Asymmetric Synthesis of Chromanone Lactones *via* Vinylogous Conjugate Addition of Butenolide to 2-Ester Chromones

Yi Li, Shuang Xin, Rui Weng, Xiaohua Liu*, and Xiaoming Feng*

Table of Contents

1. General remarks	3
2. Synthesis of Chromones	3
3. Preparation of the racemic products	6
4. Preparation of enantiomeric enriched product	6
5. Further transformation of the products into the natural products.	7
6. Optimization of the reaction conditions.	7
7. Control experiments	8
8. The list of substrates scope	10
9. The analytical and spectral characterization data of products	12
10. References	33
11. Copies of NMR spectra for products.	34

1. General remarks

Enantiomeric excess (e.e.) were determined by UPC² analysis using the corresponding commercial chiral column as stated in the experimental procedures at 35 °C. Data for ¹H NMR spectra were recorded on bruker ASCENDTM 400M (400 MHz) and ASCENDTM 600M (600 MHz). Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard (CDCI3, δ = 7.26). Spectra were reported as follows: chemical shift (δ ppm), multiplicity (s = singlet, d = doublet, t = triplet, q = quartet, m = multiplet, dd = doublet of doublets, dt = doublet of triplets), coupling constants (Hz), integration and assignment. ¹³C{1H} NMR spectra were collected on ASCENDTM 400M (101 MHz) and ASCENDTM 600M (153 MHz) with complete proton decoupling. ¹⁹F{1H} NMR spectra were collected on ASCENDTM 400M (376 MHz) with complete proton decoupling. Chemical shifts are reported in ppm from the tetramethylsilane with the solvent resonance as internal standard (CDCI₃, δ = 77.0). HRMS was recorded on Thermo Q-Exactive Focus (FTMS+c ESI). The chiral UPC² methods were calibrated with the corresponding racemic mixtures. Optical rotations were measured on a Rudolph Autopol V automatic polarimeter and are reported as follows: [α]_D^T (*c* g/100 mL, in CHCI₃). IR spectra were recorded on Bruker TENSOR II IR spectrophotometer. All catalytic reactions were run in dried glassware. All the solvents were purified by usual methods before use. Silica gel for thin-layer chromatography (HG/T2354-92) made in Qingdao Haiyang Chemical Co., Ltd. Unless otherwise indicated, reagents obtained from commercial sources were used without further purification. The chiral *N*,*N*^r dioxide ligands were synthesized by the same procedure in the literature.^[1]

2. Synthesis of chromones

The chromones were prepared from the corresponding substituted o-hydroxyacetophenone according to reported methods.^[2]

Procedure: A solution of the 2'-hydroxy acetophenone derivatives (10 mmol) and the oxalate (11 mmol, 1.1 equiv.) in dry THF (25 mL) were cooled to 0 °C. Into this mixture was added NaH (60 % in oil, 3.5 equiv.). The temperature was allowed to rise to room temperature and stirred overnight. The crude mixture was quenched with MeOH (2.5 mL) and acidified (pH 0 – 1) with concentrated HCI. The resultant heterogeneous mixture was stirred at room temperature for an additional 24 h. MeOH was removed by rotary evaporation and the residue was diluted with EtOAc. The two layers were separated and the aqueous layer was washed with EtOAc (25 mL × 3). The combined organic solution was dried using anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product. The crude material was then purified on silica gel column chromatography.

methyl 5-chloro-4-oxo-4H-chromene-2-carboxylate, white solid, 43% vield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.60 (t, *J* = 8.1 Hz, 1H), 7.52 (d, *J* = 8.4 Hz, 1H), 7.43 (d, *J* = 7.7 Hz, 1H), 7.05 (s, 1H), 4.01 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.6, 160.3, 157.1, 150.1, 133.4, 128.4, 121.1, 117.5, 115.8, 53.2.

methyl 6-methoxy-4-oxo-4H-chromene-2-carboxylate, white solid, 53% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.61 – 7.45 (m, 2H), 7.34 (dd, J = 9.2, 3.1 Hz, 1H), 7.11 (s, 1H), 4.02 (s, 3H), 3.91 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.2, 161.1, 157.5, 151.6, 150.8, 125.1, 125.0, 120.2, 114.0, 104.6, 56.0, 53.5.

methyl 6-fluoro-4-oxo-4H-chromene-2-carboxylate, white solid, 62% yield.

¹**H NMR** (400 MHz, Chloroform-d) δ 7.83 (dd, J = 8.0, 3.1 Hz, 1H), 7.63 (dd, J = 9.1, 4.1 Hz, 1H), 7.47 (ddd, J = 9.1, 7.5, 3.1 Hz, 1H), 7.10 (s, 1H), 4.02 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-d) δ 177.6, 161.2, 160.8, 152.2, 123.2, 123.0, 121.0, 121.0, 114.1, 110.8, 110.6, 53.6. ¹⁹**F NMR** (376 MHz, Chloroform-d) δ -113.64.

methyl 6-bromo-4-oxo-4H-chromene-2-carboxylate, white solid 70% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.32 (d, *J* = 2.4 Hz, 1H), 7.83 (dd, *J* = 9.0, 2.5 Hz, 1H), 7.51 (d, *J* = 8.9 Hz, 1H), 7.12 (s, 1H), 4.02 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 176.9, 160.7, 154.7, 152.1, 137.8, 128.4, 125.7, 120.7, 119.6, 114.9, 53.6.

methyl 7-fluoro-4-oxo-4H-chromene-2-carboxylate, red solid, 63% yield.

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.22 (dd, *J* = 8.9, 6.2 Hz, 1H), 7.30 (dd, *J* = 8.9, 2.4 Hz, 1H), 7.19 (ddd, *J* = 8.9, 8.0, 2.4 Hz, 1H), 7.10 (s, 1H), 4.02 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 191.6, 177.2, 160.7, 152.2, 128.4, 115.2, 114.8, 105.6, 105.3, 53.6.

¹⁹**F NMR** (376 MHz, Chloroform-*d*) δ -100.63.

methyl 8-bromo-4-oxo-4H-chromene-2-carboxylate, white solid, 66% yield. **¹H NMR** (400 MHz, Chloroform-*d*) δ 8.15 (d, *J* = 9.4 Hz, 1H), 7.98 (d, *J* = 9.2 Hz, 1H), 7.33 (t, *J* = 7.9 Hz, 1H), 7.14 (s, 1H), 4.04 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 177.71, 160.61, 152.63, 152.24, 138.25, 126.52, 125.72, 125.13, 114.90, 112.41, 53.72, 53.69.

methyl 8-methyl-4-oxo-4H-chromene-2-carboxylate, white solid, 65% yield

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.04 (d, *J* = 8.9 Hz, 1H), 7.58 (d, *J* = 8.0 Hz, 1H), 7.34 (t, *J* = 7.6 Hz, 1H), 7.11 (s, 1H), 4.02 (s, 3H), 2.56 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*a*) δ 178.8, 161.2, 154.5, 135.6, 128.4, 125.5, 124.4, 123.3, 114.6, 53.5, 15.6.

methyl 6,8-dimethyl-4-oxo-4H-chromene-2-carboxylate, white solid, 78% yield. ¹H NMR (400 MHz, Chloroform-*d*) δ 7.82 (s, 1H), 7.40 (s, 1H), 7.09 (s, 1H), 4.01 (s, 3H), 2.53 (s, 3H), 2.42 (s, 3H). ¹³C NMR (101 MHz, Chloroform-*d*) δ 178.8, 152.8, 152.5, 151.6, 137.0, 135. 5, 128.0, 124.1, 122.6, 114.5, 53.4, 20.9, 15.5.

methyl 6,8-dichloro-4-oxo-4H-chromene-2-carboxylate, white solid, 70% yield ¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.07 (s, 1H), 7.79 (s, 1H), 7.15 (s, 1H), 4.04 (s, 3H). ¹³**C NMR** (101 MHz, Chloroform-*d*) δ 176.5, 172.8, 160.4, 152.3, 134.9, 131.8, 126.1, 125.2, 123.9, 114.9, 53.9.

methyl 4-oxo-4H-benzo[h]chromene-2-carboxylate, white solid, 81% yield

¹**H NMR** (400 MHz, Chloroform-*d*) δ 8.65 (d, *J* = 8.0 Hz, 1H), 8.12 (d, *J* = 8.8 Hz, 1H), 7.95 (d, *J* = 8.2 Hz, 1H), 7.82 (d, *J* = 8.7 Hz, 1H), 7.74 (dq, *J* = 14.0, 6.9 Hz, 2H), 7.28 (s, 1H), 4.08 (s, 3H).

¹³**C NMR** (101 MHz, Chloroform-*d*) δ 178.1, 161.0, 153.6, 151.4, 136.2, 129.9, 128.1, 127.5, 126.2, 124.0, 121.0, 120.3, 116.2, 53.6.

ethyl 5-methoxy-4-oxo-4H-chromene-2-carboxylate, white solid, 73% yield

¹H NMR (600 MHz, Chloroform-*d*) δ 7.62 (t, *J* = 8.4 Hz, 1H), 7.16 (d, *J* = 8.5 Hz, 1H), 7.02 (s, 1H), 6.85 (d, *J* = 8.3 Hz, 1H), 4.44 (q, *J* = 7.1 Hz, 2H), 3.99 (s, 3H), 1.43 (t, *J* = 7.1 Hz, 3H).

¹³C NMR (151 MHz, Chloroform-*d*) δ 177.9, 160.4, 159.6, 157.8, 150.2, 116.3, 115.1, 110.5, 62.8, 56.4, 14.0.

Procedure: A solution of the chromone (3.0 mmol) in DMF (15 mL) was heated at 70 °C, and NCS (5.5 mmol, 1.1 equiv.) were added. The reaction mixture was heated to 80 °C for 24 h. The reaction was cooled to rt, H_2O was added and extracted with EtOAc, wash with H_2O and brine, dried over Na_2SO_4 , and filtered. Concentration in a vacuum afforded the crude product, and the residue was purified by silica gel column chromatography to give the product.

methyl 6-chloro-5-methoxy-4-oxo-4H-chromene-2-carboxylate, white solid, 60% yield

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.72 (d, J = 9.1 Hz, 1H), 7.36 (d, J = 9.1 Hz, 1H), 7.02 (s, 1H), 3.99 (d, J = 23.0 Hz, 6H). ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 176.6, 160.7, 155.8, 155.0, 150.5, 135.2, 125.9, 120.2, 116.0, 115.4, 61.9, 53.6.

Procedure: A solution of chromone (5 mmol) in CCl₄ (15 mL) was heated at 80 °C, and then AIBN (0.5 mmol, 10 mol%) and NBS (5.5 mmol, 1.1 equiv.) were added. The reaction mixture was heated to 80 °C for 7 h. The reaction was cooled to rt, then H₂O was added and extracted with CH₂Cl₂, washed with 1 N HCl and brine, dried over Na₂SO₄, and filtered. Concentration in a vacuum afforded the crude product. The residue was purified by silica gel column chromatography to give the product.

methyl 8-bromo-5-methoxy-4-oxo-4H-chromene-2-carboxylate, white solid, 72% yield

¹H NMR (600 MHz, Chloroform-*d*) δ 7.84 (d, J = 8.9 Hz, 1H), 7.05 (s, 1H), 6.78 (d, J = 8.9 Hz, 1H), 4.00 (d, J = 17.7 Hz, 6H). ¹³C NMR (151 MHz, Chloroform-*d*) δ 160.7, 159. 2, 154.0, 150.3, 137.9, 116.7, 116.3, 108.0, 102.3, 56.7.

methyl 8-bromo-5-methoxy-7-methyl-4-oxo-4H-chromene-2-carboxylate, white solid 92% yield ¹H NMR (400 MHz, Chloroform-*a*) δ 7.27 (s, 1H), 6.78 (s, 1H), 3.99 (dd, J = 14.0, 1.3 Hz, 6H), 2.56 (d, J = 1.2 Hz, 3H). ¹³C NMR (151 MHz, Chloroform-*a*) δ 177.4, 160.8, 158.2, 154.1, 150.2, 146.3, 116.5, 109.3, 104.6, 56.6, 53.6, 24.3.

Procedure: A solution of the chromone (3.0 mmol) in dry DCM at room temperature was treated with PIFA (1.2 equiv.) and I_2 (0.6 equiv.). The mixture was then stirred at room temperature for 24 h. The solution was then quenched using saturated aqueous sodium bisulfite (30 mL) and extracted using DCM (25 mL × 3). The combined organic solution was dried using anhydrous Na₂SO₄, filtered, and concentrated under reduced pressure to give the crude product. The crude material was then purified on silica gel column chromatography.

methyl 8-iodo-5-methoxy-7-methyl-4-oxo-4H-chromene-2-carboxylate, white solid, 81% yield ¹**H NMR** (400 MHz, Chloroform-*d*) δ 7.02 (s, 1H), 6.83 (s, 1H), 4.00 (d, *J* = 14.6 Hz, 6H), 2.61 (s, 3H).

3. Preparation of the racemic products ^[3]

Procedure: Nal (0.3 mmol, 1.5 equiv) and TMSCI (0.3 mmol, 1.5 equiv) were added to a solution of the corresponding chromone (0.2 mmol) in anhydrous DCM (2.0 mL), and the mixture was stirred for 10 min at room temperature. Then the reaction mixture was brought to the appropriate temperature, and 2-(trimethylsilyloxy)-furan (0.4 mmol, 2.0 equiv) was added dropwise. The reaction mixture was stirred at this temperature until the reaction was complete, as indicated by thin-layer chromatography (TLC). The reaction mixture was quenched by H_2O and extracted with DCM. The combined organic layers were washed with saturated $Na_2S_2O_3$ and brine in turn, dried over anhydrous Na_2SO_4 , and concentrated under reduced pressure.

The mixture was dissolved in THF/MeOH (3/1, 3.0 mL). At 0 °C, NiCl₂•6H₂O (0.2 mmol) and NaBH₄ (0.4 mmol, 2.0 equiv) were added. The mixture was stirred for 10 min at 0 °C. Saturated NH₄Cl solution (0.5 mL) and water (2 mL) were added. The mixture was extracted by EtOAc (5 mL). The organic layer was concentrated under reduced pressure. The residual product was purified by gel column chromatography.

4. Preparation of enantiomeric enriched product

Procedure: An oven-dried test tube was charged with the catalyst L_3 -PrEt₂/Sc(OTf)₃ (1:1, 1 mol %), **1a** (0.10 mmol), HFIP (0.02 mmol) and 3 Å MS (20 mg) in THF (1 mL) under N₂ atmosphere. The resulted solution was stirred at 20 °C for 0.5 h, then **2a** (0.3 mmol) was added into the above solution and stirred until the reaction was complete, as indicated by thin-layer chromatography (TLC).

The above mixture was dissolved in THF/MeOH (2/1, 3.0 mL). At 0 °C, NiCl₂•6H₂O (0.10 mmol) and NaBH₄ (0.2 mmol) were added. The mixture was stirred for 10 min at 0 °C. Saturated NH₄Cl solution (0.5 mL) and water (2 mL) were added. The mixture was extracted by EtOAc (5 mL). The organic layer was concentrated under reduced pressure. The residual product was purified by silica gel column chromatography.

5. Further transformation of the products into the natural products.

Procedure: BBr₃ (0.6 mL of a 2.0 M solution in CH₂Cl₂, 1.2 mmol, 3 equiv) was added slowly to a solution of **3u** (133.6 mg, 0.4 mmol, 1.0 equiv, >19:1 dr and >99% ee) in CH₂Cl₂ (2.0 mL) at -20 °C. The resulting orange solution was stirred for 30 min at -20 °C before being quenched with saturated NH₄Cl aqueous solution (2.0 mL). The organic layer was separated and the aqueous layer was extracted with CH₂Cl₂ (3×5 mL). The combined extracts were dried over Na₂SO₄ and the solvent was evaporated in vacuo. Column chromatography on silica gel (EA/ PE=2:1) provided pure Gonytolide C (120.6 mg, 94%) as a white solid.

Gonytolide C

 $[\alpha]^{28}_{D} = 23.5 \ (c = 0.4 \text{ in CHCl}_3), \text{ ref 4: } [\alpha]^{28}_{D} = 23.1 \ (c = 0.39 \text{ in CHCl}_3)$

¹**H NMR** (400 MHz, Chloroform-*d*) δ 11.39 (s, 1H), 6.39 (d, *J* = 10.4 Hz, 2H), 4.86 (dd, *J* = 7.8, 5.9 Hz, 1H), 3.74 (s, 3H), 3.19 – 2.85 (m, 2H), 2.81 – 2.53 (m, 2H), 2.43 (dq, *J* = 9.9, 7.8, 6.7 Hz, 2H), 2.31 (s, 3H).

¹³C NMR (101 MHz, Chloroform-*α*) δ 193.1, 175.6, 169.0, 161.7, 159.0, 151.6, 111.0, 108.5, 105.6, 84.0, 53.7, 39.4, 27.6, 22.7.

ESI-HRMS: calcd for $C_{15}H_{14}O_6Na^+$ ([M + Na]⁺) = 343.0788, found 343.0783.

IR (neat):2923, 1785, 1644, 1570, 1454, 1366, 1263, 1200, 1131, 1074, 1055, 1033, 936, 837, 748 cm⁻¹.

Procedure: The Gonytolide C (32 mg, 0.1 mmol) and NaH (10 mg, 0.25 mmol, 2.5 equiv) were placed into a flask under a N_2 atmosphere. THF (3 mL) was added to the flask which was warmed up to 60 °C and stirred for 16 h. After cooling to room temperature, 2 M HCl was used to quench the reaction which was extracted twice with EtOAc (10 mL x 2). The organic phase was combined, washed with brine, dried over sodium sulfate, filtered, and concentrated. Purification by column chromatography (PE/EtOAc = 3: 1) afforded Blennolide C (19.3 mg, 60%) as a yellow powder.^[5]

Blennolide C

 $[a]_D^{25}$ = +182.9 (c = 0.04, CHCl₃), ref 6: $[a]_D^{25}$ = +181.7 (c = 0.06, CHCl₃)

¹**H NMR** (400 MHz, Chloroform-*d*) δ 14.04 (s, 1H), 11.27 (s, 1H), 6.52 – 6.12 (m, 2H), 3.70 (s, 3H), 2.82 (dd, *J* = 19.2 7.0 Hz, 1H), 2.71 – 2.62 (m, 1H), 2.38 (dd, *J* = 19.2, 7.0, Hz, 1H), 2.29 (s, 3H), 2.20 – 2.08 (m, 1H), 2.02 – 1.89 (m, 1H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.9, 179.1, 171.2, 161.9, 149.9, 111.7, 108.7, 104.9, 100.1, 83.8, 66.9, 53.4, 24.3, 23.1.

ESI-HRMS: calcd for $C_{15}H_{14}O_6Na^+$ ([M + Na]⁺) = 343.0788, found 343.0785.

IR (neat): 2925, 1786, 1649, 1558, 1459, 1361, 1265, 1244, 1189, 1130, 1076, 1058, 1036, 902, 840, 731 cm⁻¹.

6. Optimization of the reaction conditions.

(a) Preliminary screening of the reaction time.

^aUnless otherwise noted, the reactions were carried out with **1a** (0.1 mmol), **2a** (0.3 mmol), **L₃-PrPr**₂/Sc(OTf)₃ (1:1, 10 mol %) in THF (0.1 M) at 30 °C. Isolated yields. The ee values were determined by UPC², the dr values were determined by the ¹H NMR.

(b) Screening of the additives.

	O ↓ ↓ O COOMe	↓ ↓ ○	1) L ₃ -PrPr ₂ /Sc(OTf) ₃ additiv THF(0.1 M), 30 2) NiCl ₂ 6H ₂ O(1.0 equiv., THF/MeOH (3/1, 0.25	₃ (1:1, 10 mol%) 'e <u>) °C, 16 h</u> NaBH₄ (2.0equiv.) M), 0 °C, 10 min	
	1a	2a			3a
Entry	additive		Yield(%)	ee (%)	dr
1	3 Å MS (20 mg))	56	>99	>19:1
2	4 Å MS (20 mg))	43	>99	19:1
3	5 Å MS (20 mg))	78	99	16:1

4	Na ₂ SO ₄ (20 mg)	41	99	16:1
5	HFIP (20 mol%)	46	96	7:1
6	3 Å MS (20 mg)+ HFIP (20 mol%)	82	>99	>19:1

^aUnless otherwise noted, the reactions were carried out with **1a** (0.1 mmol), **2a** (0.3 mmol), L_3 -**PrPr**₂/Sc(OTf)₃ (1:1, 10 mol %) in THF (0.1 M) and additive at 30 °C. Isolated yields. The ee values were determined by UPC², the dr values were determined by the ¹H NMR.

(c) Screening of the ligand.

+ COOMe		1) ligand/Sc(O1t) ₃ (1:1, 10 mol%) 3 Å MS, HFIP (20 mol%) THF (0.1 M), 30 °C, 24 h		O H	
		2) NiCl ₂ 6H ₂ O(1.0 equiv., NaBH ₄ (2.0 equiv.) THF/MeOH (3/1, 0.25 M), 0 °C, 10 min		COOMe	
	1a	2a			3a
Entry	Ligand		Yield(%)	ee (%)	dr
1	L ₃ -PrPr ₂		82	>99	>19:1
2	L ₃ -PiPr ₂		42	>99	1:1
3	L ₃ -RaPr ₂		23	85	6:1
4	L ₃ -PrMe ₂		70	78	9:1
5	L ₃ -PrEt ₂		79	>99	12:1
6	L ₃ -PrEt ₂ Me		73	>99	>19:1

^aUnless otherwise noted, the reactions were carried out with **1a** (0.1 mmol), **2a** (0.3 mmol), ligand/Sc(OTf)₃ (1:1, 10 mol %) in THF (0.1 M), 3 Å MS (20 mg), and HFIP (20 mol%) at 30 °C. Isolated yields. The ee values were determined by UPC², the dr values were determined by the ¹H NMR.

(d) Screening of the solvents.

COOMe COOMe		1) L ₃ -PrEt ₂ /Sc(OTf) ₃ (1:1, 10 mol%) 3 Å MS, HFIP (20 mol%) solvent (0.1 M), 30 °C, 24 h 2) NiCl ₂ 6H ₂ O (1.0 equiv., NaBH ₄ (2.0 equiv.) THE/MeOH (3/1, 0.25 M), 0 °C, 10 min			
	1a	2a	ζ, · ·	,	3a
Entry	solvent		Yield(%)	ee (%)	dr
1	THF		79	>99	12:1
2	CH_2CI_2		56	>99	6:1
3	CH₃CN		73	99	19:1
4	PhMe		44	95	5:1
5	EA		74	>99	6:1
6	CH ₂ CICH ₂ CI		58	94	3.5:1

^aUnless otherwise noted, the reactions were carried out with **1a** (0.1 mmol), **2a** (0.3 mmol), **L₃-PrEt₂/Sc**(OTf)₃ (1:1, 10 mol %) in solvent (0.1 M) and 3 Å MS (20 mg), and HFIP (20 mol%) at 30 °C. Isolated yields. The ee values were determined by UPC², the dr values were determined by the ¹H NMR.

(e) Screening of the temperature.

	O COOMe	o Co	1) L₃-PrEt₂/Sc (OTf) ₃ (3 Å MS, HFIP (2 THF (0.1 M), T 2) NiCl ₂ 6H ₂ O(1.0 equiv., THF/MeOH (3/1, 0.25	(1:1, 10 mol%) 20 mol%) °C, 24 h NaBH₄ (2.0 equiv.) M), 0 °C, 10 min	
1	а	2a	, , ,	<i>,</i>	3a
Entry	Temperature (°C)	Yield(%)	ee (%)	dr
1	20		83	>99	19:1
2	30		79	>99	12:1
3	40		70	96	4:1
4	50		40	90	1.3:1

^aUnless otherwise noted, the reactions were carried out with **1a** (0.1 mmol), **2a** (0.3 mmol), **L₃-PrEt**₂/Sc(OTf)₃ (1:1, 10 mol %) in THF (0.1 M), 3 Å MS (20 mg), and HFIP (20 mol%) at T °C. Isolated yields. The ee values were determined by UPC², the dr values were determined by the ¹H NMR.

(f) Screening of the amount of catalyst.

^aUnless otherwise noted, the reactions were carried out with **1a** (0.1 mmol), **2a** (3 equiv.), L_3 -**PrEt**₂/Sc(OTf)₃ (1:1, x mol %) in THF (0.1 M) and 3 Å MS (20 mg), and HFIP (20 mol%) at 20 °C. Isolated yields. The ee values were determined by UPC², the dr values were determined by the ¹H NMR. ^bIn THF (0.2 M) for 48 h.

7. Control experiments.

Procedure: An oven-dried test tube was charged with the catalyst L_3 -**PrEt**₂/Sc(OTf)₃ (1:1, 1 mol %), **1a** (0.10 mmol), HFIP (0.02 mmol) and 3 Å MS (20 mg) THF (1 mL) under N₂ atmosphere. The resulted solution was stirred at 20 °C for 0.5 h, then **2a** (0.3 mmol) was added into the above solution and stirred until the reaction was complete, as indicated by thin-layer chromatography (TLC). The mixture crude purified by a short silica gel column chromatography to remove the 3 Å MS and catalyst. the solvent removed in

vacuo to get the crude 3aa, then the catalyst L_3 -**PrEt**₂/Sc(OTf)₃ (1:1, 5 mol %) ,additive and 1 ML THF was added. The resulted solution was stirred at 30 °C for 4 h.

The above mixture was dissolved in THF/MeOH (2/1, 3.0 mL). At 0 °C, NiCl₂•6H₂O (0.10 mmol) and NaBH₄ (0.2 mmol) were added. The mixture was stirred for 10 min at 0 °C. Saturated NH₄Cl solution (0.5 mL) and water (2 mL) were added. The mixture was extracted by EtOAc (5 mL). The organic layer was concentrated under reduced pressure. The residual product was purified by silica gel column chromatography. The ee and dr value determinded by UPC².

>99%ee, 96:4 dr

The reo-oxo-Michael reaction product was detected and isolated during the column chromatography with silica gel. But this polysubstituted olefin cann't converted to **3aa** again under the L₃-PrEt₂/Sc(OTf)₃ catalysis.

8. The list of substrates scope.

^aUnless otherwise noted, the reactions were carried out with **1** (0.1 mmol), **2a** (0.3 mmol), **L₃-PrEt₂**/Sc(OTf)₃ (1:1, 1 mol %) in THF (0.1 M) at 20 °C for 16 hours. Then, NiCl₂ 6H₂O (1.0 equiv), NaBH₄ (2.0 equiv) in THF/MeOH (3/1, 0.25 M) at 0 °C for 10 min. Isolated yield of **3**. The ee values were determined by UPC², and the d.r. values were determined by the ¹H NMR. ^bL₃-PrEt₂/Sc(OTf)₃ (5 mol %). ^cAt 50 °C. ^dDCE/MeCN (3:7, 0.1 M) as the solvent.

Scope limitation:

9. The analytical and spectral characterization data of the products

3a: methyl (R)-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, white solid **3a** was isolated in 83% yield (23.9 mg) and >99% ee, 19:1 dr. [α] ³⁰_D = 76.8 (*c* = 0.194 in CHCl₃). M.p.= 148.1-150.2 °C

UPC² (chiral IC-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 16.1 min, t₂= 19.4 min; (minor isomer) t₁ = 18.1 min, t₂ = 13.6 min

¹**H** NMR (400 MHz, Chloroform-*d*). δ 7.85 (d, *J* = 9.5 Hz, 1H), 7.61 – 7.46 (m, 1H), 7.16 – 6.98 (m, 2H), 4.96 – 4.78 (m, 1H), 4.35 (t, *J* = 7.1 Hz, 1H), 3.70 (s, 3H), 3.17 – 2.87 (m, 2H), 2.80 – 2.66 (m, 1H), 2.67 – 2.55 (m, 1H), 2.50 (t, *J* = 8.2 Hz, 2H), 2.27 (p, *J* = 7.5 Hz, 1H).

¹³C NMR (100 MHz, CDCl₃).δ 188.0, 175.7, 169.1, 159.8, 136.9, 126.8, 122.4, 120.4, 118.2, 84.5, 81.2, 53.5, 40.2, 27.7, 22.1.

ESI-HRMS: calcd for $C_{15}H_{14}O_6Na^+$ ([M + Na]⁺) = 329.0422, found 329.0416.

3b: methyl (R)-5-methoxy-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, white solid **3b** was isolated in 38% yield (12.1 mg) and >99% ee/75% ee, >19:1 dr. [α]²⁹_D = 73.4 (c = 0.158 in CHCl₃). M.p.= 194.2-196.1 °C

UPC² (chiral IA-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 6.2 min, t₂ = 11.2 min.

¹H NMR (400 MHz, Chloroform-*d*). δ 7.45 (t, *J* = 8.4 Hz, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 6.57 (d, *J* = 8.4 Hz, 1H), 4.87 (dd, *J* = 7.9, 5.7 Hz, 1H), 3.90 (s, 3H), 3.71 (s, 3H), 3.12 – 2.84 (m, 2H), 2.82 – 2.53 (m, 2H), 2.53 – 2.29 (m, 2H).

¹³C NMR (100 MHz, CDCl₃). δ 186.4, 175.7, 169.0, 161.3, 160.5, 136.8, 110.9, 110.1, 104.8, 84.0, 56.3, 53.5, 41.4, 27.7, 22.0. **ESI-HRMS**: calcd for $C_{16}H_{16}O_7Na^+$ ([M + Na]⁺) = 343.0788, found 343.0783. **IR** (neat): 2923, 1782, 1756, 1686, 1603, 1577, 1473, 1438, 1339, 1259, 1197, 1134, 1103, 1077, 1048, 790, 745 cm⁻¹.

	Retention Time	Area	% Area
1	4.081	13718	0.80
2	4.567	1695	0.10
3	6.195	1683658	98.64
4	11.211	7737	0.45

3c: methyl (R)-5-chloro-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

4

6.698

Following the typical procedure, white solid **3c** was isolated in 34% yield (11.2 mg) >99% ee/75% ee , 6:1 dr. [α] ²⁷_D = 72.0 (c = 0.118 in CHCl₃). M.p.= 123.1-124.5 °C

UPC² (chiral AS-3 column), CO₂/MeOH = 95/5, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 5.6 min, t₂ = 6.7 min; (minor isomer) t₁ = 3.8 min, t₂ = 4.3 min.

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.41 (t, J = 8.1 Hz, 1H), 7.15 – 6.95 (m, 2H), 4.94 – 4.88 (m, 1H), 3.74 (d, J = 2.5 Hz, 3H), 3.19 – 2.92 (m, 2H), 2.79 – 2.52 (m, 2H), 2.44 (dtd, J = 10.0, 7.5, 7.0, 2.9 Hz, 2H).

¹³C NMR (100 MHz, CDCl₃). δ 185.9, 175.5, 168.6, 161.2, 135.5, 134.2, 125.6, 117.8, 117.1, 84.1, 80.9, 53.6, 42. 2, 27.7, 21.9. ESI-HRMS: calcd for C₁₅H₁₃ClO₆Na⁺ ([M + Na]⁺) = 347.0293 and 349.0263, found 347.0287 and 349.0255.

IR (neat): 2933, 1851, 1785, 1755, 1698, 1595, 1566, 1451, 1318, 1266, 1196, 1132, 1071, 1051, 949, 901, 767 cm⁻¹:

26899

0.39

3d

3d: methyl (R)-6-methoxy-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, white solid 3d was isolated in 49% yield (15.6 mg) and 98% ee/94% ee, 3:1 dr. $[\alpha]^{26}_{D} = 51.2$ (c = 0.186 in CHCl₃). M.p.= 134.3-135.9 °C

UPC² (chiral OD-3 column), CO₂/MeOH = 90/10, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 5.1 min, t₂ = 5.9 min; (minor isomer) $t_1 = 4.2 \text{ min}, t_2 = 3.9 \text{ min}.$

1H NMR (400 MHz, Chloroform-d). δ 7.18 – 7.10 (m, 1H), 7.07 – 6.96 (m, 1H), 4.94 – 4.85 (dd, J = 8.4, 5.6 Hz, 1H), 3.80 (s, 3H), 3.70 (d, J = 2.4 Hz, 3H), 3.01 (m, 2H), 2.87 – 2.40 (m, 4H).

¹³C NMR (100 MHz, CDCl₃). δ 188.1, 175.7, 169.3, 154.7, 154.4, 125.9, 120.2, 119.5, 107.2, 84.6, 81.2, 55.8, 53.5, 40.2, 27.9, 22.1. **ESI-HRMS**: calcd for $C_{16}H_{16}O_7Na^+$ ([M + Na]⁺) = 343.0788, found 343.0782. **IR** (neat): 2921, 1785, 1691, 1488, 1432, 1283, 1203, 1131, 1058, 1033, 943, 835, 765 cm⁻¹.

	Retention Time	Area	% Area
1	3.919	35823	1.57
2	4.166	539229	23.63
3	5.100	1690880	74.09
4	5.870	16114	0.71

3e: methyl (R)-6-fluoro-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, white solid **3e** was isolated in 64% yield (19.6 mg) and 99% ee/79% ee, 5:1 dr. $[\alpha]^{25}_{D} = 58.3$ (c = 0.312 in CHCl₃). M.p.= 138.1-140.3 °C

UPC² (chiral IC-3 column), CO₂/MeOH = 91/9, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 7.4 min, t₂ = 8.3 min; (minor isomer) t₁ = 7.8 min, t₂ = 6.4 min.

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.49 (dt, *J* = 8.0, 2.9 Hz, 1H), 7.32 – 7.22 (m, 1H), 7.15 – 7.04 (m, 1H), 4.90 (dd, *J* = 7.9, 6.0 Hz, 1H), 3.71 (d, *J* = 3.0 Hz, 3H), 3.24 – 2.86 (m, 2H), 2.86 – 2.55 (m, 2H), 2.54 – 2.37 (m, 2H).

¹³**C** NMR (100 MHz, CDCl₃).δ 187.2, 175.5, 168.8, 158.9 (d, *J* = 244.4 Hz), 155.9, 124.5 (d, *J* = 25.3 Hz), 120.9 (d, *J* = 6.1 Hz), 119.9 (d, *J* = 7.1 Hz), 112.07 (d, *J* = 24.2 Hz), 84.7, 81.0, 53.6, 40.0, 27.7, 22.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -119.81.

ESI-HRMS: calcd for $C_{15}H_{13}FO_6Na^+$ ([M + Na]⁺) = 331.0588, found 331.0583.

4

8.345

IR (neat): 2922, 1785, 1697, 1621, 1484, 1437, 1273, 1273, 1190, 1126, 1071, 1034, 943, 835 cm⁻¹.

3877

0.16

3f: methyl (R)-6-bromo-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3f** was isolated in 78% yield (28.6 mg) and 94% ee/89% ee, 1.2:1 dr. [α] 25 _D = 5.0 (*c* = 0.222 in CHCl₃).

UPC² (chiral IC-3 column), CO₂/MeOH = 90/10, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 19.9 min, t₂ = 23.8 min; (minor isomer) $t_1 = 21.0$, $t_2 = 16.4$ min. **¹H NMR** (400 MHz, Chloroform-*a*). δ 7.95 (t, J = 2.8 Hz, 1H), 7.62 (ddd, J = 8.7, 6.1, 2.5 Hz, 1H), 7.00 (dd, J = 20.7, 8.8 Hz, 1H), 4.90

(dd, J = 7.6, 6.4Hz, 1H), 3.72 (d, J = 2.4 Hz, 3H), 3.50 - 2.87 (m, 2H), 2.86 - 2.65 (m, 1H), 2.65 - 2.31 (m, 3H).

(dd, J = 7.6, 0.412, 111, 3.72 (d, <math>J = 2.412, 31), 3.85 = 2.67 (m, 21), 2.65 = 2.65 (m, 11), 2.65 = 2.67 (m, 51).¹³C NMR (100 MHz, CDCl₃). δ 187.7, 175.9, 168.8, 158.4, 139.2, 129.2, 121.5, 120.1, 115.2, 85.3, 79.7, 53.7, 41.1, 27.8, 22.0. ESI-HRMS: calcd for C₁₅H₁₃BrO₆Na⁺ ([M + Na]⁺) = 390.9788 and 392.9767, found 390.9778 and 392.9754. IR (neat): 2921, 2850, 1787, 1754, 1697, 1649, 1599, 1536, 1468, 1416, 1275, 1199, 1138, 1061, 833, 765 cm⁻¹.

	Retention Time	Area	% Area
1	16.443	264314	5.48
2	19.887	2407599	49.89
3	21.038	2081699	43.14
4	23.851	72110	1.49

3g: methyl (R)-7-fluoro-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, white solid **3g** was isolated in 66% yield (20.2 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 31.1 (c = 0.364 in CHCl₃). M.p.= 174.1-178.2 °C

UPC² (chiral AD-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 4.0 min, t₂ = 5.4 min; (minor isomer) t₁ = 2.6 min, t₂ = 4.5 min

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.99 – 7.74 (m, 1H), 6.94 – 6.74 (m, 2H), 4.91 (dd, *J* = 7.7, 6.2 Hz, 1H), 3.72 (s, 3H), 3.24 – 2.83 (m, 2H), 2.83 – 2.55 (m, 2H), 2.55 – 2.35 (m, 2H).

¹³C NMR (100 MHz, CDCl₃). δ 186.5, 175.9, 169.2 (d, *J* = 256.0 Hz), 168.7, 166.6, 161.4, 129.52 (d, *J* = 11.1 Hz), 117.3, 111.0 (d, *J* = 22.0 Hz), 105.34 (d, *J* = 25.1 Hz), 85.1, 80.9, 53.7, 39.9, 27.7, 22.0.

¹⁹**F NMR** (376 MHz, CDCl₃) δ -98.42.

ESI-HRMS: calcd for $C_{15}H_{13}^{-}FO_6Na^+$ ([M + Na]⁺) = 331.0588, found 331.0581.

IR (neat): 2922, 1785, 1756, 1695, 1440, 1285, 1261, 1199, 978, 856, 817, 753 cm⁻¹.

t .

3h: methyl (R)-7-bromo-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

2

3

4

7.828

8.501

11.370

Following the typical procedure, colourless oil **3h** was isolated in 82% yield (31.0 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 31.1 (c = 0.588 in CHCl₃). M.p.= 178.1-164.3 °C

UPC² (chiral AD-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 8.5 min, t₂ = 11.4 min₁ (minor isomer) t₁ = 4.9 min, t₂ = 7.8 min₂

¹**H** NMR (400 MHz, Chloroform-*d*). δ 7.70 (d, *J* = 8.4 Hz, 1H), 7.34 (d, *J* = 1.8 Hz, 1H), 7.22 (dd, *J* = 8.4, 1.8 Hz, 1H), 4.90 (dd, *J* = 7.5, 6.3 Hz, 1H), 3.72 (s, 3H), 3.19 – 2.84 (m, 2H), 2.80 – 2.54 (m, 2H), 2.51 – 2.38 (m, 2H).

 $\label{eq:stars} {}^{13}\textbf{C} \mbox{ NMR (100 MHz, CDCl_3)}, \delta 187.0, 175.4, 168.6, 159.8, 131.3, 127.9, 126.0, 121.3, 119.2, 84.9, 80.8, 53.6, 40.0, 27.6, 21.9, \\ \textbf{ESI-HRMS}: calcd for C_{15}H_{13}BrO_6Na^+ ([M+Na]^+) = 390.9788 \mbox{ and } 392.9767, found 390.9782 \mbox{ and } 392.9760. \\ \end{tabular}$

IR (neat): 2922, 1785, 1695, 1594, 1566, 1418, 1283, 1202, 1137, 1074, 944, 913, 879, 814, 752 cm⁻¹.

18645

10345528

11899

0.17

96.24

0.11

3i: methyl (R)-7-methyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3i** was isolated in 52% yield (15.7 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 53.8 (*c* = 0.234 in CHCl₃). M.p.= 148.1-150.2 °C

UPC² (chiral OX-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 3.6 min, t₂ = 5.7 min; (minor isomer) t₁ = 2.7 min, t₂ = 4.9 min

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.73 (d, *J* = 8.0 Hz, 1H), 7.00 – 6.79 (m, 2H), 4.89 (dd, *J* = 8.0, 5.6 Hz, 1H), 3.71 (s, 3H), 3.15 – 2.81 (m, 2H), 2.84 – 2.41 (m, 4H), 2.39 (s, 3H).

¹³C NMR (100 MHz, CDCl₃).δ 187.5, 175.7, 169.1, 148.7, 126.7, 123.7, 118.1, 118.1, 84.5, 81.1, 40.1, 27.7, 22.0.

ESI-HRMS: calcd for $C_{16}H_{16}O_6Na^+$ ([M + Na]⁺) = 327.0839, found 327.0833.

IR (neat): 2922, 1785, 1757, 1688, 1617, 1507, 1457, 1294, 1250, 1154, 1073, 817, 751 cm⁻¹.

	Retention Time	Area	% Alea
1	2.674	57614	0.90
2	3.565	6344676	98.82
3	4.947	3428	0.05
4	5.704	14948	0.23

3j: methyl (R)-8-methyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3j** was isolated in 64% yield (19.4 mg) and >99% ee, 19:1 dr. [α] ²⁵_D = 76.2 (c = 0.328 in CHCl₃). M.p.= 148.1-150.2 °C

UPC² (chiral OX-3 column), CO₂/MeOH = 95/5, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 3.6, t₂ = 5.7 min; (minor isomer) t₁ = 2.8 min, t₂ = 2.5 min.

¹**H NMR** (400 MHz, Chloroform-*d*). 7.69 (dd, *J* = 7.9, 1.7 Hz, 1H), 7.41 (ddd, *J* = 7.2, 1.9, 1.0 Hz, 1H), 6.97 (t, *J* = 7.6 Hz, 1H), 4.92 (dd, *J* = 8.2, 4.6 Hz, 1H), 3.69 (s, 3H), 3.20 - 2.87 (m, 2H), 2.51 (d, *J* = 8.2 Hz, 4H), 2.29 (s, 3H).

¹³C NMR (100 MHz, CDCl₃). δ 188.3, 175.7, 169.1, 158.0, 137.7, 127.5, 124.4, 121.9, 120.1, 84.9, 81.2, 53.5, 40.3, 27.6, 22.0, 15.6. **ESI-HRMS**: calcd for C₁₆H₁₆O₆Na⁺ ([M + Na]⁺) = 327.0839, found 327.0833.

IR (neat): 2922, 1785, 1757, 1691, 1600, 1431, 1297, 1202, 1137, 1077, 1038, 944, 790, 745 cm⁻¹.

	Retention Time	Area	% Area
1	2.512	161340	2.93
2	2.804	245960	4.47
3	3.565	5087979	92.45
4	5.737	8341	0.15

3k: methyl (R)-8-bromo-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3k** was isolated in 76% yield (28.0 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 27.0 (c = 0.508 in CHCl₃). M.p.= 148.1-150.2 °C

UPC² (chiral OX-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 3.8 min, t₂ = 3.1 min; (minor isomer) t₁ = 2.5 min, t₂ = 2.3 min

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.80 (ddd, *J* = 7.8, 5.3, 1.6 Hz, 2H), 6.97 (t, *J* = 7.8 Hz, 1H), 4.95 (dd, *J* = 7.4, 4.6 Hz, 1H), 3.72 (s, 3H), 3.25 – 2.79 (m, 3H), 2.73 – 2.36 (m, 3H).

¹³C NMR (100 MHz, CDCl₃). δ 187.3, 175.7, 168.4, 156.3, 139.9, 126.0, 123.0, 121.5, 111.9, 85.8, 80.9, 53.7, 40.2, 27.5, 22.2.

ESI-HRMS: calcd for $C_{15}H_{13}BrO_6Na^+$ ([M + Na]⁺) = 390.9788 and 392.9767, found 390.9779 and 392.9758.

IR (neat): 2921, 1785, 1757, 1697, 1505, 1462, 1438, 1285, 1126, 1003, 867, 750 cm⁻¹.

4

3.841

150881

96.74

3I methyl (R)-6,8-dimethyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3I** was isolated in 48% yield (18.3 mg) and >99% ee/95% ee, 3:1 dr. $[\alpha]^{25}_{D} = 34.3$ (c =0.254 in CHCl₃).

UPC² (chiral AD-3 column), CO₂/MeOH = 96/4, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 8.3 min, t₂ = 13.8 min, t₂ = 13.8 min, t₂ = 13.8 min, t₂ = 13.8 min, t₃ = 15.8 min, t₄ = 10.8 min, t₅ = 10.8 min, t₅ = 10.8 min, t₅ = 10.8 min, t₅ = 10.8 min, t₁ = 10.8 min, t₂ = 10.8 min, t₃ = 10.8 min, t₄ = 10.8 min, t₅ = 10.8 min, t₅ = 10.8 min, t₁ = 10.8 min, t₂ = 10.8 min, t₃ = 10.8 min, t₄ = 10.8 min, t₅ = 10.8 min, t₁ = 10.8 min, t₁ = 10.8 min, t₂ = 10.8 min, t₃ = 10.8 min, t₄ = 10.8 min, t₅ = 10.8 min, t₁ = 10.8 min, t₂ = 10.8 min, t₃ = 10.8 min, t₄ = 10.8 min, t₅ = 10.8 min, t_{5} min; (minor isomer) $t_1 = 6.2 \text{ min}$, $t_2 = 11.1 \text{ min}$.

¹H NMR (400 MHz, Chloroform-*d*). δ 7.48 (s, 1H), 7.23 (s, 1H), 4.91 (dd, *J* =5.6 ,2.8 Hz, 1H), 3.69 (d, *J* = 3.1 Hz, 3H), 3.23 – 2.86 (m, 2H), 2.86 – 2.67 (m, 1H), 2.77 – 2.41 (m, 4H), 2.27 (s, 3H), 2.25 (s, 3H). $^{13}\textbf{C}$ NMR (100 MHz, CDCI₃). δ 163.9, 149.5, 148.1, 146.7, 126.5, 124.5, 79.8, 63.5, 27.6, 26.0, 21.0, 19.8, 19.0.

ESI-HRMS: calcd for $C_{17}H_{18}O_6Na^+$ ([M + Na]⁺) = 341.0996, found 341.0992. IR (neat): 2922, 1786, 1757, 1690, 1612, 1476, 1266, 1176, 1063, 1040 cm⁻¹.

	Retention Time	Area	% Area
1	6.245	2709713	20.07
2	8.308	10623626	78.67
3	11.062	151724	1.12
4	13.810	18274	0.14

3m: methyl (R)-6,8-dichloro-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate Following the typical procedure, colourless oil **3m** was isolated in 65% yield (22.8 mg) and 96% ee/80% ee, 1.1:1 dr. $[\alpha]^{25}_{D} = -1.0$ (*c*

= 0.20 in CHCl₃). **UPC**² (chiral AS-3 column), CO₂/MeOH = 95/5, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 5.0 min, t₂ = 6.7 min; (minor isomer) t₁ = 2.7 min, t₂ = 3.1 min.

¹**H NMR** (400 MHz, Chloroform-*d*). δ 8.49 (d, *J* = 5.0 Hz, 1H), 7.83 (s, 1H), 7.14 (d, *J* = 5.8 Hz, 1H), 4.95 (t, *J* = 4.4 Hz, 1H), 4.19 – 3.75 (d, *J* = 2.8 Hz, 3H), 3.51 – 2.93 (m, 3H), 2.66 – 2.38 (m, 3H).

¹³C NMR (100 MHz, CDCl₃). δ 186.2, 175.6, 168.4, 154.2, 136.3, 127.8, 124.8, 124.4, 121.9, 86.5, 90.4, 53.9, 40.1, 27.5, 22.2. **ESI-HRMS**: calcd for C₁₅H₁₂Cl₂O₆Na⁺ ([M + Na]⁺) =380.9903 and 382.9874, found 380.9898 and 382.9868.

IR (neat): 2923, 1787, 1755, 1703, 1592, 1455, 1262, 1239, 1177, 1065, 1038, 879, 818, 758 cm⁻¹.

	Retention Time	Area	% Area
1	2.683	3065564	34.48
2	3.085	753282	8.47
3	5.045	4919926	55.33
4	6.712	153361	1.72

3n: methyl (R)-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)-3,4-dihydro-2H-benzo[h]chromene-2-carboxylate

Following the typical procedure, colourless oil **3n** was isolated in 72% yield (24.4 mg) and >99% ee/84% ee, 12:1 dr. [α] ²⁵_D = -35.5 (*c* = 0.442 in CHCl₃). M.p.= 148.1-150.2 °C

UPC² (chiral AD-3 column), CO₂/MeOH = 95/5, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 7.0 min, t₂ = 10.4 min (minor isomer) t₁ = 5.3 min, t₂ = 8.4 min

¹**H NMR** (400 MHz, Chloroform-*d*). δ 8.25 (d, *J* = 8.3 Hz, 1H), 7.81 (dd, *J* = 8.5, 2.8 Hz, 2H), 7.73 – 7.63 (m, 1H), 7.64 – 7.56 (m, 1H), 7.46 (d, *J* = 8.7 Hz, 1H), 5.03 (dd, *J* = 8.2, 5.1 Hz, 1H), 3.66 (s, 3H), 3.35 – 3.00 (m, 2H), 2.91 – 2.41 (m, 4H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 187.5, 175.8, 169.0, 158.0, 137.8, 130.2, 127.9, 127.0, 124.3, 123.4, 122.2, 121.0, 115.2, 85.5, 81.2, 53.6, 53.6, 39.7, 27.7, 22.1.

ESI-HRMS: calcd for $C_{19}H_{16}O_6Na^+$ ([M + Na]⁺) = 363.0839, found 363.0834.

IR (neat): 2924, 1786, 1758, 1682, 1626, 1598, 1575, 1509, 1438, 1351, 1283, 1257, 1198, 1132, 1096, 1069, 1038, 943, 815, 751 cm⁻¹.

	Retention Time	Area	% Area
1	5.267	532038	4.51
2	6.987	11070665	93.91
3	8.489	104364	0.89
4	10.456	81396	0.69

3o: methyl (R)-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **30** was isolated in 48% yield (14.7 mg) and 99% ee/95% ee, 12:1 dr. $[\alpha]^{25}_{D} = 52.6$ (c =0.268 in CHCl₃).

UPC² (chiral AD-3 column), CO₂/MeOH = 90/10, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 3.0 min, t₂ = 5.4 min; (minor isomer) $t_1 = 2.4$ min, $t_2 = 3.4$ min.

¹H NMR (400 MHz, Chloroform-*d*). δ 7.36 – 7.21 (m, 2H), 6.79 (dd, *J* = 9.2, 3.7 Hz, 1H), 4.88 (dd, *J* = 7.8, 6.0 Hz, 1H), 3.98 (d, *J* = 2.1 Hz, 3H), 3.73 (s, 3H), 3.15 – 2.84 (m, 2H), 2.82 – 2.54 (m, 2H), 2.43 (tdd, *J* = 13.3, 11.0, 6.3 Hz, 2H). ¹³C NMR (100 MHz, CDCl₃). δ 186.3, 175.6, 168.8, 156.3 (d *J* = 2.1 Hz), 151.7 (d *J* = 241.1 Hz), 147.3 (d *J* = 12.0 Hz), 124.1 (d

22.1 Hz), 115.2, 112.6, 84.2, 81.0, 62.0, 53.6, 41.3, 27.7, 22.0.

¹⁹F NMR (376 MHz, CDCl₃) δ -137.57.

ESI-HRMS: calcd for $C_{16}H_{15}FO_6Na^+$ ([M + Na]⁺) = 361.0694, found 361.0688.

IR (neat): 2922, 1784, 1695, 1613, 1479, 1413, 1266, 1194, 1060, 1038, 941, 820 cm⁻¹.

	Retention Time	Area	% Area
1	2.368	183528	9.20
2	3.021	1784765	89.50
3	3.388	9350	0.47
4	5.444	16531	0.83

3p: methyl (R)-6-bromo-5-methoxy-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate Following the typical procedure, colourless oil **3p** was isolated in 36% yield (12.7 mg) and 98% ee/94% ee, 5:1 dr. [α] ²⁵_D = 20.6 (c = 0.248 in CHCl₃).

UPC² (chiral AS-3 column), CO₂/MeOH = 95/5, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 4.3 min, t₂ = 6.4 min, (minor isomer) $t_1 = 3.0 \text{ min}, t_2 = 3.4 \text{ min}$

¹**H NMR** (600 MHz, Chloroform-*d*) δ 7.52 (d, *J* = 9.2 Hz, 1H), 6.85 (dd, *J* = 33.2, 9.0 Hz, 1H), 4.96 – 4.86 (m, 1H), 3.88 (s, 3H), 3.74 (s, 3H), 3.12 - 2.89 (m, 2H), 2.85 - 2.55 (m, 2H), 2.51 - 2.38 (m, 2H). ¹³**C NMR** (151 MHz, Chloroform-*d*) δ 175.5, 168.6, 159.3, 155.9, 136.8, 122.6, 116.0, 114.7, 114.5, 84.3, 80.8, 53.7, 61.6, 41.1, 27.7,

22.0.

ESI-HRMS: calcd for $C_{16}H_{15}CIO_6Na^+$ ([M + Na]⁺) = 377.0399 and 379.0369, found 377.0394 and 379.0363.

IR (neat): 2921, 2851, 1786, 1756, 1697, 1592, 1462, 1442, 1399, 1319, 1198, 1132, 1508, 1035, 818, 766 cm⁻¹.

	Retention Time	Area	% Area
1	3.072	750697	18.27
2	3.441	46964	1.14
3	4.347	3235834	78.75
4	6.356	75287	1.83

3q: methyl (R)-8-bromo-5-methoxy-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate Following the typical procedure, colourless oil **3q** was isolated in 59% yield (23.3 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 37.0 (c = 0.30

in CHCl₃). M.p.= 148.1-150.2 °C **UPC**² (chiral IC-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 6.5 min, t₂ = 3.8 min₁ (minor isomer) t₁ = 4.2 min, t₂ = 3.5 min₂

¹H NMR (400 MHz, Chloroform-d). δ 7.67 (d, J = 9.0 Hz, 1H), 6.52 (d, J = 9.0 Hz, 1H), 4.92 (dd, J = 7.2, 4.7 Hz, 1H), 3.90 (s, 3H), 3.72 (s, 3H), 3.17 – 2.83 (m, 3H), 2.67 – 2.40 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 185.8, 168.3, 159.8, 157.3, 139.5, 111.8, 106.0, 102.2, 85.4, 80.8, 56.4, 53.6, 41.5, 27.6, 22.0. **ESI-HRMS**: calcd for C₁₆H₁₅BrO₆Na⁺ ([M + Na]⁺) = 420.9893 and 422.9873, found 420.9889 and 422.9867.

IR (neat): 2923, 1784, 1768, 1690, 1589, 1565, 1473, 1407, 1317, 1251, 1184, 1117, 1049, 836, 805, 753 cm⁻¹.

3

4

6.474

9.808

3961999

8178

99.36

0.21

3r: methyl (R)-8-iodo-5-methoxy-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil 3r was isolated in 69% yield (30.7 mg) and >99% ee, >19:1 dr. [α] 25 _D = 34.3 (c = 0.51 in CHCl₃). M.p.= 148.1-150.2 °C

UPC² (chiral AS-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 16.1 min, t₂ = 19.4 min; (minor isomer) t₁ = 13.6 min, t₂ = 18.1 min.

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.87 (d, J = 8.9 Hz, 1H), 6.45 (d, J = 8.9 Hz, 1H), 4.92 (dd, J = 8.0, 4.3 Hz, 1H), 3.90 (s, 3H), 3.72 (s, 3H), 3.18 - 2.86 (m, 3H), 2.65 - 2.41 (m, 3H).

¹³C NMR (101 MHz, Chloroform-*d*) δ 186.0, 175.8, 168.3, 160.8, 159.6, 145.5, 111.6, 107.3, 85.4, 80.8, 74.2, 56.4, 53.6, 41.4, 27.9, 21.9.

ESI-HRMS: calcd for $C_{16}H_{16}IO_6^+$ ([M + H]⁺) = 446.9939, found 446.9925.

IR (neat): 2923, 2852, 1781, 1757, 1687, 1582, 1558, 1469, 1436, 1400, 1306, 1253, 1182, 1117, 1094, 1049, 803, 734 cm⁻¹.

	Retention Time	Area	% Area
1	13.617	78360	0.76
2	16.078	9739434	94.73
3	18.098	445324	4.33
4	19.424	17978	0.17

3s: methyl (R)-5-methoxy-7-methyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3s** was isolated in 32% yield (10.7 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 25.6 (c = 0.164 in CHCl₃). M.p.= 170.3-174.2 °C

UPC² (chiral IA-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 9.2 min, t₂ = 14.3 min.

¹**H NMR** (600 MHz, Chloroform-*d*) δ 6.54 (s, 1H), 6.37 (s, 1H), 4.86 (dd, *J* = 8.1, 5.5 Hz, 1H), 3.89 (s, 3H), 3.71 (s, 3H), 3.09 – 2.81 (m, 2H), 2.66 (dddd, *J* = 84.2, 17.9, 10.2, 6.6 Hz, 2H), 2.51 – 2.37 (m, 2H), 2.35 (s, 3H).

¹³C NMR (100 MHz, CDCl₃). δ 186.1, 175.8, 169.0, 161.2, 160.4, 148.8, 110.6, 105.9, 83.9, 81.13, 56.2, 53.5, 41.3, 27.7, 22.6, 22.0. ESI-HRMS: calcd for C₁₇H₁₈O₇Na⁺ ([M + Na]⁺) = 337.0945, found 337.0938.

IR (neat): 2921, 1785, 1739, 1681, 1656, 1616, 1566, 1464, 1348, 1259, 1225, 1196, 1071, 1051, 833, 753 cm⁻¹.

		Retention Time	Area	% Area
ſ	1	9.229	1962482	99.76
	2	14.383	4705	0.24

3t: methyl (R)-8-bromo-5-methoxy-7-methyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate Following the typical procedure, colourless oil **3t** was isolated in 68% yield (27.8 mg) and >99% ee, >19:1 dr. [α] ²⁵_D = 5.8 (c = 0.204 in CHCl₃). M.p.= 143.2-145.7 °C

UPC² (chiral AS-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 6.3 min, t₂ = 9.3 min; (minor isomer) t₁ = 3.5 min, t₂ = 4.2 min.

¹**H NMR** (400 MHz, Chloroform-*d*). δ 6.51 (s, 1H), 4.91 (dd, *J* = 7.6, 4.3 Hz, 1H), 3.89 (s, 3H), 3.72 (s, 3H), 3.16 – 2.85 (m, 3H), 2.65 – 2.38 (m, 6H).

¹³C NMR (100 MHz, CDCl₃). δ 185.7, 175.9, 168.4, 159.0, 157.3, 148.1, 109.8, 107.2, 104.9, 85.4, 81.2, 56.3, 53.6, 41.3, 27.6, 24.5, 22.1.

ESI-HRMS: calcd for $C_{17}H_{17}BrO_7Na^+$ ([M + Na]⁺) = 435.0050 and 437.0029, found 435.0047 and 437.0020. **IR** (neat): 2922, 1784, 1686, 1598, 1547, 1464, 1392, 1343, 1258, 1131, 1076, 1053, 821, 752 cm⁻¹.

3u: methyl (R)-8-iodo-5-methoxy-7-methyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate

Following the typical procedure, colourless oil **3u** was isolated in 69% yield (31.4 mg) and 99% ee, >19:1 dr. [α] ²⁵_D = -6.1 (c = 0.62 in CHCl₃). M.p.= 185.1-189.2 °C

UPC² (chiral ÅD-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 8.4 min; t₂ = 11.1 min; (minor isomer) t₁ = 6.2 min, t₂ = 4.8 min.

¹**H NMR** (400 MHz, Chloroform-*d*). δ 6.58 (s, 1H), 4.91 (dd, *J* = 8.3, 4.0 Hz, 1H), 3.89 (s, 3H), 3.71 (s, 3H), 3.19 – 2.80 (m, 3H), 2.69 – 2.41 (m, 6H).

¹³**C NMR** (100 MHz, CDCl₃). δ 185.8, 175.9, 168. 5, 160.2, 159.6, 151.8, 109.3, 107.1, 85.4, 81.5, 81.0, 56.3, 53.6, 41.2, 29.8, 28.0, 21.9.

ESI-HRMS: calcd for C₁₇H₁₇IO₇Na⁺ ([M + Na]⁺) = 482.9911 and 483.9945, found 482.9905 and 483.9939. **IR** (neat):2924, 1783, 1683, 1592, 1541, 1462, 1383, 1340, 1257, 1208, 1132, 1074, 1051, 752 cm⁻¹.

	Retention Time	Area	% Area
1	4.753	19501	0.52
2	6.231	64263	1.73
3	8.452	3627230	97.38
4	11.100	13940	0.37

3b': methyl (R)-8-iodo-5-methoxy-7-methyl-4-oxo-2-((S)-5-oxotetrahydrofuran-2-yl)chromane-2-carboxylate Following the typical procedure, colourless oil **3b'** was isolated in 38% yield (12.5 mg) >99% ee, >19:1 dr. [α] ²⁵_D = 89.6 (c = 0.23 in CHCl₃).

UPC² (chiral OX-3 column), CO₂/MeOH = 93/7, flow rate 1.5 mL/min, λ = 254 nm, retention time: (major isomer) t₁ = 3.5 min, t₂ = 5.3 min;

¹**H NMR** (400 MHz, Chloroform-*d*). δ 7.44 (t, *J* = 8.4 Hz, 1H), 6.70 (d, *J* = 8.3 Hz, 1H), 6.56 (d, *J* = 8.4 Hz, 1H), 4.88 (dd, *J* = 8.0, 5.7 Hz, 1H), 4.28 – 4.05 (m, 2H), 3.90 (s, 3H), 3.18 – 2.81 (m, 2H), 2.81 – 2.53 (m, 2H), 2.43 (dddd, *J* = 23.3, 18.1, 13.1, 6.8 Hz, 2H), 1.16 (t, *J* = 7.1 Hz, 3H).

¹³**C NMR** (100 MHz, CDCl₃). δ 186.5, 175.7, 168.3, 161.4, 160.5, 136.7, 110.1, 104.7, 83.9, 81.1, 62.7, 56.2, 41.5, 27.7, 13.9. **ESI-HRMS**: calcd for C₁₇H₁₈O₇Na⁺ ([M + Na]⁺) = 367.0945, found 357.0938.

IR (neat): 2922, 1783, 1753, 1688, 1603, 1577, 1473, 1339, 1259, 1188, 1103, 1078, 1048, 791 cm⁻¹.

10. References

- [1]: (a) Y. H. Wen, X. Huang, J. L. Huang, Y. Xiong, B. Qin, X. M. Feng, Synlett 2005, 2445; (b) Z. P. Yu, X. H. Liu, Z. H. Dong, M. S. Xie, X. M. Feng, Angew. Chem. Int. Ed. 2008, 47, 1308; Angew. Chem. 2008, 120, 1328; (c) X. Zhou, D. J. Shang, Q. Zhang, L. L. Lin, X. H. Liu, X. M. Feng, Org. Lett. 2009, 11, 1401 and references therein.
- [2]: R. Ali, Y. Guan, A. N. Leveille, E. Vaughn, S. Parelkar, P. R. Thompson, A. E. Mattson. Eur. J. Org. Chem. 2019, 6917–6929.
- [3] : J. Liu, Z. C. Li, P. Tong, Z. X. Xie, Y. Zhang, Y. Li. J. Org. Chem. 2015, 80, 1632–1643
- [4] : G. Sudhakar, S.Bayya, V. D. Kadama, J. Babu Nanubolu, Org. Biomol. Chem., 2014, 12, 5601–5610
- [5]: Qin, T.; Johnson, R. P.; Porco, J. A., Jr. J. Am. Chem. Soc. 2011, 133, 1714-1717.
- [6]: W. Zhang, K. Krohn, Zia-Ullah, U. Flçrke, G. Pescitelli, L. Di Bari, S. Antus, T. Kurtµn, J. Rheinheimer, S. Draeger, B. Schulz, Chem. Eur. J.2008,14, 4913-4923.

11. Copies of NMR spectra for products.

