mL), compound **D** (1.080 g, 12.0 mmol, 1.2 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, petroleum ether) to obtain desired compound **I** as a colorless oil.

Step 2: The compound **I** (452.0 mg, 2.0 mmol, 1.0 equiv), CuI (76.0 mg, 0.4 mmol, 20 mol%), K_3PO_4 (848.8 mg, 4.0 mmol, 2.0 equiv), *rac-J* (113.7 mg, 0.8 mmol, 40 mol%), **K** (2.4 mmol, 1.2 equiv), and DMF (10 mL) were mixed and heated to 130 °C for 24 hours under an inert atmosphere. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:20) to obtain desired compound **1u** or **1v**.

General Procedure E

Step : Add L (2.0 mmol, 1.0 equiv), **M** (657.6 mg, 2.4 mmol, 1.2 equiv), CuI (380.9 mg, 2 mmol, 1.0 equiv), PPh₃ (104.9 mg, 0.4 mmol, 0.2 equiv), Na₂CO₃ (424.0 mg, 4 mmol, 2.0 equiv) and DMF (10 mL) in a 25 mL two-necked flask. Stir the resulting mixture under N₂ (with balloon) for 24 hours at 160 °C. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:50) to obtain desired compound **1**.

General Procedure F

Step 1: To a solution of compound **C** (1.710 g, 10.0 mmol, 1.0 equiv), and potassium carbonate (2.764 g, 20.0 mmol, 2.0 equiv) in MeCN (10.0 mL), compound **N** (2.480 g, 20.0 mmol, 2.0 equiv) was added and the mixture was stired under 0 °C. The cold bath was removed and the mixture was stirred at 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:15) to obtain desired compound **O**.

Step 2: The compound **O** (518.1 mg, 2.0 mmol, 1.0 equiv), MeOH (448.0 mg, 14.0 mmol, 7.0 equiv), MeONa (302.5 mg, 5.6 mmol, 2.8 equiv) and THF (10 mL) were mixed and the mixture was stired under an inert atmosphere at 0 °C. The cold bath was removed and the mixture was stirred at 80 °C for 12 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **11**.

General Procedure G

Step : The compound **1k** (according to the general procedure **B**) (482.2 mg, 2.0 mmol, 1.0 equiv) was dissolved in anhydrous dichloromethane (5 mL) and cooled to 0 $^{\circ}$ C. after the addition of Et₃N (303.6 mg, 3.0 mmol, 1.5 equiv), a solution of pivaloyl chloride (289.4 mg, 2.4 mmol, 1.2 equiv) in 5 mL of dichloromethane was added dropwise at 0 $^{\circ}$ C. the mixture was stirred at room temperature for 2 hours and quenched with water. the aqueous layer was extracted with dichloromethane three times and the

combined organic layers were washed with saturated NaHCO₃ and the brine. It was then dried over MgSO₄ and evaporated under reduced pressure. The purification was made by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to give the desired compound **1m**.

General Procedure H

Step 1: Compound **A** (549.2 mg, 3.5 mmol, 1.0 equiv) was dissolved in DME (15 mL) under an inert atmosphere and a solution of compound **P** (767.0 mg, 3.5 mmol, 1.0 equiv) in MeOH (4 mL) was added followed by a solution of Na₂CO₃ (742.0 mg, 7.0 mmol. 2.0 equiv) in water (4 mL). The mixture was degassed and subsequently Pd(PPh₃)₄ (121.3 mg, 0.105 mmol, 0.03 equiv) was added. The reaction mixture was heated up to 95 °C for 24 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:1) to obtain desired compound **Q** (80% yield).

Step 2: To a solution of compound **Q** (340.2 mg, 2.0 mmol, 1.0 equiv), and potassium carbonate (552.8 mg, 4.0 mmol, 2.0 equiv) in DMF (10 mL), compound **D** (468.0 mg, 5.2 mmol, 2.6 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **1zd**.

General Procedure I

Step 1: A dry flask containing a magnetic stir bar was charged with compound **Q** (according to the general procedure **H**) (850.4 mg, 5 mmol, 1.0 equiv), fitted with a septa, and purged with argon for 10 minutes. The compound **Q** was dissolved in freshly distilled THF (20 mL) and the resulting solution was cooled to -78 °C. MeLi (2.85 mL, 4.85 mmol, 0.97 equiv, 1.70 M in diethyl ether) was then added dropwise over 5 minutes, and the solution was stirred at this temperature for 30 minutes. Dimethylsulfate (949.5 mg, 7.53 mmol, 1.5 equiv) was then added dropwise over 5 minutes, and the solution was then added dropwise over 5 minutes before being warmed to room temperature. After stirring for 2 hours at this temperature, the reaction was carefully acidified to pH 6 using 5% aqueous HCl and then diluted with diethyl ether (10 mL). The organic layer was sequentially washed with H₂O (10 mL) and brine (10 mL), dried over MgSO₄, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:5) to obtain desired compound **R** (50% yield).

Step 2: To a solution of compound **R** (368.2 mg, 2.0 mmol, 1.0 equiv), and potassium carbonate (552.8 mg, 4.0 mmol, 2.0 equiv), NaI (30.0 mg, 0.2 mmol, 0.1 equiv) in MeCN (10 mL), compound **D** (216.0 mg, 2.4 mmol, 1.2 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **1zb**.

General Procedure J

Step 1: To a solution of **Q** (according to the general procedure **H**) (680.3 mg, 4.0 mmol, 1.0 equiv) in pyridine (8 mL) at 0 °C was added solid tosyl chloride (797.9 mg, 4.2 mmol, 1.05 equiv) in one portion. After 2 hours, more solid tosyl chloride (797.9 mg, 4.2 mmol, 1.05 equiv) was added. After one additional hour, the reaction was quenched with H_2O (10 mL) and the aqueous layer was extracted with DCM (3 x 20 mL). The combined organic layers were washed with H_2O (20 mL), and brine (20 mL),

dried over Na₂SO₄, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:5) to obtain desired compound **S** (80% yield). **Step 2**: To a solution of compound **S** (648.2 mg, 2.0 mmol, 1.0 equiv), and potassium carbonate (552.8 mg, 4.0 mmol, 2.0 equiv), NaI (30.0 mg, 0.2 mmol, 0.1 equiv) in MeCN (10 mL), compound **D** (216.0 mg, 2.4 mmol, 1.2 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **1zc**.

General Procedure K

Step 1: Add thionyl chloride (10 mL) dropwise to 1-AdCOOH (1.80 g, 10 mmol), followed by a catalytic amount of DMF (2 drops) at 0 °C. Allow the reaction mixture to to reflux for 2 hours. Remove the solvent under reduced pressure. The crude product was used to next reaction without further purification.

Step 2: 4-Aminophenol (1.035g, 9.5 mmol, 1.0 equiv) was dissolved in anhydrous dichloromethane (20 mL) and cooled to 0 °C, after the addition of Et₃N (1.442g, 14.25 mmol, 1.5 equiv), a solution of 1-AdCOCl (1.980 g, 10 mmol, 1.05 equiv) in 5 mL of dichloromethane was added dropwise at 0 °C. The mixture was stirred at room temperature for 2 hours and quenched with water, the aqueous layer was extracted with dichloromethane three times and the combined organic layers were washed with saturated NaHCO₃ and the brine. It was then dried over Na₂SO₄ and evaporated under reduced pressure. The purification was made by flash column chromatography (silica, EtOAc/petroleum ether = 1:2) to give the desired compound **T**.

Step 3: To a solution of compound **T** (542.3 mg, 2.0 mmol, 1.0 equiv), and potassium carbonate (552.8 mg, 4.0 mmol, 2.0 equiv) in DMF (10 mL), compound **D** (234.0 mg, 2.6 mmol, 1.3 equiv) was added and the mixture was stired under 80 °C for 18 hours. Afterwards the reaction mixture was brought to

room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na_2SO_4 , filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:5) to obtain desired compound **1***z*.

General Procedure L

Step 1: To a solution of **U** (according to the general procedure **A**) (925.4 mg, 5.0 mmol, 1.0 equiv) in DCM (25 mL) at 0 °C was added PBr₃ (4 mL), the reaction mixture was warmed to room temperature and monitored by TLC. Upon completion the reaction mixture was poured into an aqueous solution of K_2CO_3 (10 mL), the phases were separated and the aqueous phase was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:3) to obtain desired compound **V** (70% yield).

Step 2: To a solution of **V** (494.0 mg, 2.0 mmol, 1.0 equiv) in anhydrous THF (6 mL) at 0 °C under N₂ atmosphere was added **W** (0.5 M in THF, 6.0 mL, 3.0 mmol, 1.5 equiv), the reaction mixture was warmed to room temperature and monitored by TLC (30 min). Upon completion the reaction mixture was poured into water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over Na₂SO₄, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound **1s**.

2-(4-((2-methylallyl)oxy)phenyl)pyridine (1a). (According to the general procedure A). Yellew solid (427.5 mg, 95%, m.p. 46 - 47 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.64 (ddd, J = 4.8, 1.6, 1.1 Hz, 1H), 7.97 - 7.88 (m, 2H), 7.70 - 7.61 (m, 2H), 7.13 (ddd, J = 6.6, 4.8, 1.6 Hz, 1H), 7.05 - 6.96 (m, 2H), 5.11 (d, J = 0.5 Hz, 1H), 4.99 (s, 1H), 4.47 (s, 2H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 157.2, 149.6, 140.8, 136.7, 132.2, 128.2, 121.5, 119.8, 115.0, 112.9, 71.8, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₆NO⁺ 226.1226, Found: 226.1223.

5-methyl-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1b). (According to the general procedure **A**). White solid (444.7 mg, 93%, m.p. 57 - 58 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.47 (dd, J = 1.4, 0.7 Hz, 1H), 7.96 - 7.85 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.54 (d, J = 8.1 Hz, 1H), 7.52 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.54 (d, J = 8.1 Hz, 1H), 7.55 - 7.45 (m, 2H), 7.55 (1H), 7.04 – 6.94 (m, 2H), 5.12 (d, J = 0.5 Hz, 1H), 5.00 (s, 1H), 4.47 (s, 2H), 2.33 (s, 3H), 1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 154.5, 150.0, 140.8, 137.3, 132.3, 130.8,

127.9, 119.3, 115.0, 112.8, 71.8, 19.5, 18.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO^+$ 240.1383, Found: 240.1386.

5-methoxy-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1c). (According to the general procedure **A**). Brown solid (469.4 mg, 92%, m.p. 73 - 74 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.35 (d, J = 2.7 Hz, 1H), 7.89 – 7.80 (m, 2H), 7.58 (d, J = 8.7 Hz, 1H), 7.22 (dd, J = 8.7, 3.0 Hz, 1H), 7.02 - 6.95 (m, 2H), 5.12 (d, J = 0.5 Hz, 1H), 5.00 (s, 1H), 4.47 (s, 2H), 3.87 (s, 3H), 1.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 154.4, 150.1, 140.9, 137.0, 132.1, 127.6, 121.5, 120.1, 115.0, 112.9, 71.83, 55.7, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₂⁺ 256.1332, Found: 256.1332.

5-fluoro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1d). (According to the general procedure A). White solid (432.5 mg, 89%, m.p. 72 - 73 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.50 (d, J = 2.5 Hz, 1H), 7.87 (d, J = 8.7 Hz, 2H), 7.66 - 7.60 (m, 1H), 7.42 (t, J = 8.4 Hz, 1H), 7.00 (d, J = 8.6 Hz, 2H), 5.12 (s, 1H), 5.01 (s, 1H), 4.49 (s, 2H), 1.85 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.7, 158.6 (d, *J* = 255.2 Hz, 1C), 153.6 (d, *J* = 3.5 Hz, 1C), 140.8, 137.5 (d, *J* = 23.3 Hz, 1C), 131.2, 128.1, 123.7 (d, *J* = 18.6 Hz, 1C), 120.7 (d, *J* = 4.2 Hz, 1C), 115.1, 113.0, 71.9, 19.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -130.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₅H₁₅FNO⁺ 244.1132, Found: 244.1135.

5-chloro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1e). (According to the general procedure **A**). White solid (471.4 mg, 91%, m.p. 81 - 82 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.58 (dd, J = 2.4, 0.5 Hz, 1H), 7.94 - 7.85 (m, 2H), 7.68 - 7.61 (m, 1H), 7.61 - 7.55 (m, 1H), 7.05 - 6.93 (m, 2H), 5.12 (s, 1H), 5.01 (s, 1H), 4.48 (s, 2H), 1.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 155.3, 148.4, 140.7, 136.4, 131.0, 129.8, 128.1, 120.4, 115.1, 113.0, 71.8, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{15}CINO^+$ 260.0837, Found: 260.0840.

Found: 294.1099.

2-(4-((2-methylallyl)oxy)phenyl)-5-(trifluoromethyl)pyridine (1f). (According to the general procedure A). White solid (498.1 mg, 85%, m.p. 95 - 96 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.90 (s, 1H), 8.00 (d, J = 8.7 Hz, 2H), 7.94 - 7.88 (m, 1H), 7.78 - 7.71 (m, 1H), 7.03 (d, J = 8.5 Hz, 2H), 5.13 (s, 1H), 5.02 (s, 1H), 4.50 (s, 2H), 1.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.7, 160.3, 146.6 (q, J = 3.9 Hz, 1C), 140.6, 133.9 (q, J = 2.8 Hz, 1C), 130.6, 128.7, 124.1 (q, J = 33.0 Hz, 1C), 124.0 (q, J = 271.9 Hz, 1C), 119.1, 115.3, 113.1, 71.9, 19.5. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₅F₃NO⁺ 294.1100,

S12

4-methyl-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1g). (According to the general procedure A). Brown solid (392.1 mg, 82%, m.p. 41 - 42 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.50 (d, J = 5.0 Hz, 1H), 7.96 – 7.88 (m, 2H), 7.50 – 7.46 (m, 1H), 7.04 – 6.95 (m, 3H), 5.12 (d, J = 0.5 Hz, 1H), 5.00 (s, 1H), 4.48 (s, 2H), 2.38 (s, 3H), 1.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 159.6, 157.1, 149.4, 147.7, 140.8, 132.3, 128.2, 122.6, 120.8, 115.0, 112.9, 71.8, 21.3, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO^+$ 240.1383, Found: 240.1382.

4-methoxy-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1h). (According to the general procedure A). Colorless oil (443.7 mg, 87%). ¹H NMR (600 MHz, CDCl₃) δ 8.46 (d, J = 5.7 Hz, 1H), 7.90 (d, J = 8.7 Hz, 2H), 7.15 (d, J = 1.9 Hz, 1H), 6.99 (d, J = 8.7 Hz, 2H), 6.71 (dd, J = 5.7, 2.0 Hz, 1H), 5.11 (s, 1H), 5.00 (s, 1H), 4.47 (s, 2H), 3.87 (s, 3H), 1.84 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 159.8, 158.9, 150.8, 140.8, 132.1,

128.3, 115.0, 112.9, 107.6, 106.1, 71.8, 55.2, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈NO₂⁺ 256.1332, Found: 256.1331.

4-fluoro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1i). (According to the general procedure A). Brown solid (427.7 mg, 88%, m.p. 47 - 48 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.59 (dd, J = 8.9, 5.6 Hz, 1H), 7.95 – 7.89 (m, 2H), 7.36 (dd, J = 10.6, 2.3 Hz, 1H), 7.04 -6.98 (m, 2H), 6.90 (ddd, J = 8.2, 5.6, 2.3 Hz, 1H), 5.12 (dd, J = 1.3, 0.8 Hz, 1H), 5.01 (s, 1H), 4.49 (s, 2H), 1.85 (s, 3H). ¹³C NMR (101 MHz, CDCl₃) δ 169.5 (d, J = 260.6 Hz,

1C), 160.4 (d, J = 7.2 Hz, 1C), 160.2, 151.9 (d, J = 7.3 Hz, 1C), 140.7, 131.1 (d, J = 3.6 Hz, 1C), 128.3, 115.1, 113.0, 109.3 (d, J = 16.4 Hz, 1C), 107.3 (d, J = 17.4 Hz, 1C), 71.8, 19.5. ¹⁹F NMR (376 MHz, 10.1) CDCl₃) δ -102.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₁₅H₁₅FNO⁺ 244.1132, Found: 244.1132.

4-chloro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1j). (According to the general procedure A). Brown solid (461.0 mg, 89%, m.p. 56 - 57 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.52 (d, J = 5.3 Hz, 1H), 7.97 – 7.87 (m, 2H), 7.65 (d, J = 1.5 Hz, 1H), 7.16 (dd, J = 5.3, 1.8 Hz, 1H), 7.05 - 6.97 (m, 2H), 5.12 (s, 1H), 5.01 (s, 1H), 4.48 (s, 2H),1.84 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.2, 158.7, 150.4, 144.7, 140.7, 130.9,

128.3, 121.6, 120.0, 115.1, 113.0, 71.8, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{15}CINO^+$ 260.0837, Found: 260.0838.

2-((4-(pyridin-2-yl)phenoxy)methyl)prop-2-en-1-ol (1k). (According to the general procedure B). White solid (284.4 mg, 59%, m.p. 80 - 81 °C). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.62 (d, *J* = 4.7 Hz, 1H), 8.03 (d, *J* = 8.7 Hz, 2H), 7.92 (d, *J* = 7.9 Hz, 1H), 7.88 (t, J = 7.8 Hz, 1H), 7.35 - 7.30 (m, 1H), 7.07 (d, J = 8.7 Hz, 2H), 5.21 (s, 1H), 5.17 (s, 1H), 4.62 (s, 2H), 4.04 (s, 2H), 3.47 (br, 1H). ¹³C NMR (150 MHz, DMSO-d₆) δ

159.4, 155.4, 148.8, 145.2, 137.8, 130.6, 128.0, 122.0, 119.8, 114.9, 111.3, 68.1, 61.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{16}NO_2^+$ 242.1176, Found: 242.1172.

2-(4-((2-(methoxymethyl)allyl)oxy)phenyl)pyridine (11). (According to the general procedure F). White solid (397.8 mg, 78%, m.p. 31 - 32 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.66 – 8.59 (m, 1H), 7.98 – 7.90 (m, 2H), 7.73 – 7.61 (m, 2H), 7.16 (ddd, *J* = 7.0, 4.9, 1.4 Hz, 1H), 7.05 - 6.98 (m, 2H), 5.36 - 5.33 (m, 1H), 5.28 (d, J = 1.1 Hz, 1H), 4.60 (s, 2H), 4.03 (s, 2H), 3.35(s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.7, 157.1, 149.5, 141.3, 136.9, 132.1, 128.2, 121.5, 119.9, 115.1, 77.4, 73.4, 68.6, 58.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO_2^+$ 256.1332, Found: 246.1327.

2-((4-(pyridin-2-yl)phenoxy)methyl)allyl pivalate (1m). (According to the general procedure G). Yellew solid (591.7 mg, 91%, m.p. 30 - 31 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, *J* = 4.5 Hz, 1H), 7.93 (d, *J* = 8.1 Hz, 2H), 7.70 (dd, *J* = 9.6, 5.4 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.16 (t, J = 5.9 Hz, 1H), 7.00 (d, J = 8.2 Hz, 2H), 5.36 (s, 1H), 5.31 (s, 1H), 4.70 (s, 2H), 4.59 (s, 2H), 1.21 (s, 10H). ¹³C NMR (150 MHz, CDCl₃)

δ 178.1, 159.5, 157.0, 149.5, 139.7, 136.9, 132.3, 128.3, 121.6, 120.0, 115.7, 115.0, 68.7, 64.6, 39.0, 27.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{20}H_{24}NO_3^+$ 326.1751, Found: 326.1753.

1-(4-((2-methylallyl)oxy)phenyl)isoquinoline (1n). (According to the general procedure A). Brown oil (467.5 mg, 85%). ¹H NMR (600 MHz, CDCl₃) δ 8.58 (d, J = 5.7 Hz, 1H), 8.15 (d, J = 8.5 Hz, 1H), 7.86 (d, J = 8.2 Hz, 1H), 7.67 (dd, J = 17.2, 7.8 Hz, 3H), 7.61 (d, J = 5.5 Hz, 1H), 7.54 (d, J = 7.3 Hz, 1H), 7.08 (d, J = 8.4 Hz, 2H), 5.15 (s, 1H), 5.03 (s, 1H), 4.53 (s, 2H), 1.87 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.4, 159.4, 142.1,

140.8, 137.1, 132.1, 131.4, 130.1, 127.8, 127.2, 127.1, 126.8, 119.7, 114.8, 113.0, 71.9, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{19}H_{18}NO^+$ 276.1383, Found: 276.1383.

3-(4-((2-methylallyl)oxy)phenyl)isoquinoline (10). (According to the general procedure A). White solid (473.0 mg, 86%, m.p. 72 - 73 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.30 (s, 1H), 8.11 - 8.05 (m, 2H), 7.95 (s, 1H), 7.93 (d, J = 8.2 Hz, 1H), 7.79 (d, J = 8.1 Hz, 1H), 7.63 (ddd, J = 8.2, 6.9, 1.2 Hz, 1H), 7.51 (ddd, J = 8.0, 6.9, 1.1 Hz, 1H), 7.09 – 7.01 (m, 2H), 5.15 (s, 1H), 5.03 (s, 1H), 4.50 (s, 2H), 1.87 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 159.4, 152.2, 151.0, 140.8, 136.8, 132.3, 130.5, 128.2, 127.6, 127.4, 126.8, 126.7, 115.4, 115.1, 112.9,

71.8, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{19}H_{18}NO^+$ 276.1383, Found: 276.1381.

2-(4-((3-methylbut-3-en-1-yl)oxy)phenyl)pyridine (1p). (According to the general procedure **B**). White solid (277.2 mg, 58%, m.p. 39 - 40 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 4.7 Hz, 1H), 7.95 (d, J = 8.4 Hz, 2H), 7.69 (t, J = 7.6 Hz, 1H), 7.65 (d, J = 7.9 Hz, 1H), 7.18 – 7.13 (m, 1H), 7.00 (d, J = 8.4 Hz, 2H), 4.86 (s, 1H), 4.82 (s, 1H), 4.13 (t, J = 6.8 Hz, 2H), 2.53 (t, J = 6.8 Hz, 2H), 1.82 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ

159.9, 157.2, 149.5, 142.2, 136.8, 132.0, 128.2, 121.5, 119.9, 114.8, 112.2, 66.6, 37.3, 22.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO^+$ 240.1383, Found: 240.1383.

2-(4-(((2-methylallyl)oxy)methyl)phenyl)pyridine (1q). (According to the general procedure A). Yellew oil (425.4 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 8.70 (d, J = 4.7Hz, 1H), 7.97 (d, J = 7.9 Hz, 2H), 7.73 (dd, J = 14.2, 7.5 Hz, 2H), 7.46 (d, J = 7.9 Hz, 2H), 7.25 – 7.20 (m, 1H), 5.02 (s, 1H), 4.94 (s, 1H), 4.55 (s, 2H), 3.96 (s, 2H), 1.78 (s, 3H). ¹³C

NMR (150 MHz, CDCl₃) δ 157.3, 149.6, 142.2, 139.5, 138.5, 137.1, 128.1, 127.1, 122.2, 120.8, 112.5, 74.3, 71.6, 19.7. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO^+$ 240.1383, Found: 240.1383.

2-(4-(allyloxy)phenyl)pyridine (1r). (According to the general procedure A). Yellew solid (392.5 mg, 93%, m.p. 36 - 37 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 4.5 Hz, 1H), 7.95 (d, J = 8.5 Hz, 2H), 7.72 - 7.62 (m, 2H), 7.16 (dt, J = 7.3, 3.9 Hz, 1H), 7.01 (d, J = 7.6 Hz, 2H), 6.11 - 6.00 (m, 1H), 5.43 (d, J = 17.3 Hz, 1H), 5.33 - 5.27 (m, 1H), 4.58 (dd, J = 3.4, 1.6 Hz, 2H). ¹³C NMR (150 MHz, CDCl₃) δ 159.6, 157.1, 149.5, 136.8, 133.2, 132.1, 128.2,

121.5, 119.9, 117.9, 115.0, 68.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{14}H_{14}NO^+$ 212.1070, Found: 212.1071.

2-(4-(3-methylbut-3-en-1-yl)phenyl)pyridine (1s). (According to the general procedure L). Colorless oil (267.6 mg, 60%). ¹H NMR (400 MHz, CDCl₃) δ 8.74 - 8.60 (m, 1H), 7.95 -7.90 (m, 2H), 7.76 – 7.69 (m, 2H), 7.31 (d, J = 8.3 Hz, 2H), 7.20 (ddd, J = 6.1, 4.9, 2.4 Hz, 1H), 4.76 (s, 2H), 4.73 (s, 1H), 2.82 (dd, J = 9.2, 6.9 Hz, 2H), 2.40 – 2.31 (m, 2H), 1.79 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.5, 149.7, 145.3, 143.4, 137.0, 136.8, 128.9, 127.0,

121.9, 120.4, 110.5, 39.5, 34.1, 22.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₆H₁₈N⁺ 224.1434, Found: 224.1435.

2-(4-((2-methylallyl)oxy)phenoxy)pyridine (1t). (According to the general procedure C). Yellew oil (429.0 mg, 89%). ¹H NMR (600 MHz, CDCl₃) δ 8.19 (dd, J = 4.9, 0.8 Hz, 1H), 7.65 (d, J = 0.8 Hz, 1H), 7.06 (d, J = 8.9 Hz, 2H), 7.00 – 6.92 (m, 3H), 6.86 (d, J = 8.3 Hz, 1H), 5.11 (s, 1H), 5.00 (s, 1H), 4.43 (s, 2H), 1.84 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.3, 155.9, 147.7, 147.6, 141.0, 139.5, 122.4, 118.2, 115.8, 112.9, 111.2, 72.3, 19.5.

HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{15}H_{16}NO_2^+$ 242.1176, Found: 242.1178.

1-(4-((2-methylallyl)oxy)phenyl)-1*H*-pyrazole (1u). (According to the general procedure **D**). White solid (321.2 mg, 75%, m.p. 43 - 44 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.79 (d, J = 4.0 Hz, 1H), 7.68 (s, 1H), 7.59 - 7.53 (m, 2H), 7.00 - 6.91 (m, 2H), 6.40 (s, 1H), 5.10 (s, 1H), 5.00 (s, 1H), 4.43 (s, 2H), 1.82 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 157.3, 140.6, 140.5, 134.0, 126.7, 120.7, 115.4, 112.9, 107.1, 72.0, 19.4. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₁₃H₁₅N₂O⁺ 215.1179, Found: 215.1179.

1-(4-((2-methylallyl)oxy)phenyl)-1*H*-pyrrolo[2,3-*b*]pyridine (1v). (According to the general procedure **D**). Yellew oil (369.7 mg, 70%). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (d, J = 4.6 Hz, 1H), 7.97 (d, J = 7.8 Hz, 1H), 7.61 (d, J = 8.8 Hz, 2H), 7.44 (d, J = 3.5 Hz, 1H), 7.12 (dd, J = 7.8, 4.7 Hz, 1H), 7.07 (d, J = 8.9 Hz, 2H), 6.60 (d, J = 3.5 Hz, 1H), 5.14 (s, 1H), 5.02 (s, 1H), 4.49 (s, 2H), 1.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃)

8 157.4, 147.6, 143.5, 140.8, 131.7, 129.2, 128.4, 125.6, 121.4, 116.5, 115.6, 113.0, 101.1, 72.2, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{17}N_2O^+$ 265.1335, Found: 265.1337.

3,3-dimethyl-1-(4-((2-methylallyl)oxy)phenyl)indolin-2-one (1w). (According to the general procedure **D**, 3,3-dimethylindolin-2-one⁶ was used). White solid (478.9 mg, 78%, m.p. 55 - 56 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.35 - 7.29 (m, 2H), 7.27 (d, J = 7.3 Hz, 1H), 7.19 (t, *J* = 7.7 Hz, 1H), 7.11 – 7.04 (m, 3H), 6.80 (d, *J* = 7.8 Hz, 1H), 5.13 (s, 1H), 5.03 (s, 1H), 4.49 (s, 2H), 1.86 (s, 3H), 1.49 (s, 6H). ¹³C NMR (150 MHz,

CDCl₃) & 181.0, 158.3, 143.0, 140.7, 135.7, 127.9, 127.6, 127.4, 122.9, 122.6, 115.8, 113.1, 109.4, 72.1, 44.3, 24.8, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₂₂NO₂⁺ 308.1645, Found: 308.1645.

2-(4-((2-methylallyl)oxy)phenyl)benzo[d]oxazole (1x). (According to the general procedure E). White solid (413.4 mg, 78%, m.p. 75 - 76 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.13 -8.07 (m, 2H), 7.69 - 7.64 (m, 1H), 7.48 - 7.42 (m, 1H), 7.28 - 7.18 (m, 2H), 6.96 - 6.91 (m, 2H), 5.04 (s, 1H), 4.94 (s, 1H), 4.39 (s, 2H), 1.76 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 163.1, 161.5, 150.7, 142.3, 140.3, 129.4, 124.6, 124.4, 119.7, 119.6, 115.1, 113.1, 110.4, 71.7, 19.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₇H₁₆NO₂⁺ 266.1176, Found: 266.1177.

2-(4-((2-methylallyl)oxy)phenyl)benzo[d]thiazole (1y). (According to the general procedure **E**). White solid (286.6 mg, 51%, m.p. 74 - 75 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.07 - 8.00 (m, 3H), 7.85 (d, J = 7.9 Hz, 1H), 7.50 - 7.43 (m, 1H), 7.37 - 7.31 (m, 1H), 7.04 – 6.97 (m, 2H), 5.13 (s, 1H), 5.03 (s, 1H), 4.48 (s, 2H), 1.85 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) & 167.9, 161.2, 154.3, 140.4, 134.9, 129.1, 126.6, 126.3, 124.8, 122.9, 121.6, 115.2, 113.2, 71.9, 19.5. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{17}H_{16}NOS^+$ 282.0947, Found: 282.0946.

(3r, 5r, 7r)-N-(4-((2-methylallyl)oxy)phenyl)adamantane-1-carboxamide (1z). (According to the general procedure K). White solid (578.9 mg, 89%, m.p. 157 - 158 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.44 – 7.37 (m, 1H), 7.29 (s, 0H), 6.84 (d, J = 8.8 Hz, 1H), 5.06 (s, 1H), 4.96 (s, 1H), 4.39 (s, 1H), 2.07 (s, 2H), 1.94 (s, 3H), 1.80 (s, 2H), 1.73 (dd, J = 27.3, 12.3 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 176.0, 155.5, 140.9, 131.4, 121.8, 115.1, 112.7, 72.0, 41.3, 39.3, 36.5, 28.2, 19.4. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{21}H_{28}NO_2^+$ 326.2115, Found: 326.2112.

(E)-2-(4-((2-methylbut-2-en-1-yl)oxy)phenyl)pyridine (1za). (According to the general procedure A, (E)-1-bromo-2-methylbut-2-ene⁷ was used). Yellow oil (215.1 mg, 45%). ¹H NMR (400 MHz, CDCl₃) δ 8.65 (ddd, J = 4.8, 1.7, 1.0 Hz, 1H), 7.96 – 7.91 (m, 2H), 7.73 – 7.63 (m, 2H), 7.16 (ddd, J = 7.0, 4.8, 1.4 Hz, 1H), 7.04 – 6.98 (m, 2H), 5.66 (ddd, J = 6.7, 2.5, 1.2 Hz, 1H), 4.44 (s, 2H), 1.75 (s, 3H), 1.68 (dd, J = 6.7, 1.0 Hz, 3H). ¹³C NMR (100

MHz, CDCl₃) δ 160.0, 157.3, 149.6, 136.8, 132.0, 131.7, 128.2, 123.7, 121.5, 119.9, 115.1, 74.2, 13.7, 13.4. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{16}H_{18}NO^+$ 240.1383, Found: 240.1379.

N-methyl-N-(2-methylallyl)-4-(pyridin-2-yl)aniline (1zb). (According to the general procedure I). Brown oil (371.4 mg, 78%). ¹H NMR (600 MHz, CDCl₃) δ 8.61 (d, J = 4.7 Hz, 1H), 7.90 (d, *J* = 8.8 Hz, 2H), 7.64 (dd, *J* = 13.3, 7.5 Hz, 2H), 7.12 - 7.05 (m, 1H), 6.75 (d,

 $J = 8.7 \text{ Hz}, 2\text{H}, 4.87 \text{ (s, 1H)}, 4.79 \text{ (s, 1H)}, 3.87 \text{ (s, 2H)}, 3.02 \text{ (s, 3H)}, 1.73 \text{ (s, 3H)}. {}^{13}\text{C NMR} (150 \text{ MHz}, \text{CDCl}_3) \delta 157.7, 150.3, 149.3, 141.0, 136.7, 127.9, 126.9, 120.6, 119.2, 111.9, 111.0, 58.6, 38.4, 20.2. \text{HRMS} (ESI-TOF) m/z: <math>[\text{M} + \text{H}]^+$ Calcd for $C_{16}\text{H}_{19}\text{N}_2^+$ 239.1543, Found: 239.1544.

4-methyl-*N*-(2-methylallyl)-*N*-(4-(pyridin-2-yl)phenyl)benzenesulfonamide (1zc). (According to the general procedure **J**). White solid (642.6 mg, 85%, m.p. 124 - 125 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.69 – 8.62 (m, 1H), 7.91 (d, *J* = 8.3 Hz, 2H), 7.74 (s, 1H), 7.71 (s, 1H), 7.47 (d, *J* = 7.9 Hz, 2H), 7.23 (d, *J* = 7.8 Hz, 3H), 7.15 (d, *J* = 8.2 Hz, 2H), 4.74 (s, 1H), 4.73 (s, 1H), 4.13 (s, 2H), 2.40 (s, 3H), 1.75 (s, 3H). ¹³C NMR (150 MHz,

CDCl₃) δ 156.4, 149.6, 143.6, 139.7, 138.4, 137.1, 135.1, 129.6, 128.7, 127.8, 127.3, 122.5, 120.7, 115.5, 56.6, 21.6, 20.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₃N₂O₂S⁺ 379.1475, Found: 379.1478.

N,*N*-bis(2-methylallyl)-4-(pyridin-2-yl)aniline (**1zd**). (According to the general procedure **H**). Brown oil (483.7 mg, 87%). ¹H NMR (600 MHz, CDCl₃) δ 8.60 (d, *J* = 4.3 Hz, 1H), 7.86 (d, *J* = 7.2 Hz, 2H), 7.67 – 7.57 (m, 2H), 7.10 – 7.01 (m, 1H), 6.70 (d, *J* = 7.5 Hz, 2H), 4.88 (s, 2H), 4.80 (s, 2H), 3.87 (s, 4H), 1.76 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 157.7, 149.7, 149.4, 140.4, 136.6, 127.7, 127.0, 120.6, 119.2, 112.1,

110.6, 56.3, 20.2. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{19}H_{23}N_2^+$ 279.1856, Found: 279.1857.

2-(4-((2-methylallyl)oxy)phenyl)pyrimidine (**1ze**). (According to the general procedure **A**). White solid (415.8 mg, 92%, m.p. 39 - 40 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.77 – 8.66 (m, 2H), 8.43 – 8.35 (m, 2H), 7.10 – 7.04 (m, 1H), 7.04 – 6.97 (m, 2H), 5.11 (s, 1H), 5.00 (d, *J* = 0.4 Hz, 1H), 4.49 (s, 2H), 1.83 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 164.6, 161.2, 157.2, 140.6, 130.4, 129.8, 118.4, 114.8, 113.0, 71.8, 19.5. HRMS (ESI-TOF) m/z: [M +

 H_{15}^{+} Calcd for $C_{14}H_{15}N_2O^{+}$ 227.1179, Found: 227.1180.

3. Experimental Section

(1) Tables of the Optimization of Reaction Conditions

Table S1: Optimization of the reaction conditions of synthesis of 3.^{*a*}

$\begin{array}{c} Py \\ \downarrow \\ $				
Entry	1a	2a Ovident	3 Solvent	N: 11 [0/] ^b
Enuy	Additive	Oxidant	Solvent	Yield [%]
1	PivOH	AgOAc	THF	48
2	PivOH	AgOAc	1,4-Dioxane	26
3	PivOH	AgOAc	DCE	trace
4	PivOH	AgOAc	MeOH	ND^{c}
5	PivOH	AgOAc	TFE	ND^{c}
6	PivOH	AgOAc	Acetone	13
7	PivOH	AgOAc	PhMe	41
8	PivOH	AgOAc	PhCl	50
9	PivOH	AgOAc	MeCN	ND^{c}
10	PivOH	AgOAc	t-AmOH	68
11	PivOH	Cu(OAc) ₂	t-AmOH	ND^{c}
12	PivOH	AgF	t-AmOH	40
13	PivOH	Ag ₂ CO ₃	t-AmOH	30
14	PivOH	AgOTFA	t-AmOH	ND^{c}
15	PivOH	Ag(II)O	t-AmOH	19
16	PivOH	Ag ₂ O	t-AmOH	15
17	PivOH	MeSO ₃ Ag	t-AmOH	ND^{c}
18	PivOH	AgOPiv	t-AmOH	60
19	Zn(OAc) ₂	AgOAc	t-AmOH	35
20	CsOAc	AgOAc	t-AmOH	69
21	CsOPiv	AgOAc	t-AmOH	76

22	LiOAc	AgOAc	t-AmOH	70
23	NaOAc	AgOAc	t-AmOH	70
24	HOAc	AgOAc	t-AmOH	65
25	NaOPiv	AgOAc	t-AmOH	66
26	MesCOOH	AgOAc	t-AmOH	68
27	KOAc	AgOAc	t-AmOH	64
28	1-AdCOOH	AgOAc	t-AmOH	63
29	-	AgOAc	t-AmOH	60
30^d	PivOH	AgOAc	t-AmOH	40
31 ^e	CsOPiv	AgOAc	t-AmOH	NR ^h
32 ^{<i>f</i>}	CsOPiv	AgOAc	t-AmOH	NR ^h
33 ^g	CsOPiv	AgOAc	t-AmOH	NR ^h

^{*a*}Reaction Conditions: **1a** (0.05 mmol), **2a** (0.065 mmol), [RhCp*Cl₂]₂ (5 mol%), additive (0.5 equiv), oxidant (2.3 equiv), solvent (1 mL), at 120 °C under Air for 12 h, ^{*b*} isolated yield, ^{*c*} no detected, ^{*d*}AgSbF₆ (20 mol%) was used. ^{*e*}[Cp*IrCl₂]₂ (5 mol%) was used, ^{*f*}[Ru(*p*-cymene)Cl₂]₂ (5 mol%) was used, ^{*g*}[Cp*Co(CO)I₂] (5 mol%) was used, ^{*h*} no reaction.

Table S2: Optimization of the reaction conditions of synthesis of 31.^a

9	tBuOMe	15
10	PhCF ₃	41
11	HFIP	NR ^c

^{*a*}Reaction Conditions: **1b** (0.05 mmol), **2a** (0.065 mmol), [RhCp*Cl₂]₂ (5 mol%), CsOPiv (0.5 equiv), AgOAc (2.3 equiv), solvent (1 mL), at 120 °C under Air for 12 h, ^{*b*} isolated yield, ^{*c*} no reaction.

Table S3: Optimization of the reaction conditions of synthesis of 47.^{*a*}

	o ^{-Py} + PhPh 0 1t 2a	[RhCp*Cl ₂]2 additive, oxida 100 ºC,	AgSbF ₆ ant, solvent 24 h	Ph Ph
Entry	Additive	Oxidant	Solvent	Yield [%] ^b
1	PivOH	AgOAc	THF	24
2	PivOH	AgOAc	МеОН	44
3	PivOH	AgOAc	Acetone	23
4	PivOH	AgOAc	t-BuOMe	29
5	PivOH	AgOAc	t-AmOH	40
6	PivOH	AgOAc	1,4-Dioxane	37
7	PivOH	AgOAc	DME	27
8	PivOH	AgOAc	TFE	54
9°	PivOH	AgOAc	TFE	73
10 ^c	HOAc	AgOAc	TFE	60
11 ^c	CsOAc	AgOAc	TFE	65
12 ^c	KOAc	AgOAc	TFE	60
13 ^c	Zn(OAc) ₂	AgOAc	TFE	36
14 ^c	MesCOOH	AgOAc	TFE	43
15 ^c	Na ₂ CO ₃	AgOAc	TFE	50
16 ^c	NaOPiv	AgOAc	TFE	67

^{*a*}Reaction Conditions: **1t** (0.05 mmol), **2a** (0.06 mmol), [RhCp*Cl₂]₂ (5 mol%), AgSbF₆ (20 mol%), additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at 100 °C under Air for 24 h, ^{*b*} isolated yield, ^{*c*} additive (2.0 equiv) was used.

Table S4: Optimization of the reaction conditions of synthesis of 48.^{*a*}

Į	Ň			
Í	+ PhPh	n [RhCp*Cl ₂] ₂ , additive, oxida	AgSbF ₆	Ph
		80 °C, 2	24 h	×
Entry	1u 2a	Oridant	S a lavent	b
Entry	Additive	Oxidant	Solvent	Yield [%]
1	PivOH	AgOAc	MeOH	40
2	PivOH	AgOAc	1,4-Dioxane	50
3	PivOH	AgOAc	THF	43
4	PivOH	AgOAc	HFIP	ND^{c}
5	PivOH	AgOAc	t-AmOH	30
6	PivOH	AgOAc	TFE	ND^{c}
7	PivOH	Ag ₂ CO ₃	1,4-Dioxane	42
8	PivOH	AgOTFA	1,4-Dioxane	ND^{c}
9	PivOH	MeSO ₃ Ag	1,4-Dioxane	ND^{c}
10	PivOH	Ag ₂ O	1,4-Dioxane	36
11	PivOH	AgOTf	1,4-Dioxane	ND^{c}
12	PivOH	AgBF ₄	1,4-Dioxane	ND^{c}
13	PivOH	AgF	1,4-Dioxane	21
14	PivOH	Cu(OAc) ₂	1,4-Dioxane	ND^{c}
15 ^e	PivOH	AgOAc	1,4-Dioxane	ND^{c}
16	Zn(OAc) ₂	AgOAc	1,4-Dioxane	53
17	CsOAc	AgOAc	1,4-Dioxane	NR^d
18	CsOPiv	AgOAc	1,4-Dioxane	NR^d
19	NaOAc	AgOAc	1,4-Dioxane	78
20	MesCOOH	AgOAc	1,4-Dioxane	53
21	LiOAc	AgOAc	1,4-Dioxane	59
22	1-AdCOOH	AgOAc	1,4-Dioxane	49
23	HOAc	AgOAc	1,4-Dioxane	57

^{*a*}Reaction Conditions: **1u** (0.05 mmol), **2a** (0.06 mmol), $[RhCp*Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at 80 °C under Air for 24 h, ^{*b*} isolated yield, ^{*c*} no detected, ^{*d*} no reaction, ^{*e*} [IrCp*Cl_2]_2 (5 mol%) was used.

	N + Ph Ph O Iv 2a	$([RhCp*Cl_2]_2, AgSbF_6]$ additive, oxidant, solvent 120 °C, 24 h 49		
Entry	Additive	Oxidant	Solvent	Yield $[\%]^{b}$
1	PivOH	AgOAc	DCE	56
2	PivOH	AgOAc	THF	62
3	PivOH	AgOAc	МеОН	85
4	PivOH	AgOAc	MeCN	ND ^c
5	PivOH	AgOAc	PhMe	59
6	PivOH	AgOAc	1,4-Dioxane	42
7	PivOH	AgOAc	HFIP	39
8	PivOH	AgOAc	PhCl	68

Table S5: Optimization of the reaction conditions of synthesis of 49.^{*a*}

^{*a*}Reaction Conditions: **1v** (0.05 mmol), **2a** (0.06 mmol), [RhCp*Cl₂]₂ (5 mol%), AgSbF₆ (20 mol%), additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at 120 °C under Air for 24 h, ^{*b*} isolated yield, ^{*c*} no detected.

Table S6: Optimization of the reaction conditions of synthesis of 50.^a

Entry	Additive	Oxidant	Solvent	Yield [%]
1	PivOH	AgOAc	DCE	trace
2	PivOH	AgOAc	MeCN	NR ^c
3	PivOH	AgOAc	THF	25
4	PivOH	AgOAc	MeOH	NR ^c
5	PivOH	AgOAc	1,4-Dioxane	trace
6	PivOH	AgOAc	PhCl	trace
7	PivOH	AgOAc	PhMe	NR ^c
8	PivOH	AgOAc	TFE	trace

9	PivOH	AgOAc	Ether	12
10	PivOH	AgF	THF	45
11	PivOH	AgF_2	THF	39
12	PivOH	Ag ₂ CO ₃	THF	23
13	PivOH	Ag ₂ O	THF	35

^{*a*}Reaction Conditions: **1w** (0.05 mmol), **2a** (0.06 mmol), [RhCp*Cl₂]₂ (5 mol%), AgSbF₆ (20 mol%), additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at 120 °C under Air for 24 h, ^{*b*} isolated yield, ^{*c*} no reaction.

Table S7: Optimization of the reaction conditions of synthesis of 51.^a

	× + Ph————Ph	[RhCp*Cl₂]₂, additive, oxidar 120 ºC, 2	AgSbF ₆ it, solvent 24 h	N Ph Ph 51
Entry	Additive	Oxidant	Solvent	Yield $[\%]^{b}$
1	PivOH	AgOAc	DCE	trace
2	PivOH	AgOAc	THF	15
3	PivOH	AgOAc	МеОН	NR
4	PivOH	AgOAc	MeCN	trace
5	PivOH	AgOAc	PhMe	trace
6	PivOH	AgOAc	1,4-Dioxane	10
7	PivOH	AgOAc	HFIP	NR
8	PivOH	AgOAc	PhCl	7
9	Zn(OAc) ₂	AgOAc	THF	ND
10	CsOAc	AgOAc	THF	NR
11	CsOPiv	AgOAc	THF	NR
12	LiOAc	AgOAc	THF	35
13	NaOAc	AgOAc	THF	45
14	HOAc	AgOAc	THF	39
15	KOAc	AgOAc	THF	35
16	Zn(OTf) ₂	AgOAc	THF	NR

^{*a*}Reaction Conditions: **1x** (0.05 mmol), **2a** (0.06 mmol), $[RhCp*Cl_2]_2$ (5 mol%), AgSbF₆ (20 mol%), additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at 120 °C under Air for 12 h, ^{*b*} isolated yield.

Ad (NH + Ph—Ph 1z 2a	[RhCp*Cl ₂ additive, oxi 120 %	Ad A	53
Entry	Additive	Oxidant	Solvent	Yield $[\%]^{b}$
1	PivOH	AgOAc	THF	trace
2	PivOH	AgOAc	DCE	trace
3	PivOH	AgOAc	MeOH	trace
4	PivOH	AgOAc	1,4-Dioxane	trace
5	PivOH	AgOAc	PhMe	25
6	PivOH	AgOAc	t-AmOH	40
7	PivOH	AgOAc	TFE	trace
8	PivOH	AgOAc	MeCN	ND
9	Zn(OAc) ₂	AgOAc	t-AmOH	30
10	CsOAc	AgOAc	t-AmOH	NR
11	CsOPiv	AgOAc	t-AmOH	NR
12	NaOAc	AgOAc	t-AmOH	25
13	LiOAc	AgOAc	t-AmOH	29
14	HOAc	AgOAc	t-AmOH	15

Table S8: Optimization of the reaction conditions of synthesis of 53.^{*a*}

^{*a*}Reaction Conditions: **1z** (0.05 mmol), **2a** (0.06 mmol), [RhCp*Cl₂]₂ (5 mol%), AgSbF₆ (20 mol%), additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at 120 °C under Air for 12 h, ^{*b*} isolated yield. **Table S9: Optimization of the reaction conditions of synthesis of 54.**^{*a*}

	Py + Ph O 1a	-0 <u>[RhCp*Cl₂]</u> 0 solv 110 ℃	2. additive ent , 24 h	Ph O
Entry	Additive 1	Additive 2	Solvent	Yield $[\%]^{b}$
1	CsOPiv	AgOAc	THF	ND^{c}
2	CsOPiv	AgOAc	1,4-Dioxane	ND^{c}
3	CsOPiv	AgOAc	PhMe	ND^{c}

4	CsOPiv	AgOAc	PhCl	ND^{c}
5	CsOPiv	AgOAc	MeCN	ND^{c}
6	CsOPiv	AgOAc	DCE	ND^{c}
7	CsOPiv	AgOAc	MeOH	ND^{c}
8	CsOPiv	AgOAc	tBuOMe	ND^{c}
9	CsOPiv	AgOAc	PhCF ₃	ND^{c}
10	CsOPiv	AgOAc	HFIP	trace
11	CsOPiv	AgOAc	t-AmOH	ND^{c}
12^d	Zn(OAc) ₂	-	HFIP	40
13 ^{<i>d</i>}	CsOAc	-	HFIP	65
14^d	NaOAc	-	HFIP	trace
15 ^{<i>d</i>}	CsOPiv	-	HFIP	30
16 ^{<i>d</i>}	HOAc	-	HFIP	45
17 ^d	PivOH	-	HFIP	83
18^d	PivOH	-	TFE	ND^{c}
19 ^{<i>d</i>}	PivOH	-	DCE	ND^{c}
20^d	PivOH	-	THF	ND^{c}
21^d	PivOH	-	MeOH	ND^{c}
22^d	PivOH	-	t-AmOH	trace
23^d	PivOH	-	PhMe	ND ^c
24^d	PivOH	-	MeCN	34
25 ^{<i>d</i>}	PivOH	-	PhCF ₃	20

^{*a*}Reaction Conditions: **1a** (0.05 mmol), 3-phenyl-1,4,2-dioxazol-5-one (0.065 mmol), $[RhCp*Cl_2]_2$ (5 mol%), additive **1** (2.0 equiv), additive **2** (1.0 equiv), solvent (1 mL), at 110 °C under Air for 24 h, ^{*b*} isolated yield, ^{*c*} no detected, ^{*d*}AgSbF₆ (20 mol%) was used, at 110 °C under Air for 36 h.

Table S10: Optimization of the reaction conditions of synthesis of 63.^a

1	PivOH	DCE	ND ^c
2	NaOAc	DCE	ND ^c
3	CsOAc	DCE	ND ^c
4	CsOPiv	DCE	ND ^c
5	Zn(OAc) ₂	DCE	ND ^c
6	HOAc	DCE	ND^{c}
7	AgOAc	DCE	45
8	LiOAc	DCE	ND ^c
9	-	DCE	ND ^c
10	AgOAc	DCM	56
11	AgOAc	PhCl	45
12	AgOAc	MeCN	NR^d
13	AgOAc	PhMe	35
14	AgOAc	PhCF ₃	40
15	AgOAc	THF	20

^{*a*}Reaction Conditions: **1a** (0.05 mmol), 1-isocyanato-4-methylbenzene (0.06 mmol), $[RhCp*Cl_2]_2$ (5 mol%), additive (1.0 equiv), solvent (1 mL), at 75 °C under N₂ for 24 h, ^{*b*} isolated yield, ^{*c*} no detected, ^{*d*} no reaction.

(2) General procedures for the synthesis of products 3 - 67.

Conditions 1. A mixture of arenes **1** (0.2 mmol, 1.0 equiv), alkynes **2** (0.26 mmol, 1.3 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), CsOPiv (24.3 mg, 0.1 mmol, 0.5 equiv) and AgOAc (76.8 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOH or DCE (2 mL) was added and the mixture was stirred at 120 °C for 12 h under air atmosphere. Afterwards, the mixture was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel.

S26

Conditions 2: A mixture of arene **1t** (48.2 mg, 0.2 mmol, 1.0 equiv), alkyne **2a** (40.1 mg, 0.24 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), PivOH (20 mg, 0.2 mmol, 1.0 equiv) and AgOAc (76.8 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. TFE (2 mL) was added and the mixture was stirred at 100 °C for 24 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:5) on silica gel.

Enantioselective Synthesis of 47. A mixture of arene 1t (24.1 mg, 0.1 mmol, 1.0 equiv), 2a (20.0 mg, 0.12 mmol, 1.2 equiv), (*R*)-Rh1 (3.4 mg, 2.5 mol%), AgSbF₆ (3.4 mg, 10 mol%), PivOH (20 mg, 0.2 mmol, 2.0 equiv) and AgOAc (38.4mg, 0.23 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. MeOH (2 mL) was added and the mixture was stirred at 80 °C for 48 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was purified by column chromatography (EtOAc/petroleum ether = 1:5) on silica gel affording 47 (8.3 mg, 20% yield). Enantiomeric excess was determined by HPLC with a Daicel Chiralpak OD-H, n-hexane/2-propanol = 98/2, v = 1.0 mL·min⁻¹, λ = 254 nm, t (minor) = 4.9 min, t (major) = 5.5 min, 34% ee; [α]_D^{15.0} = -20.74 (c = 0.5, CHCl₃).

Conditions 3: A mixture of arene **1u** (42.8 mg, 0.2 mmol, 1.0 equiv), alkyne **2a** (40.1 mg, 0.24 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), NaOAc (16.4 mg, 0.2 mmol, 1.0 equiv) and AgOAc (76.8 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. 1,4-Dioxane (2 mL) was added and the mixture was stirred at 80 °C for 24 h under air atmosphere. Afterwards, the mixture was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel.

Conditions 4: A mixture of arene **1v** (52.8 mg, 0.2 mmol, 1.0 equiv), alkyne **2a** (40.1 mg, 0.24 mmol, 1.2 equiv), [RhCp*Cl₂]₂ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), PivOH (20 mg, 0.2 mmol, 1.0

equiv) and AgOAc (76.8 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. MeOH (2 mL) was added and the mixture was stirred at 120 $^{\circ}$ C for 12 h under air atmosphere. Afterwards, the mixture was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:5) on silica gel.

Conditions 5: A mixture of arene **1w** (61.4 mg, 0.2 mmol, 1.0 equiv), alkyne **2a** (40.1 mg, 0.24 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), PivOH (20 mg, 0.2 mmol, 1.0 equiv) and AgF (58.4 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. THF (2 mL) was added and the mixture was stirred at 120 °C for 24 h under air atmosphere. Afterwards, the mixture was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel.

Conditions 6: A mixture of arene **1x** or **1y** (0.2 mmol, 1.0 equiv), alkyne **2a** (40.1 mg, 0.24 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), NaOAc (16.4 mg, 0.2 mmol, 1.0 equiv) and AgOAc (76.8 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. THF (2 mL) was added and the mixture was stirred at 120 °C for 24 h under air atmosphere. Afterwards, the mixture was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel.

Conditions 7: A mixture of arene **1z** (65.0 mg, 0.2 mmol, 1.0 equiv), alkyne **2a** (42.7 mg, 0.24 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%), PivOH (20 mg, 0.2 mmol, 1.0 equiv) and AgOAc (76.8 mg, 0.46 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOH (2 mL) was added and the mixture was stirred at 120 °C for 24 h under air atmosphere.

Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel.

Conditions 8: A mixture of arene **1a** (45.2 mg, 0.2 mmol, 1.0 equiv), dioxazolones (0.26 mmol, 1.3 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%) and PivOH (40 mg, 0.4 mmol, 2.0 equiv) were weighted in a pressure tube equipped with a stir bar. HFIP (2 mL) was added and the mixture was stirred at 110 °C for 36 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:1) on silica gel.

Conditions 9: A mixture of arene **1a** (45.2 mg, 0.2 mmol, 1.0 equiv), isocyanates (0.24 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (6.2 mg, 5 mol%), AgSbF₆ (13.7 mg, 20 mol%) and AgOAc (33.4mg, 0.2 mmol, 1.0 equiv) were weighted in a pressure tube equipped with a stir bar. DCM (2 mL) was added and the mixture was stirred at 75 °C for 24 h under N₂ atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:2) on silica gel.

(3) Diversification of the Products

(a) Scale-up Synthesis

A mixture of arene **1a** (1.125g, 5.0 mmol, 1.0 equiv), alkyne **2a** (1.157 g, 6.5 mmol, 1.3 equiv), $[RhCp*Cl_2]_2$ (77.3 mg, 2.5 mol%), CsOPiv (607.5 mg, 2.5 mmol, 0.5 equiv) and AgOAc (1.919 g, 11.5 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOH (50 mL) was added and the mixture was stirred at 120 °C for 12 h under air atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether = 1:10 to afford **3** (1.574 g, 79%).

S29

А of (40.1)mixture arene 3 mg, 0.10 mmol, 1.0 equiv), 1-(triisopropylsilyl)ethynyl-1,2-benziodoxol-3(1H)-one⁸ (TIPS-EBX) (51.4 mg, 0.12 mmol, 1.2 equiv), [RhCp*Cl₂]₂ (3.1 mg, 5.0 mol%) and AgSbF₆ (6.9 mg, 20.0 mol%) were weighted in a pressure tube equipped with a stir bar. MeOH (2 mL) was added and the mixture was stirred at 60 °C for 24 h under air atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether = 1:3 to afford 68 (33.1 mg, 57%).

A mixture of arene **3** (40.1 mg, 0.10 mmol, 1.0 equiv), 3-phenyl-1,4,2-dioxazol-5-one (19.6 mg, 0.12 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (3.1 mg, 5.0 mol%) and $AgSbF_6$ (6.9 mg, 20.0 mol%) were weighted in a pressure tube equipped with a stir bar. DCE (2 mL) was added and the mixture was stirred at 80 °C for 24 h under air atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether = 1:2 to afford **69** (36.9 mg, 71%).

A mixture of arene **3** (40.1 mg, 0.10 mmol, 1.0 equiv), 3-diazopentane-2,4-dione⁹ (18.9 mg, 0.15mmol, 1.5 equiv), $[RhCp*Cl_2]_2$ (3.1 mg, 5.0 mol%), AgSbF₆ (6.9 mg, 20.0 mol%) and KOAc (4.9 mg, 0.05 mmol, 0.5 equiv) were weighted in a pressure tube equipped with a stir bar. DCE (2 mL) was added and the mixture was stirred at 80 °C for 24 h under N₂ atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether = 1:2 to afford **70** (27.9 mg, 56%).

A mixture of arene **3** (40.1 mg, 0.10 mmol, 1.0 equiv), 1-isocyanato-4-methylbenzene (20.0 mg, 0.15 mmol, 1.5 equiv), [RhCp*Cl₂]₂ (3.1 mg, 5.0 mol%) and AgSbF₆ (6.9 mg, 20.0 mol%) were weighted in a pressure tube equipped with a stir bar. DCM (2 mL) was added and the mixture was stirred at 80 °C for 12 h under N₂ atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether = 1:2 to afford **71** (35.5 mg, 66%).

A mixture of arene **3** (40.1 mg, 0.10 mmol, 1.0 equiv), 1,2-diphenylethyne (19.6 mg, 0.11 mmol, 1.1 equiv), $[RhCp*Cl_2]_2$ (3.1 mg, 5.0 mol%), AgSbF₆ (6.9 mg, 20.0 mol%), AgOTf (56.5 mg, 0.22 mmol, 2.2 equiv), AgOAc (25.0 mg, 0.15 mmol, 1.5 equiv) were weighted in a pressure tube equipped with a stir bar. MeOH (2 mL) was added and the mixture was stirred at 120 °C for 24 h under N₂ atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using MeOH/DCM = 1:20 to afford **72** (70.5 mg, 97%).

(4) Mechanistic Studies

(a) H/D Exchange experiment

Procedures for H/D Exchange Studies in the absence of 2a: A mixture of arene **1a** (22.5 mg, 0.1 mmol, 1.0 equiv), $[RhCp*Cl_2]_2$ (3.1 mg, 5 mol%), CsOPiv (12.2 mg, 0.05 mmol, 0.5 equiv) and AgOAc (38.4 mg, 0.23 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOD (2 mL) was added and the mixture was stirred at 120 °C for 12 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel. ¹H NMR analysis indicated 20% deuteration at the *ortho*-position of the phenyl ring.

Procedures for H/D Exchange Studies in the Presence of 2a: A mixture of arene **1a** (22.5 mg, 0.1 mmol, 1.0 equiv), alkyne **2a** (23.1 mg, 0.13 mmol, 1.3 equiv), $[RhCp*Cl_2]_2$ (3.1 mg, 5 mol%), CsOPiv (12.2 mg, 0.05 mmol, 0.5 equiv) and AgOAc (38.4 mg, 0.23 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOD (2 mL) was added and the mixture was stirred at 120 °C for 2 h under air atmosphere. Afterwards, the mixture was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether = 1:10) on silica gel. The ratio was determined by ¹H NMR.

S33

b) Synthesis of intermidiate A

A mixture of iminopyridinium ylide 1a (67.5 mg, 0.3 mmol, 1.0 equiv), [Cp*RhCl₂]₂ (81.6 mg, 0.132 mmol, 0.44 equiv), NaOAc (73.8 mg, 0.9 mmol, 3.0 equiv) and DCM (4 mL) were charged into a reaction tube. The reaction mixture was stirred under air at r.t. for 24 h. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether = 1:1 to provide the complex A and was isolated as an orange-red solid (112.9 mg, 86%). Structure of this compound was verified by X-ray crystallographic analysis after recrystallization from CH₂Cl₂ at room temperature.

A Orange-red solid (112.9 mg, 86%, m.p. 171 - 172 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.64 (d, J = 5.5 Hz, 1H), 7.65 – 7.58 (m, 2H), 7.51 (d, J = 8.5 Hz, 1H), 7.35 (d, J = 1.8 Hz, 1H), 7.02 (t, J = 6.1 Hz, 1H), 6.63 (dd, J = 8.4, 1.9 Hz, 1H), 5.14 (s, 1H), 5.01 (s, 1H), 4.55 (q, J = 12.7 Hz, 2H), 1.86 (s, 3H), 1.61 (s, 15H). ¹³C NMR (150 MHz, CDCl₃) δ 180.8 (d, J = 32.2 Hz, 1C), 165.2, 159.9, 151.1, 141.5, 137.02, 136.96, 124.5, 121.7, 120.9, 118.4, 112.6, 110.4, 96.0 (d, J = 5.9 Hz, 1C), 71.6, 19.6, 9.3. HRMS (ESI-TOF) m/z: [M - Cl]⁺ Calcd for C₂₅H₂₉NORh⁺ 462.1304, Found: 462.1303. c) Catalytic reaction of intermidiate A

A mixture of **1a** (22.5 mg, 0.1 mmol, 1.0 equiv), **2a** (23.1 mg, 0.13 mmol, 1.3 equiv), **A** (4.9 mg, 10 mol%), CsOPiv (12.2 mg, 0.05 mmol, 0.5 equiv) and AgOAc (38.4 mg, 0.23 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOH (2 mL) was added and the mixture was stirred at 120 °C for 12 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether = 1:10 to afford **3** in 77% yield.

d) Stoichiometric reaction of intermidiate A

A mixture of A (24.9 mg, 0.05 mmol, 1.0 equiv), **2a** (11.6 mg, 0.065 mmol, 1.3 equiv), CsOPiv (6.1 mg, 0.5 equiv) and AgOAc (19.2 mg, 0.115 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOH (1 mL) was added and the mixture was stirred at 120 °C for 12 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether = 1:10 to afford **3** in 47% (9.4 mg) yield.

A mixture of **A** (24.9 mg, 0.05 mmol, 1.0 equiv), **2a** (11.6 mg, 0.065 mmol, 1.3 equiv) and CsOPiv (6.1 mg, 0.5 equiv) were weighted in a pressure tube equipped with a stir bar. *t*-AmOH (1 mL) was added and the mixture was stirred at 120 °C for 12 h under Ar atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether = 1:10 to afford **3** in 32% (6.4 mg) yield. e) Control experiment

Step1: A mixture of arene **1t** (85.6 mg, 0.4 mmol, 1.0 equiv), alkyne **2a** (85.4 mg, 0.48 mmol, 1.2 equiv), $[RhCp*Cl_2]_2$ (12.4 mg, 5 mol%), AgSbF₆ (27.5 mg, 20 mol%), PivOH (40 mg, 0.4 mmol, 1.0 equiv) and AgOAc (153.6 mg, 0.92 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. PhCl (4 mL) was added and the mixture was stirred at 100 °C for 12 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether = 1:10 to afford **73** in 45% (70.6 mg) yield.

Step2:A mixture of arene **73** (39.2 mg, 0.1 mmol, 1.0 equiv), $[RhCp*Cl_2]_2$ (3.1 mg, 5 mol%), AgSbF₆ (6.9 mg, 20 mol%), NaOAc (8.2 mg, 0.1 mmol, 1.0 equiv) and AgOAc (38.4 mg, 0.23 mmol, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. 1,4-Dioxane (1 mL) was added

and the mixture was stirred at 80 °C for 24 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether = 1:10 to afford **73** (67% was recovered), the product **48** was not detected.
4. X-Ray Crystal Structure of 32 and intermidiate A.

(CCDC 2143654)

Table 1 Crystal data and structure refinement for 32.		
Identification code	SLC-20220107	
Empirical formula	C ₂₉ H ₂₂ ClNO	
Formula weight	435.92	
Temperature/K	293(2)	
Crystal system	monoclinic	
Space group	$P2_1/n$	
a/Å	16.7731(3)	
b/Å	7.1332(2)	
c/Å	19.2367(4)	
α/°	90	
β/°	104.828(2)	
$\gamma/^{\circ}$	90	
Volume/Å ³	2224.95(9)	
Z	4	
$\rho_{calc}g/cm^3$	1.301	
μ/mm^{-1}	1.679	
F(000)	912.0	
Crystal size/mm ³	$0.1\times0.1\times0.1$	
Radiation	Cu Ka (λ = 1.54184)	

2Θ range for data collection/°	8.1 to 143.932
Index ranges	-20 \leq h \leq 15, -8 \leq k \leq 8, -23 \leq l \leq 22
Reflections collected	10420
Independent reflections	4246 [$R_{int} = 0.0204, R_{sigma} = 0.0267$]
Data/restraints/parameters	4246/0/290
Goodness-of-fit on F ²	1.084
Final R indexes [I>=2 σ (I)]	$R_1 = 0.0490, wR_2 = 0.1322$
Final R indexes [all data]	$R_1 = 0.0608, wR_2 = 0.1374$
Largest diff. peak/hole / e Å ⁻³	0.26/-0.18

(CCDC 2158590)

Table 1 Crystal data and structure refinement for intermidiate A.

Identification code	SLC-20220315
Empirical formula	$C_{50}H_{58}Cl_2N_2O_2Rh_2$
Formula weight	995.70
Temperature/K	293(2)
Crystal system	monoclinic
Space group	$P2_1/c$
a/Å	18.7457(2)
b/Å	7.72790(10)
c/Å	31.2170(4)
$\alpha/^{\circ}$	90
β/°	93.5280(10)
$\gamma/^{\circ}$	90

Volume/Å ³	4513.68(10)
Z	4
$\rho_{calc}g/cm^3$	1.465
μ/mm^{-1}	7.317
F(000)	2048.0
Crystal size/mm ³	$0.1\times0.1\times0.1$
Radiation	Cu Ka ($\lambda = 1.54184$)
2Θ range for data collection/°	7.604 to 143.012
Index ranges	$\textbf{-14} \leq h \leq 23, \textbf{-7} \leq k \leq 9, \textbf{-37} \leq l \leq 38$
Reflections collected	18072
Independent reflections	8597 [$R_{int} = 0.0419, R_{sigma} = 0.0562$]
Data/restraints/parameters	8597/0/551
Goodness-of-fit on F ²	1.041
Final R indexes [I>= 2σ (I)]	$R_1 = 0.0466, wR_2 = 0.1166$
Final R indexes [all data]	$R_1 = 0.0583, wR_2 = 0.1232$
Largest diff. peak/hole / e Å ⁻³	1.22/-0.75

5. References

a) M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, *Org. Lett.*, 2002, 4, 3199-3202; b) J. M. Ketcham, B. Biannic and A. Aponick, *Chem. Commun.*, 2013, 49, 4157-4159; c) J. Chen, C. Chen, J. J. Chen, G. H. Wang and H. M. Qu, *Chem. Commun.*, 2015, 51, 1356-1359; d) S. N. Wu, Z. Wang, Y. W. Bao, C. Chen, K. Liu and B. L. Zhu, *Chem. Commun.*, 2020, 56, 4408-4411.

2. J. Ding, W. Jiang, H.-Y. Bai, T.-M. Ding, D. Gao, X. Bao and S.-Y. Zhang, *Chem. Commun.*, 2018, **54**, 8889-8892.

3. A. T.-Aca, S. Y. Lee, S. Sakamoto and J. F. Hartwig, ACS Catal., 2021, 11, 1430-1434.

4. K.-i. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Org. Lett., 2004, 6, 2785-2788.

a) B. Ye and N. Cramer, *J. Am. Chem. Soc.*, 2013, **135**, 636-639; b) G. Smits, B. Audic, M. D. Wodrich, C. Corminboeuf and N. Cramer, *Chem. Sci.*, 2017, **8**, 7174-7179; c)Y. Sun and N. Cramer, *Chem. Sci.*, 2018, **9**, 2981-2985; d) Y. Sun and N. Cramer, *Angew. Chem., Int. Ed.*, 2018, **57**, 15539-15543.

6. H. Li, X. Yan, J. Zhang, W. Guo, J. Jiang and J. Wang, Angew. Chem., Int. Ed., 2019, **58**, 6732 -6736.

7. I. R. Hazelden, X. Ma, T. Langer and J. F. Bower, *Angew. Chem., Int. Ed.*, 2016, 55, 11198-11202.

8. X. Wang, X. Li, Y. Zhang and L. Xia, Org. Biomol. Chem., 2018, 16, 2860-2864.

9. P. Li, X. Xu, J. Chen, H. Yao and A. Lin, Org. Chem. Front., 2018, 5, 1777-1781.

6. Characterization Data

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**3**). Brown solid (62.7 mg, 78%, m.p. 81 - 82 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 4.4 Hz, 1H), 7.15 (d, *J* = 8.1 Hz, 1H), 7.12 - 7.08 (m, 3H), 7.05 (t, *J* = 7.3 Hz, 1H), 6.92 (d, *J* = 7.1 Hz, 2H), 6.83 - 6.81 (m, 2H), 6.72 - 6.71 (m, 2H), 6.70 - 6.68 (m 4H), 4.58 (d, *J* = 8.1 Hz, 1H), 4.37 (d, *J* = 8.1 Hz, 1H), 3.32 (d, *J* = 14.5 Hz, 1H), 2.62 (d, *J*

= 14.5 Hz, 1H), 1.43 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.3, 157.0, 148.4, 144.3, 138.8, 138.7, 134.7, 134.2, 134.0, 132.6, 131.5, 131.4, 131.0, 128.4, 127.9, 126.9, 126.1, 125.8, 124.6, 120.1, 109.1, 86.6, 43.2, 40.8, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₄NO⁺ 402.1852, Found: 402.1853.

2-(2a-methyl-4,5-di-*p*-tolyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**4**). Brown solid (55.9 mg, 65%, m.p. 82 - 83 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, J = 4.3 Hz, 1H), 7.13 (d, J = 8.1 Hz, 1H), 7.07 (t, J = 7.3 Hz, 1H), 6.91 (d, J = 7.9 Hz, 2H), 6.82 (d, J = 8.0 Hz, 2H), 6.79 (d, J = 8.2 Hz, 1H), 6.75 (d, J = 7.7 Hz, 1H), 6.72 - 6.67 (m, 1H), 6.58 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.5 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.46 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.82 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.82 (d, J = 7.5 Hz, 2H), 6.82 (d, J = 7.9 Hz, 2H), 4.56 (d, J = 7.5 Hz, 2H), 6.82 (d, J = 7.5 Hz, 2H), 8.82 (d

8.1 Hz, 1H), 4.34 (d, J = 8.1 Hz, 1H), 3.28 (d, J = 14.4 Hz, 1H), 2.57 (d, J = 14.4 Hz, 1H), 2.24 (s, 3H), 2.02 (s, 3H), 1.39 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.4, 157.0, 148.3, 141.5, 138.0, 135.9, 135.6, 135.0, 134.5, 134.0, 133.8, 132.6, 131.9, 131.5, 131.0, 128.7, 128.4, 127.7, 124.8, 119.6, 109.0, 86.6, 43.3, 40.8, 21.3, 21.2, 21.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₈NO⁺ 430.2165, Found: 430.2164.

2-(4,5-bis(4-methoxyphenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**5**). Brown solid (61.9 mg, 67%, m.p. 89 - 90 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (d, *J* = 4.4 Hz, 1H), 7.14 - 7.12 (m, 2H), 6.85 (d, *J* = 8.7 Hz, 2H), 6.78 (t, *J* = 6.9 Hz, 2H), 6.72 (dd, *J* = 7.0, 5.4 Hz, 1H), 6.65 (d, *J* = 8.8 Hz, 2H), 6.62 (d, *J* = 8.2 Hz, 2H), 6.24 (d, *J* = 8.8 Hz, 2H), 4.56 (d, *J* = 8.1 Hz, 1H),

4.34 (d, J = 8.1 Hz, 1H), 3.72 (s, 3H), 3.59 (s, 3H), 3.27 (d, J = 14.4 Hz, 1H), 2.57 (d, J = 14.3 Hz, 1H), 1.39 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.5, 157.7, 157.4, 157.0, 148.4, 137.6, 136.8, 134.6, 133.9, 133.2, 132.6, 132.2, 131.9, 131.6, 131.4, 129.7, 124.8, 119.9, 113.4, 112.7, 109.0, 86.6, 55.19 (s, 2H), 55.17 (s, 2H), 43.3, 40.7, 21.1.HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₈NO₃⁺ 462.2064, Found: 462.2063.

Py O 2-(4,5-bis(4-fluorophenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) pyridine (**6**). Yellow solid (68.3 mg, 78%, m.p. 162 - 163 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 4.4 Hz, 1H), 7.19 (t, *J* = 7.1 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.87 - 6.75 (m, 7H), 6.69 - 6.62 (m, 2H), 6.39 (t, *J* = 8.8 Hz, 2H), 4.57 (d, *J* = 8.2 Hz, 1H), 4.35 (d, *J* = 8.2 Hz, 1H), 3.29 (d, *J* = 14.5 Hz, 1H), 2.56 (d, *J* = 14.5

Hz, 1H), 1.40 (s, 3H).¹³C NMR (151 MHz, CDCl₃) δ 161.1 (d, J = 245.7 Hz, 1C), 160.8 (d, J = 245.4

Hz, 1C), 159.2, 157.0, 148.4, 139.8 (d, J = 3.3 Hz, 1C), 137.8, 134.9, 134.7 (d, J = 3.1 Hz, 1C), 133.9, 133.5, 132.6, 132.4, 131.3, 131.0, 129.9 (d, J = 7.8 Hz, 2C), 124.5, 120.2, 114.96 (d, J = 21.2 Hz, 2C), 113.88 (d, J = 21.5 Hz, 2C), 109.3, 86.4, 43.0, 40.7, 21.2.¹⁹F NMR (565 MHz, CDCl₃) δ -115.7, -116.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂F₂NO⁺ 438.1664, Found: 438.1664.

2-(4,5-bis(4-chlorophenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) pyridine (7). Yellow solid (77.1 mg, 82%, m.p. 173 - 174 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.15 (d, *J* = 4.3 Hz, 1H), 7.20 (t, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 7.09 (d, *J* = 8.5 Hz, 2H), 6.86 - 6.78 (m, 5H), 6.67 - 6.63 (m, 4H), 4.57 (d, *J* = 8.2 Hz, 1H), 4.34 (d, *J* = 8.2 Hz, 1H), 3.28 (d, *J* = 14.5 Hz, 1H), 2.55 (d, *J* = 14.5

Hz, 1H), 1.38 (s, 3H).¹³C NMR (150 MHz, CDCl₃) δ 159.2, 157.2, 148.6, 142.3, 137.9, 137.2, 135.1, 134.0, 133.7, 132.7, 132.2, 131.7, 131.4, 130.9, 129.8, 128.4, 127.3, 124.5, 120.2, 109.5, 86.5, 43.0, 40.8, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂Cl₂NO⁺ 470.1073, Found: 470.1072.

2-(4,5-bis(4-bromophenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) pyridine (**8**). Yellow solid (74.7 mg, 67%, m.p. 180 - 181 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.14 (d, *J* = 4.4 Hz, 1H), 7.26 - 7.23 (m, 2H), 7.21 (t, *J* = 7.2 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 6.84 - 6.81 (m, 5H), 6.77 (d, *J* = 8.4 Hz, 2H), 6.57 (d, *J* = 7.6 Hz, 2H), 4.57 (d, *J* = 8.2 Hz, 1H), 4.34 (d, *J* = 8.2 Hz, 1H), 3.28 (d, *J* = 14.5

Hz, 1H), 2.54 (d, J = 14.5 Hz, 1H), 1.38 (s, 3H).¹³C NMR (100 MHz, CDCl₃) δ 159.2, 157.2, 148.6, 142.7, 137.8, 137.7, 135.1, 134.0, 133.7, 132.7, 132.6, 131.5, 131.4, 130.8 130.3, 130.1, 124.5, 120.4, 120.2, 120.1, 109.6, 86.5, 43.0, 40.8, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂Br₂NO⁺ 558.0063, Found: 558.0050.

2-(4,5-bis(4-(*tert*-butyl)phenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]fura n-6-yl)pyridine (**9**). Yellow solid (64.8 mg, 63%, m.p. 102 - 103 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.13 (d, *J* = 4.4 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 7.11 -7.01 (m, 3H), 6.84 (d, *J* = 8.4 Hz, 2H), 6.78 (t, *J* = 8.1 Hz, 2H), 6.67 - 6.59 (m, 5H), 4.57 (d, *J* = 8.1 Hz, 1H), 4.36 (d, *J* = 8.2 Hz, 1H), 3.29 (d, *J* = 14.6 Hz, 1H),

2.62 (d, J = 14.6 Hz, 1H), 1.41 (s, 3H), 1.23 (s, 9H), 1.10 (s, 9H). ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 157.0, 148.9, 148.2, 148.0, 141.3, 138.3, 135.9, 134.4, 133.9, 133.8, 132.5, 131.8, 131.6, 130.8, 128.1, 124.8, 124.6, 123.6, 120.1, 108.9, 86.7, 43.0, 40.8, 34.5, 34.2, 31.4, 31.2, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₄₀NO⁺ 514.3104, Found: 514.3102.

2-(2a-methyl-4,5-bis(4-(trifluoromethyl)phenyl)-2a,3-dihydro-2*H*-naphtho[1,8-b c]furan-6-yl)pyridine (**10**). Yellow solid (80.7 mg, 75%, m.p. 180 - 181 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.09 (d, *J* = 4.4 Hz, 1H), 7.38 (d, *J* = 8.1 Hz, 2H), 7.18 (td, *J* = 7.7, 1.3 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 1H), 7.01 (d, *J* = 8.0 Hz, 2H), 6.95 (d, *J* = 8.1 Hz, 2H), 6.86 - 6.84 (m, 4H), 6.74 - 6.70 (m, 1H), 4.60 (d, *J* = 6.0 Hz, 2H).

8.2 Hz, 1H), 4.37 (d, *J* = 8.2 Hz, 1H), 3.35 (d, *J* = 14.6 Hz, 1H), 2.59 (d, *J* = 14.6 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.1, 157.3, 148.7, 147.3, 142.4, 138.4, 135.2, 134.4, 134.1, 132.7, 131.6, 131.3, 130.4, 128.7, 128.7 (q, *J* = 32.1 Hz, 1C), 128.1 (q, *J* = 32.3 Hz, 1C), 125.3 (q, *J* = 3.9 Hz, 2C), 124.3, 124.1 (q, J = 271.9 Hz, 1C), 124.1 (q, J = 2.8 Hz, 2C), 124.0 (q, J = 272.0 Hz, 1C), 120.6, 109.9, 86.5, 43.1, 40.8, 21.4. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.5, -62.9. HRMS (ESI-TOF) m/z: [M + H]⁺Calcd for C₃₁H₂₂F₆NO⁺ 538.1600, Found: 538.1599.

4,4'-(2a-methyl-6-(pyridin-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-4,5-diy l)dibenzoate (**11**). Yellow solid (61.2 mg, 56%, m.p. 103 - 104 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 4.4 Hz, 1H), 7.77 (d, *J* = 8.5 Hz, 2H), 7.35 (d, *J* = 8.0 Hz, 2H), 7.18 - 7.10 (m, 2H), 6.94 (d, *J* = 8.2 Hz, 2H), 6.87 (d, *J* = 7.8

diethyl

Hz, 1H), 6.83 (d, J = 8.2 Hz, 1H), 6.78 (d, J = 6.1 Hz, 2H), 6.68 - 6.66 (m, 1H), 4.58 (d, J = 8.2 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 4.33 - 4.29 (m, 2H), 4.26 (q, J = 7.1 Hz, 2H), 3.33 (d, J = 14.6 Hz, 1H), 2.58 (d, J = 14.5 Hz, 1H), 1.40 (s, 3H), 1.33 (q, J = 7.1 Hz, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.41, 166.38, 159.1, 157.2, 148.6, 143.7, 138.9, 135.2, 134.5, 134.2, 132.6, 131.6, 130.6, 129.5, 128.44, 128.35, 128.31, 127.9, 124.3, 120.4, 109.7, 86.5, 61.0, 60.8, 43.1, 40.8, 21.3, 14.38, 14.37. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₅H₃₂NO₅⁺ 546.2275, Found: 546.2273.

4,4'-(2a-methyl-6-(pyridin-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-4,5-diyl) dibenzonitrile (**12**). Yellow solid (25.3 mg, 28%, m.p. 247 - 248 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.08 (d, *J* = 4.2 Hz, 1H), 7.42 (d, *J* = 8.5 Hz, 2H), 7.29 - 7.24 (m, 1H), 7.14 (d, *J* = 8.2 Hz, 1H), 7.01 (d, *J* = 8.2 Hz, 2H), 6.97 (d, *J* = 8.1 Hz, 2H), 6.94 (d, *J* = 7.8 Hz, 1H), 6.87 (d, *J* = 8.2 Hz, 1H), 6.86 - 6.77 (m, 3H),

4.60 (d, J = 8.3 Hz, 1H), 4.37 (d, J = 8.3 Hz, 1H), 3.35 (d, J = 14.6 Hz, 1H), 2.57 (d, J = 14.6 Hz, 1H), 1.39 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.0, 157.4, 148.8, 148.3, 143.7, 138.7, 135.6, 134.8, 134.3, 132.9, 132.2, 131.5, 131.0, 129.8, 129.2, 124.2, 120.7, 118.7, 118.6, 110.6, 110.3, 109.9, 86.4, 42.9, 40.7, 21.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₂N₃O⁺ 452.1757, Found: 452.1757.

2-(2a-methyl-4,5-di-*m*-tolyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**13**). Yellow solid (49.0 mg, 57%, m.p. 78 - 79 °C). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.07 (d, *J* = 4.4 Hz, 1H), 7.15 (t, *J* = 7.5 Hz, 1H), 7.02 (d, *J* = 8.1 Hz, 1H), 6.95 (t, *J* = 7.6 Hz, 1H), 6.85 (d, *J* = 7.5 Hz, 1H), 6.79 - 6.72 (m, 4H), 6.64 (d, *J* = 7.6 Hz,

1H), 6.52 (t, J = 7.6 Hz, 1H), 6.45 (d, J = 7.5 Hz, 1H), 6.40 - 6.35 (m, 2H), 4.56 (d, J = 8.3 Hz, 1H), 4.32 (d, J = 8.4 Hz, 1H), 3.23 (d, J = 14.9 Hz, 1H), 2.50 - 2.48 (m, 1H), 2.10 (s, 3H), 1.84 (s, 3H), 1.30 (s, 3H). ¹³C NMR (150 MHz, DMSO- d_6) δ 159.0, 156.8, 148.2, 144.4, 138.8, 138.6, 137.3, 135.8, 134.9, 134.3, 133.7, 132.6, 131.8, 131.6, 131.3, 128.9, 128.4, 128.1, 127.2, 126.9, 126.5, 125.6, 124.3, 120.5, 108.9, 86.2, 43.2, 40.5, 21.4, 21.3, 21.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₈NO⁺ 430.2165, Found: 430.2163.

2-(4,5-bis(3-methoxyphenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**14**). Brown solid (56.4 mg, 61%, m.p. 74 - 75 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 4.4 Hz, 1H), 7.15 - 7.13 (m, 2H), 7.03 (t, *J* = 7.9 Hz, 1H), 6.86 (d, *J* = 7.8 Hz, 1H), 6.81 (d, *J* = 8.1 Hz, 1H), 6.73 - 6.71 (m, 1H), 6.63 - 6.59 (m, 2H), 6.56 (d, *J* = 7.7 Hz, 1H), 6.45 (s, 1H), 6.36 (d, *J* = 6.8 Hz, 1H), 6.26 (d, J = 6.2 Hz, 2H), 4.58 (d, J = 8.1 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 3.54 (s, 3H), 3.45 (s, 3H), 3.29 (d, J = 14.6 Hz, 1H), 2.62 (d, J = 14.5 Hz, 1H), 1.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 159.2, 158.2, 157.1, 148.3, 145.6, 140.2, 138.6, 134.7, 134.1, 134.0, 132.5, 131.6, 131.2, 129.0, 128.0, 124.5, 120.7, 120.2, 113.8, 112.7, 112.3, 109.2, 86.6, 55.2, 55.1, 43.1, 40.8, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₈NO₃⁺ 462.2064, Found: 462.2063.

2-(4,5-bis(3-fluorophenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)p yridine (**15**). Brown solid (63.1 mg, 72%, m.p. 104 - 105 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 4.4 Hz, 1H), 7.22 (td, *J* = 7.7, 1.5 Hz, 1H), 7.12 (d, *J* = 8.2 Hz, 1H), 7.09 - 7.05 (m, 1H), 6.91 (d, *J* = 7.7 Hz, 1H), 6.83 (d, *J* = 8.2 Hz, 1H), 6.73 (m, 2H), 6.67 - 6.66 (m, 2H), 6.63 - 6.61 (m, 1H), 6.53 (d, *J* = 7.1 Hz, 1H),

6.43 - 6.40 (m, 2H), 4.58 (d, J = 8.2 Hz, 1H), 4.35 (d, J = 8.2 Hz, 1H), 3.28 (d, J = 14.6 Hz, 1H), 2.58 (d, J = 14.6 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.6 (d, J = 245.8 Hz, 1C), 161.7 (d, J = 244.7 Hz, 1C), 159.3, 157.2, 148.5, 146.0 (d, J = 7.6 Hz, 1C), 141.0 (d, J = 7.9 Hz, 1C), 138.2, 135.0, 134.1, 133.9 (d, J = 1.7 Hz, 1C), 132.6, 131.6, 130.7, 129.7, 129.6, 128.6 (d, J = 8.4 Hz, 1C), 124.3, 124.1 (d, J = 2.9 Hz, 1C), 120.5, 115.2 (d, J = 21.8 Hz, 1C), 113.4 (d, J = 21.0 Hz, 1C), 113.0 (d, J = 21.0 Hz, 1C), 109.6, 86.5, 43.0, 40.8, 21.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -113.2, -115.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂F₂NO⁺ 438.1664, Found: 438.1667.

2-(4,5-bis(3-chlorophenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) pyridine (**16**). Brown solid (75.2 mg, 80%, m.p. 137 - 138 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 3.9 Hz, 1H), 7.26 - 7.24 (m, 1H), 7.11 (d, *J* = 8.1 Hz, 1H), 7.07 - 7.04 (m, 1H), 7.02 (t, *J* = 7.8 Hz, 1H), 6.95 - 6.89 (m, 2H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.76 - 6.74 (m, 2H), 6.72 - 6.67 (m, 2H), 6.66 - 6.62 (m, 2H), 4.58 (d, *J* =

8.2 Hz, 1H), 4.35 (d, J = 8.2 Hz, 1H), 3.28 (d, J = 14.6 Hz, 1H), 2.57 (d, J = 14.6 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 157.2, 148.6, 145.5, 140.4, 138.1, 135.0, 134.00, 133.97, 133.9, 132.9, 132.6, 131.6, 130.5, 129.4, 128.3, 126.70, 126.66, 126.2, 124.2, 120.5, 109.6, 86.5, 42.9, 40.7, 21.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂Cl₂NO⁺ 470.1073, Found: 470.1074.

2-(4,5-bis(3-bromophenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) pyridine (**17**). Brown solid (82.6 mg, 74%, m.p. 111 - 112 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 3.1 Hz, 1H), 7.30 - 7.25 (m, 1H), 7.22 - 7.21 (m, 1H), 7.13 - 7.08 (m, 2H), 6.96 (t, *J* = 7.9 Hz, 1H), 6.93 - 6.91 (m, 1H), 6.86 - 6.80 (m, 3H),

6.80 - 6.72 (m, 2H), 6.65 (s, 1H), 6.58 (t, J = 7.8 Hz, 1H), 4.58 (d, J = 8.2 Hz, 1H), 4.35 (d, J = 8.2 Hz, 1H), 3.28 (d, J = 14.7 Hz, 1H), 2.58 (d, J = 14.6 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.2, 157.2, 148.6, 145.7, 140.6, 138.0, 135.1, 134.0, 133.9, 132.6, 131.6, 131.2, 130.4, 129.63, 129.59, 129.1, 128.6, 128.3, 128.1, 127.2, 124.2, 122.2, 121.3, 120.6, 109.6, 86.5, 43.0, 40.7, 21.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₂Br₂NO⁺ 558.0063, Found: 558.0056.

3,3'-(2a-methyl-6-(pyridin-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-4,5-diy l)dibenzoate (**18**). Yellow solid (81.9 mg, 75%, m.p. 81 - 82 °C). ¹H NMR (600

diethyl

MHz, CDCl₃) δ 8.04 (d, J = 2.2 Hz, 1H), 7.74 - 7.70 (m, 1H), 7.66 (s, 1H), 7.38 (d, J = 7.7 Hz, 2H), 7.16 - 7.06 (m, 3H), 6.98 (d, J = 7.7 Hz, 1H), 6.89 (d, J = 7.1 Hz, 2H), 6.82 (d, J = 8.1 Hz, 1H), 6.74 (s, 1H), 6.66 - 6.63 (m, 1H), 4.58 (d, J = 8.2 Hz, 1H), 4.37 (d, J = 8.2 Hz, 1H), 4.32 - 4.17 (m, 4H), 3.36 (d, J = 14.6 Hz, 1H), 2.61 (d, J = 14.6 Hz, 1H), 1.44 (s, 3H), 1.31 - 1.29 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.4, 166.3, 159.4, 157.2, 148.5, 143.9, 138.9, 138.5, 135.0, 134.2, 134.0, 133.0, 132.5, 131.5, 130.7, 130.4, 129.5, 129.2, 128.1, 127.6, 127.2, 127.1, 124.2, 120.3, 109.5, 86.5, 61.0, 60.7, 43.0, 40.8, 21.4, 14.4, 14.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₅H₃₂NO₅⁺ 546.2275, Found: 546.2272.

2-(4,5-bis(3,5-dimethylphenyl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6 -yl)pyridine (**19**). Yellow solid (68.7 mg, 75%, m.p. 75 - 76 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.22 (d, *J* = 4.3 Hz, 1H), 7.14 - 7.05 (m, 2H), 6.80 - 6.77 (m, 2H), 6.71 - 6.68 (m, 2H), 6.55 (s, 2H), 6.28 (s, 3H), 4.57 (d, *J* = 8.1 Hz, 1H), 4.36 (d, *J* =

8.2 Hz, 1H), 3.25 (d, J = 14.7 Hz, 1H), 2.61 (d, J = 14.7 Hz, 1H), 2.12 (s, 6H), 1.89 (s, 6H), 1.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 157.0, 147.7, 144.1, 138.4, 138.3, 137.0, 135.8, 134.1, 133.8, 132.4, 131.8, 131.5, 127.7, 127.2, 126.2, 124.4, 120.1, 108.8, 86.7, 43.2, 40.7, 21.30, 21.27, 20.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₃₂NO⁺ 458.2478, Found: 458.2476.

2-(2a-methyl-4,5-di(naphthalen-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**20**). Brown solid (75.3 mg, 75%, m.p. 131 - 132 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.86 (d, *J* = 4.7 Hz, 1H), 7.66 - 7.62 (m, 1H), 7.57 - 7.53 (m, 1H), 7.51 (s, 1H), 7.46 (d, *J* = 8.5 Hz, 1H), 7.43 (d, *J* = 7.8 Hz, 1H), 7.39 - 7.30 (m, 3H), 7.29 - 7.19 (m, 4H), 7.14 (d, *J* = 8.2 Hz, 1H), 7.08 - 7.01 (m, 2H), 6.88 -

6.80 (m, 2H), 6.75 - 6.73 (m, 2H), 6.19 - 6.17 (m, 1H), 4.60 (d, J = 8.1 Hz, 1H), 4.40 (d, J = 8.1 Hz, 1H), 3.47 (d, J = 14.3 Hz, 1H), 2.73 (d, J = 14.3 Hz, 1H), 1.49 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.4, 157.2, 148.2, 141.8, 138.6, 136.6, 134.5, 134.2, 134.1, 133.3, 132.63, 132.57, 131.93, 131.88, 131.71, 131.69, 129.8, 127.9, 127.61, 127.59, 127.4, 127.2, 127.12, 127.10, 126.4, 125.9, 125.8, 125.3, 125.2, 124.0, 119.2, 109.3, 86.6, 43.7, 40.9, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₂₈NO⁺ 502.2165, Found: 502.2163.

2-(2a-methyl-4,5-di(thiophen-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridi ne (**21**). Black solid (43.0 mg, 52%, m.p. 88 - 89 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.30 (dd, *J* = 4.9, 0.7 Hz, 1H), 7.29 - 7.25 (m, 1H), 7.15 (dd, *J* = 5.1, 1.0 Hz, 1H), 7.07 (d, *J* = 8.1 Hz, 1H), 6.92 - 6.89 (m, 2H), 6.89 - 6.83 (m, 2H), 6.81 - 6.77 (m, 2H),

6.39 (dd, J = 5.0, 3.6 Hz, 1H), 6.36 (dd, J = 3.5, 0.9 Hz, 1H), 4.59 (d, J = 8.1 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 3.24 (d, J = 14.5 Hz, 1H), 2.84 (d, J = 14.5 Hz, 1H), 1.40 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.8, 157.0, 148.3, 145.3, 140.2, 135.0, 134.1, 133.3, 132.7, 131.8, 131.4, 130.0, 127.9, 126.8, 126.44, 126.35, 126.3, 126.0, 124.2, 120.4, 109.3, 86.5, 43.2, 40.7, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₀NOS₂⁺ 414.0981, Found: 414.0978.

2-(4,5-di(furan-2-yl)-2a-methyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**22**). Black solid (32.9 mg, 43%, m.p. 84 - 85 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.40

- 8.36 (m, 1H), 7.38 - 7.32 (m, 2H), 7.16 (d, J = 8.1 Hz, 1H), 7.06 (d, J = 1.0 Hz, 1H), 6.92 (d, J = 7.8 Hz, 1H), 6.90 - 6.88 (m, 1H), 6.79 (d, J = 8.1 Hz, 1H), 6.29 (dd, J = 3.5, 1.7 Hz, 1H), 5.89 (dd, J = 3.3, 1.8 Hz, 1H), 5.74 - 5.69 (m, 1H), 5.39 (d, J = 3.5 Hz, 1H), 4.60 (d, J = 8.1 Hz, 1H), 4.38 (d, J = 8.1 Hz, 1H), 3.18 (d, J = 14.8 Hz, 1H), 2.98 (d, J = 14.8 Hz, 1H), 1.30 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 159.3, 157.0, 153.8, 149.9, 148.6, 141.8, 140.1, 134.9, 133.0, 132.7, 131.40, 131.35, 130.1, 123.6, 122.3, 120.2, 111.9, 111.4, 110.6, 110.1, 109.4, 86.6, 40.1, 37.2, 21.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₀NO₃⁺ 382.1438, Found: 382.1438.

2-(2a-methyl-4-phenyl-5-(2-((triisopropylsilyl)oxy)ethyl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**23**). Yellow oil (43.2 mg, 41%). ¹H NMR (600 MHz, CDCl₃) δ 8.61 (dd, *J* = 4.9, 0.8 Hz, 1H), 7.67 (td, *J* = 7.7, 1.8 Hz, 1H), 7.40 (d, *J* = 7.8 Hz, 1H), 7.32 (t, *J* = 7.6 Hz, 2H), 7.27 - 7.24 (m, 2H), 7.22 (t, *J* = 7.3 Hz, 1H),

7.19 - 7.16 (m, 1H), 7.09 (d, J = 8.1 Hz, 1H), 6.74 (d, J = 8.1 Hz, 1H), 4.53 (d, J = 8.1 Hz, 1H), 4.25 (d, J = 8.2 Hz, 1H), 3.29 - 3.19 (m, 2H), 2.89 (dd, J = 15.7, 2.0 Hz, 1H), 2.52 (d, J = 15.7 Hz, 1H), 2.50 - 2.44 (m, 1H), 1.75 - 1.70 (m, 1H), 1.40 (s, 3H), 0.81 - 0.75 (m, 21H). ¹³C NMR (150 MHz, CDCl₃) δ 161.1, 157.2, 149.0, 143.8, 139.5, 136.2, 134.1, 132.1, 131.3, 130.7, 130.0, 128.6, 128.3, 126.7, 124.1, 121.5, 108.4, 86.4, 62.1, 43.1, 40.6, 33.2, 21.3, 18.0, 11.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₄₄NO₂Si⁺ 526.3136, Found: 526.3136.

Py 2-(2a,5-dimethyl-4-phenyl-2a,3-dihydro-2*H*-naphtho[1,8-b*c*]furan-6-yl)pyridine (**24**). Yellow solid (33.3 mg, 49%, m.p. 89 - 90 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.69 - 8.60 (m, 1H), 7.69 (td, *J* = 7.7, 1.8 Hz, 1H), 7.41 (d, *J* = 7.8 Hz, 1H), 7.34 (t, *J* = 7.7 Hz, 2H), 7.25 - 7.22 (m, 3H), 7.21 - 7.19 (m, 1H), 7.10 (d, *J* = 8.1 Hz, 1H), 6.76 (d, *J* = 8.1 Hz, 1H), 4.56 (d, *J* = 8.1 Hz, 1H), 4.28 (d, *J* = 8.2 Hz, 1H), 2.86 (dd, *J* = 15.7, 2.5 Hz, 1H), 2.58 (d, *J* = 15.7 Hz, 1H), 1.42 - 1.35 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 161.3, 157.0, 148.7, 143.5, 137.6, 136.1, 133.2, 132.8, 132.0, 130.6, 128.7, 128.2, 127.9, 126.8, 124.4, 121.5, 108.2, 86.4, 42.5, 40.4, 21.4, 18.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₄H₂₂NO⁺ 340.1696, Found: 340.1696.

Py Et 2-(5-ethyl-2a-methyl-4-phenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (25). Brown oil (31.9 mg, 45%). ¹H NMR (600 MHz, CDCl₃) δ 8.66 - 8.61 (m, 1H), 7.69 (td, J = 7.7, 1.8 Hz, 1H), 7.43 (d, J = 7.8 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.27 - 7.18 (m, 4H), 7.11 (d, J = 8.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 4.55 (d, J = 8.2 Hz, 1H), 4.26 (d, J = 8.2 Hz, 1H), 2.88 (dd, J = 15.6, 2.4 Hz, 1H), 2.51 (d, J = 15.6 Hz, 1H), 2.23 - 2.17 (m, 1H), 1.51 - 1.44 (m, 1H), 1.40 (s, 3H), 0.51 (t, J = 7.4 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.2, 157.2, 148.9, 143.9, 137.0, 136.1, 135.0, 134.4, 132.0, 131.0, 130.6, 128.5, 128.3, 126.7, 124.2, 121.5, 108.3, 86.4, 42.8, 40.5, 22.8, 21.1, 13.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₅H₂₄NO⁺ 354.1852, Found: 354.1851. The structure of **25** is established with NOESY studies; intramolecular NOEs between alkyl CH₃ (δ = 0.51 ppm) and the aryl CH (δ = 8.66 - 8.61 ppm) was observed.

2-(2a-methyl-4-phenyl-5-propyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (26). Brown oil (23.5 mg, 32%). ¹H NMR (600 MHz, CDCl₃) δ 8.65 (d, J = 4.1 Hz, 1H), 7.74 - 7.69 (m, 1H), 7.42 (d, J = 7.7 Hz, 1H), 7.34 (t, J = 7.6 Hz, 2H), 7.27 -7.19 (m, 4H), 7.08 (d, J = 8.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 4.55 (d, J = 8.1 Hz, 1H), 4.27 (d, J = 8.2 Hz, 1H), 2.88 (dd, J = 15.7, 2.6 Hz, 1H), 2.52 (d, J = 15.7 Hz, 1H), 2.12 - 2.07 (m, 1H), 1.41 (s, 3H), 1.10 - 1.02 (m, 1H), 0.97 - 0.78 (m, 2H), 0.32 (t, J = 7.3 Hz, 3H). ¹³C NMR (150

MHz, CDCl₃) δ 161.3, 157.3, 148.8, 144.0, 137.6, 136.2, 134.2, 133.4, 132.0, 131.3, 130.6, 128.6, 128.3, 126.6, 124.4, 121.6, 108.2, 86.5, 43.0, 40.5, 31.8, 22.2, 21.2, 13.8. HRMS (ESI-TOF) m/z: [M + H_{26}^{+} Calcd for $C_{26}H_{26}NO^{+}$ 368.2009, Found: 368.2009.

2-(5-(methoxymethyl)-2a-methyl-4-phenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6 -yl)pyridine (27). Brown oil (29.6 mg, 40%). ¹H NMR (600 MHz, CDCl₃) δ 8.65 -8.60 (m, 1H), 7.75 (td, J = 7.7, 1.8 Hz, 1H), 7.52 (d, J = 7.8 Hz, 1H), 7.36 (t, J = 7.5 Hz, 2H), 7.30 - 7.27 (m, 1H), 7.26 - 7.24 (m, 2H), 7.23 - 7.20 (m, 1H), 7.07 (d, J =

8.1 Hz, 1H), 6.76 (d, J = 8.1 Hz, 1H), 4.57 (d, J = 8.1 Hz, 1H), 4.28 (d, J = 8.2 Hz, 1H), 3.78 (d, J = 11.5 Hz, 1H), 3.63 (dd, J = 11.5, 2.9 Hz, 1H), 2.91 (dd, J = 15.9, 2.6 Hz, 1H), 2.63 (d, J = 15.9 Hz, 1H), 2.54 (s, 3H), 1.45 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.7, 157.2, 148.1, 142.5, 140.7, 136.2, 133.8, 132.2, 131.2, 130.4, 129.7, 128.6, 128.2, 127.4, 124.4, 121.3, 108.4, 86.4, 69.3, 57.3, 42.9, 40.3, 21.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{25}H_{24}NO_2^+$ 370.1802, Found: 370.1796.

2-(5-(2-methoxyethyl)-2a-methyl-4-phenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6yl)pyridine (28). Yellow oil (26.9 mg, 35%). ¹H NMR (600 MHz, CDCl₃) δ 8.70 -8.66 (m, 1H), 7.74 (td, J = 7.7, 1.8 Hz, 1H), 7.45 (d, J = 7.8 Hz, 1H), 7.39 - 7.36 (m, 2H), 7.28 (d, J = 8.2 Hz, 3H), 7.26 - 7.22 (m, 1H), 7.15 (d, J = 8.1 Hz, 1H), 6.80 (d, J

= 8.1 Hz, 1H), 4.59 (d, J = 8.2 Hz, 1H), 4.30 (d, J = 8.2 Hz, 1H), 3.05 - 2.96 (m, 2H), 2.95 - 2.88 (m, 4H), 2.62 - 2.52 (m, 2H), 1.82 - 1.77 (m, 1H), 1.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.9, 157.3, 149.1, 143.5, 139.8, 136.3, 134.3, 132.1, 131.0, 130.5, 129.6, 128.6, 128.3, 126.9, 124.2, 121.7, 108.5, 86.4, 71.1, 58.0, 43.1, 40.6, 29.8, 21.0. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{26}H_{26}NO_2^+$ 384.1958, Found: 384.1957.

5-methyl-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridin e (29). Yellow solid (59.9 mg, 72%, m.p. 129 - 130 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.96 (s, 1H), 7.15 - 7.02 (m, 4H), 6.94 - 6.86 (m, 3H), 6.81 (d, J = 8.2 Hz, 1H), 6.74 -6.63 (m, 6H), 4.57 (d, J = 8.2 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 3.31 (d, J = 14.6 Hz, 1H), 2.61 (d, J = 14.6 Hz, 1H), 2.07 (s, 3H), 1.42 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ

156.9, 156.4, 148.6, 144.4, 139.0, 138.6, 135.3, 134.3, 133.9, 132.3, 131.54, 131.45, 131.1, 129.2,

128.4, 127.9, 126.8, 126.1, 125.3, 124.1, 109.1, 86.5, 43.2, 40.8, 21.2, 17.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $C_{30}H_{26}NO^+$ 416.2009, Found: 416.2008.

5-methoxy-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyrid ine (**30**). Yellow solid (58.8 mg, 68%, m.p. 99 - 100 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.84 (d, *J* = 2.8 Hz, 1H), 7.14 - 7.07 (m, 3H), 7.07 - 7.02 (m, 1H), 6.93 - 6.89 (m, 2H), 6.80 (d, *J* = 8.1 Hz, 1H), 6.74 - 6.71 (m, 6H), 6.63 (dd, *J* = 8.5, 2.9 Hz, 1H), 4.57 (d, *J* = 8.1 Hz, 1H), 4.36 (d, *J* = 8.1 Hz, 1H), 3.68 (s, 3H), 3.30 (d, *J* = 14.5 Hz, 1H), 2.61 (d, *J*

= 14.5 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.8, 153.0, 151.9, 144.4, 139.0, 138.7, 135.7, 134.3, 133.9, 132.3, 131.4, 131.2, 131.0, 128.5, 127.9, 126.9, 126.1, 125.6, 124.8, 120.0, 109.1, 86.6, 55.7, 43.2, 40.8, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO₂⁺ 432.1958, Found: 432.1958.

5-fluoro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridin e (**31**). Yellow solid (50.4 mg, 60%, m.p. 126 - 127 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.99 (d, *J* = 1.5 Hz, 1H), 7.15 - 7.02 (m, 4H), 6.94 - 6.89 (m, 2H), 6.84 - 6.67 (m, 8H), 4.59 (d, *J* = 8.2 Hz, 1H), 4.37 (d, *J* = 8.2 Hz, 1H), 3.31 (d, *J* = 14.7 Hz, 1H), 2.62 (d, *J* = 14.7 Hz, 1H), 1.43 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.2, 157.2, 155.5, 144.1,

139.0, 138.8, 136.2 (d, J = 23.4 Hz, 1C). 134.0, 134.0, 132.4, 131.5, 131.0, 130.4, 128.4, 128.0, 127.1, 126.2, 125.9, 125.4 (d, J = 3.9 Hz, 1H), 121.5 (d, J = 18.7 Hz, 1H), 109.2, 86.6, 43.1, 40.8, 21.3. ¹⁹F NMR (376 MHz, CDCl₃) δ -132.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₃FNO⁺ 420.1758, Found: 420.1756.

5-chloro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridi ne (**32**). Yellow solid (44.5 mg, 51%, m.p. 192 - 193 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.07 (d, *J* = 2.1 Hz, 1H), 7.13 - 7.09 (m, 3H), 7.08 - 7.03 (m, 2H), 6.93 - 6.89 (m, 2H), 6.81 (dd, *J* = 15.4, 7.7 Hz, 2H), 6.75 - 6.65 (m, 5H), 4.59 (d, *J* = 8.1 Hz, 1H), 4.37 (d, *J* = 8.2 Hz, 1H), 3.30 (d, *J* = 14.6 Hz, 1H), 2.62 (d, *J* = 14.6 Hz, 1H), 1.42 (s, 3H). ¹³C

NMR (150 MHz, CDCl₃) δ 157.5, 157.4, 147.1, 144.2, 139.1, 138.9, 134.3, 134.1, 133.9, 132.4, 131.6, 131.2, 130.2, 128.7, 128.5, 128.0, 127.2, 126.3, 125.8, 125.3, 109.3, 86.7, 43.2, 40.8, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₃CINO⁺ 436.1463, Found: 436.1464.

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)-5-(trifluorome thyl)pyridine (**33**). Yellow solid (34.8 mg, 37%, m.p. 146 - 147 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.38 (s, 1H), 7.32 - 7.28 (m, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.13 - 7.09 (m, 2H), 7.08 - 7.05 (m, 1H), 6.94 - 6.89 (m, 3H), 6.84 (d, *J* = 8.2 Hz, 1H), 6.75 - 6.65 (m, 5H), 4.60 (d, *J* = 8.2 Hz, 1H), 4.38 (d, *J* = 8.2 Hz, 1H), 3.33 (d, *J* = 14.6 Hz, 1H),

2.64 (d, J = 14.6 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 162.9, 157.7, 145.3 (q, J = 4.2 Hz, 1C), 144.0, 139.3, 138.7, 134.3, 133.7, 132.5, 131.8, 131.6 (q, J = 3.2 Hz, 1C), 131.22, 130.1, 128.4, 128.1, 127.2, 126.4, 126.2, 124.3, 123.8 (q, J = 272.1 Hz, 1C), 122.8 (q, J = 32.8 Hz, 1C), 109.4, 86.7, 43.1, 40.7, 21.3. ¹⁹F NMR (565 MHz, CDCl₃) δ -62.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₃F₃NO⁺ 470.1726, Found: 470.1725.

4-methyl-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyri dine (**34**). Yellow solid (49.9 mg, 60%, m.p. 170 - 171 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.06 (d, *J* = 5.0 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.13 - 7.02 (m, 3H), 6.95 - 6.90 (m, 2H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.70 - 6.69 (m, 5H), 6.55 (s, 1H), 6.52 (d, *J* =

5.1 Hz, 1H), 4.58 (d, J = 8.2 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 3.30 (d, J = 14.6 Hz, 1H), 2.62 (d, J = 14.6 Hz, 1H), 2.00 (s, 3H), 1.41 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 158.5 157.0, 148.1, 145.4, 144.3, 138.9, 138.6, 134.2, 133.9, 132.5, 131.5, 131.3, 130.8, 128.5, 128.0, 126.8, 126.3, 126.1, 125.8, 121.4, 109.2, 86.6, 43.2, 40.8, 21.2, 20.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO⁺ 416.2009, Found: 416.2008.

4-methoxy-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) pyridine (**35**). Yellow solid (70.0 mg, 81%, m.p. 152 - 153 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.01 (d, *J* = 5.6 Hz, 1H), 7.15 (d, *J* = 8.0 Hz, 1H), 7.09 (t, *J* = 7.3 Hz, 2H), 7.07 - 7.02 (m, 1H), 6.94 - 6.89 (m, 2H), 6.81 (d, *J* = 8.2 Hz, 1H), 6.72 (s, 5H), 6.31

- 6.24 (m, 2H), 4.58 (d, J = 8.1 Hz, 1H), 4.36 (d, J = 8.2 Hz, 1H), 3.62 (s, 3H), 3.30 (d, J = 14.6 Hz, 1H), 2.61 (d, J = 14.5 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 164.4, 160.6, 157.1, 149.4, 144.2, 138.9, 138.7, 134.2, 133.8, 132.3, 131.4, 131.4, 130.9, 128.4, 127.9, 126.9, 126.2, 125.8, 110.7, 109.1, 107.3, 86.6, 54.8, 43.2, 40.8, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO₂⁺ 432.1958, Found: 432.1957.

4-fluoro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyrid ine (**36**). Yellow solid (30.2 mg, 36%, m.p. 143 - 144 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.12 (dd, J = 8.6, 5.7 Hz, 1H), 7.15 (d, J = 8.2 Hz, 1H), 7.11 (t, J = 7.3 Hz, 2H), 7.06 (t, J = 7.2 Hz, 1H), 6.92 (d, J = 7.2 Hz, 2H), 6.82 (d, J = 8.2 Hz, 1H), 6.74 (s, 5H), 6.52 (d, J = 8.7 Hz, 1H), 6.46 - 6.44 (m, 1H), 4.59 (d, J = 8.1 Hz, 1H), 4.37 (d, J = 8.2

Hz, 1H), 3.31 (d, J = 14.5 Hz, 1H), 2.63 (d, J = 14.5 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.4 (d, J = 261.1 Hz, 1C), 162.3 (d, J = 6.1 Hz, 1C), 157.4, 150.7 (d, J = 7.5 Hz, 1C), 144.1, 139.1, 138.8, 134.2, 133.9, 132.4, 131.6, 130.9, 130.4 (d, J = 3.0 Hz, 1C), 128.4, 128.0, 127.1, 126.3, 126.1, 112.5 (d, J = 17.1 Hz, 1C), 109.3, 108.4 (d, J = 16.5 Hz, 1C), 86.6, 43.1, 40.8, 21.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -105.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₃FNO⁺ 420.1758, Found: 420.1755.

4-chloro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyri dine (**37**). White solid (34.0 mg, 39%, m.p. 176 - 177 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.06 (d, *J* = 5.3 Hz, 1H), 7.16 (d, *J* = 8.1 Hz, 1H), 7.11 (t, *J* = 7.4 Hz, 2H), 7.07 (t, *J* = 7.2 Hz, 1H), 6.93 (d, *J* = 7.4 Hz, 2H), 6.82 (d, *J* = 8.2 Hz, 1H), 6.80 - 6.68

(m, 7H), 4.59 (d, J = 8.1 Hz, 1H), 4.37 (d, J = 8.2 Hz, 1H), 3.31 (d, J = 14.5 Hz, 1H), 2.63 (d, J = 14.5 Hz, 1H), 1.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.5, 157.4, 149.3, 144.1, 142.5, 139.1, 138.7, 134.2, 133.9, 132.5, 131.5, 130.8, 130.2, 128.5, 128.0, 127.2, 126.3, 126.1, 125.5, 120.7, 109.4, 86.7, 43.1, 40.8, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₃ClNO⁺ 436.1463, Found: 436.1462.

^{Py} Ph (4,5-diphenyl-6-(pyridin-2-yl)-2*H*-naphtho[1,8-bc]furan-2a(3*H*)-yl)methanol (38). Yellow solid (37.6 mg, 45%, m.p. 105 - 106 °C). ¹H NMR (600 MHz, DMSO-*d*₆) δ 8.08 (d, *J* = 4.4 Hz, 1H), 7.17 (td, *J* = 7.7, 1.6 Hz, 1H), 7.10 (t, *J* = 7.4 Hz, 2H), 7.07 - 7.03 (m, 2H), 6.91 (d, *J* = 7.1 Hz, 2H), 6.82 - 6.76 (m, 3H), 6.70 - 6.63 (m, 3H), 6.60 (d, *J* = 6.6 Hz, 2H), 5.09 (t, *J* = 5.4 Hz, 1H), 4.94 (d, *J* = 8.5 Hz, 1H), 4.27 (d, *J* = 8.4 Hz, 1H), 3.70 - 3.64 (m, 1H), 3.53 (dd, *J* = 10.6, 4.8 Hz, 1H), 3.15 (d, *J* = 15.2 Hz, 1H), 2.87 (d, *J* = 15.2 Hz, 1H). ¹³C NMR (150 MHz, DMSO-*d*₆) δ 158.8, 157.9, 148.4, 144.1, 138.9, 138.8, 135.1, 134.3, 133.2, 132.5, 131.7, 130.9, 130.5, 128.6, 128.2, 127.0, 126.5, 125.9, 124.6, 120.6, 109.0, 82.3, 60.6, 46.3, 37.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₉H₂₄NO₂⁺ 418.1802, Found: 418.1808.

^{Py} Ph OMe 2-(2a-(methoxymethyl)-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyri dine (**39**). Yellow solid (58.8 mg, 68%, m.p. 106 - 107 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.16 (dd, *J* = 4.8, 0.6 Hz, 1H), 7.16 (d, *J* = 8.2 Hz, 1H), 7.13 - 7.02 (m, 4H), 6.93 - 6.88 (m, 2H), 6.81 (t, *J* = 7.4 Hz, 2H), 6.74 - 6.63 (m, 7H), 4.96 (d, *J* = 8.5 Hz, 1H), 4.29 (dd, *J* = 8.5, 1.4 Hz, 1H), 3.64 (dd, *J* = 9.1, 1.4 Hz, 1H), 3.53 (d, *J* = 9.3 Hz, 1H), 3.26 (s, 3H), 3.18 (d, *J* = 14.9 Hz, 1H), 2.98 (d, *J* = 14.9 Hz, 1H). ¹³C NMR (100 MHz, CDCl₃) δ 159.1, 158.1, 148.4, 143.9, 138.72, 138.66, 134.8, 134.5, 133.3, 132.4, 131.6, 131.0, 129.7, 128.4, 127.9, 127.0, 126.2, 125.8, 124.7, 120.2, 109.3, 82.9, 71.7, 59.5, 45.3, 38.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO₂⁺ 432.1958, Found: 432.1955.

^{Py} Ph (4,5-diphenyl-6-(pyridin-2-yl)-2*H*-naphtho[1,8-*bc*]furan-2a(3*H*)-yl)methyl pivalate (40). White solid (67.3 mg, 67%, m.p. 183 - 184 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.15 (d, *J* = 4.3 Hz, 1H), 7.19 (d, *J* = 8.2 Hz, 1H), 7.12 (td, *J* = 7.7, 1.7 Hz, 1H), 7.08 -6.99 (m, 3H), 6.90 - 6.86 (m, 2H), 6.83 (d, *J* = 8.2 Hz, 2H), 6.74 - 6.63 (m, 6H), 4.85 (d, *J* = 8.6 Hz, 1H), 4.35 (d, *J* = 10.4 Hz, 2H), 4.25 (d, *J* = 11.1 Hz, 1H), 3.28 (d, *J* = 14.8 Hz, 1H), 2.86 (d, *J* = 14.8 Hz, 1H), 0.99 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 178.3, 158.9, 158.1, 148.5, 143.5, 138.4, 138.0, 134.9, 133.6, 132.5, 131.9, 130.9, 128.8, 128.4, 127.9, 127.0, 126.3, 126.0, 124.6, 120.3, 109.5, 82.7, 63.2, 44.3, 38.9, 38.5, 27.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₂NO₃⁺ 502.2377, Found: 502.2378.

1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)isoquinoline (**41**). Brown solid (44.2 mg, 49%, dr = 1.1:1, m.p. 83 - 84 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (d, *J* = 5.7 Hz, 1H), 8.13 (d, *J* = 5.7 Hz, 1H), 7.85 (d, *J* = 8.4 Hz, 1H), 7.60 - 7.38 (m, 7H), 7.37 - 7.34 (m, 1H), 7.25 (d, *J* = 8.1 Hz, 1H), 7.12 (d, *J* = 5.7

Hz, 1H), 7.08 (d, J = 5.7 Hz, 1H), 7.06 - 6.95 (m, 7H), 6.91 (d, J = 8.1 Hz, 1H), 6.86 - 6.80 (m, 5H), 6.67 - 6.41 (m, 4H), 6.38 - 5.97 (m, 5H), 4.63 (t, J = 8.3 Hz, 2H), 4.47 (d, J = 8.2 Hz, 1H), 4.39 (d, J = 8.2 Hz, 1H), 3.37 (d, J = 6.4 Hz, 1H), 3.34 (d, J = 6.6 Hz, 1H), 2.66 (d, J = 14.6 Hz, 1H), 2.61 (d, J = 14.7 Hz, 1H), 1.51 (s, 3H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.2, 160.8, 157.30, 157.28, 144.0, 143.8, 141.6, 141.3, 138.5 138.4, 138.3, 137.0, 136.1, 135.4, 134.6, 134.3, 133.9, 133.6, 132.9, 132.8, 131.99, 131.95, 130.1, 129.5, 129.3, 129.1, 128.3, 128.22, 128.20, 128.18, 127.8, 127.73, 127.71, 127.66, 126.5, 126.4, 126.3, 126.2, 126.1, 126.0, 125.5, 124.8, 119.1, 109.7, 108.5, 86.8, 86.6, 43.4,

43.1, 40.7, 21.6, 21.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{33}H_{26}NO^+$ 452.2009, Found: 452.2007.

3-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)isoquinoline (42). Brown solid (44.3 mg, 49%, m.p. 115 - 116 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.78 (s, 1H), 7.70 (d, *J* = 8.1 Hz, 1H), 7.52 - 7.46 (m, 2H), 7.43 - 7.40 (m, 1H), 7.28 (d, *J* = 8.1 Hz, 1H), 7.15 (s, 1H), 7.08 (t, *J* = 7.3 Hz, 2H), 7.05 - 7.01 (m, 1H), 6.95 - 6.91 (m, 2H), 6.86 (d, *J* = 8.1 Hz, 1H), 6.70 (d, *J* = 6.7 Hz, 2H), 6.40 (t, *J* = 7.2 Hz, 2H),

6.23 (t, J = 7.4 Hz, 1H), 4.60 (d, J = 8.1 Hz, 1H), 4.40 (d, J = 8.2 Hz, 1H), 3.36 (d, J = 14.4 Hz, 1H), 2.64 (d, J = 14.4 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 156.9, 152.5 151.1, 144.3, 138.9, 138.6, 135.3, 134.4, 134.0, 132.8, 131.7, 131.6, 130.7, 129.7, 128.5, 127.9, 127.1, 126.5, 126.3, 126.3, 126.1, 125.1, 121.1, 109.2, 86.6, 43.2, 40.9, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₃H₂₆NO⁺ 452.2009, Found: 452.2009.

2-(3a-methyl-5,6-diphenyl-2,3,3a,4-tetrahydrobenzo[*de*]chromen-7-yl)pyridine (43). White solid (55.7 mg, 67%, m.p. 67 - 68 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.21 (dd, *J* = 4.8, 0.7 Hz, 1H), 7.15 (td, *J* = 7.7, 1.8 Hz, 1H), 7.11 - 7.02 (m, 4H), 6.93 - 6.88 (m, 2H), 6.84 - 6.80 (m, 2H), 6.74 - 6.66 (m, 4H), 6.62 - 6.57 (m, 2H), 4.49 - 4.38 (m, 2H),

3.07 (d, J = 14.3 Hz, 1H), 2.38 (d, J = 14.3 Hz, 1H), 2.04 (td, J = 12.9, 5.4 Hz, 1H), 1.83 (dd, J = 11.4, 1.9 Hz, 1H), 1.41 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.9, 151.7, 148.2, 143.9, 140.7, 137.4, 135.8, 135.1, 134.6, 132.9, 130.9, 130.7 128.4, 127.8, 126.8, 126.5, 126.0, 125.3, 124.9, 120.2, 115.7, 62.7, 45.7, 35.5, 30.8, 23.4. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO⁺ 416.2009, Found: 416.2011.

2-(9a-methyl-7,8-diphenyl-9,9a-dihydro-1*H*,3*H*-benzo[*de*]isochromen-6-yl)pyridine (44). Brown solid (42.4 mg, 51%, m.p. 110 - 111 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.24 (d, *J* = 4.4 Hz, 1H), 7.22 - 6.97 (m, 6H), 6.90 (d, *J* = 7.3 Hz, 2H), 6.83 (d, *J* = 7.4 Hz, 1H), 6.77 - 6.62 (m, 6H), 5.04 (d, *J* = 15.4 Hz, 1H), 4.88 (d, *J* = 15.4 Hz, 1H), 3.90

(d, J = 10.5 Hz, 1H), 3.60 (d, J = 10.5 Hz, 1H), 2.92 (d, J = 14.1 Hz, 1H), 2.20 (d, J = 14.1 Hz, 1H), 1.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 160.8, 148.4, 143.8, 140.7, 138.7, 138.5, 137.1, 135.3, 134.6, 134.2, 131.7, 130.8, 129.6, 128.4, 127.8, 127.0, 126.1, 125.4, 124.8, 123.0, 120.6, 75.2, 67.7, 40.4, 33.7, 22.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₀H₂₆NO⁺ 416.2009, Found: 416.2010.

2-(4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)pyridine (**45**). Brown solid (16.3 mg, 21%, m.p. 79 - 80 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.17 (d, *J* = 4.6 Hz, 1H), 7.17 (d, *J* = 8.2 Hz, 1H), 7.13 (t, *J* = 7.6 Hz, 1H), 7.07 (t, *J* = 7.2 Hz, 2H), 7.05 - 7.01 (m, 1H), 6.93 (d, *J* = 7.4 Hz, 2H), 6.84 (d, *J* = 7.8 Hz, 1H), 6.80 (d, *J* = 8.2 Hz, 1H), 6.72 (dd, *J* = 10.9, 6.8 Hz, 3H), 6.70 - 6.63 (m, 3H), 4.91 (t, *J* = 8.6 Hz, 1H), 4.27 (dd, *J* = 11.1,

8.7 Hz, 1H), 3.90 - 3.77 (m, 1H), 3.08 (t, J = 14.8 Hz, 1H), 2.74 (dd, J = 14.1, 5.9 Hz, 1H). ¹³C NMR (150 MHz, CDCl₃) δ 158.4, 157.7 147.5, 143.4, 139.3, 138.4, 135.4, 135.3, 132.6, 132.5, 131.1, 130.2, 130.1, 128.5, 127.7, 126.9, 126.1, 125.8, 124.8, 120.2, 108.8, 79.5, 37.1, 36.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₈H₂₂NO⁺ 388.1696, Found: 388.1693.

2-(8a-methyl-6,7-diphenyl-1,2,8,8a-tetrahydroacenaphthylen-5-yl)pyridine (46). Colorless solid (15.2 mg, 19%, m.p. 57 - 58 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.21 (s, 1H), 7.24 - 7.00 (m, 6H), 6.97 - 6.90 (m, 2H), 6.87 (s, 1H), 6.70 (d, J = 6.4 Hz, 6H), 3.28 – 3.13 (m, 2H), 2.93 (dd, J = 15.9, 8.1 Hz, 1H), 2.60 (d, J = 14.6 Hz, 1H), 2.17 (dd, J = 11.8, 6.8 Hz, 1H), 2.07 (dd, J = 11.3, 8.6 Hz, 1H), 1.31 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 160.0, 149.5, 148.2, 144.8, 140.6, 139.8, 139.2, 136.5, 134.9, 133.9, 131.5, 131.1, 130.8, 128.5, 127.7, 126.8, 125.8, 125.4, 124.9, 123.7, 120.3, 46.2, 43.2, 41.8, 30.9, 20.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for $C_{30}H_{26}N^+$ 400.2060, Found: 400.2059.

2-((2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)oxy)pyridine (47). Yellow solid (63.5 mg, 76%, m.p. 126 - 127 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.96 (dd, J = 5.0, 1.6 Hz, 1H), 7.22 – 7.19 (m, 1H), 7.05 (t, J = 7.4 Hz, 2H), 7.02 – 6.98 (m, 1H), 6.95 - 6.63 (m, 10H), 5.91 (d, J = 8.3 Hz, 1H), 4.55 (d, J = 8.2 Hz, 1H),

4.40 (d, J = 8.2 Hz, 1H), 3.23 (d, J = 15.1 Hz, 1H), 2.57 (d, J = 15.1 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.6, 154.2, 146.6, 143.5, 142.9, 139.1, 138.3, 138.2, 133.6, 132.3, 129.9, 128.2, 127.8, 126.9, 126.2, 126.0, 125.6, 124.1, 117.0, 110.7, 110.0, 87.0, 43.3, 40.6, 21.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{29}H_{24}NO_2^+$ 418.1802, Found: 418.1799.

1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)-1H-pyrazole (**48**). Yellow solid (60.8 mg, 78%, m.p. 125 - 126 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.14 - 7.00 (m, 5H), 6.96 (d, J = 2.2 Hz, 1 H), 6.90 - 6.68 (m, 8H), 5.66 (t, J = 2.0 Hz, 1 H)1H), 4.60 (d, J = 8.3 Hz, 1H), 4.39 (d, J = 8.3 Hz, 1H), 3.25 (d, J = 14.9 Hz, 1H), 2.61

(d, J = 14.9 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (100 MHz, CDCl₃) δ 157.0, 143.7, 140.1, 139.5, 137.3, 134.1, 132.4, 131.3, 130.7, 129.8, 129.6, 128.8, 128.2, 127.9, 126.9, 126.3, 125.9, 109.5, 105.5, 87.0, 43.1, 40.7, 21.3. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{27}H_{23}N_2O^+$ 391.1805, Found: 391.1806.

1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)-1H-pyrrolo[2,3-*b*]pyridine (**49**). Yellow solid (74.6 mg, 85%, dr = 1.1:1, m.p. 95 - 96 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.26 (d, J = 4.3 Hz, 1H), 8.18 (d, J = 4.3 Hz, 1H), 7.52 (t, J = 8.3 Hz, 2H), 7.02 (tdd, J = 11.7, 9.8, 5.9 Hz, 10H), 6.92 (dd, J = 7.7, 4.7 Hz, 1H),

6.89 - 6.75 (m, 11H), 6.58 (dd, J = 23.6, 16.3 Hz, 4H), 6.41 (dd, J = 27.2, 19.9 Hz, 4H), 5.96 (d, J = 23.6, 16.3 Hz, 4H), 5.96 (d, J = 23.6, 16.3 Hz, 16.3 Hz 3.5 Hz, 1H), 5.91 (d, J = 3.5 Hz, 1H), 4.61 (dd, J = 8.3, 1.4 Hz, 2H), 4.47 (d, J = 8.3 Hz, 1H), 4.43 (d, J = 8.3 Hz, 1H), 3.42 (d, J = 15.0 Hz, 1H), 3.26 (d, J = 14.8 Hz, 1H), 2.63 (d, J = 14.8 Hz, 1H), 2.58 (d, J= 15.0 Hz, 1H), 1.48 (s, 3H), 1.44 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 157.1, 156.9, 148.7, 148.3, 143.7, 143.6, 142.62, 142.55, 139.51, 139.48, 136.6, 136.4, 134.1, 133.8, 132.9, 132.6, 131.3, 130.54, 130.5, 130.3, 129.6, 128.17, 128.13, 128.0, 127.9, 127.7, 127.3, 127.1, 126.3, 126.1, 125.7, 125.6, 120.39, 120.38, 115.6, 115.5, 110.0, 109.7, 100.3, 99.7, 87.0, 86.9, 43.3, 42.9, 40.8, 40.5, 21.8, 21.4. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{31}H_{25}N_2O^+$ 441.1961, Found: 441.1960.

3,3-dimethyl-1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) indolin-2-one (50). White solid (23.7 mg, 24%, dr = 1.1:1, m.p. 208 - 209 °C). ¹H NMR (400 MHz, CDCl₃) δ 7.08 – 7.02 (m, 5H), 6.96 – 6.49 (m, 10H), 6.38 (d, J = 7.7 Hz, 1H), 4.62 (d, J = 8.3 Hz, 1H), 4.44 (d, J = 8.3 Hz, 1H), 3.26 (d, J = 14.9 Hz, 1H), 2.64 (d, J = 14.8 Hz, 1H), 1.44 (s, 3H), 1.23 (s, 3H), 0.72 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 180.4, 156.9, 143.7, 143.4, 139.6, 137.6, 135.0, 134.4, 132.7, 131.0, 130.6, 129.7, 128.0, 127.9, 126.9, 126.8, 126.6, 126.2, 123.9, 122.2, 121.7, 111.0, 109.4, 86.9, 43.7, 43.4, 40.6, 26.3, 23.1, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₀NO₂⁺ 484.2271, Found: 484.2269.

3,3-dimethyl-1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl) indolin-2-one (**50**'). Yellow solid (19.7 mg, 21%, dr = 1.1:1, m.p. 122 - 123 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.13 (td, *J* = 7.7, 1.4 Hz, 1H), 7.10 - 7.02 (m, 3H), 6.97 - 6.79 (m, 8H), 6.75 - 6.68 (m, 2H), 6.64 - 6.59 (m, 2H), 4.59 (d, *J* = 8.2 Hz, 1H), 4.41 (d, *J* = 8.3 Hz, 1H), 3.32 (d, *J* = 14.7 Hz, 1H), 2.58 (d, *J* = 14.7 Hz, 1H), 1.45 (s, 3H),

1.18 (s, 3H), 0.75 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 180.6, 157.2, 143.9, 143.3, 139.4, 137.9, 135.7, 134.7, 132.5, 131.7, 129.8, 129.5, 128.3, 127.9, 127.0, 126.9, 126.20, 126.17, 124.2, 122.2, 121.7, 110.6, 110.3, 86.9, 43.7, 43.1, 40.7, 26.7, 23.2, 21.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₀NO₂⁺ 484.2271, Found: 484.2249.

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)benzo[*d*]oxazol e (**51**). Yellow solid (39.7 mg, 45%, m.p. 196 - 197 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.53 (d, *J* = 8.2 Hz, 1H), 7.42 (d, *J* = 7.6 Hz, 1H), 7.16 - 7.05 (m, 6H), 6.95 (d, *J* = 7.5 Hz, 2H), 6.87 - 6.85 (m, 3H), 6.63 (t, *J* = 7.4 Hz, 2H), 6.41 (t, *J* = 7.4 Hz, 1H), 4.63 (d, *J* = 8.2 Hz, 1H), 4.40 (d, *J* = 8.2 Hz, 1H), 3.31 (d, *J* = 14.5 Hz, 1H), 2.66 (d, *J* = 14.5

Hz, 1H), 1.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 163.5, 159.1, 150.5, 143.9, 141.6, 139.6, 138.0, 134.5, 133.57, 133.54, 133.3, 128.4, 128.1, 126.9, 126.5, 125.7, 124.0, 123.7, 119.5, 117.5, 110.2, 109.4, 86.9, 43.1, 40.5, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₄NO₂⁺ 442.1802, Found: 442.1803.

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)benzo[*d*]thiazol e (**52**). Yellow solid (29.2 mg, 32%, m.p. 226 - 227 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.61 (t, *J* = 7.2 Hz, 2H), 7.30 (d, *J* = 8.2 Hz, 1H), 7.28 - 7.25 (m, 1H), 7.22 - 7.17 (m, 1H), 7.10 (dd, *J* = 11.3, 4.4 Hz, 2H), 7.07 - 7.03 (m, 1H), 6.95 - 6.90 (m, 2H), 6.82 (dd, *J* = 7.5, 5.3 Hz, 3H), 6.55 (t, *J* = 7.1 Hz, 2H), 6.37 (t, *J* = 7.4 Hz, 1H), 4.62 (d, *J* = 8.2

Hz, 1H), 4.38 (d, J = 8.2 Hz, 1H), 3.33 (d, J = 14.6 Hz, 1H), 2.64 (d, J = 14.5 Hz, 1H), 1.45 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.6, 158.5, 153.1, 144.0, 139.7, 138.6, 135.8, 134.7, 133.9, 133.2, 133.1, 128.4, 128.0, 126.8, 126.3, 125.4, 125.3, 124.4, 124.0, 122.8, 121.0, 109.0, 86.8, 43.1, 40.6, 21.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₁H₂₄NOS⁺ 458.1573, Found: 458.1570.

(3s)-*N*-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan-6-yl)adamant ane-1-carboxamide (**53**). White solid (40.1 mg, 40%, m.p. 227 - 228 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.63 (d, *J* = 8.7 Hz, 1H), 7.51 – 7.29 (m, 2H), 7.21 (t, *J* = 7.4 Hz, 1H), 7.16 – 7.01 (m, 4H), 6.93 – 6.79 (m, 3H), 6.75 (d, *J* = 8.7 Hz, 1H), 6.69 (s, 1H),

4.50 (d, *J* = 8.2 Hz, 1H), 4.28 (d, *J* = 8.2 Hz, 1H), 3.14 (d, *J* = 14.8 Hz, 1H), 2.53 (d, *J* = 14.8 Hz, 1H), 1.82 (s, 3H), 1.58 (d, *J* = 12.2 Hz, 3H), 1.48 (d, *J* = 11.5 Hz, 3H), 1.39 (s, 3H), 1.33 (dd, *J* = 12.0, 2.0

Hz, 3H), 1.24 (dd, J = 12.0, 2.0 Hz, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 176.0, 154.1, 143.6, 140.1, 139.7, 133.3, 131.9, 129.1, 128.4, 128.1, 128.0, 127.5, 126.9, 126.3, 126.1, 124.7, 109.8, 86.5, 43.5, 41.1, 40.8, 38.1, 36.3, 28.0, 21.3. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₅H₃₆NO₂⁺ 502.2741, Found: 502.2737.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)benzamide (**54**). White solid (59.4 mg, 86%, m.p. 200 - 201 °C). ¹H NMR (600 MHz, CDCl₃) δ 9.28 (s, 1H), 8.34 (d, *J* = 4.4 Hz, 1H), 7.84 – 7.79 (m, 2H), 7.65 (td, *J* = 7.8, 1.7 Hz, 1H), 7.51 – 7.48 (m, 2H), 7.42 (t, *J* = 7.6 Hz, 2H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.10 – 7.03 (m, 1H),

6.85 (d, J = 8.2 Hz, 1H), 4.24 (s, 2H), 1.44 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.6, 161.3, 158.4, 148.1, 137.2, 134.6, 133.8, 132.1, 131.7, 130.8, 130.7, 128.7, 127.4, 124.0, 121.6, 109.6, 85.4, 43.4, 25.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₁N₂O₂⁺ 345.1598, Found: 345.1598.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-methylbenzamide (**55**). Yellow solid (39.5 mg, 55%, m.p. 118 - 119 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.21 (s, 1H), 8.38 (dd, *J* = 4.9, 0.8 Hz, 1H), 7.73 (d, *J* = 8.1 Hz, 2H), 7.65 (td, *J* = 7.8, 1.8 Hz, 1H), 7.50 (d, *J* = 7.9 Hz, 1H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.23 (d, *J* = 8.0

Hz, 2H), 7.06 (ddd, J = 7.5, 4.9, 1.0 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 4.23 (s, 2H), 2.39 (s, 3H), 1.43 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 167.5, 161.3, 158.5, 148.1, 142.2, 137.2, 133.8, 132.2, 131.7, 130.8, 130.7, 129.4, 127.5, 123.9, 121.6, 109.5, 85.4, 43.4, 25.7, 21.6. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₂⁺ 359.1754, Found: 359.1754.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-methoxybenza mide (**56**). Yellow solid (33.7 mg, 45%, m.p. 210 - 211 °C). ¹H NMR (600 MHz, CDCl₃) δ 9.17 (s, 1H), 8.43 (d, *J* = 4.8 Hz, 1H), 7.80 (d, *J* = 8.7 Hz, 2H), 7.67 (td, *J* = 7.7, 1.4 Hz, 1H), 7.51 (d, *J* = 7.9 Hz, 1H), 7.33 (d, *J* = 8.2 Hz, 1H), 7.08

 $(dd, J = 7.1, 5.3 Hz, 1H), 6.92 (d, J = 8.7 Hz, 2H), 6.85 (d, J = 8.2 Hz, 1H), 4.24 (s, 2H), 3.85 (s, 3H), 1.44 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) & 167.1, 162.5, 161.4, 158.6, 148.1, 137.3, 133.8, 132.5, 130.7, 130.6, 129.3, 126.9, 123.9, 121.6, 113.9, 109.5, 85.4, 55.6, 43.4, 25.8. HRMS (ESI-TOF) m/z: <math>[M + H]^+$ Calcd for $C_{23}H_{23}N_2O_3^+$ 375.1703, Found: 375.1703.

4-(*tert*-butyl)-*N*-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)ben zamide (**57**). White solid (52.9 mg, 66%, m.p. 265 - 266 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.27 (s, 1H), 8.33 (d, *J* = 4.8 Hz, 1H), 7.78 (d, *J* = 8.3 Hz, 2H), 7.65 - 7.61 (m, 1H), 7.49 (d, *J* = 7.8 Hz, 1H), 7.44 (d, *J* = 8.3 Hz, 2H), 7.32 (d, *J*

= 8.2 Hz, 1H), 7.08 – 7.02 (m, 1H), 6.84 (d, J = 8.2 Hz, 1H), 4.22 (s, 2H), 1.42 (s, 6H), 1.33 (s, 9H). ¹³C NMR (100 MHz, CDCl₃) δ 167.4, 161.2, 158.4, 155.2, 148.1, 137.0, 133.7, 132.1, 131.7, 130.9, 130.7, 127.3, 125.6, 123.9, 121.6, 109.5, 85.3, 43.3, 35.0, 31.3, 25.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₉N₂O₂⁺ 401.2224, Found: 401.2223.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-fluorobenzamide (**58**). White solid (30.5 mg, 42%, m.p. 228 - 229 °C). ¹H NMR (600 MHz, CDCl₃)

δ 9.36 (s, 1H), 8.34 (d, J = 4.2 Hz, 1H), 7.85 (dd, J = 8.6, 5.3 Hz, 2H), 7.66 (td, J = 7.8, 1.6 Hz, 1H), 7.50 (d, J = 7.9 Hz, 1H), 7.33 (d, J = 8.3 Hz, 1H), 7.12 – 7.06 (m, 3H), 6.86 (d, J = 8.2 Hz, 1H), 4.24 (s, 2H), 1.43 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.6, 165.0 (d, J = 252.1 Hz, 1C), 161.4, 158.5, 148.0, 137.2, 133.8, 132.1, 130.8 (d, J = 3.0 Hz, 1C), 130.7, 130.4, 129.8 (d, J = 8.9 Hz, 2C), 123.9, 121.6, 115.7 (d, J = 21.9 Hz, 2C), 109.7, 85.4, 43.4, 25.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -107.9. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for C₂₂H₂₀FN₂O₂⁺ 363.1503, Found: 363.1501.

4-chloro-*N*-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)benzamide (**59**). White solid (41.7 mg, 55%, m.p. 241 - 242 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.45 (s, 1H), 8.28 (dd, *J* = 4.9, 0.8 Hz, 1H), 7.82 – 7.75 (m, 2H), 7.65 (td, *J* = 7.8, 1.8 Hz, 1H), 7.48 (d, *J* = 7.9 Hz, 1H), 7.43 – 7.36 (m, 2H), 7.32 (d, *J* = 8.3 Hz,

1H), 7.05 (ddd, J = 7.5, 4.9, 1.1 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 4.23 (s, 2H), 1.41 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 161.3, 158.3, 148.0, 138.0, 137.2, 133.7, 132.9, 131.9, 130.7, 130.4, 129.0, 128.9, 123.9, 121.7, 109.7, 85.3, 43.4, 25.7. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₂H₂₀ClN₂O₂⁺ 379.1208, Found: 379.1204.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-(trifluoromethyl)benzamide (**60**). White solid (33.0 mg, 40%, m.p. 238 - 239 °C). ¹H NMR (600 MHz, CDCl₃) δ 9.49 (s, 1H), 8.38 (s, 1H), 7.94 (d, *J* = 8.1 Hz, 2H), 7.71 - 7.68 (m, 3H), 7.52 (d, *J* = 7.8 Hz, 1H), 7.35 (d, *J* = 8.3 Hz, 1H), 7.13 - 7.07 (m, 1H),

6.88 (d, J = 8.3 Hz, 1H), 4.25 (s, 2H), 1.43 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.2, 161.5, 158.4, 148.0 137.8, 137.4, 133.8, 133.5 (q, J = 32.5 Hz, 1C), 131.8, 130.8, 130.3, 127.9, 125.8 (q, J = 3.9 Hz, 2C), 124.0, 123.8 (q, J = 272.2 Hz, 1C), 121.8, 109.9, 85.4, 43.4, 25.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -63.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₀F₃N₂O₂⁺ 413.1471, Found: 413.1474.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-2-naphthamide (**61**). White solid (34.7 mg, 44%, m.p. 213 - 214 °C). ¹H NMR (600 MHz, CDCl₃) δ 9.52 (s, 1H), 8.40 (s, 1H), 8.36 (d, *J* = 4.6 Hz, 1H), 7.96 - 7.85 (m, 4H), 7.64 (td, *J* = 7.8, 1.5 Hz, 1H), 7.60 - 7.50 (m, 3H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.02 (dd,

J = 7.0, 5.4 Hz, 1H), 6.88 (d, J = 8.3 Hz, 1H), 4.26 (s, 2H), 1.53 – 1.42 (m, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 167.6, 161.4, 158.4, 148.1, 137.2, 135.0, 133.8, 132.8, 132.3, 131.8, 130.7, 129.2, 128.6, 128.1, 127.9, 126.9, 124.0, 121.6, 109.6, 85.4, 43.4, 25.8. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₂₃N₂O₂⁺ 395.1754, Found: 395.1754.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)furan-2-carboxamide (**62**). Brown solid (26.8 mg, 40%, m.p. 110 - 111 °C). ¹H NMR (400 MHz, CDCl₃) δ 9.00 (s, 1H), 8.48 (d, *J* = 4.2 Hz, 1H), 7.67 (td, *J* = 7.8, 1.7 Hz, 1H), 7.49 (d, *J* = 7.0 Hz, 2H), 7.32 (d, *J* = 8.3 Hz, 1H), 7.11 (ddd, *J* = 7.4, 4.9, 0.9 Hz, 1H), 7.04 (d, *J* =

3.3 Hz, 1H), 6.85 (d, J = 8.3 Hz, 1H), 6.47 (dd, J = 3.4, 1.7 Hz, 1H), 4.24 (s, 2H), 1.44 (s, 6H). ¹³C NMR (100 MHz, CDCl₃) δ 161.2, 158.3, 158.0, 148.2, 148.0, 144.5, 137.2, 133.8, 131.2, 130.8, 123.8, 121.6, 114.8, 112.1, 109.7, 85.3, 43.3, 25.9. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₀H₁₉N₂O₃⁺ 335.1390, Found: 335.1389.

3,3-dimethyl-5-(pyridin-2-yl)-*N*-(*p*-tolyl)-2,3-dihydrobenzofuran-4-carboxamide (**63**). White solid (40.2 mg, 56%, m.p. 176 - 177 °C). ¹H NMR (400 MHz, CDCl₃) δ 8.54 (ddd, *J* = 4.9, 1.6, 0.9 Hz, 1H), 7.64 (td, *J* = 7.7, 1.8 Hz, 1H), 7.55 (d, *J* = 7.9 Hz, 1H), 7.49 (s, 1H), 7.43 (d, *J* = 8.3 Hz, 1H), 7.19 (d, *J* = 8.4 Hz, 2H), 7.14 (ddd, *J*

= 7.5, 4.9, 1.1 Hz, 1H), 7.07 (d, J = 8.2 Hz, 2H), 6.94 (d, J = 8.3 Hz, 1H), 4.26 (s, 2H), 2.29 (s, 3H), 1.50 (s, 7H). ¹³C NMR (100 MHz, CDCl₃) δ 166.6, 160.6, 157.9, 149.3, 136.7, 135.1, 134.4, 133.8, 133.3, 131.0, 130.5, 129.6, 123.6, 122.0, 120.4, 111.4, 85.7, 43.3, 26.3, 21.0. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₃H₂₃N₂O₂⁺ 359.1754, Found: 359.1745.

N-(4-methoxyphenyl)-3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-ca rboxamide (**64**). White solid (44.3 mg, 59%, m.p. 177 - 178 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.30 (s, 1H), 8.27 (d, *J* = 4.5 Hz, 1H), 7.65 (td, *J* = 7.8, 1.5 Hz, 1H), 7.56 (d, *J* = 7.9 Hz, 1H), 7.36 (d, *J* = 8.3 Hz, 1H), 7.27 - 7.22 (m, 2H), 7.11

- 7.08 (m, 1H), 6.84 (d, J = 8.3 Hz, 1H), 6.79 (d, J = 8.9 Hz, 2H), 4.24 (s, 2H), 3.74 (s, 3H), 1.48 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.5, 160.6, 157.2, 156.7, 148.4, 137.1, 133.7, 133.2, 130.8, 130.3, 129.9, 123.8, 122.5, 122.0, 114.1, 111.2, 85.6, 55.5, 43.2, 26.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₂₂N₂NaO₃⁺ 397.1523, Found: 397.1516.

N-(4-fluorophenyl)-3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-carbox amide (**65**). White solid (34.5 mg, 47%, m.p. 195 - 196 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.33 (d, *J* = 4.4 Hz, 1H), 8.04 (s, 1H), 7.64 - 7.61 (m, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.37 (d, *J* = 8.3 Hz, 1H), 7.29 (dd, *J* = 8.8, 4.8 Hz, 2H), 7.11 - 7.07

(m, 1H), 6.96 (t, J = 8.6 Hz, 2H), 6.88 (d, J = 8.3 Hz, 1H), 4.26 (s, 2H), 1.49 (s, 6H). ¹³C NMR (150 MHz, CDCl₃) δ 166.8, 160.6, 159.7 (d, J = 243.6 Hz, 1C), 157.7, 149.0, 136.7, 133.9, 133.8 (d, J = 2.8 Hz, 1C), 132.9, 130.7, 130.3, 123.6, 122.4 (d, J = 7.8 Hz, 2C), 121.9, 115.7 (d, J = 22.8 Hz, 2C), 111.5, 85.7, 43.3, 26.2. ¹⁹F NMR (565 MHz, CDCl₃) δ -117.5. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₁₉FN₂NaO₂⁺ 385.1323, Found: 385.1317.

N-(4-chlorophenyl)-3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-carbo xamide (**66**). White solid (32.7 mg, 43%, m.p. 203 - 204 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.283 - 8.275 (m, 2H), 7.64 (td, *J* = 7.7, 1.5 Hz, 1H), 7.52 (d, *J* = 7.9 Hz, 1H), 7.35 (dd, *J* = 12.6, 8.6 Hz, 3H), 7.23 (d, *J* = 8.8 Hz, 2H), 7.09 (dd, *J* = 6.9,

5.3 Hz, 1H), 6.87 (d, J = 8.3 Hz, 1H), 4.26 (s, 2H), 1.47 (s, 6H). ¹³C NMR (151 MHz, CDCl₃) δ 166.7, 160.7, 157.4, 148.7, 137.0, 136.4, 134.0, 132.8, 130.27, 130.23, 129.7, 129.1, 123.6, 122.1, 121.7, 111.5, 85.7, 43.2, 26.1. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₂H₁₉ClN₂NaO₂⁺ 401.1027, Found: 401.1024.

3,3-dimethyl-5-(pyridin-2-yl)-*N*-(4-(trifluoromethyl)phenyl)-2,3-dihydrobenzofur an-4-carboxamide (**67**). White solid (35.9 mg, 44%, m.p. 218 - 219 °C). ¹H NMR (600 MHz, DMSO-*d*₆) δ 10.55 (s, 1H), 8.45 (dd, *J* = 4.7, 0.6 Hz, 1H), 7.77 - 7.71 (m, 3H), 7.66 - 7.61 (m, 3H), 7.59 (d, *J* = 8.4 Hz, 1H), 7.20 - 7.18 (m, 1H), 7.01 (d, J = 8.4 Hz, 1H), 4.24 (s, 2H), 1.36 (s, 6H). ¹³C NMR (150 MHz, DMSO- d_6) δ 166.7, 159.8, 156.7, 148.8, 142.4, 136.8, 133.5, 133.0, 130.4, 129.9, 125.9 (q, J = 3.5 Hz, 2C), 124.4 (q, J = 271.0 Hz, 1C), 123.4 (q, J = 32.0 Hz, 1C), 122.3, 121.7, 119.4, 110.5, 84.6, 42.5, 25.9. ¹⁹F NMR (565 MHz, DMSO- d_6) δ -60.4. HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉F₃N₂NaO₂⁺ 435.1291, Found: 435.1281.

2-(2a-methyl-4,5-diphenyl-7-((triisopropylsilyl)ethynyl)-2a,3-dihydro-2*H*-naph tho[1,8-*bc*]furan-6-yl)pyridine (**68**). Red solid (33.1 mg, 57%, m.p. 90 - 91 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.18 (s, 1H), 7.18 - 6.91 (m, 5H), 6.90 - 6.15

(m, 9H), 4.57 (d, J = 8.2 Hz, 1H), 4.33 (d, J = 8.0 Hz, 1H), 3.21 (d, J = 14.8 Hz, 1H), 2.57 (d, J = 14.8 Hz, 1H), 1.46 (s, 3H), 0.94 – 0.76 (m, 21H). ¹³C NMR (150 MHz, CDCl₃) δ 158.10, 158.08, 156.5, 148.34, 148.31, 143.7, 139.2, 134.6, 134.44, 134.36, 128.1, 127.8, 127.0, 126.1, 125.6, 120.8, 113.47, 113.45, 106.3, 93.4, 86.7, 43.0, 40.9, 21.4, 18.6, 11.2. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₄₀H₄₄NOSi⁺ 582.3187, Found: 582.3189.

^{Py} ^{Ph} ^{Ph} *N*-(2a-methyl-4,5-diphenyl-6-(pyridin-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]furan -7-yl)benzamide (**69**). White solid (36.9 mg, 71%, m.p. 199 - 200 °C). ¹H NMR (600 MHz, CDCl₃) δ 10.81 (s, 1H), 8.30 (s, 1H), 8.10 (s, 1H), 7.71 (d, *J* = 4.9 Hz, 2H), 7.44 (t, *J* = 7.2 Hz, 1H), 7.37 - 7.32 (m, 2H), 7.11 - 7.01 (m, 4H), 6.95 - 6.79 (m, 3H), 6.79 -6.54 (m, 6H), 4.60 (d, *J* = 8.1 Hz, 1H), 4.40 (d, *J* = 8.1 Hz, 1H), 3.27 (d, *J* = 14.2 Hz, 1H), 2.63 (d, *J* = 14.3 Hz, 1H), 1.42 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 165.1, 157.4, 156.3, 147.4, 144.3, 140.0, 139.3, 138.5, 136.2, 135.2, 134.0, 132.1, 131.6, 131.2, 130.5, 128.9, 128.6, 128.4, 128.0, 127.1, 126.3, 126.0, 122.7, 121.1, 119.6, 103.9, 86.6, 43.5, 40.9, 21.1. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₆H₂₉N₂O₂⁺ 521.2224, Found: 521.2222.

3-(2a-methyl-4,5-diphenyl-6-(pyridin-2-yl)-2a,3-dihydro-2*H*-naphtho[1,8-*bc*]fura n-7-yl)pentane-2,4-dione (**70**). Brown solid (27.9 mg, 56%, m.p. 200 - 201 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.16 (d, *J* = 3.6 Hz, 1H), 7.07 - 6.95 (m, 5H), 6.82 (d, *J* = 7.2 Hz, 3H), 6.75 - 6.53 (m, 6H), 6.38 (d, *J* = 7.6 Hz, 1H), 4.61 (d, *J* = 8.2

Hz, 1H), 4.37 (d, J = 8.1 Hz, 1H), 3.32 (d, J = 14.8 Hz, 1H), 2.60 (d, J = 14.8 Hz, 1H), 2.00 (s, 3H), 1.66 (s, 3H), 1.50 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 192.2, 189.6, 158.4, 157.1, 148.3, 143.6, 139.6, 139.3, 137.3, 134.7, 134.5, 133.9, 133.5, 132.2, 128.1, 127.7, 127.07, 127.02, 126.1, 126.0, 125.6, 120.8, 114.2, 112.1, 86.8, 43.2, 40.9, 24.6, 24.3, 21.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₄H₃₀NO₃⁺ 500.2220, Found: 500.2220.

2a-methyl-4,5-diphenyl-6-(pyridin-2-yl)-*N*-(*p*-tolyl)-2a,3-dihydro-2*H*-naphtho[1,8 -*bc*]furan-7-carboxamide (**71**). Brown solid (35.2 mg, 66%, m.p. 116 - 117 °C). ¹H NMR (600 MHz, DMSO-*d*₆) δ 9.94 (s, 1H), 8.04 (s, 1H), 7.30 (d, *J* = 8.2 Hz, 2H), 7.09 (t, *J* = 7.5 Hz, 2H), 7.03 (t, *J* = 7.3 Hz, 2H), 6.97 (d, *J* = 8.3 Hz, 2H), 6.93 (s,

1H), 6.89 (d, J = 7.6 Hz, 2H), 6.80 (d, J = 7.8 Hz, 1H), 6.76 – 6.42 (m, 7H), 4.67 (d, J = 8.5 Hz, 1H), 4.41 (d, J = 8.6 Hz, 1H), 3.24 (d, J = 14.6 Hz, 1H), 2.57 (d, J = 15.2 Hz, 1H), 2.18 (s, 3H), 1.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 167.3, 157.0, 148.4, 148.3, 143.3, 140.0, 135.6, 135.5, 135.1, 134.0, 133.7, 129.5, 129.24, 129.17, 128.2, 127.9, 127.7, 127.0, 126.9, 126.5, 126.1, 125.7, 121.5, 120.2,

119.6, 108.8, 86.6, 42.9, 40.7, 21.1, 20.8. HRMS (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{37}H_{31}N_2O_2^+$ 535.2380, Found: 535.2376.

3a-methyl-1,2,7,8-tetraphenyl-3a,4-dihydro-3*H*-isobenzofuro[1,7-*gh*]pyrido[2,1-*a*]i soquinolin-9-ium trifluoromethanesulfinate (**72**). Brown solid (70.5 mg, 97%, m.p. 184 - 185 °C). ¹H NMR (600 MHz, CDCl₃) δ 8.32 - 8.22 (m, 2H), 7.55 (t, *J* = 7.8 Hz, 1H), 7.44 - 7.40 (m, 1H), 7.39 - 7.19 (m, 13H), 7.12 (s, 2H), 6.95 - 6.89 (m,

3H), 6.84 (s, 3H), 4.72 (d, J = 8.2 Hz, 1H), 4.48 (d, J = 8.3 Hz, 1H), 3.60 (d, J = 14.4 Hz, 1H), 2.84 (d, J = 14.4 Hz, 1H), 1.43 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 161.3, 143.3, 142.7, 142.5, 141.3, 137.9, 137.4, 136.9, 136.5, 134.6, 134.2, 133.6, 132.8, 132.7, 131.5, 130.7, 130.4, 130.3, 130.1, 130.0, 129.8, 129.7, 128.7, 128.52, 128.47, 128.43, 128.3, 127.9, 127.5, 127.2, 121.7, 116.3, 106.2, 86.6, 41.9, 41.0, 19.7. ¹⁹F NMR (565 MHz, CDCl₃) δ -78.2. HRMS (ESI-TOF) m/z: [M-OTf]⁺ Calcd for C₄₃H₃₂NO⁺ 578.2478, Found: 578.2480. HRMS (ESI-TOF) m/z: [M]- Calcd for OTf⁻ 148.9526, Found: 148.9527.

(*E*)-1-(2-(1,2-diphenylvinyl)-4-((2-methylallyl)oxy)phenyl)-1*H*-pyrazole (**73**). White solid (70.6 mg, 45%, m.p. 95 - 96 °C). ¹H NMR (600 MHz, CDCl₃) δ 7.43 (d, *J* = 1.5 Hz, 1H), 7.36 (d, *J* = 2.2 Hz, 1H), 7.32 (d, *J* = 8.7 Hz, 1H), 7.15 - 7.06 (m, 6H), 7.04 - 7.02 (m, 3H), 6.99 - 6.91 (m, 3H), 6.67 (s, 1H), 6.09 (t, *J* = 2.1 Hz, 1H), 5.12 (s, 1H),

5.02 (s, 1H), 4.49 (s, 2H), 1.86 (s, 3H). ¹³C NMR (150 MHz, CDCl₃) δ 158.4, 141.7, 140.6, 140.0, 139.9, 139.0, 137.1, 132.8, 131.0, 130.9, 129.6, 129.4, 128.1, 128.0, 127.9, 127.2, 127.1, 117.5, 114.2, 113.2, 106.0, 72.1, 19.5. HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₇H₂₅N₂O⁺ 393.1961, Found: 393.1952.

7. NMR spectrum and HPLC Chromatogram

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

S65

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (600 MHz, DMSO- d_6)

¹³C NMR (150 MHz, DMSO-*d*₆)

¹H NMR (400 MHz, CDCl₃)

S71

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

6.0 5.5 f1 (ppm) 5.0

4.5 4.0

8.5 8.0 7.5 7.0 6.5

11.5 11.0 10.5 10.0 9.5

9.0

2.5 2.0

1.5 1.0 0.5

0.0

3.5 3.0


```
<sup>13</sup>C NMR (150 MHz, CDCl<sub>3</sub>)
```


¹³C NMR (150 MHz, CDCl₃)

 $\begin{array}{c} \begin{array}{c} 159.41 \\ (152.07 \\ (152.07 \\ (152.07 \\ (152.07 \\ (142.08 \\ (142.08 \\ (131.28 \\ (131.$

¹H NMR (600 MHz, CDCl₃)

S108

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

 $\begin{array}{c} - 161.25 \\ - 157.28 \\ - 157.28 \\ - 148.79 \\ - 144.01 \\ - 144.01 \\ - 148.25 \\ - 148.25 \\ - 108.23 \\ - 108.23 \\ - 26.50 \\ - 86.50 \\ - 86.50 \\ - 26.50 \\ - 26.50 \\ - 31.76 \\$

¹³C NMR (150 MHz, CDCl₃)

 $\begin{array}{c} - 161.69 \\ - 157.20 \\ 157.20 \\ 132.85 \\ 132.85 \\ 132.85 \\ 128.59 \\ 128.59 \\ 127.35 \\ 127.35 \\ 127.35 \\ 127.35 \\ - 108.39 \\ - 108.39 \\ - 69.34 \\ - 69.34 \\ - 69.34 \\ - 69.33 \\ - 67.33 \\ - 61.32 \\ - 61.$

¹³C NMR (150 MHz, CDCl₃)

 $[\]begin{array}{c} - 160.86 \\ - 157.26 \\ 143.10 \\ 132.08 \\ 132.08 \\ 132.08 \\ 128.52 \\ 1$

 $\begin{array}{c} \begin{array}{c} \begin{array}{c} < 56.89 \\ (56.39) \\ (56.39) \\ (144.85) \\ (144.85) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1257.87) \\ (1277.48)$

 $\begin{array}{c} -156.83 \\ -145.298 \\ 145.85 \\ -141.85 \\ -141.85 \\ -131.65 \\ -131.05 \\ -119.97 \\ -119.97 \\ -119.97 \\ -119.97 \\ -119.97 \\ -109.11$

0.91H 1.01 3.04≖ ₩. 10. 10. 10. 1.001 2:03 2:03 4:95 1.5 8.0 4.5 6.0 5.5 f1 (ppm) 2.5 11.5 11.0 10.5 10.0 9.5 3.5 3.0 1.0 0.5 0.0 9.0 8.5 7.5 7.0 6.5 5.0 4.0 2.0

¹⁹F NMR (565 MHz, CDCl₃)

¹H NMR (600 MHz, DMSO- d_6)

¹³C NMR (150 MHz, DMSO-*d*₆)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹⁹F NMR (565 MHz, CDCl₃)

¹³C NMR (150 MHz, CDCl₃)

-166.24 -161.45 -161.45 -18.24 -137.82 -137.82 -137.39 -137.39 -125.580 -85.40 -85.40 -85.40 -85.40 -85.40 -25.73

¹H NMR (600 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (600 MHz, CDCl₃)

¹⁹F NMR (565 MHz, CDCl₃)

¹³C NMR (150 MHz, DMSO-*d*₆)

S163


```
<sup>1</sup>H NMR (600 MHz, CDCl<sub>3</sub>)
```


¹H NMR (600 MHz, DMSO- d_6)

Racemic example for 47

<Peak Table>

Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	4.928	7155010	635681	50.306	50.306				
2	5.570	7067912	562622	49.694	49.694				
Total		14222922	1198303		100.000				

Enantioenriched example for 47

<Chromatogram>

mV

<Peak Table>

Detector A 254nm									
Peak#	Ret. Time	Area	Height	Conc.	Area%				
1	4.943	2695436	244053	33.030	33.030				
2	5.586	5465061	429856	66.970	66.970				
Total		8160497	673909		100.000				