Supporting Information

Rhodium ${ }^{\text {III }}$-Catalyzed Remote Difunctionalization of Arenes Assisted by a Relay Directing Group

Lincong Sun, ${ }^{1}$ Yuyao Zhao, ${ }^{1}$ Bingxian Liu, ${ }^{1}$ Junbiao Chang, ${ }^{1}{ }^{1}$ Xingwei Li* ${ }^{1,2}$
${ }^{1}$ NMPA Key Laboratory for Research and Evaluation of Innovative Drug, Collaborative Innovation Center of Henan Province for Green Manufacturing of Fine Chemicals, School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan 453007, China.
${ }^{2}$ Institute of Molecular Science and Engineering, Institute of Frontier and Interdisciplinary Sciences, Shandong University, Qingdao 250100, China
*E-mail: changjunbiao@zzu.edu.cn; lixw@snnu.edu.cn

Table of Contents

1. General Information 3
2. General Procedure for the Preparation of Substrates 4
3. Experimental Section 18
4. X-Ray Crystal Structure of 32 and intermidiate A. 37
5. References. 40
6. Characterization Data 41
7. NMR spectrum and HPLC Chromatogram 59

1. General Information

All chemicals were obtained from commercial sources and were used as received unless otherwise noted. The ${ }^{1} \mathrm{H}$ NMR spectra were recorded on a 400 MHz or 600 MHz NMR spectrometer. The ${ }^{13} \mathrm{C}$ NMR spectra were recorded at 100 MHz or 150 MHz . The ${ }^{19} \mathrm{~F}$ NMR spectra were recorded at 376 MHz or 565 MHz . Chemical shifts were expressed in parts per million (δ) downfield from the internal standard tetramethylsilane (TMS), and were reported as s (singlet), d (doublet), t (triplet), dd (doublets of doublet), dt (doublets of triplet), and m (multiplet). The residual solvent signals were used as references and the chemical shifts were converted to the TMS scale $\left(\mathrm{CDCl}_{3}: \delta \mathrm{H}=7.26 \mathrm{ppm}, \delta \mathrm{C}=\right.$ $77.16 \mathrm{ppm})$. The coupling constants J were given in Hz. High resolution mass spectra were obtained on an Agilent Q-TOF 6540 spectrometer. The conversion of starting materials was monitored by thin layer chromatography (TLC) using silica gel plates (silica gel 60 F 2540.25 mm), and components were visualized by observation under UV light (254 and 365 nm). X-ray measurements were performed on a Bruker D\& Advance X-ray powder diffractometer with graphite monochromatized $\mathrm{Cu} \mathrm{K} \alpha$ radiation at 293 K. Column chromatography was performed on silica gel 200-300 mesh.

Alkynes ${ }^{1}$, dioxazolones ${ }^{2}, t-\mathrm{AmOD}^{3},\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}{ }^{4}$ and chiral rhodium catalyst ${ }^{5}$ were prepared according to published procedures. Other chemicals were purchased from commercial suppliers and were dried and purified when necessary.

2. General Procedure for the Preparation of Substrates

General Procedure A

Step 1: Compound A ($3.5 \mathrm{mmol}, 1.0$ equiv) was dissolved in DME (15 mL) under an inert atmosphere and a solution of compound $\mathbf{B}(483.2 \mathrm{mg}, 3.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added followed by a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($742.0 \mathrm{mg}, 7.0 \mathrm{mmol}$. 2.0 equiv) in water $(4 \mathrm{~mL})$. The mixture was degassed and subsequently $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(121.3 \mathrm{mg}, 0.105 \mathrm{mmol}, 0.03$ equiv $)$ was added. The reaction mixture was heated up to $95{ }^{\circ} \mathrm{C}$ for 24 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:2) to obtain desired compound \mathbf{C} as a white solid ($80-90 \%$ yields).

Step 2: To a solution of compound $\mathbf{C}(2.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate ($552.9 \mathrm{mg}, 4.0$ mmol, 2.0 equiv), $\mathrm{NaI}(28 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{MeCN}(10 \mathrm{~mL})$, compound $\mathbf{D}(216.0 \mathrm{mg}, 2.4$ mmol, 1.2 equiv) was added and the mixture was stired under $80{ }^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, $\mathrm{EtOAc} /$ petroleum ether $=1: 10)$ to obtain desired compound $\mathbf{1}$ as a white solid ($90-95 \%$ yields).

General Procedure B: Mitsunobu reaction

Step : Diisopropyl azodicarboxylate ($444.9 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.1$ equiv) was added dropwise to a solution of \mathbf{C} ($342.1 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), triphenylphosphine ($577.1 \mathrm{mg}, 2.20 \mathrm{mmol}, 1.10$ equiv) and the respective allyl alcohol ($2.20 \mathrm{mmol}, 1.10$ equiv) in anhydrous THF (20 mL) at $0{ }^{\circ} \mathrm{C}$ under an inert atmosphere. The cold bath was removed and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 12 hours. Then, the mixture was evaporated together with silica and the desired compound $\mathbf{1}$ was isolated by column chromatography (silica, EtOAc/petroleum ether $=1: 3$) on silica gel.

General Procedure C

Step 1: The compound $\mathbf{A}(1.570 \mathrm{~g}, 10 \mathrm{mmol}, 1.0$ equiv), $\mathbf{E}(1.210 \mathrm{~g}, 11 \mathrm{mmol}, 1.1$ equiv), $\mathrm{CuI}(190 \mathrm{mg}$, $10 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}(4.246 \mathrm{~g}, 20 \mathrm{mmol}, 2.0$ equiv), $\mathbf{F}(246.1 \mathrm{mg}, 20 \mathrm{~mol} \%)$, and DMSO (20 mL) were mixed and heated to $90{ }^{\circ} \mathrm{C}$ for 24 hours under an inert atmosphere. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, $\mathrm{EtOAc} /$ petroleum ether $=1: 3$) to obtain desired compound \mathbf{G}.

Step 2: To a solution of compound $\mathbf{G}(374.1 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (552.8 $\mathrm{mg}, 4.0 \mathrm{mmol}, 2.0$ equiv), $\mathrm{NaI}(30.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{MeCN}(10 \mathrm{~mL})$, compound $\mathbf{D}(216.0$ $\mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stired under $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 10$) to obtain desired compound $1 \mathbf{t}$ as a yellow oil.

General Procedure D

Step 1: To a solution of compound $\mathbf{H}(1.720 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (2.764 g, 20.0 mmol , 2.0 equiv), $\mathrm{NaI}(140 \mathrm{mg}, 1.0 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{MeCN}(10.0 \mathrm{~mL})$, compound $\mathbf{D}(1.080$ $\mathrm{g}, 12.0 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stired under $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, petroleum ether) to obtain desired compound \mathbf{I} as a colorless oil.

Step 2: The compound $\mathbf{I}\left(452.0 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0\right.$ equiv), $\mathrm{CuI}(76.0 \mathrm{mg}, 0.4 \mathrm{mmol}, 20 \mathrm{~mol} \%), \mathrm{K}_{3} \mathrm{PO}_{4}$ ($848.8 \mathrm{mg}, 4.0 \mathrm{mmol}, 2.0$ equiv), rac- $\mathbf{J}(113.7 \mathrm{mg}, 0.8 \mathrm{mmol}, 40 \mathrm{~mol} \%$), $\mathbf{K}(2.4 \mathrm{mmol}, 1.2$ equiv), and DMF (10 mL) were mixed and heated to $130^{\circ} \mathrm{C}$ for 24 hours under an inert atmosphere. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 20$) to obtain desired compound $\mathbf{1 u}$ or $\mathbf{1 v}$.

General Procedure E

Step : Add L ($2.0 \mathrm{mmol}, 1.0$ equiv), $\mathbf{M}(657.6 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv), $\mathrm{CuI}(380.9 \mathrm{mg}, 2 \mathrm{mmol}, 1.0$ equiv), PPh_{3} ($104.9 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.2$ equiv), $\mathrm{Na}_{2} \mathrm{CO}_{3}$ ($424.0 \mathrm{mg}, 4 \mathrm{mmol}, 2.0$ equiv) and DMF (10 mL) in a 25 mL two-necked flask. Stir the resulting mixture under N_{2} (with balloon) for 24 hours at $160^{\circ} \mathrm{C}$. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 50)$ to obtain desired compound $\mathbf{1}$.

General Procedure F

Step 1: To a solution of compound $\mathbf{C}(1.710 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (2.764 g, 20.0 mmol , 2.0 equiv) in $\mathrm{MeCN}(10.0 \mathrm{~mL})$, compound $\mathbf{N}(2.480 \mathrm{~g}, 20.0 \mathrm{mmol}, 2.0$ equiv $)$ was added and the mixture was stired under $0^{\circ} \mathrm{C}$. The cold bath was removed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 15$) to obtain desired compound O.

Step 2: The compound $\mathbf{O}(518.1 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), MeOH ($448.0 \mathrm{mg}, 14.0 \mathrm{mmol}, 7.0$ equiv), MeONa ($302.5 \mathrm{mg}, 5.6 \mathrm{mmol}$, 2.8 equiv) and THF (10 mL) were mixed and the mixture was stired under an inert atmosphere at $0^{\circ} \mathrm{C}$. The cold bath was removed and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 12 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 10$) to obtain desired compound 11.

General Procedure G

Step : The compound $\mathbf{1 k}$ (according to the general procedure B) $(482.2 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous dichloromethane $(5 \mathrm{~mL})$ and cooled to $0{ }^{\circ} \mathrm{C}$. after the addition of $\mathrm{Et}_{3} \mathrm{~N}(303.6$ $\mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv), a solution of pivaloyl chloride ($289.4 \mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv) in 5 mL of dichloromethane was added dropwise at $0^{\circ} \mathrm{C}$. the mixture was stirred at room temperature for 2 hours and quenched with water. the aqueous layer was extracted with dichloromethane three times and the
combined organic layers were washed with saturated NaHCO_{3} and the brine. It was then dried over MgSO_{4} and evaporated under reduced pressure. The purification was made by flash column chromatography (silica, $\mathrm{EtOAc} /$ petroleum ether $=1: 10$) to give the desired compound $\mathbf{1 m}$.

General Procedure H

Step 1: Compound A ($549.2 \mathrm{mg}, 3.5 \mathrm{mmol}, 1.0$ equiv) was dissolved in DME (15 mL) under an inert atmosphere and a solution of compound $\mathbf{P}(767.0 \mathrm{mg}, 3.5 \mathrm{mmol}, 1.0$ equiv) in $\mathrm{MeOH}(4 \mathrm{~mL})$ was added followed by a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(742.0 \mathrm{mg}, 7.0 \mathrm{mmol}$. 2.0 equiv) in water (4 mL). The mixture was degassed and subsequently $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(121.3 \mathrm{mg}, 0.105 \mathrm{mmol}, 0.03$ equiv) was added. The reaction mixture was heated up to $95^{\circ} \mathrm{C}$ for 24 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 1)$ to obtain desired compound $\mathbf{Q}(80 \%$ yield $)$.

Step 2: To a solution of compound $\mathbf{Q}(340.2 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (552.8 $\mathrm{mg}, 4.0 \mathrm{mmol}$, 2.0 equiv) in DMF (10 mL), compound $\mathbf{D}(468.0 \mathrm{mg}, 5.2 \mathrm{mmol}, 2.6$ equiv) was added and the mixture was stired under $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 10)$ to obtain desired compound $\mathbf{1 z d}$.

General Procedure I

Step 1: A dry flask containing a magnetic stir bar was charged with compound \mathbf{Q} (according to the general procedure $\mathbf{H})(850.4 \mathrm{mg}, 5 \mathrm{mmol}, 1.0$ equiv), fitted with a septa, and purged with argon for 10 minutes. The compound \mathbf{Q} was dissolved in freshly distilled THF (20 mL) and the resulting solution was cooled to $-78{ }^{\circ} \mathrm{C} . \mathrm{MeLi}(2.85 \mathrm{~mL}, 4.85 \mathrm{mmol}, 0.97$ equiv, 1.70 M in diethyl ether) was then added dropwise over 5 minutes, and the solution was stirred at this temperature for 30 mintutes. Dimethylsulfate ($949.5 \mathrm{mg}, 7.53 \mathrm{mmol}, 1.5$ equiv) was then added dropwise over 5 minutes, and the reaction was stired for 15 minutes before being warmed to room temperature. After stirring for 2 hours at this temperautre, the reaction was carefully acidified to pH 6 using 5% aqueous HCl and then diluted with diethyl ether $(10 \mathrm{~mL})$. The organic layer was sequentially washed with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and brine (10 mL), dried over MgSO_{4}, filtered, and concentrated in vacuo. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 5$) to obtain desired compound $\mathbf{R}(50 \%$ yield).

Step 2: To a solution of compound \mathbf{R} ($368.2 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (552.8 $\mathrm{mg}, 4.0 \mathrm{mmol}, 2.0$ equiv), $\mathrm{NaI}(30.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{MeCN}(10 \mathrm{~mL})$, compound $\mathbf{D}(216.0$ $\mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stired under $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 10$) to obtain desired compound $\mathbf{1 z b}$.

General Procedure J

Step 1: To a solution of \mathbf{Q} (according to the general procedure $\mathbf{H})(680.3 \mathrm{mg}, 4.0 \mathrm{mmol}, 1.0$ equiv) in pyridine (8 mL) at $0{ }^{\circ} \mathrm{C}$ was added solid tosyl chloride ($797.9 \mathrm{mg}, 4.2 \mathrm{mmol}, 1.05$ equiv) in one portion. After 2 hours, more solid tosyl chloride ($797.9 \mathrm{mg}, 4.2 \mathrm{mmol}, 1.05$ equiv) was added. After one additional hour, the reaction was quenched with $\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL})$ and the aqueous layer was extracted with DCM ($3 \times 20 \mathrm{~mL}$). The combined organic layers were washed with $\mathrm{H}_{2} \mathrm{O}(20 \mathrm{~mL})$, and brine (20 mL),
dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and concentrated in vacuo. The crude product was purified by flash column chromatography (silica, $\mathrm{EtOAc} /$ petroleum ether $=1: 5)$ to obtain desired compound $\mathbf{S}(80 \%$ yield $)$.

Step 2: To a solution of compound $\mathbf{S}(648.2 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (552.8 $\mathrm{mg}, 4.0 \mathrm{mmol}$, 2.0 equiv), $\mathrm{NaI}(30.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 0.1$ equiv) in $\mathrm{MeCN}(10 \mathrm{~mL})$, compound $\mathbf{D}(216.0$ $\mathrm{mg}, 2.4 \mathrm{mmol}, 1.2$ equiv) was added and the mixture was stired under $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether = 1:10) to obtain desired compound $\mathbf{1 z c}$.

General Procedure K

Step 1: Add thionyl chloride (10 mL) dropwise to $1-\mathrm{AdCOOH}(1.80 \mathrm{~g}, 10 \mathrm{mmol})$, followed by a catalytic amount of DMF (2 drops) at $0^{\circ} \mathrm{C}$. Allow the reaction mixture to to reflux for 2 hours. Remove the solvent under reduced pressure. The crude product was used to next reaction without further purification.

Step 2: 4-Aminophenol ($1.035 \mathrm{~g}, 9.5 \mathrm{mmol}, 1.0$ equiv) was dissolved in anhydrous dichloromethane (20 mL) and cooled to $0{ }^{\circ} \mathrm{C}$, after the addition of $\mathrm{Et}_{3} \mathrm{~N}(1.442 \mathrm{~g}, 14.25 \mathrm{mmol}, 1.5$ equiv), a solution of 1- $\mathrm{AdCOCl}\left(1.980 \mathrm{~g}, 10 \mathrm{mmol}, 1.05\right.$ equiv) in 5 mL of dichloromethane was added dropwise at $0^{\circ} \mathrm{C}$. The mixture was stirred at room temperature for 2 hours and quenched with water, the aqueous layer was extracted with dichloromethane three times and the combined organic layers were washed with saturated NaHCO_{3} and the brine. It was then dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated under reduced pressure. The purification was made by flash column chromatography (silica, EtOAc/petroleum ether $=1: 2$) to give the desired compound \mathbf{T}.

Step 3: To a solution of compound $\mathbf{T}(542.3 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0$ equiv), and potassium carbonate (552.8 $\mathrm{mg}, 4.0 \mathrm{mmol}, 2.0$ equiv) in DMF (10 mL), compound $\mathbf{D}(234.0 \mathrm{mg}, 2.6 \mathrm{mmol}, 1.3$ equiv) was added and the mixture was stired under $80^{\circ} \mathrm{C}$ for 18 hours. Afterwards the reaction mixture was brought to
room temperature, diluted with water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether $=1: 5)$ to obtain desired compound $\mathbf{1 z}$.

General Procedure L

Step 1: To a solution of \mathbf{U} (according to the general procedure A) $(925.4 \mathrm{mg}, 5.0 \mathrm{mmol}, 1.0$ equiv) in DCM (25 mL) at $0{ }^{\circ} \mathrm{C}$ was added $\mathrm{PBr}_{3}(4 \mathrm{~mL})$, the reaction mixture was warmed to room temperature and monitored by TLC. Upon completion the reaction mixture was poured into an aqueous solution of $\mathrm{K}_{2} \mathrm{CO}_{3}(10 \mathrm{~mL})$, the phases were separated and the aqueous phase was extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, EtOAc/petroleum ether =1:3) to obtain desired compound $\mathbf{V}(70 \%$ yield $)$.

Step 2: To a solution of $\mathbf{V}\left(494.0 \mathrm{mg}, 2.0 \mathrm{mmol}, 1.0\right.$ equiv) in anhydrous THF $(6 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$ under N_{2} atmosphere was added \mathbf{W} (0.5 M in THF, $6.0 \mathrm{~mL}, 3.0 \mathrm{mmol}, 1.5$ equiv), the reaction mixture was warmed to room temperature and monitored by TLC (30 min). Upon completion the reaction mixture was poured into water and extracted with EtOAc. The combined organic layers were washed with water and brine, dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered and the solvent was removed under reduced pressure. The crude product was purified by flash column chromatography (silica, $\mathrm{EtOAc} /$ petroleum ether $=1: 10$) to obtain desired compound $\mathbf{1 s}$.

2-(4-((2-methylallyl)oxy)phenyl)pyridine (1a). (According to the general procedure A). Yellew solid ($427.5 \mathrm{mg}, 95 \%$, m.p. $46-47{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.64$ (ddd, J $=4.8,1.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.13(\mathrm{ddd}, J=6.6,4.8,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 7.05-6.96(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7,157.2,149.6,140.8,136.7,132.2,128.2,121.5,119.8$, 115.0, 112.9, 71.8, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}^{+}$226.1226, Found: 226.1223.

5-methyl-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1b). (According to the general procedure A). White solid ($444.7 \mathrm{mg}, 93 \%$, m.p. $57-58{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.47(\mathrm{dd}, J=1.4,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.45(\mathrm{~m}$, $1 \mathrm{H}), 7.04-6.94(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 2.33(\mathrm{~s}, 3 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,154.5,150.0,140.8,137.3,132.3,130.8$, 127.9, 119.3, 115.0, 112.8, 71.8, 19.5, 18.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+}$ 240.1383, Found: 240.1386.

5-methoxy-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1c). (According to the general procedure A). Brown solid ($469.4 \mathrm{mg}, 92 \%$, m.p. $73-74^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.35(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.89-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.58(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{dd}, J=8.7,3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 7.02-6.95(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}$, $3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,154.4,150.1,140.9,137.0,132.1$, 127.6, 121.5, 120.1, 115.0, 112.9, 71.83, 55.7, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$256.1332, Found: 256.1332.

5-fluoro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1d). (According to the general procedure A). White solid ($432.5 \mathrm{mg}, 89 \%$, m.p. $72-73^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.50(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.66-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{t}, J=8.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.7,158.6(\mathrm{~d}, J=255.2 \mathrm{~Hz}, 1 \mathrm{C}), 153.6(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{C}), 140.8$, 137.5 (d, $J=23.3 \mathrm{~Hz}, 1 \mathrm{C}), 131.2,128.1,123.7(\mathrm{~d}, J=18.6 \mathrm{~Hz}, 1 \mathrm{C}), 120.7(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{C}), 115.1$, 113.0, 71.9, 19.5. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-130.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNO}^{+}$244.1132, Found: 244.1135 .

5-chloro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1e). (According to the general procedure A). White solid ($471.4 \mathrm{mg}, 91 \%$, m.p. $81-82{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.58(\mathrm{dd}, J=2.4,0.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.94-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.55(\mathrm{~m}, 1 \mathrm{H})$, $7.05-6.93(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0,155.3,148.4,140.7,136.4,131.0,129.8,128.1,120.4,115.1,113.0$, 71.8, 19.5. HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}^{+}$260.0837, Found: 260.0840.

2-(4-((2-methylallyl)oxy)phenyl)-5-(trifluoromethyl)pyridine (1f). (According to the general procedure A). White solid ($498.1 \mathrm{mg}, 85 \%$, m.p. $95-96^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $8.90(\mathrm{~s}, 1 \mathrm{H}), 8.00(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.94-7.88(\mathrm{~m}, 1 \mathrm{H}), 7.78-7.71(\mathrm{~m}, 1 \mathrm{H}), 7.03(\mathrm{~d}, J=$ $8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 160.7,160.3,146.6(\mathrm{q}, J=3.9 \mathrm{~Hz}, 1 \mathrm{C}), 140.6,133.9(\mathrm{q}, J=2.8 \mathrm{~Hz}, 1 \mathrm{C}), 130.6$, 128.7, 124.1 ($\mathrm{q}, ~ J=33.0 \mathrm{~Hz}, 1 \mathrm{C}$), 124.0 ($\mathrm{q}, ~ J=271.9 \mathrm{~Hz}, 1 \mathrm{C}$), 119.1, 115.3, 113.1, 71.9, 19.5. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{~F}_{3} \mathrm{NO}^{+}$294.1100, Found: 294.1099.
 4-methyl-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1g). (According to the general procedure A). Brown solid ($392.1 \mathrm{mg}, 82 \%$, m.p. $41-42{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.50(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.88(\mathrm{~m}, 2 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.95(\mathrm{~m}, 3 \mathrm{H})$, $5.12(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 2.38(\mathrm{~s}, 3 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 159.6,157.1,149.4,147.7,140.8,132.3,128.2,122.6,120.8,115.0,112.9,71.8$, 21.3, 19.5. HRMS (ESI-TOF) m/z: [M + H] ${ }^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+}$240.1383, Found: 240.1382.

4-methoxy-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1h). (According to the general procedure A). Colorless oil ($443.7 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.46$ (d, J $=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.99(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.71(\mathrm{dd}, J=5.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,159.8,158.9,150.8,140.8,132.1$, 128.3, 115.0, 112.9, 107.6, 106.1, 71.8, 55.2, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}{ }^{+}$256.1332, Found: 256.1331.

4-fluoro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1i). (According to the general procedure A). Brown solid ($427.7 \mathrm{mg}, 88 \%$, m.p. $47-48{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.59(\mathrm{dd}, J=8.9,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.95-7.89(\mathrm{~m}, 2 \mathrm{H}), 7.36(\mathrm{dd}, J=10.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.04$ $-6.98(\mathrm{~m}, 2 \mathrm{H}), 6.90(\mathrm{ddd}, J=8.2,5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{dd}, J=1.3,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{~s}$, $1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 169.5(\mathrm{~d}, J=260.6 \mathrm{~Hz}$, $1 \mathrm{C}), 160.4(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{C}), 160.2,151.9(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{C}), 140.7,131.1(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{C}), 128.3$, $115.1,113.0,109.3(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{C}), 107.3(\mathrm{~d}, J=17.4 \mathrm{~Hz}, 1 \mathrm{C}), 71.8,19.5 .{ }^{19} \mathrm{~F}$ NMR (376 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta$-102.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{FNO}^{+}$244.1132, Found: 244.1132.

4-chloro-2-(4-((2-methylallyl)oxy)phenyl)pyridine (1j). (According to the general procedure A). Brown solid ($461.0 \mathrm{mg}, 89 \%$, m.p. $56-57{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.52(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.97-7.87(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.16$ $(\mathrm{dd}, J=5.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H})$, $1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.2,158.7,150.4,144.7,140.7,130.9$, 128.3, 121.6, 120.0, 115.1, 113.0, 71.8, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{ClNO}^{+}$ 260.0837, Found: 260.0838.

2-((4-(pyridin-2-yl)phenoxy)methyl)prop-2-en-1-ol (1k). (According to the general procedure B). White solid ($284.4 \mathrm{mg}, 59 \%$, m.p. $80-81{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6}) $\delta 8.62(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.92(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.88(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.21(\mathrm{~s}, 1 \mathrm{H}), 5.17$ $(\mathrm{s}, 1 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 4.04(\mathrm{~s}, 2 \mathrm{H}), 3.47(\mathrm{br}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) δ 159.4, 155.4, 148.8, 145.2, 137.8, 130.6, 128.0, 122.0, 119.8, 114.9, 111.3, 68.1, 61.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}^{+}$242.1176, Found: 242.1172.

2-(4-((2-(methoxymethyl)allyl)oxy)phenyl)pyridine (11). (According to the general procedure F). White solid ($397.8 \mathrm{mg}, 78 \%$, m.p. $31-32{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right) \delta 8.66-8.59(\mathrm{~m}, 1 \mathrm{H}), 7.98-7.90(\mathrm{~m}, 2 \mathrm{H}), 7.73-7.61(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{ddd}, J=7.0,4.9,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.36-5.33(\mathrm{~m}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H}), 4.03(\mathrm{~s}, 2 \mathrm{H}), 3.35$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.7$, 157.1, 149.5, 141.3, 136.9, 132.1, 128.2, 121.5, 119.9, 115.1, 77.4, 73.4, 68.6, 58.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{2}^{+}$256.1332, Found: 246.1327.

2-((4-(pyridin-2-yl)phenoxy)methyl)allyl pivalate (1m). (According to the general procedure G). Yellew solid ($591.7 \mathrm{mg}, 91 \%$, m.p. $30-31{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.70(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.65(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{t}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~s}$, $1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 4.70(\mathrm{~s}, 2 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 1.21(\mathrm{~s}, 10 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.1,159.5,157.0,149.5,139.7,136.9,132.3,128.3,121.6,120.0,115.7,115.0,68.7,64.6,39.0$, 27.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{3}{ }^{+}$326.1751, Found: 326.1753.

1-(4-((2-methylallyl)oxy)phenyl)isoquinoline (1n). (According to the general procedure A). Brown oil ($467.5 \mathrm{mg}, 85 \%)$. ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.58(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $8.15(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{dd}, J=17.2,7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.61$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.03$ $(\mathrm{s}, 1 \mathrm{H}), 4.53(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.4,159.4,142.1$, $140.8,137.1,132.1,131.4,130.1,127.8,127.2,127.1,126.8,119.7,114.8,113.0,71.9,19.5$ HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+}$276.1383, Found: 276.1383 .

3-(4-((2-methylallyl)oxy)phenyl)isoquinoline (10). (According to the general procedure A). White solid ($473.0 \mathrm{mg}, 86 \%$, m.p. $72-73{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.30(\mathrm{~s}$, $1 \mathrm{H}), 8.11-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.95(\mathrm{~s}, 1 \mathrm{H}), 7.93(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.63 (ddd, $J=8.2,6.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51$ (ddd, $J=8.0,6.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.09-7.01$ (m, $2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.4,152.2,151.0,140.8,136.8,132.3,130.5,128.2,127.6,127.4,126.8,126.7,115.4,115.1,112.9$, 71.8, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NO}^{+}$276.1383, Found: 276.1381.

2-(4-((3-methylbut-3-en-1-yl)oxy)phenyl)pyridine (1p). (According to the general procedure B). White solid ($277.2 \mathrm{mg}, 58 \%$, m.p. $39-40{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.69(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.13(\mathrm{~m}, 1 \mathrm{H}), 7.00(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.86(\mathrm{~s}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 1 \mathrm{H}), 4.13$ $(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.53(\mathrm{t}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.9,157.2,149.5,142.2,136.8,132.0,128.2,121.5,119.9,114.8,112.2,66.6,37.3,22.9$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+}$240.1383, Found: 240.1383.

2-(4-(((2-methylallyl)oxy)methyl)phenyl)pyridine (1q). (According to the general procedure A). Yellew oil ($425.4 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.70(\mathrm{~d}, J=4.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.97$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}$), 7.73 (dd, $J=14.2,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 3.96(\mathrm{~s}, 2 \mathrm{H}), 1.78(\mathrm{~s}, 3 \mathrm{H}){ }^{13} \mathrm{C}$

2-(4-(allyloxy)phenyl)pyridine (1r). (According to the general procedure A). Yellew solid ($392.5 \mathrm{mg}, 93 \%$, m.p. $36-37{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}$), $7.95(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.72-7.62(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{dt}, J=7.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 6.11-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.27(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{dd}, J=3.4$, $1.6 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.6,157.1,149.5,136.8,133.2,132.1,128.2$, 121.5, 119.9, 117.9, 115.0, 68.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{14} \mathrm{NO}^{+}$212.1070, Found: 212.1071.

2-(4-(3-methylbut-3-en-1-yl)phenyl)pyridine (1s). (According to the general procedure \mathbf{L}). Colorless oil ($267.6 \mathrm{mg}, 60 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.74-8.60(\mathrm{~m}, 1 \mathrm{H}), 7.95-$ $7.90(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.69(\mathrm{~m}, 2 \mathrm{H}), 7.31(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{ddd}, J=6.1,4.9,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.76(\mathrm{~s}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 2.82(\mathrm{dd}, J=9.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 1.79(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 157.5, 149.7, 145.3, 143.4, 137.0, 136.8, 128.9, 127.0, 121.9, 120.4, 110.5, 39.5, 34.1, 22.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}^{+}$224.1434, Found: 224.1435.

2-(4-((2-methylallyl)oxy)phenoxy)pyridine (1t). (According to the general procedure \mathbf{C}). Yellew oil ($429.0 \mathrm{mg}, 89 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.19$ (dd, $J=4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}$), $7.65(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.00-6.92(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $164.3,155.9,147.7,147.6,141.0,139.5,122.4,118.2,115.8,112.9,111.2,72.3,19.5$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$242.1176, Found: 242.1178.

1-(4-((2-methylallyl)oxy)phenyl)-1H-pyrazole (1u). (According to the general procedure $\mathbf{D})$. White solid ($321.2 \mathrm{mg}, 75 \%$, m.p. $43-44{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.79(\mathrm{~d}, J=$ $4.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.68(\mathrm{~s}, 1 \mathrm{H}), 7.59-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.00-6.91(\mathrm{~m}, 2 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 5.10(\mathrm{~s}$, $1 \mathrm{H}), 5.00(\mathrm{~s}, 1 \mathrm{H}), 4.43(\mathrm{~s}, 2 \mathrm{H}), 1.82(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.3,140.6$, 140.5, 134.0, 126.7, 120.7, 115.4, 112.9, 107.1, 72.0, 19.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{13} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}$215.1179, Found: 215.1179.

1-(4-((2-methylallyl)oxy)phenyl)-1H-pyrrolo[2,3-b]pyridine (1v). (According to the general procedure D). Yellew oil ($369.7 \mathrm{mg}, 70 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.38$ (d, $J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.97(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{~d}, J=3.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.12(\mathrm{dd}, J=7.8,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.60(\mathrm{~d}, J=3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.02(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,147.6,143.5,140.8,131.7,129.2,128.4,125.6,121.4,116.5,115.6,113.0,101.1,72.2,19.5$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{2} \mathrm{O}^{+} 265.1335$, Found: 265.1337.

3,3-dimethyl-1-(4-((2-methylallyl)oxy)phenyl)indolin-2-one (1w). (According to the general procedure $\mathbf{D}, 3,3$-dimethylindolin-2-one ${ }^{6}$ was used). White solid (478.9 mg , 78%, m.p. $55-56{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.35-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.27(\mathrm{~d}, J=$ $7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.04(\mathrm{~m}, 3 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.13$ $(\mathrm{s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 181.0,158.3,143.0,140.7,135.7,127.9,127.6,127.4,122.9,122.6,115.8,113.1,109.4,72.1$, 44.3, 24.8, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{2}{ }^{+}$308.1645, Found: 308.1645.

2-(4-((2-methylallyl)oxy)phenyl)benzo[d] oxazole (1x). (According to the general procedure E). White solid ($413.4 \mathrm{mg}, 78 \%$, m.p. $75-76{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.13-$ $8.07(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.96-6.91(\mathrm{~m}$, $2 \mathrm{H}), 5.04(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 2 \mathrm{H}), 1.76(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $163.1,161.5,150.7,142.3,140.3,129.4,124.6,124.4,119.7,119.6,115.1,113.1,110.4$, 71.7, 19.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NO}_{2}{ }^{+}$266.1176, Found: 266.1177.
 2-(4-((2-methylallyl)oxy)phenyl)benzo[d]thiazole (1y). (According to the general procedure E). White solid ($286.6 \mathrm{mg}, 51 \%$, m.p. $74-75^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.07-8.00(\mathrm{~m}, 3 \mathrm{H}), 7.85(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.50-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.37-7.31(\mathrm{~m}, 1 \mathrm{H})$, $7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 5.03(\mathrm{~s}, 1 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.9,161.2,154.3,140.4,134.9,129.1,126.6,126.3,124.8,122.9,121.6$, 115.2, 113.2, 71.9, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{NOS}^{+}$282.0947, Found: 282.0946.

($3 r, 5 r, 7 r$)-N-(4-((2-methylallyl)oxy)phenyl)adamantane-1-carboxamide (1z). (According to the general procedure K). White solid ($578.9 \mathrm{mg}, 89 \%$, m.p. $157-158{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.29(\mathrm{~s}, 0 \mathrm{H}), 6.84(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~s}, 1 \mathrm{H})$, $4.96(\mathrm{~s}, 1 \mathrm{H}), 4.39(\mathrm{~s}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 2 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 1.80(\mathrm{~s}, 2 \mathrm{H}), 1.73(\mathrm{dd}, J=27.3,12.3$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.0,155.5,140.9,131.4,121.8,115.1,112.7,72.0,41.3$, 39.3, 36.5, 28.2, 19.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{NO}_{2}{ }^{+} 326.2115$, Found: 326.2112 .

(E)-2-(4-((2-methylbut-2-en-1-yl)oxy)phenyl)pyridine (1za). (According to the general procedure $\mathbf{A},(E)$-1-bromo-2-methylbut-2-ene ${ }^{7}$ was used). Yellow oil ($215.1 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{ddd}, J=4.8,1.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.73-$ $7.63(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{ddd}, J=7.0,4.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.04-6.98(\mathrm{~m}, 2 \mathrm{H}), 5.66(\mathrm{ddd}, J=6.7$, $2.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~s}, 2 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.68(\mathrm{dd}, J=6.7,1.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (100 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.0,157.3,149.6,136.8,132.0,131.7,128.2,123.7,121.5,119.9,115.1,74.2,13.7$, 13.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}^{+}$240.1383, Found: 240.1379.

N -methyl- N -(2-methylallyl)-4-(pyridin-2-yl)aniline (1zb). (According to the general procedure I). Brown oil ($371.4 \mathrm{mg}, 78 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.61(\mathrm{~d}, J=4.7 \mathrm{~Hz}$, $1 \mathrm{H}), 7.90(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{dd}, J=13.3,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.75(\mathrm{~d}$,
$J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.87(\mathrm{~s}, 1 \mathrm{H}), 4.79(\mathrm{~s}, 1 \mathrm{H}), 3.87(\mathrm{~s}, 2 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 1.73(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 157.7,150.3,149.3,141.0,136.7,127.9,126.9,120.6,119.2,111.9,111.0,58.6,38.4,20.2$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{16} \mathrm{H}_{19} \mathrm{~N}_{2}{ }^{+}$239.1543, Found: 239.1544.

4-methyl- N-(2-methylallyl)- N-(4-(pyridin-2-yl)phenyl)benzenesulfonamide
(1zc). (According to the general procedure J). White solid ($642.6 \mathrm{mg}, 85 \%$, m.p. $124-125{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69-8.62(\mathrm{~m}, 1 \mathrm{H}), 7.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.74(\mathrm{~s}, 1 \mathrm{H})$, $7.71(\mathrm{~s}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.23(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 3 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $4.74(\mathrm{~s}, 1 \mathrm{H}), 4.73(\mathrm{~s}, 1 \mathrm{H}), 4.13(\mathrm{~s}, 2 \mathrm{H}), 2.40(\mathrm{~s}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 156.4,149.6,143.6,139.7,138.4,137.1,135.1,129.6,128.7,127.8,127.3,122.5,120.7$, 115.5, 56.6, 21.6, 20.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}^{+} 379.1475$, Found: 379.1478 .

N, N-bis(2-methylallyl)-4-(pyridin-2-yl)aniline (1zd). (According to the general procedure \mathbf{H}). Brown oil ($483.7 \mathrm{mg}, 87 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.60(\mathrm{~d}, J=$ $4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.86(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.67-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.70(\mathrm{~d}$, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 4 \mathrm{H}), 1.76(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7,149.7,149.4,140.4,136.6,127.7,127.0,120.6,119.2,112.1$, 110.6, 56.3, 20.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{~N}_{2}{ }^{+}$279.1856, Found: 279.1857.

2-(4-((2-methylallyl)oxy)phenyl)pyrimidine (1ze). (According to the general procedure \mathbf{A}). White solid ($415.8 \mathrm{mg}, 92 \%$, m.p. $39-40{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.77-8.66$ $(\mathrm{m}, 2 \mathrm{H}), 8.43-8.35(\mathrm{~m}, 2 \mathrm{H}), 7.10-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.04-6.97(\mathrm{~m}, 2 \mathrm{H}), 5.11(\mathrm{~s}, 1 \mathrm{H}), 5.00$ $(\mathrm{d}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.83(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.6,161.2$, 157.2, 140.6, 130.4, 129.8, 118.4, 114.8, 113.0, 71.8, 19.5. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{14} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}^{+}$227.1179, Found: 227.1180.

3. Experimental Section

(1) Tables of the Optimization of Reaction Conditions

Table S1: Optimization of the reaction conditions of synthesis of 3. ${ }^{a}$

22	LiOAc	AgOAc	t-AmOH	70
23	NaOAc	AgOAc	t-AmOH	70
24	HOAc	AgOAc	t-AmOH	65
25	NaOPiv	AgOAc	t-AmOH	66
26	MesCOOH	AgOAc	t-AmOH	68
27	KOAc	AgOAc	t-AmOH	64
28	1-AdCOOH	AgOAc	t-AmOH	63
29	-	AgOAc	t-AmOH	60
30^{d}	PivOH	AgOAc	t-AmOH	40
31^{e}	CsOPiv	AgOAc	t-AmOH	NR^{h}
32^{f}	CsOPiv	AgOAc	t-AmOH	NR^{h}
33^{g}	CsOPiv	AgOAc	t-AmOH	NR^{h}

${ }^{a}$ Reaction Conditions: 1a $(0.05 \mathrm{mmol})$, 2a (0.065 mmol), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, additive (0.5 equiv), oxidant (2.3 equiv), solvent (1 mL), at $120{ }^{\circ} \mathrm{C}$ under Air for $12 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ no detected, ${ }^{d} \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$ was used. ${ }^{e}\left[\mathrm{Cp}^{*} \mathrm{IrCl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ was used, ${ }^{f}\left[\mathrm{Ru}(p-\mathrm{cymene}) \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$ was used, ${ }^{g}\left[\mathrm{Cp} * \mathrm{Co}(\mathrm{CO}) \mathrm{I}_{2}\right](5 \mathrm{~mol} \%)$ was used, ${ }^{h}$ no reaction.

Table S2: Optimization of the reaction conditions of synthesis of 31. ${ }^{a}$

9	tBuOMe	15
10	PhCF_{3}	41
11	HFIP	NR^{c}

${ }^{a}$ Reaction Conditions: 1b (0.05 mmol), $\mathbf{2 a}(0.065 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{CsOPiv}(0.5$ equiv), $\mathrm{AgOAc}(2.3$ equiv), solvent (1 mL), at $120^{\circ} \mathrm{C}$ under Air for $12 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ no reaction.
Table S3: Optimization of the reaction conditions of synthesis of 47. ${ }^{\text {a }}$

		$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}, \mathrm{AgSbF}_{6}$ additive, oxidant, solvent $100^{\circ} \mathrm{C}, 24 \mathrm{~h}$ 47		
Entry	Additive	Oxidant	Solvent	$\text { Yield [\%] }{ }^{b}$
1	PivOH	AgOAc	THF	24
2	PivOH	AgOAc	MeOH	44
3	PivOH	AgOAc	Acetone	23
4	PivOH	AgOAc	t-BuOMe	29
5	PivOH	AgOAc	t-AmOH	40
6	PivOH	AgOAc	1,4-Dioxane	37
7	PivOH	AgOAc	DME	27
8	PivOH	AgOAc	TFE	54
$9{ }^{\text {c }}$	PivOH	AgOAc	TFE	73
$10^{\text {c }}$	HOAc	AgOAc	TFE	60
$11^{\text {c }}$	CsOAc	AgOAc	TFE	65
$12^{\text {c }}$	KOAc	AgOAc	TFE	60
$13^{\text {c }}$	$\mathrm{Zn}(\mathrm{OAc})_{2}$	AgOAc	TFE	36
$14^{\text {c }}$	MesCOOH	AgOAc	TFE	43
$15^{\text {c }}$	$\mathrm{Na}_{2} \mathrm{CO}_{3}$	AgOAc	TFE	50
$16^{\text {c }}$	NaOPiv	AgOAc	TFE	67

${ }^{a}$ Reaction Conditions: $\mathbf{1 t}(0.05 \mathrm{mmol})$, $\mathbf{2 a}(0.06 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$, additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at $100{ }^{\circ} \mathrm{C}$ under Air for $24 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ additive (2.0 equiv) was used.

Table S4: Optimization of the reaction conditions of synthesis of 48. ${ }^{a}$

Entry	Additive	Oxidant	Solvent	Yield [\%]
1	PivOH	AgOAc	MeOH	40
2	PivOH	AgOAc	1,4-Dioxane	50
3	PivOH	AgOAc	THF	43
4	PivOH	AgOAc	HFIP	ND^{c}
5	PivOH	AgOAc	t-AmOH	30
6	PivOH	AgOAc	TFE	ND^{c}
7	PivOH	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	1,4-Dioxane	42
8	PivOH	AgOTFA	1,4-Dioxane	ND^{c}
9	PivOH	$\mathrm{MeSO}_{3} \mathrm{Ag}$	1,4-Dioxane	ND^{c}
10	PivOH	$\mathrm{Ag}_{2} \mathrm{O}$	1,4-Dioxane	36
11	PivOH	AgOTf	1,4-Dioxane	ND^{c}
12	PivOH	AgBF_{4}	1,4-Dioxane	ND^{c}
13	PivOH	AgF	1,4-Dioxane	21
14	PivOH	$\mathrm{Cu}(\mathrm{OAc})_{2}$	1,4-Dioxane	$\mathrm{ND}^{\text {c }}$
15^{e}	PivOH	AgOAc	1,4-Dioxane	ND^{c}
16	$\mathrm{Zn}(\mathrm{OAc})_{2}$	AgOAc	1,4-Dioxane	53
17	CsOAc	AgOAc	1,4-Dioxane	NR^{d}
18	CsOPiv	AgOAc	1,4-Dioxane	NR ${ }^{\text {d }}$
19	NaOAc	AgOAc	1,4-Dioxane	78
20	MesCOOH	AgOAc	1,4-Dioxane	53
21	LiOAc	AgOAc	1,4-Dioxane	59
22	1-AdCOOH	AgOAc	1,4-Dioxane	49
23	HOAc	AgOAc	1,4-Dioxane	57

${ }^{a}$ Reaction Conditions: $\mathbf{1 u}(0.05 \mathrm{mmol}), \mathbf{2 a}(0.06 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$, additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at $80^{\circ} \mathrm{C}$ under Air for $24 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ no detected, ${ }^{d}$ no reaction, ${ }^{e}\left[\mathrm{IrCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ ($5 \mathrm{~mol} \%$) was used.

Table S5: Optimization of the reaction conditions of synthesis of 49. ${ }^{\text {a }}$

	$+\mathrm{Ph}-$	$\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}, \mathrm{AgSbF}_{6}$ additive, oxidant, solvent $120^{\circ} \mathrm{C}, 24 \mathrm{~h}$		
Entry	Additive	Oxidant	Solvent	$\text { Yield [\%] }{ }^{b}$
1	PivOH	AgOAc	DCE	56
2	PivOH	AgOAc	THF	62
3	PivOH	AgOAc	MeOH	85
4	PivOH	AgOAc	MeCN	ND^{c}
5	PivOH	AgOAc	PhMe	59
6	PivOH	AgOAc	1,4-Dioxane	42
7	PivOH	AgOAc	HFIP	39
8	PivOH	AgOAc	PhCl	68

${ }^{a}$ Reaction Conditions: 1v $(0.05 \mathrm{mmol})$, 2a $(0.06 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$, additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at $120{ }^{\circ} \mathrm{C}$ under Air for $24 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ no detected.
Table S6: Optimization of the reaction conditions of synthesis of 50. ${ }^{\text {a }}$

Entry	Additive	Oxidant	Solvent	Yield [\%]
1	PivOH	AgOAc	DCE	trace
2	PivOH	AgOAc	MeCN	NR^{c}
3	PivOH	AgOAc	THF	25
4	PivOH	AgOAc	MeOH	NR^{c}
5	PivOH	AgOAc	AgOAc	PhCl
7	PivOH	AgOAc	PhMe	trace
8		TFE	NR^{c}	

9	PivOH	AgOAc	Ether	12
$\mathbf{1 0}$	PivOH	$\mathbf{A g F}$	THF	$\mathbf{4 5}$
11	PivOH	AgF_{2}	THF	39
12	PivOH	$\mathrm{Ag}_{2} \mathrm{CO}_{3}$	THF	23
13	PivOH	$\mathrm{Ag}_{2} \mathrm{O}$	THF	35

${ }^{a}$ Reaction Conditions: $\mathbf{1 w}(0.05 \mathrm{mmol})$, $\mathbf{2 a}(0.06 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$, additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at $120^{\circ} \mathrm{C}$ under Air for $24 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ no reaction.
Table S7: Optimization of the reaction conditions of synthesis of 51. ${ }^{a}$

Entry	Additive	Oxidant	Solvent	$\text { Yield [\%] }{ }^{b}$
1	PivOH	AgOAc	DCE	trace
2	PivOH	AgOAc	THF	15
3	PivOH	AgOAc	MeOH	NR
4	PivOH	AgOAc	MeCN	trace
5	PivOH	AgOAc	PhMe	trace
6	PivOH	AgOAc	1,4-Dioxane	10
7	PivOH	AgOAc	HFIP	NR
8	PivOH	AgOAc	PhCl	7
9	$\mathrm{Zn}(\mathrm{OAc})_{2}$	AgOAc	THF	ND
10	CsOAc	AgOAc	THF	NR
11	CsOPiv	AgOAc	THF	NR
12	LiOAc	AgOAc	THF	35
13	NaOAc	AgOAc	THF	45
14	HOAc	AgOAc	THF	39
15	KOAc	AgOAc	THF	35
16	$\mathrm{Zn}(\mathrm{OTf})_{2}$	AgOAc	THF	NR

${ }^{a}$ Reaction Conditions: $\mathbf{1 x}(0.05 \mathrm{mmol}), \mathbf{2 a}(0.06 \mathrm{mmol}),\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$, additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at $120^{\circ} \mathrm{C}$ under Air for $12 \mathrm{~h},{ }^{b}$ isolated yield.

Table S8: Optimization of the reaction conditions of synthesis of 53. ${ }^{a}$

Entry	Additive	Oxidant	Solvent	Yield [\%] ${ }^{b}$
1	PivOH	AgOAc	THF	trace
2	PivOH	AgOAc	DCE	trace
3	PivOH	AgOAc	MeOH	trace
4	PivOH	AgOAc	1,4-Dioxane	trace
5	PivOH	AgOAc	PhMe	25
$\mathbf{6}$	PivOH	AgOAc	t-AmOH	40
7	PivOH	AgOAc	TFE	trace
9	PivOH	AgOAc	MeCN	ND
10	CsOAc	AgOAc	t-AmOH	30
11	CsOPiv	AgOAc	t-AmOH	NR
12	NaOAc	AgOAc	t-AmOH	25
13	LiOAc	AgOAc	t-AmOH	29
14	HOAc	AgOAc	t-AmOH	15

${ }^{a}$ Reaction Conditions: $\mathbf{1 z}(0.05 \mathrm{mmol}), \mathbf{2 a}(0.06 \mathrm{mmol}),\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(20 \mathrm{~mol} \%)$, additive (1.0 equiv), oxidant (2.3 equiv), solvent (1 mL), at $120^{\circ} \mathrm{C}$ under Air for 12 h , ${ }^{b}$ isolated yield.

Table S9: Optimization of the reaction conditions of synthesis of 54. ${ }^{a}$

Entry	Additive 1	Additive 2	Solvent	Yield [\%] ${ }^{b}$
1	CsOPiv	AgOAc	THF	ND^{c}
2	CsOPiv	AgOAc	1,4-Dioxane	ND^{c}
3	CsOPiv	AgOAc	PhMe	ND^{c}

4	CsOPiv	AgOAc	PhCl	ND^{c}
5	CsOPiv	AgOAc	MeCN	ND^{c}
6	CsOPiv	AgOAc	DCE	ND^{c}
7	CsoPiv	AgOAc	MeOH	ND^{c}
8	CsoPiv	AgOAc	tBuOMe	ND^{c}
9	CsOPiv	AgOAc	PhCF_{3}	ND^{c}
10	CsOPiv	AgOAc	HFIP	trace
11	CsOPiv	AgOAc	t-AmOH	ND^{c}
12^{d}	$\mathrm{Zn}(\mathrm{OAc})_{2}$	-	HFIP	40
13^{d}	CsOAc	-	HFIP	65
14^{d}	NaOAc	-	HFIP	trace
15^{d}	CsoPiv	-	HFIP	30
16^{d}	HOAc	-	HFIP	45
17^{d}	PivOH	-	HFIP	83
$18^{\text {d }}$	PivOH	-	TFE	ND^{c}
19^{d}	PivOH	-	DCE	$\mathrm{ND}^{\text {c }}$
$20^{\text {d }}$	PivOH	-	THF	ND^{c}
21^{d}	PivOH	-	MeOH	$\mathrm{ND}^{\text {c }}$
22^{d}	PivOH	-	t-AmOH	trace
23^{d}	PivOH	-	PhMe	ND^{c}
24^{d}	PivOH	-	MeCN	34
25^{d}	PivOH	-	PhCF_{3}	20

${ }^{a}$ Reaction Conditions: 1a (0.05 mmol), 3-phenyl-1,4,2-dioxazol-5-one (0.065 mmol), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, additive 1 (2.0 equiv), additive 2 (1.0 equiv), solvent (1 mL), at $110{ }^{\circ} \mathrm{C}$ under Air for $24 \mathrm{~h},{ }^{b}$ isolated yield, ${ }^{c}$ no detected, ${ }^{d} \mathrm{AgSbF}_{6}$ (20 mol\%) was used, at $110^{\circ} \mathrm{C}$ under Air for 36 h .

Table S10: Optimization of the reaction conditions of synthesis of 63. ${ }^{\text {a }}$

1	PivOH	DCE	ND^{c}
2	NaOAc	DCE	ND^{c}
3	CsOAc	DCE	ND^{c}
4	CsOPiv	DCE	ND^{c}
5	$\mathrm{Zn}(\mathrm{OAc})_{2}$	DCE	ND^{c}
6	HOAc	DCE	ND^{c}
7	AgOAc	DCE	45
8	LiOAc	DCE	ND^{c}
9	-	DCE	ND^{c}
10	AgOAc	DCM	56
11	AgOAc	PhCl	45
12	AgOAc	MeCN	$\mathrm{NR}^{\text {d }}$
13	AgOAc	PhMe	35
14	AgOAc	PhCF_{3}	40
15	AgOAc	THF	20

${ }^{a}$ Reaction Conditions: 1a (0.05 mmol), 1-isocyanato-4-methylbenzene (0.06 mmol), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(5 \mathrm{~mol} \%)$, additive (1.0 equiv), solvent $(1 \mathrm{~mL})$, at $75^{\circ} \mathrm{C}$ under N_{2} for 24 h , ${ }^{b}$ isolated yield, ${ }^{c}$ no detected, ${ }^{d}$ no reaction.
(2) General procedures for the synthesis of products 3-67.

Conditions 1. A mixture of arenes $\mathbf{1}(0.2 \mathrm{mmol}, 1.0$ equiv), alkynes $2(0.26 \mathrm{mmol}, 1.3$ equiv), $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%)$, CsOPiv ($24.3 \mathrm{mg}, 0.1 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{AgOAc}(76.8 \mathrm{mg}, 0.46$ $\mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t - AmOH or $\mathrm{DCE}(2 \mathrm{~mL})$ was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 10$) on silica gel.

Conditions 2: A mixture of arene $\mathbf{1 t}(48.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 a}(40.1 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%)$, $\mathrm{PivOH}(20 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgOAc}(76.8 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. TFE (2 mL) was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 24 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $($ EtOAc/petroleum ether $=1: 5)$ on silica gel.

Enantioselective Synthesis of 47. A mixture of arene $\mathbf{1 t}(24.1 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(20.0 \mathrm{mg}$, $0.12 \mathrm{mmol}, 1.2$ equiv), (R)-Rh1 ($3.4 \mathrm{mg}, 2.5 \mathrm{~mol} \%$), $\mathrm{AgSbF}_{6}(3.4 \mathrm{mg}, 10 \mathrm{~mol} \%$), $\mathrm{PivOH}(20 \mathrm{mg}, 0.2$ mmol, 2.0 equiv) and $\mathrm{AgOAc}(38.4 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 48 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was purified by column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 5$) on silica gel affording $47(8.3 \mathrm{mg}$, 20% yield). Enantiomeric excess was determined by HPLC with a Daicel Chiralpak OD-H, n -hexane $/ 2$-propanol $=98 / 2, \mathrm{v}=1.0 \mathrm{~mL} \cdot \mathrm{~min}^{-1}, \lambda=254 \mathrm{~nm}, \mathrm{t}$ (minor) $=4.9 \mathrm{~min}, \mathrm{t}$ (major) $=5.5 \mathrm{~min}, 34 \%$ ee; $[\alpha]_{\mathrm{D}}{ }^{15.0}=-20.74\left(\mathrm{c}=0.5, \mathrm{CHCl}_{3}\right)$.

Conditions 3: A mixture of arene $\mathbf{1 u}(42.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 a}(40.1 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{NaOAc}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1.0 equiv) and $\mathrm{AgOAc}(76.8 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. 1,4-Dioxane (2 mL) was added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=1: 10)$ on silica gel.

Conditions 4: A mixture of arene $\mathbf{1 v}(52.8 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), alkyne 2a ($40.1 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{PivOH}(20 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$
equiv) and $\mathrm{AgOAc}(76.8 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $(E t O A c /$ petroleum ether $=1: 5)$ on silica gel.

Conditions 5: A mixture of arene $\mathbf{1 w}(61.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 a}$ ($40.1 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{PivOH}(20 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and AgF ($58.4 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. THF (2 mL) was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 24 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=1: 10)$ on silica gel.

Conditions 6: A mixture of arene $\mathbf{1 x}$ or $\mathbf{1 y}(0.2 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 a}(40.1 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{NaOAc}(16.4 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgOAc}(76.8 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. THF (2 mL) was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 24 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $(E t O A c /$ petroleum ether $=1: 10)$ on silica gel.

Conditions 7: A mixture of arene $\mathbf{1 z}(65.0 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 a}(42.7 \mathrm{mg}, 0.24 \mathrm{mmol}$, 1.2 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{PivOH}(20 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgOAc}(76.8 \mathrm{mg}, 0.46 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t-AmOH (2 mL) was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 24 h under air atmosphere.

Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=1: 10)$ on silica gel.

Conditions 8: A mixture of arene $\mathbf{1 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), dioxazolones ($0.26 \mathrm{mmol}, 1.3$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%)$ and PivOH ($40 \mathrm{mg}, 0.4 \mathrm{mmol}, 2.0$ equiv) were weighted in a pressure tube equipped with a stir bar. HFIP (2 mL) was added and the mixture was stirred at $110^{\circ} \mathrm{C}$ for 36 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 1$) on silica gel.

Conditions 9: A mixture of arene $1 \mathbf{1 a}(45.2 \mathrm{mg}, 0.2 \mathrm{mmol}, 1.0$ equiv), isocyanates ($0.24 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(6.2 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(13.7 \mathrm{mg}, 20 \mathrm{~mol} \%$) and $\mathrm{AgOAc}(33.4 \mathrm{mg}, 0.2 \mathrm{mmol}$, 1.0 equiv) were weighted in a pressure tube equipped with a stir bar. DCM (2 mL) was added and the mixture was stirred at $75^{\circ} \mathrm{C}$ for 24 h under N_{2} atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography ($\mathrm{EtOAc} /$ petroleum ether $=1: 2$) on silica gel.

(3) Diversification of the Products

(a) Scale-up Synthesis

A mixture of arene $\mathbf{1 a}(1.125 \mathrm{~g}, 5.0 \mathrm{mmol}, 1.0$ equiv), alkyne $\mathbf{2 a}(1.157 \mathrm{~g}, 6.5 \mathrm{mmol}, 1.3$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(77.3 \mathrm{mg}, 2.5 \mathrm{~mol} \%)$, CsOPiv ($607.5 \mathrm{mg}, 2.5 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{AgOAc}(1.919 \mathrm{~g}, 11.5$ $\mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t - $\mathrm{AmOH}(50 \mathrm{~mL})$ was added and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether $=1: 10$ to afford $3(1.574 \mathrm{~g}, 79 \%)$.
(b) Synthetic Transformation

A mixture of arene $3 \quad(40.1 \quad \mathrm{mg}, \quad 0.10 \quad \mathrm{mmol}, \quad 1.0$ equiv), 1-(triisopropylsilyl)ethynyl-1,2-benziodoxol-3($1 H$)-one ${ }^{8}$ (TIPS-EBX) ($51.4 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{RhCp} * \mathrm{Cl}_{2}\right]_{2}(3.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 20.0 \mathrm{~mol} \%)$ were weighted in a pressure tube equipped with a stir bar. $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at $60^{\circ} \mathrm{C}$ for 24 h under air atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether $=1: 3$ to afford $\mathbf{6 8}(33.1 \mathrm{mg}, 57 \%)$.

3

69, 71\%

A mixture of arene 3 ($40.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), 3-phenyl-1,4,2-dioxazol-5-one (19.6 mg , $0.12 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 20.0 \mathrm{~mol} \%)$ were weighted in a pressure tube equipped with a stir bar. DCE (2 mL) was added and the mixture was stirred at $80^{\circ} \mathrm{C}$ for 24 h under air atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether $=1: 2$ to afford 69 ($36.9 \mathrm{mg}, 71 \%$).

A mixture of arene 3 ($40.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), 3-diazopentane-2,4-dione ${ }^{9}$ (18.9 mg , $0.15 \mathrm{mmol}, 1.5$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 20.0 \mathrm{~mol} \%$) and KOAc (4.9 $\mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv) were weighted in a pressure tube equipped with a stir bar. DCE (2 mL) was added and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h under N_{2} atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using $\mathrm{EtOAc} /$ petroleum ether $=1: 2$ to afford $70(27.9 \mathrm{mg}, 56 \%)$.

3

A mixture of arene 3 ($40.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), 1-isocyanato-4-methylbenzene (20.0 mg , $0.15 \mathrm{mmol}, 1.5$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%)$ and $\mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 20.0 \mathrm{~mol} \%)$ were weighted in a pressure tube equipped with a stir bar. DCM (2 mL) was added and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 12 h under N_{2} atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using EtOAc/petroleum ether $=1: 2$ to afford 71 ($35.5 \mathrm{mg}, 66 \%$).

A mixture of arene 3 ($40.1 \mathrm{mg}, 0.10 \mathrm{mmol}, 1.0$ equiv), 1,2-diphenylethyne ($19.6 \mathrm{mg}, 0.11 \mathrm{mmol}$, 1.1 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.1 \mathrm{mg}, 5.0 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 20.0 \mathrm{~mol} \%)$, $\operatorname{AgOTf}(56.5 \mathrm{mg}, 0.22$ mmol, 2.2 equiv), $\mathrm{AgOAc}(25.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.5$ equiv) were weighted in a pressure tube equipped with a stir bar. $\mathrm{MeOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 24 h under N_{2} atmosphere. Afterwards, it was evaporated under reduced pressure, and the residue was purified by silica gelchromatography using $\mathrm{MeOH} / \mathrm{DCM}=1: 20$ to afford 72 ($70.5 \mathrm{mg}, 97 \%$).
(4) Mechanistic Studies
(a) H/D Exchange experiment

Procedures for H/D Exchange Studies in the absence of 2a: A mixture of arene 1a ($22.5 \mathrm{mg}, 0.1$ mmol, 1.0 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ ($3.1 \mathrm{mg}, 5 \mathrm{~mol} \%$), CsOPiv ($12.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{AgOAc}(38.4 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t-AmOD (2 mL) was added and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography (EtOAc/petroleum ether $=1: 10$) on silica gel. ${ }^{1} \mathrm{H}$ NMR analysis indicated 20% deuteration at the ortho-position of the phenyl ring.

$1 \mathrm{a}-d_{2}$

$1 a$

3. 36%
$<5 \%$ deuteration

45\% (recovered)

Procedures for H/D Exchange Studies in the Presence of 2a: A mixture of arene 1a ($22.5 \mathrm{mg}, 0.1$ mmol, 1.0 equiv), alkyne $\mathbf{2 a}$ ($23.1 \mathrm{mg}, 0.13 \mathrm{mmol}$, 1.3 equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}$ ($3.1 \mathrm{mg}, 5 \mathrm{~mol} \%$), CsOPiv $(12.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{AgOAc}(38.4 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t - $\operatorname{AmOD}(2 \mathrm{~mL})$ was added and the mixture was stirred at 120 ${ }^{\circ} \mathrm{C}$ for 2 h under air atmosphere. Afterwards, the mixtrue was evaporated under reduced pressure and the residue was adsorbed onto small amounts of silica. The purification was performed by flash column chromatography $(\mathrm{EtOAc} /$ petroleum ether $=1: 10)$ on silica gel. The ratio was determined by ${ }^{1} \mathrm{H}$ NMR.

b) Synthesis of intermidiate A

A mixture of iminopyridinium ylide 1 a ($67.5 \mathrm{mg}, 0.3 \mathrm{mmol}, 1.0$ equiv), $\left[\mathrm{Cp} * \mathrm{RhCl}_{2}\right]_{2}(81.6 \mathrm{mg}$, $0.132 \mathrm{mmol}, 0.44$ equiv), $\mathrm{NaOAc}(73.8 \mathrm{mg}, 0.9 \mathrm{mmol}, 3.0$ equiv) and DCM (4 mL) were charged into a reaction tube. The reaction mixture was stirred under air at r.t. for 24 h . After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using $\mathrm{EtOAc} /$ petroleum ether $=1: 1$ to provide the complex \mathbf{A} and was isolated as an orange-red solid (112.9 $\mathrm{mg}, 86 \%$). Structure of this compound was verified by X-ray crystallographic analysis after recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature.
A Orange-red solid (112.9 mg, 86\%, m.p. 171-172 $\left.{ }^{\circ} \mathrm{C}\right) .{ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.64(\mathrm{~d}, J=5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.65-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.51(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 6.63(\mathrm{dd}, J=8.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~s}, 1 \mathrm{H}), 5.01(\mathrm{~s}, 1 \mathrm{H}), 4.55(\mathrm{q}, J=12.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.61(\mathrm{~s}, 15 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.8(\mathrm{~d}, J=32.2 \mathrm{~Hz}, 1 \mathrm{C}), 165.2,159.9,151.1,141.5$, 137.02, 136.96, 124.5, 121.7, 120.9, 118.4, 112.6, 110.4, $96.0(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{C}), 71.6,19.6,9.3$. HRMS (ESI-TOF) m/z: [M - Cl] ${ }^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{NORh}^{+} 462.1304$, Found: 462.1303.
c) Catalytic reaction of intermidiate \mathbf{A}

A mixture of $\mathbf{1 a}$ ($22.5 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(23.1 \mathrm{mg}, 0.13 \mathrm{mmol}, 1.3$ equiv), $\mathbf{A}(4.9 \mathrm{mg}$, $10 \mathrm{~mol} \%$), CsOPiv ($12.2 \mathrm{mg}, 0.05 \mathrm{mmol}, 0.5$ equiv) and $\mathrm{AgOAc}(38.4 \mathrm{mg}, 0.23 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t - $\mathrm{AmOH}(2 \mathrm{~mL})$ was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether $=1: 10$ to afford $\mathbf{3}$ in 77% yield.
d) Stoichiometric reaction of intermidiate \mathbf{A}

A mixture of $\mathbf{A}(24.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(11.6 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.3$ equiv), CsOPiv ($6.1 \mathrm{mg}, 0.5$ equiv) and $\mathrm{AgOAc}(19.2 \mathrm{mg}, 0.115 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. t - $\mathrm{AmOH}(1 \mathrm{~mL})$ was added and the mixture was stirred at $120{ }^{\circ} \mathrm{C}$ for 12 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether $=1: 10$ to afford $\mathbf{3}$ in $47 \%(9.4 \mathrm{mg})$ yield.

A mixture of $\mathbf{A}(24.9 \mathrm{mg}, 0.05 \mathrm{mmol}, 1.0$ equiv), $\mathbf{2 a}(11.6 \mathrm{mg}, 0.065 \mathrm{mmol}, 1.3$ equiv) and CsOPiv ($6.1 \mathrm{mg}, 0.5$ equiv) were weighted in a pressure tube equipped with a stir bar. t - $\mathrm{AmOH}(1 \mathrm{~mL})$ was added and the mixture was stirred at $120^{\circ} \mathrm{C}$ for 12 h under Ar atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether $=1: 10$ to afford $\mathbf{3}$ in $32 \%(6.4 \mathrm{mg})$ yield.
e) Control experiment

Step1: A mixture of arene $\mathbf{1 t}(85.6 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv), alkyne 2a ($85.4 \mathrm{mg}, 0.48 \mathrm{mmol}, 1.2$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(12.4 \mathrm{mg}, 5 \mathrm{~mol} \%), \mathrm{AgSbF}_{6}(27.5 \mathrm{mg}, 20 \mathrm{~mol} \%$), $\mathrm{PivOH}(40 \mathrm{mg}, 0.4 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgOAc}(153.6 \mathrm{mg}, 0.92 \mathrm{mmol}, 2.3$ equiv) were weighted in a pressure tube equipped with a stir bar. $\mathrm{PhCl}(4 \mathrm{~mL})$ was added and the mixture was stirred at $100^{\circ} \mathrm{C}$ for 12 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether $=1: 10$ to afford 73 in $45 \%(70.6 \mathrm{mg})$ yield.

Step2:A mixture of arene $73\left(39.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0\right.$ equiv), $\left[\mathrm{RhCp}^{*} \mathrm{Cl}_{2}\right]_{2}(3.1 \mathrm{mg}, 5 \mathrm{~mol} \%)$, $\mathrm{AgSbF}_{6}(6.9 \mathrm{mg}, 20 \mathrm{~mol} \%$) , $\mathrm{NaOAc}(8.2 \mathrm{mg}, 0.1 \mathrm{mmol}, 1.0$ equiv) and $\mathrm{AgOAc}(38.4 \mathrm{mg}, 0.23 \mathrm{mmol}$, 2.3 equiv) were weighted in a pressure tube equipped with a stir bar. 1,4-Dioxane (1 mL) was added
and the mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h under air atmosphere. After the solvent was removed under reduced pressure, the residue was purified by silica gel chromatography using EtOAc/petroleum ether $=1: 10$ to afford $\mathbf{7 3}$ (67% was recovered), the product $\mathbf{4 8}$ was not detected.

4. X-Ray Crystal Structure of $\mathbf{3 2}$ and intermidiate A.

(CCDC 2143654)
Table 1 Crystal data and structure refinement for 32.

Identification code
SLC-20220107
Empirical formula
Formula weight
$\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{ClNO}$
435.92

Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ \AA
$\alpha /{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°
Volume/ \AA^{3}
Z
$\rho_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$
μ / mm^{-1}
F(000)
Crystal size $/ \mathrm{mm}^{3}$
Radiation

293(2)
monoclinic
P2 ${ }_{1} / \mathrm{n}$
16.7731(3)
7.1332(2)
19.2367(4)

90
104.828(2)

90
2224.95(9)

4
1.301
1.679
912.0
$0.1 \times 0.1 \times 0.1$
$\mathrm{Cu} \mathrm{K} \alpha(\lambda=1.54184)$
2Θ range for data collection $/{ }^{\circ}$
Index ranges
Reflections collected
Independent reflections
Data/restraints/parameters
Goodness-of-fit on F^{2}
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$
Final R indexes [all data]
Largest diff. peak/hole / e \AA^{-3}
8.1 to 143.932
$-20 \leq h \leq 15,-8 \leq \mathrm{k} \leq 8,-23 \leq 1 \leq 22$
10420
$4246\left[\mathrm{R}_{\text {int }}=0.0204, \mathrm{R}_{\text {sigma }}=0.0267\right]$
4246/0/290
1.084
$\mathrm{R}_{1}=0.0490, \mathrm{wR}_{2}=0.1322$
$\mathrm{R}_{1}=0.0608, \mathrm{wR}_{2}=0.1374$
0.26/-0.18

(CCDC 2158590)
Table 1 Crystal data and structure refinement for intermidiate A.
Identification code
Empirical formula
Formula weight
Temperature/K
Crystal system
Space group
a/ \AA
b/Å
c/ \AA
$\alpha{ }^{\circ}$
$\beta /{ }^{\circ}$
γ°

Volume $/ \AA^{3}$	$4513.68(10)$
Z	4
$\rho_{\text {calc }} / \mathrm{cm}^{3}$	1.465
μ / mm^{-1}	7.317
$\mathrm{~F}(000)$	2048.0
Crystal size $/ \mathrm{mm}^{3}$	$0.1 \times 0.1 \times 0.1$
Radiation	$\mathrm{Cu} \mathrm{K}(\lambda=1.54184)$
2Θ range for data collection/	7.604 to 143.012
Index ranges	$-14 \leq \mathrm{h} \leq 23,-7 \leq \mathrm{k} \leq 9,-37 \leq 1 \leq 38$
Reflections collected	18072
Independent reflections	$8597\left[\mathrm{R}_{\text {int }}=0.0419, \mathrm{R}_{\text {sigma }}=0.0562\right]$
Data/restraints $/$ parameters	$8597 / 0 / 551$
Goodness-of-fit on F^{2}	1.041
Final R indexes $[\mathrm{I}>=2 \sigma(\mathrm{I})]$	$\mathrm{R}_{1}=0.0466, \mathrm{wR}_{2}=0.1166$
Final R indexes [all data]	$\mathrm{R}_{1}=0.0583, \mathrm{wR}_{2}=0.1232$
Largest diff. peak/hole $/ \mathrm{e} \AA^{-3}$	$1.22 /-0.75$

5. References

1. a) M. J. Mio, L. C. Kopel, J. B. Braun, T. L. Gadzikwa, K. L. Hull, R. G. Brisbois, C. J. Markworth and P. A. Grieco, Org. Lett., 2002, 4, 3199-3202; b) J. M. Ketcham, B. Biannic and A. Aponick, Chem. Commun., 2013, 49, 4157-4159; c) J. Chen, C. Chen, J. J. Chen, G. H. Wang and H. M. Qu, Chem. Commun., 2015, 51, 1356-1359; d) S. N. Wu, Z. Wang, Y. W. Bao, C. Chen, K. Liu and B. L. Zhu, Chem. Commun., 2020, 56, 4408-4411.
2. J. Ding, W. Jiang, H.-Y. Bai, T.-M. Ding, D. Gao, X. Bao and S.-Y. Zhang, Chem. Commun., 2018, 54, 8889-8892.
3. A. T.-Aca, S. Y. Lee, S. Sakamoto and J. F. Hartwig, ACS Catal., 2021, 11, 1430-1434.
4. K.-i. Fujita, Y. Takahashi, M. Owaki, K. Yamamoto and R. Yamaguchi, Org. Lett., 2004, 6, 2785-2788.
5. a) B. Ye and N. Cramer, J. Am. Chem. Soc., 2013, 135, 636-639; b) G. Smits, B. Audic, M. D. Wodrich, C. Corminboeuf and N. Cramer, Chem. Sci., 2017, 8, 7174-7179; c)Y. Sun and N. Cramer, Chem. Sci., 2018, 9, 2981-2985; d) Y. Sun and N. Cramer, Angew. Chem., Int. Ed., 2018, 57, 15539-15543.
6. H. Li, X. Yan, J. Zhang, W. Guo, J. Jiang and J. Wang, Angew. Chem., Int. Ed., 2019, 58, 6732 -6736.
7. I. R. Hazelden, X. Ma, T. Langer and J. F. Bower, Angew. Chem., Int. Ed., 2016, 55, 11198-11202.
8. X. Wang, X. Li, Y. Zhang and L. Xia, Org. Biomol. Chem., 2018, 16, 2860-2864.
9. P. Li, X. Xu, J. Chen, H. Yao and A. Lin, Org. Chem. Front., 2018, 5, 1777-1781.

6. Characterization Data

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2 H -naphtho[1,8-bc]furan-6-yl)pyridine (3). Brown solid ($62.7 \mathrm{mg}, 78 \%$, m.p. $81-82{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16$ (d, J $=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.08(\mathrm{~m}, 3 \mathrm{H}), 7.05(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $6.92(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.83-6.81(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.71(\mathrm{~m}, 2 \mathrm{H}), 6.70-6.68(\mathrm{~m} 4 \mathrm{H})$, $4.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.3,157.0,148.4,144.3,138.8,138.7$, $134.7,134.2,134.0,132.6,131.5,131.4,131.0,128.4,127.9,126.9,126.1,125.8,124.6,120.1,109.1$, 86.6, 43.2, 40.8, 21.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}^{+}$402.1852, Found: 402.1853.

2-(2a-methyl-4,5-di-p-tolyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (4). Brown solid ($55.9 \mathrm{mg}, 65 \%$, m.p. $82-83{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.15$ (d, $J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 6.79(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.72-6.67(\mathrm{~m}, 1 \mathrm{H}), 6.58(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.24(\mathrm{~s}, 3 \mathrm{H})$, $2.02(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,157.0,148.3,141.5,138.0,135.9$, $135.6,135.0,134.5,134.0,133.8,132.6,131.9,131.5,131.0,128.7,128.4,127.7,124.8,119.6,109.0$, 86.6, 43.3, 40.8, 21.3, 21.2, 21.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}^{+} 430.2165$, Found: 430.2164.

2-(4,5-bis(4-methoxyphenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-$6-y l)$ pyridine (5). Brown solid ($61.9 \mathrm{mg}, 67 \%$, m.p. $89-90{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.18(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $2 \mathrm{H}), 6.78(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.72(\mathrm{dd}, J=7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.65(\mathrm{~d}, J=8.8 \mathrm{~Hz}$, $2 \mathrm{H}), 6.62(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.24(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.34(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.59(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.5,157.7,157.4,157.0,148.4,137.6,136.8,134.6$, 133.9, 133.2, 132.6, 132.2, 131.9, 131.6, 131.4, 129.7, 124.8, 119.9, 113.4, 112.7, 109.0, 86.6, 55.19 (s, 2H), 55.17 ($\mathrm{s}, 2 \mathrm{H}$), 43.3, 40.7, 21.1.HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+} 462.2064$, Found: 462.2063.

2-(4,5-bis(4-fluorophenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) pyridine (6). Yellow solid ($68.3 \mathrm{mg}, 78 \%$, m.p. $162-163{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 6.87-6.75(\mathrm{~m}, 7 \mathrm{H}), 6.69-6.62(\mathrm{~m}, 2 \mathrm{H}), 6.39(\mathrm{t}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (d, $J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.1(\mathrm{~d}, J=245.7 \mathrm{~Hz}, 1 \mathrm{C}), 160.8(\mathrm{~d}, J=245.4$
$\mathrm{Hz}, 1 \mathrm{C}), 159.2,157.0,148.4,139.8(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{C}), 137.8,134.9,134.7(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{C}), 133.9$, $133.5,132.6,132.4,131.3,131.0,129.9(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{C}), 124.5,120.2,114.96(\mathrm{~d}, J=21.2 \mathrm{~Hz}, 2 \mathrm{C})$, $113.88(\mathrm{~d}, J=21.5 \mathrm{~Hz}, 2 \mathrm{C}), 109.3,86.4,43.0,40.7,21.2 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-115.7,-116.6$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NO}^{+} 438.1664$, Found: 438.1664.

2-(4,5-bis(4-chlorophenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) pyridine (7). Yellow solid ($77.1 \mathrm{mg}, 82 \%$, m.p. $173-174{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.15(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.20(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.78(\mathrm{~m}, 5 \mathrm{H}), 6.67-6.63(\mathrm{~m}, 4 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,157.2,148.6,142.3,137.9,137.2,135.1$, 134.0, 133.7, 132.7, 132.2, 131.7, 131.4, 130.9, 129.8, 128.4, 127.3, 124.5, 120.2, 109.5, 86.5, 43.0, 40.8, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NO}^{+} 470.1073$, Found: 470.1072.

2-(4,5-bis(4-bromophenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) pyridine (8). Yellow solid ($74.7 \mathrm{mg}, 67 \%$, m.p. $180-181^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.14(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, $7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.84-6.81(\mathrm{~m}, 5 \mathrm{H}), 6.77(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.57(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.54(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.2,157.2,148.6$, $142.7,137.8,137.7,135.1,134.0,133.7,132.7,132.6,131.5,131.4,130.8130 .3,130.1,124.5,120.4$, 120.2, 120.1, 109.6, 86.5, 43.0, 40.8, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{NO}^{+}$ 558.0063, Found: 558.0050.

2-(4,5-bis(4-(tert-butyl)phenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]fura $\mathrm{n}-6-\mathrm{yl})$ pyridine (9). Yellow solid ($64.8 \mathrm{mg}, 63 \%$, m.p. $102-103{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.13(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-$ $7.01(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.78(\mathrm{t}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.67-6.59(\mathrm{~m}$, $5 \mathrm{H}), 4.57$ (d, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29$ (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.62(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4$, $157.0,148.9,148.2,148.0,141.3,138.3,135.9,134.4,133.9,133.8,132.5,131.8,131.6,130.8,128.1$, $124.8,124.6,123.6,120.1,108.9,86.7,43.0,40.8,34.5,34.2,31.4,31.2,21.2$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{40} \mathrm{NO}^{+}$514.3104, Found: 514.3102.

2-(2a-methyl-4,5-bis(4-(trifluoromethyl)phenyl)-2a,3-dihydro-2H-naphtho[1,8-b c]furan-6-yl)pyridine (10). Yellow solid ($80.7 \mathrm{mg}, 75 \%$, m.p. $180-181{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H})$, $7.18(\mathrm{td}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, $6.95(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.86-6.84(\mathrm{~m}, 4 \mathrm{H}), 6.74-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,157.3,148.7,147.3,142.4,138.4,135.2,134.4,134.1,132.7$, $131.6,131.3,130.4,128.7,128.7(\mathrm{q}, J=32.1 \mathrm{~Hz}, 1 \mathrm{C}), 128.1(\mathrm{q}, J=32.3 \mathrm{~Hz}, 1 \mathrm{C}), 125.3(\mathrm{q}, J=3.9 \mathrm{~Hz}$,

2C), $124.3,124.1(\mathrm{q}, ~ J=271.9 \mathrm{~Hz}, 1 \mathrm{C}), 124.1(\mathrm{q}, J=2.8 \mathrm{~Hz}, 2 \mathrm{C}), 124.0(\mathrm{q}, J=272.0 \mathrm{~Hz}, 1 \mathrm{C}), 120.6$, 109.9, 86.5, 43.1, 40.8, 21.4. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.5,-62.9$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+$ $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~F}_{6} \mathrm{NO}^{+}$538.1600, Found: 538.1599.
 diethyl

4,4'-(2a-methyl-6-(pyridin-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan-4,5-diy l)dibenzoate (11). Yellow solid ($61.2 \mathrm{mg}, 56 \%$, m.p. $103-104{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.77(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}$, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.18-7.10(\mathrm{~m}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.87(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.78(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.68-6.66(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33-4.29(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.33(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.58(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{q}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.41$, $166.38,159.1,157.2,148.6,143.7,138.9,135.2,134.5,134.2,132.6,131.6,130.6,129.5,128.44$, 128.35, 128.31, 127.9, 124.3, 120.4, 109.7, 86.5, 61.0, 60.8, 43.1, 40.8, 21.3, 14.38, 14.37. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{5}{ }^{+}$546.2275, Found: 546.2273.

4,4'-(2a-methyl-6-(pyridin-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan-4,5-diyl) dibenzonitrile (12). Yellow solid ($25.3 \mathrm{mg}, 28 \%$, m.p. $247-248{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.08(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.29-$ $7.24(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.1$ $\mathrm{Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.77(\mathrm{~m}, 3 \mathrm{H})$, $4.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.39(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.0,157.4,148.8,148.3,143.7,138.7,135.6,134.8$, $134.3,132.9,132.2,131.5,131.0,129.8,129.2,124.2,120.7,118.7,118.6,110.6,110.3,109.9,86.4$, 42.9, 40.7, 21.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{22} \mathrm{~N}_{3} \mathrm{O}^{+}$452.1757, Found: 452.1757.

2-(2a-methyl-4,5-di-m-tolyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (13). Yellow solid ($49.0 \mathrm{mg}, 57 \%$, m.p. $78-79{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6}) $\delta 8.07(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.95(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-6.72(\mathrm{~m}, 4 \mathrm{H}), 6.64(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 6.52(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.40-6.35(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.32(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.48(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.30$ ($\mathrm{s}, 3 \mathrm{H}$). ${ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) δ 159.0, 156.8, 148.2, 144.4, 138.8, 138.6, 137.3, 135.8, 134.9, $134.3,133.7,132.6,131.8,131.6,131.3,128.9,128.4,128.1,127.2,126.9,126.5,125.6,124.3,120.5$, 108.9, 86.2, 43.2, 40.5, 21.4, 21.3, 21.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}^{+}$ 430.2165, Found: 430.2163.

2-(4,5-bis(3-methoxyphenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan6 -yl)pyridine (14). Brown solid ($56.4 \mathrm{mg}, 61 \%$, m.p. $74-75{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 6.86(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.73-6.71(\mathrm{~m}, 1 \mathrm{H}), 6.63$ - 6.59 (m, 2H), $6.56(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 6.36(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$6.26(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~s}, 3 \mathrm{H}), 3.45(\mathrm{~s}, 3 \mathrm{H})$, $3.29(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4$, $159.2,158.2,157.1,148.3,145.6,140.2,138.6,134.7,134.1,134.0,132.5,131.6,131.2,129.0,128.0$, 124.5, 120.7, 120.2, 113.8, 112.7, 112.3, 109.2, 86.6, 55.2, 55.1, 43.1, 40.8, 21.3. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{28} \mathrm{NO}_{3}{ }^{+} 462.2064$, Found: 462.2063.

2-(4,5-bis(3-fluorophenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)p yridine (15). Brown solid ($63.1 \mathrm{mg}, 72 \%$, m.p. $104-105{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 7.09-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.91(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.79-$ $6.73(\mathrm{~m}, 2 \mathrm{H}), 6.67-6.66(\mathrm{~m}, 2 \mathrm{H}), 6.63-6.61(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$, 6.43-6.40 (m, 2H), 4.58 (d, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.58$ $(\mathrm{d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.6(\mathrm{~d}, J=245.8 \mathrm{~Hz}, 1 \mathrm{C}), 161.7(\mathrm{~d}$, $J=244.7 \mathrm{~Hz}, 1 \mathrm{C}), 159.3,157.2,148.5,146.0(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{C}), 141.0(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{C}), 138.2$, $135.0,134.1,133.9(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{C}), 132.6,131.6,130.7,129.7,129.6,128.6$ (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{C})$, 124.3, 124.1 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{C}), 120.5,115.2(\mathrm{~d}, J=21.8 \mathrm{~Hz}, 1 \mathrm{C}), 113.4(\mathrm{~d}, J=21.0 \mathrm{~Hz}, 1 \mathrm{C}), 113.0(\mathrm{~d}$, $J=21.0 \mathrm{~Hz}, 1 \mathrm{C}), 109.6,86.5,43.0,40.8,21.3 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-113.2,-115.3$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{~F}_{2} \mathrm{NO}^{+}$438.1664, Found: 438.1667.

2-(4,5-bis(3-chlorophenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) pyridine (16). Brown solid ($75.2 \mathrm{mg}, 80 \%$, m.p. $137-138{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07-7.04(\mathrm{~m}, 1 \mathrm{H}), 7.02(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.95-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 6.76-6.74(\mathrm{~m}, 2 \mathrm{H}), 6.72-6.67(\mathrm{~m}, 2 \mathrm{H}), 6.66-6.62(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, \mathrm{~J}=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.2,157.2,148.6,145.5,140.4,138.1,135.0,134.00,133.97,133.9$, $132.9,132.6,131.6,130.5,129.4,128.3,126.70,126.66,126.2,124.2,120.5,109.6,86.5,42.9,40.7$, 21.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Cl}_{2} \mathrm{NO}^{+} 470.1073$, Found: 470.1074.

2-(4,5-bis(3-bromophenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) pyridine (17). Brown solid ($82.6 \mathrm{mg}, 74 \%$, m.p. $111-112{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.17(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.30-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.08(\mathrm{~m}, 2 \mathrm{H}), 6.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.93-6.91(\mathrm{~m}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 3 \mathrm{H})$, 6.80-6.72 (m, 2H), $6.65(\mathrm{~s}, 1 \mathrm{H}), 6.58(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.2,157.2,148.6,145.7,140.6,138.0$, 135.1, 134.0, 133.9, 132.6, 131.6, 131.2, 130.4, 129.63, $129.59,129.1,128.6,128.3,128.1,127.2,124.2,122.2$, $121.3,120.6,109.6,86.5,43.0,40.7,21.4$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{22} \mathrm{Br}_{2} \mathrm{NO}^{+} 558.0063$, Found: 558.0056.

diethyl
3,3'-(2a-methyl-6-(pyridin-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan-4,5-diy 1)dibenzoate (18). Yellow solid ($81.9 \mathrm{mg}, 75 \%$, m.p. $81-82{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600
$\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.70(\mathrm{~m}, 1 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.38(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, 7.16 - $7.06(\mathrm{~m}, 3 \mathrm{H}), 6.98(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}$, $1 \mathrm{H}), 6.66-6.63(\mathrm{~m}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32-4.17(\mathrm{~m}, 4 \mathrm{H}), 3.36(\mathrm{~d}$, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.31-1.29(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 166.4,166.3,159.4,157.2,148.5,143.9,138.9,138.5,135.0,134.2,134.0,133.0,132.5$, $131.5,130.7,130.4,129.5,129.2,128.1,127.6,127.2,127.1,124.2,120.3,109.5,86.5,61.0,60.7,43.0$, 40.8, 21.4, 14.4, 14.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{32} \mathrm{NO}_{5}^{+} 546.2275$, Found: 546.2272.

2-(4,5-bis(3,5-dimethylphenyl)-2a-methyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6 -yl)pyridine (19). Yellow solid ($68.7 \mathrm{mg}, 75 \%$, m.p. $75-76{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.05(\mathrm{~m}, 2 \mathrm{H}), 6.80-6.77(\mathrm{~m}, 2 \mathrm{H})$, $6.71-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.55(\mathrm{~s}, 2 \mathrm{H}), 6.28(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 6 \mathrm{H}), 1.89(\mathrm{~s}, 6 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.4,157.0,147.7,144.1,138.4,138.3,137.0,135.8,134.1$, $133.8,132.4,131.8,131.5,127.7,127.2,126.2,124.4,120.1,108.8,86.7,43.2,40.7,21.30,21.27,20.9$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{32} \mathrm{NO}^{+} 458.2478$, Found: 458.2476.

2-(2a-methyl-4,5-di(naphthalen-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (20). Brown solid ($75.3 \mathrm{mg}, 75 \%$, m.p. $131-132{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.86(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.53(\mathrm{~m}, 1 \mathrm{H})$, $7.51(\mathrm{~s}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.30(\mathrm{~m}$, $3 \mathrm{H}), 7.29-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.01(\mathrm{~m}, 2 \mathrm{H}), 6.88-$ $6.80(\mathrm{~m}, 2 \mathrm{H}), 6.75-6.73(\mathrm{~m}, 2 \mathrm{H}), 6.19-6.17(\mathrm{~m}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.47(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.73(\mathrm{~d}, J=14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.4,157.2,148.2,141.8,138.6,136.6,134.5,134.2,134.1,133.3,132.63,132.57,131.93,131.88$, $131.71,131.69,129.8,127.9,127.61,127.59,127.4,127.2,127.12,127.10,126.4,125.9,125.8,125.3$, 125.2, 124.0, 119.2, 109.3, 86.6, 43.7, 40.9, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{28} \mathrm{NO}^{+} 502.2165$, Found: 502.2163.

2-(2a-methyl-4,5-di(thiophen-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridi ne (21). Black solid ($43.0 \mathrm{mg}, 52 \%$, m.p. $88-89^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.30(\mathrm{dd}, J=4.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{dd}, J=5.1,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.07(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.92-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 2 \mathrm{H}), 6.81-6.77(\mathrm{~m}, 2 \mathrm{H})$, $6.39(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.36(\mathrm{dd}, J=3.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,157.0,148.3,145.3,140.2,135.0,134.1,133.3,132.7,131.8,131.4,130.0,127.9,126.8$, 126.44, 126.35, 126.3, 126.0, 124.2, 120.4, 109.3, 86.5, 43.2, 40.7, 21.3. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NOS}_{2}{ }^{+}$414.0981, Found: 414.0978.

2-(4,5-di(furan-2-yl)-2a-methyl-2a,3-dihydro-2 H-naphtho[1,8-bc]furan-6-yl)pyridine (22). Black solid ($32.9 \mathrm{mg}, 43 \%$, m.p. $84-85^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.40$
$-8.36(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.06(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 6.90-6.88(\mathrm{~m}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=3.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=3.3$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.69(\mathrm{~m}, 1 \mathrm{H}), 5.39(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.18(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.30(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $159.3,157.0,153.8$, $149.9,148.6,141.8,140.1,134.9,133.0,132.7,131.40,131.35,130.1,123.6$, 122.3, 120.2, 111.9, 111.4, 110.6, 110.1, 109.4, 86.6, 40.1, 37.2, 21.0. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{NO}_{3}{ }^{+}$382.1438, Found: 382.1438.

2-(2a-methyl-4-phenyl-5-(2-((triisopropylsilyl)oxy)ethyl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (23). Yellow oil ($43.2 \mathrm{mg}, 41 \%$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{dd}, J=4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.40(\mathrm{~d}, J=$ $7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $7.19-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.09(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29-3.19(\mathrm{~m}, 2 \mathrm{H}), 2.89(\mathrm{dd}, J=15.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-$ $2.44(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.81-0.75(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($\left.150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $161.1,157.2,149.0,143.8,139.5,136.2,134.1,132.1,131.3,130.7,130.0,128.6,128.3,126.7,124.1$, 121.5, 108.4, 86.4, 62.1, 43.1, 40.6, 33.2, 21.3, 18.0, 11.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{NO}_{2} \mathrm{Si}^{+}$526.3136, Found: 526.3136.

2-(2a,5-dimethyl-4-phenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (24). Yellow solid ($33.3 \mathrm{mg}, 49 \%$, m.p. $89-90^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.69-$ $8.60(\mathrm{~m}, 1 \mathrm{H}), 7.69(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.41(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.7$ $\mathrm{Hz}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.21-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.10(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{dd}, J=15.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.0,148.7,143.5,137.6,136.1$, 133.2, 132.8, 132.0, 130.6, 128.7, 128.2, 127.9, 126.8, 124.4, 121.5, 108.2, 86.4, 42.5, 40.4, 21.4, 18.8 . HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{24} \mathrm{H}_{22} \mathrm{NO}^{+} 340.1696$, Found: 340.1696.

2-(5-ethyl-2a-methyl-4-phenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (25). Brown oil ($31.9 \mathrm{mg}, 45 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.66-8.61(\mathrm{~m}, 1 \mathrm{H})$, 7.69 (td, $J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$ $7.18(\mathrm{~m}, 4 \mathrm{H}), 7.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.17(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.44$ $(\mathrm{m}, 1 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 0.51(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,157.2,148.9$, $143.9,137.0,136.1,135.0,134.4,132.0,131.0,130.6,128.5,128.3,126.7,124.2,121.5,108.3,86.4$, $42.8,40.5,22.8,21.1,13.7$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}^{+} 354.1852$, Found: 354.1851. The structure of $\mathbf{2 5}$ is established with NOESY studies; intramolecular NOEs between alkyl $\mathrm{CH}_{3}(\delta=0.51 \mathrm{ppm})$ and the aryl $\mathrm{CH}(\delta=8.66-8.61 \mathrm{ppm})$ was observed.

2-(2a-methyl-4-phenyl-5-propyl-2a,3-dihydro-2 H -naphtho[1,8-bc]furan-6-yl)pyridine (26). Brown oil ($23.5 \mathrm{mg}, 32 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65(\mathrm{~d}, J=4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.74-7.69(\mathrm{~m}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.34(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-$ $7.19(\mathrm{~m}, 4 \mathrm{H}), 7.08(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=8.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{dd}, J=15.7,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-2.07(\mathrm{~m}$, $1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.10-1.02(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.78(\mathrm{~m}, 2 \mathrm{H}), 0.32(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,157.3,148.8,144.0,137.6,136.2,134.2,133.4,132.0,131.3,130.6,128.6$, 128.3, 126.6, 124.4, 121.6, 108.2, 86.5, 43.0, 40.5, 31.8, 22.2, 21.2, 13.8. HRMS (ESI-TOF) m/z: [M + $H]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}^{+} 368.2009$, Found: 368.2009.

2-(5-(methoxymethyl)-2a-methyl-4-phenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6 -yl)pyridine (27). Brown oil ($29.6 \mathrm{mg}, 40 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.65$ $8.60(\mathrm{~m}, 1 \mathrm{H}), 7.75(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 7.23-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.76(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $11.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=11.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{dd}, J=15.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H})$, $2.54(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.7,157.2,148.1,142.5,140.7,136.2$, 133.8, 132.2, 131.2, 130.4, 129.7, 128.6, 128.2, 127.4, 124.4, 121.3, 108.4, 86.4, 69.3, 57.3, 42.9, 40.3, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NO}_{2}^{+} 370.1802$, Found: 370.1796 .

2-(5-(2-methoxyethyl)-2a-methyl-4-phenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6yl)pyridine (28). Yellow oil ($26.9 \mathrm{mg}, 35 \%$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.70$ $8.66(\mathrm{~m}, 1 \mathrm{H}), 7.74(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.39-7.36(\mathrm{~m}$, $2 \mathrm{H}), 7.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 3 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J$ $=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05-2.96(\mathrm{~m}, 2 \mathrm{H}), 2.95-2.88(\mathrm{~m}$, $4 \mathrm{H}), 2.62-2.52(\mathrm{~m}, 2 \mathrm{H}), 1.82-1.77(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,157.3$, $149.1,143.5,139.8,136.3,134.3,132.1,131.0,130.5,129.6,128.6,128.3,126.9,124.2,121.7,108.5$, 86.4, 71.1, 58.0, 43.1, 40.6, 29.8, 21.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$ 384.1958, Found: 384.1957.

5-methyl-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridin e (29). Yellow solid ($59.9 \mathrm{mg}, 72 \%$, m.p. $129-130{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.96(\mathrm{~s}, 1 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.86(\mathrm{~m}, 3 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-$ $6.63(\mathrm{~m}, 6 \mathrm{H}), 4.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 156.9, 156.4, 148.6, 144.4, 139.0, 138.6, 135.3, 134.3, 133.9, 132.3, 131.54, 131.45, 131.1, 129.2,

5-methoxy-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyrid ine (30). Yellow solid ($58.8 \mathrm{mg}, 68 \%$, m.p. $99-100{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.84(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 3 \mathrm{H}), 7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H})$, $6.80(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.74-6.71(\mathrm{~m}, 6 \mathrm{H}), 6.63(\mathrm{dd}, J=8.5,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=$ $8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J$ $=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 156.8,153.0,151.9,144.4,139.0,138.7$, $135.7,134.3,133.9,132.3,131.4,131.2,131.0,128.5,127.9,126.9,126.1,125.6,124.8,120.0,109.1$, 86.6, 55.7, 43.2, 40.8, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+} 432.1958$, Found: 432.1958.

5-fluoro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridin e (31). Yellow solid ($50.4 \mathrm{mg}, 60 \%$, m.p. $126-127{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.99(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.84-6.67(\mathrm{~m}, 8 \mathrm{H})$, $4.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.2,157.2,155.5,144.1$, $139.0,138.8,136.2(\mathrm{~d}, J=23.4 \mathrm{~Hz}, 1 \mathrm{C}) .134 .0,134.0,132.4,131.5,131.0,130.4,128.4,128.0,127.1$, 126.2, 125.9, $125.4(\mathrm{~d}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 121.5(\mathrm{~d}, J=18.7 \mathrm{~Hz}, 1 \mathrm{H}), 109.2,86.6,43.1,40.8,21.3 .{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-132.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FNO}^{+} 420.1758$, Found: 420.1756.

5-chloro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridi ne (32). Yellow solid ($44.5 \mathrm{mg}, 51 \%$, m.p. $192-193{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 8.07 (d, $J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 3 \mathrm{H}), 7.08-7.03(\mathrm{~m}, 2 \mathrm{H}), 6.93-6.89(\mathrm{~m}, 2 \mathrm{H})$, $6.81(\mathrm{dd}, J=15.4,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.75-6.65(\mathrm{~m}, 5 \mathrm{H}), 4.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.5,157.4,147.1,144.2,139.1,138.9,134.3,134.1,133.9,132.4,131.6$, $131.2,130.2,128.7,128.5,128.0,127.2,126.3,125.8,125.3,109.3,86.7,43.2,40.8,21.3$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{ClNO}^{+} 436.1463$, Found: 436.1464 .

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)-5-(trifluorome thyl)pyridine (33). Yellow solid ($34.8 \mathrm{mg}, 37 \%$, m.p. $146-147{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.09$ $(\mathrm{m}, 2 \mathrm{H}), 7.08-7.05(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 3 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.75-6.65$ $(\mathrm{m}, 5 \mathrm{H}), 4.60(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.9,157.7,145.3(\mathrm{q}, J=4.2$ $\mathrm{Hz}, 1 \mathrm{C}$), 144.0, 139.3, 138.7, 134.3, 133.7, 132.5, 131.8, 131.6 (q, $J=3.2 \mathrm{~Hz}, 1 \mathrm{C}), 131.22,130.1$, $128.4,128.1,127.2,126.4,126.2,124.3,123.8(\mathrm{q}, J=272.1 \mathrm{~Hz}, 1 \mathrm{C}), 122.8$ (q, $J=32.8 \mathrm{~Hz}, 1 \mathrm{C}), 109.4$, 86.7, 43.1, 40.7, 21.3. ${ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{23} \mathrm{~F}_{3} \mathrm{NO}^{+} 470.1726$, Found: 470.1725 .
 4-methyl-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyri dine (34). Yellow solid ($49.9 \mathrm{mg}, 60 \%$, m.p. $170-171{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.95-$ $6.90(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.70-6.69(\mathrm{~m}, 5 \mathrm{H}), 6.55(\mathrm{~s}, 1 \mathrm{H}), 6.52(\mathrm{~d}, J=$ $5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.62(\mathrm{~d}, J=$ $14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.5$ 157.0, 148.1, 145.4 , $144.3,138.9,138.6,134.2,133.9,132.5,131.5,131.3,130.8,128.5,128.0,126.8,126.3,126.1,125.8$, 121.4, 109.2, 86.6, 43.2, 40.8, 21.2, 20.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}^{+}$ 416.2009, Found: 416.2008.

4-methoxy-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) pyridine (35). Yellow solid ($70.0 \mathrm{mg}, 81 \%$, m.p. $152-153{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 8.01(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.09(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.07-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.94-6.89(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{~s}, 5 \mathrm{H}), 6.31$ - $6.24(\mathrm{~m}, 2 \mathrm{H}), 4.58(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=14.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.4,160.6,157.1,149.4$, $144.2,138.9,138.7,134.2,133.8,132.3,131.4,131.4,130.9,128.4,127.9,126.9,126.2,125.8,110.7$, 109.1, 107.3, 86.6, 54.8, 43.2, 40.8, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+}$ 432.1958, Found: 432.1957.

4-fluoro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyrid ine (36). Yellow solid ($30.2 \mathrm{mg}, 36 \%$, m.p. $143-144{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.12(\mathrm{dd}, J=8.6,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.06$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.74(\mathrm{~s}, 5 \mathrm{H})$, $6.52(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.46-6.44(\mathrm{~m}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 167.4(\mathrm{~d}, J=261.1 \mathrm{~Hz}, 1 \mathrm{C}), 162.3$ (d, $J=6.1 \mathrm{~Hz}, 1 \mathrm{C}), 157.4,150.7$ (d, $J=7.5 \mathrm{~Hz}, 1 \mathrm{C}), 144.1,139.1$, $138.8,134.2,133.9,132.4,131.6,130.9,130.4(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{C}), 128.4,128.0,127.1,126.3,126.1$, $112.5(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{C}), 109.3,108.4(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{C}), 86.6,43.1,40.8,21.2 .{ }^{19} \mathrm{~F}$ NMR (565 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-105.1$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{FNO}^{+} 420.1758$, Found: 420.1755.

4-chloro-2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyri dine (37). White solid ($34.0 \mathrm{mg}, 39 \%$, m.p. $176-177{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H})$, $7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.80-6.68$ $(\mathrm{m}, 7 \mathrm{H}), 4.59(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 160.5,157.4,149.3,144.1,142.5,139.1$, 138.7, $134.2,133.9,132.5,131.5,130.8,130.2,128.5,128.0,127.2,126.3,126.1,125.5,120.7,109.4,86.7$, 43.1, 40.8, 21.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{23} \mathrm{ClNO}^{+} 436.1463$, Found: 436.1462.
 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.17(\mathrm{td}, J=7.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.10(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.03$ $(\mathrm{m}, 2 \mathrm{H}), 6.91(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.82-6.76(\mathrm{~m}, 3 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 3 \mathrm{H}), 6.60(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $5.09(\mathrm{t}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.94(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.53$ (dd, $J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.87(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6}) $\delta 158.8,157.9,148.4,144.1,138.9,138.8,135.1,134.3,133.2,132.5,131.7,130.9,130.5$, 128.6, 128.2, 127.0, 126.5, 125.9, 124.6, 120.6, 109.0, 82.3, 60.6, 46.3, 37.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$418.1802, Found: 418.1808.

2-(2a-(methoxymethyl)-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyri dine (39). Yellow solid ($58.8 \mathrm{mg}, 68 \%$, m.p. $106-107{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.16(\mathrm{dd}, J=4.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.02(\mathrm{~m}, 4 \mathrm{H})$, 6.93-6.88 (m, 2H), 6.81 (t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.63(\mathrm{~m}, 7 \mathrm{H}), 4.96(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=$ $8.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.18(\mathrm{~d}, J=14.9$ $\mathrm{Hz}, 1 \mathrm{H}), 2.98(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,158.1,148.4,143.9,138.72$, $138.66,134.8,134.5,133.3,132.4,131.6,131.0,129.7,128.4,127.9,127.0,126.2,125.8,124.7,120.2$, 109.3, 82.9, 71.7, 59.5, 45.3, 38.0. HRMS (ESI-TOF) m/z: [M + H] Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}_{2}{ }^{+} 432.1958$, Found: 432.1955.

(4,5-diphenyl-6-(pyridin-2-yl)-2H-naphtho[1,8-bc]furan-2a(3H)-yl)methyl pivalate
(40). White solid ($67.3 \mathrm{mg}, 67 \%$, m.p. $183-184{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ
$8.15(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ $6.99(\mathrm{~m}, 3 \mathrm{H}), 6.90-6.86(\mathrm{~m}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.74-6.63(\mathrm{~m}, 6 \mathrm{H}), 4.85(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.35(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.28(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,158.9,158.1,148.5,143.5,138.4,138.0$, $134.9,133.6,132.5,131.9,130.9,128.8,128.4,127.9,127.0,126.3,126.0,124.6,120.3,109.5,82.7$, 63.2, 44.3, 38.9, 38.5, 27.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{32} \mathrm{NO}_{3}{ }^{+} 502.2377$, Found: 502.2378 .

1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)isoquinoline (41). Brown solid ($44.2 \mathrm{mg}, 49 \%$, $\mathrm{dr}=1.1: 1$, m.p. $83-84{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.13(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.60-7.38(\mathrm{~m}, 7 \mathrm{H}), 7.37-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.12(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.08(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.06-6.95(\mathrm{~m}, 7 \mathrm{H}), 6.91(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.86-6.80(\mathrm{~m}, 5 \mathrm{H})$, 6.67-6.41 (m, 4H), 6.38-5.97(m, 5H), $4.63(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=$ $14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,160.8,157.30,157.28$, $144.0,143.8,141.6,141.3,138.5138 .4,138.3,137.0,136.1,135.4,134.6,134.3,133.9,133.6,132.9$, $132.8,131.99,131.95,130.1,129.5,129.3,129.1,128.3,128.22,128.20,128.18,127.8,127.73,127.71$, $127.66,126.5,126.4,126.3,126.2,126.1,126.0,125.5,124.8,119.1,109.7,108.5,86.8,86.6,43.4$,
43.1, 40.7, 21.6, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{NO}^{+} 452.2009$, Found: 452.2007 .

3-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)isoquinoline (42). Brown solid ($44.3 \mathrm{mg}, 49 \%$, m.p. $115-116{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.78(\mathrm{~s}, 1 \mathrm{H}), 7.70(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.28(\mathrm{~d}$, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 7.08(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.91$ $(\mathrm{m}, 2 \mathrm{H}), 6.86(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $6.23(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H})$, $2.64(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9,152.5$ 151.1, 144.3, 138.9, $138.6,135.3,134.4,134.0,132.8,131.7,131.6,130.7,129.7,128.5,127.9,127.1,126.5,126.3,126.3$, 126.1, 125.1, 121.1, 109.2, 86.6, 43.2, 40.9, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{33} \mathrm{H}_{26} \mathrm{NO}^{+} 452.2009$, Found: 452.2009.

2-(3a-methyl-5,6-diphenyl-2,3,3a,4-tetrahydrobenzo[de]chromen-7-yl)pyridine (43).

White solid ($55.7 \mathrm{mg}, 67 \%$, m.p. $67-68{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ (dd, J $=4.8,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.11-7.02(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.88(\mathrm{~m}$, $2 \mathrm{H}), 6.84-6.80(\mathrm{~m}, 2 \mathrm{H}), 6.74-6.66(\mathrm{~m}, 4 \mathrm{H}), 6.62-6.57(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.38(\mathrm{~m}, 2 \mathrm{H})$, 3.07 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.38 (d, $J=14.3 \mathrm{~Hz}, 1 \mathrm{H}$), 2.04 (td, $J=12.9,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.83$ (dd, $J=11.4$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.9,151.7,148.2,143.9,140.7,137.4$, $135.8,135.1,134.6,132.9,130.9,130.7128 .4,127.8,126.8,126.5,126.0,125.3,124.9,120.2,115.7$, 62.7, 45.7, 35.5, 30.8, 23.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}^{+} 416.2009$, Found: 416.2011 .

2-(9a-methyl-7,8-diphenyl-9,9a-dihydro-1H,3H-benzo[de]isochromen-6-yl)pyridine (44). Brown solid ($42.4 \mathrm{mg}, 51 \%$, m.p. $110-111{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.24(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-6.97(\mathrm{~m}, 6 \mathrm{H}), 6.90(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 6.77-6.62(\mathrm{~m}, 6 \mathrm{H}), 5.04(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (d, $J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.20(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H})$, $1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.8,148.4,143.8,140.7,138.7,138.5,137.1,135.3$, $134.6,134.2,131.7,130.8,129.6,128.4,127.8,127.0,126.1,125.4,124.8,123.0,120.6,75.2,67.7$, 40.4, 33.7, 22.1. HRMS (ESI-TOF) m/z: $[M+H]^{+}$Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{NO}^{+} 416.2009$, Found: 416.2010.

2-(4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)pyridine (45). Brown solid ($16.3 \mathrm{mg}, 21 \%$, m.p. $79-80^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.17(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.13(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.05-7.01(\mathrm{~m}$, $1 \mathrm{H}), 6.93(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.80(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.72(\mathrm{dd}$, $J=10.9,6.8 \mathrm{~Hz}, 3 \mathrm{H}), 6.70-6.63(\mathrm{~m}, 3 \mathrm{H}), 4.91(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{dd}, J=11.1$, $8.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.77(\mathrm{~m}, 1 \mathrm{H}), 3.08(\mathrm{t}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=14.1,5.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.4,157.7147 .5,143.4,139.3,138.4,135.4,135.3,132.6,132.5,131.1,130.2$, 130.1, 128.5, 127.7, 126.9, 126.1, 125.8, 124.8, 120.2, 108.8, 79.5, 37.1, 36.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{28} \mathrm{H}_{22} \mathrm{NO}^{+}$388.1696, Found: 388.1693.
 Colorless solid ($15.2 \mathrm{mg}, 19 \%$, m.p. $57-58{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.21$ (s, $1 \mathrm{H}), 7.24-7.00(\mathrm{~m}, 6 \mathrm{H}), 6.97-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.87(\mathrm{~s}, 1 \mathrm{H}), 6.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 6 \mathrm{H})$, 3.28 - 3.13 (m, 2H), 2.93 (dd, $J=15.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}$), 2.60 (d, $J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17$ (dd, $J=11.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{dd}, J=11.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.31(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $160.0,149.5,148.2,144.8,140.6,139.8,139.2,136.5,134.9,133.9,131.5,131.1,130.8,128.5,127.7$, $126.8,125.8,125.4,124.9,123.7,120.3,46.2,43.2,41.8,30.9,20.6$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}^{+} 400.2060$, Found: 400.2059 .

2-((2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)oxy)pyridine (47). Yellow solid ($63.5 \mathrm{mg}, 76 \%$, m.p. $126-127^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 7.96 (dd, $J=5.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 1 \mathrm{H}), 7.05(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.02-$ $6.98(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.63(\mathrm{~m}, 10 \mathrm{H}), 5.91(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=15.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.6,154.2,146.6,143.5,142.9,139.1,138.3,138.2,133.6,132.3,129.9,128.2$, 127.8, 126.9, 126.2, 126.0, 125.6, 124.1, 117.0, 110.7, 110.0, 87.0, 43.3, 40.6, 21.9. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{29} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+}$418.1802, Found: 418.1799.

1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2 H-naphtho[1,8-bc]furan-6-yl)- $1 H$-pyrazole (48). Yellow solid ($60.8 \mathrm{mg}, 78 \%$, m.p. $125-126{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.14-7.00(\mathrm{~m}, 5 \mathrm{H}), 6.96(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.90-6.68(\mathrm{~m}, 8 \mathrm{H}), 5.66(\mathrm{t}, J=2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.61$ $(\mathrm{d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.0,143.7,140.1,139.5,137.3$, $134.1,132.4,131.3,130.7,129.8,129.6,128.8,128.2,127.9,126.9,126.3,125.9,109.5,105.5,87.0$, 43.1, 40.7, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}^{+}$391.1805, Found: 391.1806.

1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)-1 H-pyrrolo[2,3-b]pyridine (49). Yellow solid ($74.6 \mathrm{mg}, 85 \%$, $\mathrm{dr}=1.1: 1$, m.p. $95-96{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.26(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.02(\mathrm{tdd}, J=11.7,9.8,5.9 \mathrm{~Hz}, 10 \mathrm{H}), 6.92(\mathrm{dd}, J=7.7,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.89-6.75$ (m, 11H), 6.58 (dd, $J=23.6,16.3 \mathrm{~Hz}, 4 \mathrm{H}), 6.41(\mathrm{dd}, J=27.2,19.9 \mathrm{~Hz}, 4 \mathrm{H}), 5.96(\mathrm{~d}, J=$ $3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91(\mathrm{~d}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J$ $=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{~d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J$ $=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.1,156.9,148.7,148.3$, 143.7, 143.6, 142.62, 142.55, 139.51, 139.48, 136.6, 136.4, 134.1, 133.8, 132.9, 132.6, 131.3, 130.54, $130.5,130.3,129.6,128.17,128.13,128.0,127.9$, 127.7, 127.3, 127.1, 126.3, 126.1, 125.7, 125.6 , 120.39, 120.38, 115.6, 115.5, 110.0, 109.7, 100.3, 99.7, 87.0, 86.9, 43.3, 42.9, 40.8, 40.5, 21.8, 21.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$441.1961, Found: 441.1960.

3,3-dimethyl-1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) indolin-2-one (50). White solid ($23.7 \mathrm{mg}, 24 \%$, dr $=\mathbf{1 . 1}: 1$, m.p. $208-209{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.08-7.02(\mathrm{~m}, 5 \mathrm{H}), 6.96-6.49(\mathrm{~m}, 10 \mathrm{H}), 6.38(\mathrm{~d}, J=$
$7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{~d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=$ $14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 0.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.4,156.9$, 143.7, 143.4, 139.6, 137.6, 135.0, 134.4, 132.7, 131.0, 130.6, 129.7, 128.0, 127.9, 126.9, 126.8, 126.6, 126.2, 123.9, 122.2, 121.7, 111.0, 109.4, 86.9, 43.7, 43.4, 40.6, 26.3, 23.1, 21.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2}{ }^{+} 484.2271$, Found: 484.2269.

3,3-dimethyl-1-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl) indolin-2-one (50'). Yellow solid ($19.7 \mathrm{mg}, 21 \%$, $\mathrm{dr}=1.1: 1$, m.p. $122-123{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.13$ (td, $J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), $7.10-7.02(\mathrm{~m}, 3 \mathrm{H}), 6.97-$ $6.79(\mathrm{~m}, 8 \mathrm{H}), 6.75-6.68(\mathrm{~m}, 2 \mathrm{H}), 6.64-6.59(\mathrm{~m}, 2 \mathrm{H}), 4.59(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.41$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.18(\mathrm{~s}, 3 \mathrm{H}), 0.75(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 180.6,157.2,143.9,143.3,139.4,137.9$, $135.7,134.7,132.5,131.7,129.8,129.5,128.3,127.9,127.0,126.9,126.20,126.17,124.2,122.2$, 121.7, 110.6, 110.3, 86.9, 43.7, 43.1, 40.7, 26.7, 23.2, 21.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{2}{ }^{+}$484.2271, Found: 484.2249.

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)benzo[d] oxazol e (51). Yellow solid ($39.7 \mathrm{mg}, 45 \%$, m.p. $196-197{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $7.53(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.16-7.05(\mathrm{~m}, 6 \mathrm{H}), 6.95(\mathrm{~d}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 6.87-6.85(\mathrm{~m}, 3 \mathrm{H}), 6.63(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.41(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}$, $J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.66(\mathrm{~d}, J=14.5$ $\mathrm{Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 163.5,159.1,150.5,143.9,141.6,139.6,138.0$, $134.5,133.57,133.54,133.3,128.4,128.1,126.9,126.5,125.7,124.0,123.7,119.5,117.5,110.2$, 109.4, 86.9, 43.1, 40.5, 21.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{NO}_{2}{ }^{+} 442.1802$, Found: 442.1803.

2-(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)benzo[d]thiazol e (52). Yellow solid ($29.2 \mathrm{mg}, 32 \%$, m.p. $226-227^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $7.61(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.17(\mathrm{~m}$, $1 \mathrm{H}), 7.10(\mathrm{dd}, J=11.3,4.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.07-7.03(\mathrm{~m}, 1 \mathrm{H}), 6.95-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.82(\mathrm{dd}$, $J=7.5,5.3 \mathrm{~Hz}, 3 \mathrm{H}), 6.55(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.37(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.38(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.64(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,158.5,153.1,144.0,139.7,138.6,135.8,134.7,133.9,133.2,133.1$, $128.4,128.0,126.8,126.3,125.4,125.3,124.4,124.0,122.8,121.0,109.0,86.8,43.1,40.6,21.2$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{31} \mathrm{H}_{24} \mathrm{NOS}^{+} 458.1573$, Found: 458.1570.

(3s)- N -(2a-methyl-4,5-diphenyl-2a,3-dihydro-2H-naphtho[1,8-bc]furan-6-yl)adamant ane-1-carboxamide (53). White solid ($40.1 \mathrm{mg}, 40 \%$, m.p. $227-228{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.21(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.16-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.93-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.69(\mathrm{~s}, 1 \mathrm{H})$, $4.50(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.82(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{dd}, J=12.0,2.0$
$\mathrm{Hz}, 3 \mathrm{H}), 1.24(\mathrm{dd}, J=12.0,2.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.0,154.1,143.6,140.1$, 139.7, 133.3, 131.9, 129.1, 128.4, 128.1, 128.0, 127.5, 126.9, 126.3, 126.1, 124.7, 109.8, 86.5, 43.5, 41.1, 40.8, 38.1, 36.3, 28.0, 21.3. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{35} \mathrm{H}_{36} \mathrm{NO}_{2}{ }^{+}$502.2741, Found: 502.2737.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)benzamide (54). White solid ($59.4 \mathrm{mg}, 86 \%$, m.p. $200-201{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.28(\mathrm{~s}, 1 \mathrm{H})$, $8.34(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-$ $7.48(\mathrm{~m}, 2 \mathrm{H}), 7.42(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.10-7.03(\mathrm{~m}, 1 \mathrm{H})$, $6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.6,161.3,158.4$, 148.1, 137.2, 134.6, 133.8, 132.1, 131.7, 130.8, 130.7, 128.7, 127.4, 124.0, 121.6, 109.6, 85.4, 43.4, 25.8. HRMS (ESI-TOF) m/z: $[M+H]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{21} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 345.1598$, Found: 345.1598 .

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-methylbenzamide (55). Yellow solid ($39.5 \mathrm{mg}, 55 \%$, m.p. $118-119^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$) $\delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{dd}, J=4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.65(\mathrm{td}, J=$ $7.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{~d}, J=8.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.06(\mathrm{ddd}, J=7.5,4.9,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.43$ (s, 6H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.5,161.3,158.5,148.1,142.2,137.2,133.8,132.2,131.7$, 130.8, 130.7, 129.4, 127.5, 123.9, 121.6, 109.5, 85.4, 43.4, 25.7, 21.6. HRMS (ESI-TOF) m/z: [M + $\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}^{+}$359.1754, Found: 359.1754.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-methoxybenza mide (56). Yellow solid ($33.7 \mathrm{mg}, 45 \%$, m.p. $210-211^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 9.17(\mathrm{~s}, 1 \mathrm{H}), 8.43(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.80(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.67$ $(\mathrm{td}, J=7.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08$ (dd, $J=7.1,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.92(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H})$, $1.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.1,162.5,161.4,158.6,148.1,137.3,133.8,132.5$, 130.7, 130.6, 129.3, 126.9, 123.9, 121.6, 113.9, 109.5, 85.4, 55.6, 43.4, 25.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$375.1703, Found: 375.1703.

4-(tert-butyl)- N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)ben zamide (57). White solid ($52.9 \mathrm{mg}, 66 \%$, m.p. $265-266{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (400 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.27(\mathrm{~s}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J$ $=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.08-7.02(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 6 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.4,161.2,158.4,155.2,148.1,137.0,133.7,132.1,131.7,130.9$, 130.7, 127.3, 125.6, 123.9, 121.6, 109.5, 85.3, 43.3, 35.0, 31.3, 25.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$ Calcd for $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+} 401.2224$, Found: 401.2223.

N -(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-fluorobenzamide (58). White solid ($30.5 \mathrm{mg}, 42 \%$, m.p. $228-229{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
$\delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.85(\mathrm{dd}, J=8.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{td}, J=7.8,1.6 \mathrm{~Hz}, 1 \mathrm{H})$, $7.50(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.12-7.06(\mathrm{~m}, 3 \mathrm{H}), 6.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}$, $2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 166.6,165.0(\mathrm{~d}, J=252.1 \mathrm{~Hz}, 1 \mathrm{C}), 161.4,158.5$, $148.0,137.2,133.8,132.1,130.8(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{C}), 130.7,130.4,129.8$ (d, $J=8.9 \mathrm{~Hz}, 2 \mathrm{C}), 123.9$, $121.6,115.7(\mathrm{~d}, J=21.9 \mathrm{~Hz}, 2 \mathrm{C}), 109.7,85.4,43.4,25.7 .{ }^{19} \mathrm{~F}$ NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-107.9$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{FN}_{2} \mathrm{O}_{2}{ }^{+} 363.1503$, Found: 363.1501.

4-chloro- N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)benzamide (59). White solid ($41.7 \mathrm{mg}, 55 \%$, m.p. $241-242{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{dd}, J=4.9,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.82-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.65(\mathrm{td}, J=7.8$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.05(\mathrm{ddd}, J=7.5,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~s}, 2 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.6,161.3,158.3,148.0,138.0,137.2,133.7,132.9,131.9,130.7,130.4,129.0$, 128.9, 123.9, 121.7, 109.7, 85.3, 43.4, 25.7. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{20} \mathrm{ClN}_{2} \mathrm{O}_{2}{ }^{+}$ 379.1208, Found: 379.1204.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-4-(trifluoromethyl)benzamide ($\mathbf{6 0}$). White solid ($33.0 \mathrm{mg}, 40 \%$, m.p. $238-239{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.94(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.71-7.68$ $(\mathrm{m}, 3 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.35(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.07(\mathrm{~m}, 1 \mathrm{H})$, $6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~s}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,161.5,158.4$, $148.0137 .8,137.4,133.8,133.5(\mathrm{q}, J=32.5 \mathrm{~Hz}, 1 \mathrm{C}), 131.8,130.8,130.3,127.9,125.8(\mathrm{q}, J=3.9 \mathrm{~Hz}$, 2C), $124.0,123.8(\mathrm{q}, J=272.2 \mathrm{~Hz}, 1 \mathrm{C}), 121.8,109.9,85.4,43.4,25.7 .{ }^{19} \mathrm{~F} \operatorname{NMR}\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ -63.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$413.1471, Found: 413.1474.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)-2-naphthamide (61). White solid ($34.7 \mathrm{mg}, 44 \%$, m.p. $213-214{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.36(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.96-7.85(\mathrm{~m}, 4 \mathrm{H}), 7.64$ (td, $J=7.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.50(\mathrm{~m}, 3 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{dd}$, $J=7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 1.53-1.42(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 167.6,161.4,158.4,148.1,137.2,135.0,133.8,132.8,132.3,131.8,130.7,129.2,128.6$, 128.1, 127.9, 126.9, 124.0, 121.6, 109.6, 85.4, 43.4, 25.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{26} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$395.1754, Found: 395.1754.

N-(3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-yl)furan-2-carboxamide (62). Brown solid ($26.8 \mathrm{mg}, 40 \%$, m.p. $110-111{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $9.00(\mathrm{~s}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.49(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 2 \mathrm{H}), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.11$ (ddd, $J=7.4,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.04(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.47(\mathrm{dd}, J=3.4,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.2,158.3,158.0,148.2,148.0,144.5,137.2,133.8,131.2,130.8,123.8$, 121.6, 114.8, 112.1, 109.7, 85.3, 43.3, 25.9. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{2} \mathrm{O}_{3}{ }^{+}$ 335.1390, Found: 335.1389.

3,3-dimethyl-5-(pyridin-2-yl)- N-(p-tolyl)-2,3-dihydrobenzofuran-4-carboxamide (63). White solid ($40.2 \mathrm{mg}, 56 \%$, m.p. $176-177{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ $8.54(\mathrm{ddd}, J=4.9,1.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{~d}, J=7.9$ $\mathrm{Hz}, 1 \mathrm{H}), 7.49(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.14$ (ddd, J $=7.5,4.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 2.29(\mathrm{~s}, 3 \mathrm{H})$, $1.50(\mathrm{~s}, 7 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.6,160.6,157.9,149.3,136.7,135.1,134.4,133.8$, 133.3, 131.0, 130.5, 129.6, 123.6, 122.0, 120.4, 111.4, 85.7, 43.3, 26.3, 21.0. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{23} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$359.1754, Found: 359.1745.

N-(4-methoxyphenyl)-3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-ca rboxamide (64). White solid ($44.3 \mathrm{mg}, 59 \%$, m.p. $177-178{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.27(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{td}, J=7.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.11$ - $7.08(\mathrm{~m}, 1 \mathrm{H}), 6.84(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.79(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}$, $6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.5,160.6,157.2,156.7,148.4,137.1,133.7,133.2,130.8$, 130.3, 129.9, 123.8, 122.5, 122.0, 114.1, 111.2, 85.6, 55.5, 43.2, 26.1. HRMS (ESI-TOF) m/z: [M + $\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{3}{ }^{+}$397.1523, Found: 397.1516.

N-(4-fluorophenyl)-3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-carbox amide (65). White solid ($34.5 \mathrm{mg}, 47 \%$, m.p. $195-196{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.33(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.29(\mathrm{dd}, J=8.8,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.11-7.07$ $(\mathrm{m}, 1 \mathrm{H}), 6.96(\mathrm{t}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.88(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(150$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.8,160.6,159.7(\mathrm{~d}, J=243.6 \mathrm{~Hz}, 1 \mathrm{C}), 157.7,149.0,136.7$, $133.9,133.8(\mathrm{~d}, J=2.8$ $\mathrm{Hz}, 1 \mathrm{C}), 132.9,130.7,130.3,123.6,122.4(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{C}), 121.9,115.7(\mathrm{~d}, J=22.8 \mathrm{~Hz}, 2 \mathrm{C}), 111.5$, 85.7, 43.3, 26.2. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-117.5$. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{FN}_{2} \mathrm{NaO}_{2}{ }^{+}$385.1323, Found: 385.1317 .

N-(4-chlorophenyl)-3,3-dimethyl-5-(pyridin-2-yl)-2,3-dihydrobenzofuran-4-carbo xamide (66). White solid ($32.7 \mathrm{mg}, 43 \%$, m.p. 203-204 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR (600 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 8.283-8.275(\mathrm{~m}, 2 \mathrm{H}), 7.64(\mathrm{td}, J=7.7,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35$ (dd, $J=12.6,8.6 \mathrm{~Hz}, 3 \mathrm{H}), 7.23$ (d, $J=8.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.09$ (dd, $J=6.9$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.87(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~s}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.7$, 160.7, 157.4, 148.7, 137.0, 136.4, 134.0, 132.8, 130.27, 130.23, 129.7, 129.1, 123.6, 122.1, 121.7, 111.5, 85.7, 43.2, 26.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+} \mathrm{Calcd}$ for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{ClN}_{2} \mathrm{NaO}_{2}{ }^{+}$401.1027, Found: 401.1024.

3,3-dimethyl-5-(pyridin-2-yl)-N-(4-(trifluoromethyl)phenyl)-2,3-dihydrobenzofur an-4-carboxamide (67). White solid ($35.9 \mathrm{mg}, 44 \%$, m.p. 218-219 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}\right.$, DMSO- $\left.d_{6}\right) \delta 10.55(\mathrm{~s}, 1 \mathrm{H}), 8.45(\mathrm{dd}, J=4.7,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.71$ (m, 3H), $7.66-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.59(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.01$
$(\mathrm{d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~s}, 2 \mathrm{H}), 1.36(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR (150 MHz, DMSO- d_{6}) $\delta 166.7,159.8,156.7$, $148.8,142.4,136.8,133.5,133.0,130.4,129.9,125.9(\mathrm{q}, J=3.5 \mathrm{~Hz}, 2 \mathrm{C}), 124.4(\mathrm{q}, J=271.0 \mathrm{~Hz}, 1 \mathrm{C})$, $123.4(\mathrm{q}, J=32.0 \mathrm{~Hz}, 1 \mathrm{C}), 122.3,121.7,119.4,110.5,84.6,42.5,25.9 .{ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) δ-60.4. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{Na}]^{+}$Calcd for $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}{ }^{+}$435.1291, Found: 435.1281.

2-(2a-methyl-4,5-diphenyl-7-((triisopropylsilyl)ethynyl)-2a,3-dihydro-2H-naph tho [1,8-bc]furan-6-yl)pyridine (68). Red solid ($33.1 \mathrm{mg}, 57 \%$, m.p. $90-91{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.18(\mathrm{~s}, 1 \mathrm{H}), 7.18-6.91(\mathrm{~m}, 5 \mathrm{H}), 6.90-6.15$ (m, 9H), $4.57(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=14.8$ $\mathrm{Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 0.94-0.76(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.10,158.08,156.5$, $148.34,148.31,143.7,139.2,134.6,134.44,134.36,128.1,127.8,127.0,126.1,125.6,120.8,113.47$, $113.45,106.3,93.4,86.7,43.0,40.9,21.4,18.6,11.2$. HRMS (ESI-TOF) $\mathrm{m} / \mathrm{z}:[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{NOSi}^{+}$582.3187, Found: 582.3189.

N-(2a-methyl-4,5-diphenyl-6-(pyridin-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]furan -7 -yl)benzamide (69). White solid ($36.9 \mathrm{mg}, 71 \%$, m.p. $199-200{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.81(\mathrm{~s}, 1 \mathrm{H}), 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{~s}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=4.9 \mathrm{~Hz}$, $2 \mathrm{H}), 7.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.79(\mathrm{~m}, 3 \mathrm{H}), 6.79-$ $6.54(\mathrm{~m}, 6 \mathrm{H}), 4.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.27(\mathrm{~d}, J=14.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~d}, J=$ $14.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,157.4,156.3,147.4,144.3,140.0$, $139.3,138.5,136.2,135.2,134.0,132.1,131.6,131.2,130.5,128.9,128.6,128.4,128.0,127.1,126.3$, 126.0, 122.7, 121.1, 119.6, 103.9, 86.6, 43.5, 40.9, 21.1. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{36} \mathrm{H}_{29} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$521.2224, Found: 521.2222.

3-(2a-methyl-4,5-diphenyl-6-(pyridin-2-yl)-2a,3-dihydro-2H-naphtho[1,8-bc]fura $\mathrm{n}-7-\mathrm{yl}$)pentane-2,4-dione (70). Brown solid ($27.9 \mathrm{mg}, 56 \%$, m.p. $200-201{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.07-6.95(\mathrm{~m}, 5 \mathrm{H}), 6.82$ (d, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.75-6.53(\mathrm{~m}, 6 \mathrm{H}), 6.38(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $1.66(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 192.2$, 189.6, 158.4, 157.1, 148.3, 143.6, $139.6,139.3,137.3,134.7,134.5,133.9,133.5,132.2,128.1,127.7,127.07,127.02,126.1,126.0$, 125.6, 120.8, 114.2, 112.1, 86.8, 43.2, 40.9, 24.6, 24.3, 21.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{34} \mathrm{H}_{30} \mathrm{NO}_{3}{ }^{+} 500.2220$, Found: 500.2220 .

2a-methyl-4,5-diphenyl-6-(pyridin-2-yl)-N-(p-tolyl)-2a,3-dihydro-2H-naphtho[1,8 $-b c]$ furan-7-carboxamide (71). Brown solid ($35.2 \mathrm{mg}, 66 \%$, m.p. $116-117^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta 9.94(\mathrm{~s}, 1 \mathrm{H}), 8.04(\mathrm{~s}, 1 \mathrm{H}), 7.30(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.09(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.03(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.97(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~s}$, $1 \mathrm{H}), 6.89(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.80(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.76-6.42(\mathrm{~m}, 7 \mathrm{H}), 4.67(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.41(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.24(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.3,157.0,148.4,148.3,143.3,140.0,135.6,135.5,135.1,134.0$, 133.7, 129.5, 129.24, 129.17, 128.2, 127.9, 127.7, 127.0, 126.9, 126.5, 126.1, 125.7, 121.5, 120.2,
119.6, 108.8, 86.6, 42.9, 40.7, 21.1, 20.8. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{37} \mathrm{H}_{31} \mathrm{~N}_{2} \mathrm{O}_{2}{ }^{+}$ 535.2380, Found: 535.2376.

3a-methyl-1,2,7,8-tetraphenyl-3a,4-dihydro-3H-isobenzofuro[1,7-gh]pyrido[2,1-a]i soquinolin-9-ium trifluoromethanesulfinate (72). Brown solid ($70.5 \mathrm{mg}, 97 \%$, m.p. 184-185 ${ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.32-8.22(\mathrm{~m}, 2 \mathrm{H}), 7.55(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.39-7.19(\mathrm{~m}, 13 \mathrm{H}), 7.12(\mathrm{~s}, 2 \mathrm{H}), 6.95-6.89(\mathrm{~m}$, $3 \mathrm{H}), 6.84(\mathrm{~s}, 3 \mathrm{H}), 4.72(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.84(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C} \operatorname{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.3,143.3,142.7,142.5,141.3,137.9$, $137.4,136.9,136.5,134.6,134.2,133.6,132.8,132.7,131.5,130.7,130.4,130.3,130.1,130.0,129.8$, 129.7, 128.7, 128.52, 128.47, 128.43, 128.3, 127.9, 127.5, 127.2, 121.7, 116.3, 106.2, 86.6, 41.9, 41.0, 19.7. ${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-78.2. HRMS (ESI-TOF) m/z: $[\mathrm{M}-\mathrm{OTf}]^{+}$Calcd for $\mathrm{C}_{43} \mathrm{H}_{32} \mathrm{NO}^{+}$ 578.2478, Found: 578.2480. HRMS (ESI-TOF) m/z: [M]- Calcd for OTf ${ }^{-}$148.9526, Found: 148.9527.

(E)-1-(2-(1,2-diphenylvinyl)-4-((2-methylallyl)oxy)phenyl)-1H-pyrazole (73). White solid ($70.6 \mathrm{mg}, 45 \%$, m.p. $95-96{ }^{\circ} \mathrm{C}$). ${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.43(\mathrm{~d}, J=1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.06(\mathrm{~m}, 6 \mathrm{H}), 7.04-$ $7.02(\mathrm{~m}, 3 \mathrm{H}), 6.99-6.91(\mathrm{~m}, 3 \mathrm{H}), 6.67(\mathrm{~s}, 1 \mathrm{H}), 6.09(\mathrm{t}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 1 \mathrm{H})$, $5.02(\mathrm{~s}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 158.4,141.7,140.6,140.0$, $139.9,139.0,137.1,132.8,131.0,130.9,129.6,129.4,128.1,128.0,127.9,127.2,127.1,117.5,114.2$, 113.2, 106.0, 72.1, 19.5. HRMS (ESI-TOF) m/z: $[\mathrm{M}+\mathrm{H}]^{+}$Calcd for $\mathrm{C}_{27} \mathrm{H}_{25} \mathrm{~N}_{2} \mathrm{O}^{+}$393.1961, Found: 393.1952.

7. NMR spectrum and HPLC Chromatogram

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{9}{\circ}$

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 9$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\underset{\sim}{\text { ² }}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{y}{\sim}$		뚜 욷	$\stackrel{\text { ¢ }}{\text { ¢ }}$	寺
「 1	「「T	¢ 15	－	1

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\stackrel{\stackrel{5}{\circ}}{\stackrel{\circ}{\circ}}$

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$--130.90$

1d
$\left.\begin{array}{lllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & -100 \\ f 1(p p m)\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$
${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\underset{\text { i }}{\stackrel{\text { N }}{i}}
$$

[^0]${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1g

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

| 210 | 200 | 190 | 180 | 170 | 160 | 150 | 140 | 130 | 120 | 110 | $\underset{f 1}{100}(\mathrm{ppm})$ |
| :--- |

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

$\left.\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{aligned} & \text { oop } \\ & \text { oip } \\ & \text { مip } \end{aligned}$	喜			సْ
11	I	1 1 1	1	$\xrightarrow{\text { N1 }}$

$\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

1 m

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

们	FRO

1n

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{llllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
ハ

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$$
\int||\mid
$$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$1 r$

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{lllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

-			
$\stackrel{i}{i}$	$\stackrel{\Gamma}{i}$		N

1t

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10 & & \end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	\％	$\begin{aligned} & \text { Nợ } \\ & \text { 水 } \end{aligned}$	 	？ 9 NN゚	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\circ}}$
Ti	$\stackrel{\square}{1}$	Ti	「ए「T゙「	$\xrightarrow{\text { ¢ }}$	

1x

$\begin{array}{lllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} 90$
${ }^{1} \mathrm{H}$ NMR（ $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{ll} \text { a } \\ \stackrel{\rightharpoonup}{0} \\ \stackrel{\rightharpoonup}{\circ} \end{array}$		\%	寺	Cix		

$\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & \underset{f}{100}(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

1zb

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1 & (\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{lllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{lllllllllllllllllllllllllllllllllllllll}\hline 10 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR（ $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ）

	$\begin{aligned} & \text { U } \\ & \text { O゙ } \end{aligned}$	テ 꾼		$\stackrel{\infty}{\circ}$ 운 N゙N゚	$\stackrel{\text { ¢ }}{\text { ¢ }}$
｜｜		V	｜ 1	－｜	

$\left.\begin{array}{lllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{lllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm}) & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$
${ }^{19}$ F NMR ($565 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^1]
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
(
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{llllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 & \begin{array}{llllllllll}-100 \\ f 1(\mathrm{ppm})\end{array} & -110 & -120 & -130 & -140 & -150 & -160 & -170 & -180 & -190 & -200 & -210\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{lllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\begin{array}{llllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ f 1(\mathrm{ppm})\end{array}\right)$
${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

$\begin{array}{llllllllllllllllllllllll}10 & 0 & -10 & -20 & -30 & -40 & -50 & -60 & -70 & -80 & -90 \\ \mathbf{f 1}(\mathrm{ppm})\end{array}$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

 	ふion		N্লু	
5111	f	11	f	/

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
©

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
|

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }_{n 1} \|_{i /}$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
-

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{\circ}{\circ}$

${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

[^2]${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
|

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{llllllllllllllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f1}(\mathrm{ppm})\end{array}\right)$
${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR (150 MHz , DMSO- d_{6})

${ }^{19}$ F NMR (565 MHz , DMSO- d_{6})

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

				$\stackrel{\circ}{\dot{7}} \stackrel{\circ}{\square}$	¢	No융융	¢	べ¢
Ti	\%	¢ 1	$\stackrel{\text { T }}{1}$	I!	∞	$\xrightarrow{\sim}$	11	\?

${ }^{1} \mathrm{H}$ NMR (600 MHz, DMSO- d_{6})

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

$\left.\begin{array}{llllllllllllllllllllllllll}210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 \\ \mathrm{f} 1(\mathrm{ppm})\end{array}\right)$
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{19} \mathrm{~F}$ NMR $\left(565 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\stackrel{0}{\infty}$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

Racemic example for 47

<Peak Table>
Detector A 254 nm

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	4.928	7155010	635681	50.306	50.306
2	5.570	7067912	562622	49.694	49.694
Total		14222922	1198303		100.000

Enantioenriched example for $\mathbf{4 7}$

<Peak Table>

Detector A 254nm

Peak\#	Ret. Time	Area	Height	Conc.	Area\%
1	4.943	2695436	244053	33.030	33.030
2	5.586	5465061	429856	66.970	66.970
Total		8160497	673909		100.000

[^0]:

[^1]:

[^2]:

