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S1: Molecular Dynamics Simulation Details 

 We performed two different types of simulations for this study: unbiased molecular 

dynamics (MD) simulations and indirect umbrella sampling (INDUS) simulations. We describe 

the general setup for these simulations and the specific details of each below. 

 

S1.1 General Simulation Details 

 In both the unbiased and INDUS simulations, a single self-assembled monolayer (SAM) 

composed of alkanethiol ligands with varying chemistries was created in a 3D periodic simulation 

box. Binary mixed SAMs with nonpolar methyl end groups and either hydroxyl, amine, or amide 

polar end groups with mole factions of 𝑓P = 0.0, 0.25, 0.40, 0.50, 0.75, and 1.0 were modeled. All 

mixed SAMs were modeled in two limiting patterns: checkered and separated (Figure S1). The 

checkered pattern had ligands arranged such that polar and nonpolar end groups were uniformly 

distributed across the SAM. The separated pattern had ligands arranged such that nonpolar and 

polar end groups were separated into two regions. We also modeled single-component “charge-

scaled” SAMs for each polar end group. These SAMs contained ligands where the partial charges 

of the end group were scaled by a multiplicative factor, k, to systematically vary the hydrophobicity 

of the surface (1, 2). The partial charges of end group atoms (defined as the set of atoms in the end 

group necessary to define a net neutral moiety) were multiplied by values of k between 0.0-0.9 in 

increments of 0.1. We note that Lennard-Jones parameters were not modified so that a SAM with 

polar end groups and k = 0.0 is distinct from a SAM with methyl end groups. Figure S1 illustrates 

how each ligand was scaled. Together, the checkered, separated, and charge-scaled SAMs defined 

a data set of 58 unique SAMs that were used for model training.  

We performed three independent replicas of the unbiased and INDUS simulations for each 

of the 58 SAMs to compute error bars (174 simulations in total). In all simulations, we fixed the 
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position of the ligand sulfur atoms by applying a harmonic restraint with a spring constant of 

500,000 kJ/mol/nm2 to mimic the strong Au-S bond that forms in experiments (3, 4). Ligands were 

positioned to be consistent with an Au(111) lattice with a grafting density of 21.6 Å/ligand 

consistent with experimental alkanethiol SAMs (5, 6). Ligands were initially directed so the S-to-

end group vectors were pointed in the positive z-direction. A total of 144 ligands were added to 

each system spanning an area of 5.2 x 6.0 nm2. A 5 nm thick water layer was added above the 

SAM such that the ligand end groups were in contact with the water molecules. The z-dimension 

of the simulation box was expanded by 3.5 nm to include a buffering vacuum layer between the 

sulfur groups of the SAM and the top of the water layer (7-9). The gold substrate was not explicitly 

included. In prior work, we found that excluding gold atoms led to better agreement with 

experimental trends (10). The CHARMM36 force field was used to model all ligand atoms (11-

13). Water molecules were modeled using the TIP4P/2005 water model that is recommended with 

CHARMM36 and CGenFF (14). Electrostatic interactions were calculated using the smooth 

Particle Mesh Ewald algorithm (15) with short-range Coulomb, van der Waals, and neighbor list 

cutoffs set to 1.2 nm. All bonds were constrained using the LINCS algorithm (16). MD simulations 

using the leapfrog integrator with a 2 fs timestep were performed using GROMACS (version 

2016.6) (17, 18). Simulations were performed in the NVT ensemble. The temperature was 

maintained at 300 K using a velocity-rescaling thermostat with a time constant of 0.1 ps (19). 

While pressure coupling was not explicitly performed, the pressure of the aqueous phase was 

maintained by the buffering vapor phase following previous work (7-9). 
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Figure S1. Graphical summary of SAM simulation systems. Images at left depict the charge-scaled ligands. 

The orange rectangles highlight atoms with scaled partial charges. Images at right show top-down 

simulation snapshots of checkered and separated SAMs with water molecules excluded to highlight 

chemical patterns. The fraction of polar end groups increases from left to right with 𝑓𝑃 = 0.00 and 𝑓𝑃 = 1.00 

equivalent to homogeneous SAMs with methyl or polar end groups, respectively. 
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S1.2 Unbiased Simulations 

 Unbiased MD simulations were performed using four steps as illustrated in Figure S2. (1) 

SAM preparation: ligand structures were generated using Avogadro (version 1.2.0) and 

parameterized using the CGenFF/CHARMM force field (14). Next, the ligand structure and force 

field files were used to create SAM structure and force field files by using in-house Python scripts. 

Lastly, a 5 nm water layer was added above the SAM by solvating an empty 5.2 x 6.0 x 5.0 nm3 

simulation box using the GROMACS solvate function, then joining the SAM and water files 

together to create the initial configuration of the SAM-water system. (2) Energy minimization: 

Energy minimization was performed using the steepest descent algorithm until the maximum force 

between atoms reached the criterion of <200 kJ/mol/nm. (3) Equilibration: a 5 ns equilibration 

simulation was performed to relax the ligand and water atoms. (4) Production: a 10 ns production 

simulation was performed with configurations saved every 1 ps for analysis (generating 10,000 

configurations per unbiased simulations). 
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Figure S2. Schematic of SAM preparation and unbiased simulation workflow illustrated using a 

homogeneous SAM with methyl end groups. 
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S1.3 INDUS Simulations 

 The SAMs created for INDUS simulations followed steps 1-3 in Section S1.2. The INDUS 

method is explained in detail in Section S1.4; here, we describe only aspects of the simulation 

workflow. INDUS simulations were performed using the final configuration after equilibration as 

the starting configuration. Two additional steps were followed: (1) Steered MD: Steered MD was 

performed to generate initial configurations for INDUS. We defined a 2.0 × 2.0 × 0.3 nm3 INDUS 

cavity with the bottom of the cavity positioned at the SAM-water interface (as defined in Section 

S1.5). A harmonic potential with a spring constant of 8.5 kJ/mol/nm3 was then applied to bias the 

number of water molecules within the cavity. Steered MD was performed by reducing the number 

of water molecules within the cavity at a rate of 2 ps/molecule for a total simulation time of 120 ps 

with configurations output every 2 ps. Initial configurations for INDUS were taken from these 

configurations. 16 total INDUS windows were used to sample the number of water molecules 

within the cavity: 5 windows (in an increment of 2 water molecules/window) for 0-8 water 

molecules within the cavity and 11 windows (in an increment of 5 water molecules/window) for 

10-60 water molecules within the cavity. Spring constants for INDUS (detailed below) and the 

number of windows were determined by inspecting histograms used as input to the Weighted 

Histogram Analysis Method (WHAM). Figure S3 shows histograms for each of the single 

component SAMs; these histograms are representative of the entire data set. 
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Figure S3. WHAM histograms for single-component SAMs with (A) methyl, (B) amine, (C) amide, and 

(D) hydroxyl end groups. Similar histograms were obtained for all 58 SAMs. 
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(2) Equilibration/Production: A 5 ns NVT simulation was performed for each INDUS window (16 

per SAM) with harmonic potentials applied to restrain the number of water molecules within the 

cavity. INDUS windows with fewer than 10 water molecules required a spring constraint of 

8.5 kJ/mol/nm3. Windows with more than 10 water molecules required a spring constant of 

2.0 kJ/mol/nm3. The discrete and coarse-grained numbers of water molecules (described in Section 

S1.4) within the cavity were sampled every 0.2 ps. The sampling time necessary for convergence 

of the INDUS calculations was determined by varying both the sampling time (i.e., the amount of 

simulation time used to generate input for WHAM) and the equilibration time (i.e., the amount of 

simulation time used to initially equilibrate the system). Figure S4 shows representative curves for 

hydration free energy versus sampling time. By inspection, it was determined that 3 ns is sufficient 

sampling time for the INDUS calculations to converge. Figure S5 shows hydration free energy 

versus equilibration time curves for the same SAMs. By inspection, 2 ns of simulation time is 

sufficient for INDUS simulation to equilibrate. 
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Figure S4. INDUS convergence time for the (A) methyl-, (B) amine-, (C) amide-, (D) hydroxyl-terminated 

SAMs. 2 ns of equilibration time was used to test convergence. Error bars were computed as the standard 

deviation of three independent INDUS calculations. 
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Figure S5. INDUS equilibration time for the (A) methyl-, (B) amine-, (C) amide-, (D) hydroxyl-terminated 

SAMs. Error bars were computed as the standard deviation of three independent INDUS calculations. 
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S1.4 INDUS Calculation Details 

INDUS simulations are performed by applying a harmonic potential to bias the number of 

water molecules, 𝑁, within a predefined volume (i.e., cavity) (8). To avoid impulsive forces 

associated with discrete changes in 𝑁, a new coarse-grained number of water molecules,  �̂�, is 

defined by Equation S1:  

�̂� = ∑ ∫𝜙(𝒓; 𝒓𝑖) 𝑑𝒓
𝑣

𝑀

𝑖=1

 (S1) 

𝑀 is the total number of water molecules, 𝒓 is the coordinate of a position within the simulation 

box, 𝒓𝑖 is the position of the oxygen atom of the ith water molecule, and the integral is evaluated 

over the volume of the cavity (denoted by 𝑣). The function 𝜙(𝒓; 𝒓𝑖) is a Gaussian kernel function 

of the form shown in Equation S2 which converts the discrete water molecule positions to 

continuous densities:  

𝜙(𝒓; 𝒓𝑖) = (
1

√2𝜋𝜎
)

3
2

exp (−
(𝒓 − 𝒓𝑖)

2

2𝜎2
) (S2) 

𝒓 and 𝒓𝑖 are the same as in Equation S1 and 𝜎 sets the width of the Gaussian function. We set 𝜎 to 

0.1 nm to approximate the radius of a water molecule (~0.15 nm). Values of  �̂� were then biased 

using a harmonic potential of the form: 

𝑈𝑗(𝑡) =
1

2
𝜅𝑗(�̂� − 𝜂𝑗)

2
(S3) 

𝜂𝑗 is the control variable in the jth window and 𝜅𝑗 is the spring constant for the corresponding 

biasing potential. The PLUMED (v2.5.1) plug-in for GROMACS was used to apply the biasing 

potential to water molecules inside the cavity (20). The unbiased joint probability function 

𝑝𝜈(𝑁, �̂�) was obtained using the Weighted Histogram Analysis Method (WHAM) (21), then 

integrated over �̂� to obtain 𝑝𝜈(𝑁), or the probability associated with observing 𝑁 water molecules 
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within the cavity. Figure S6 illustrates example distributions of ln 𝑝𝜈(𝑁) for five SAMs of 

increasing hydrophilicity along with a corresponding quadratic fit line for the most hydrophilic 

SAM (100 mol% OH) to demonstrate that the 𝑝𝜈(𝑁) distribution near this surface is Gaussian as 

expected. While all SAMs have the same most probable value of N, the other SAMs exhibit 

broader, non-Gaussian 𝑝𝜈(𝑁) distributions with fat low-N tails that are indicative of increasing 

hydrophobicity and an increased probability that the cavity dewets. The hydration free energy, 𝜇𝜈, 

is then obtained from the value of  𝑝𝜈(𝑁 = 0) by Equation S4 and used to quantify the relative 

hydrophobicity between SAMs in the main text (7, 22, 23). 

𝜇𝜈 = −𝑘𝐵𝑇 ln 𝑝𝜈(0) (S4) 

 

 

Figure S6. Probability distributions after WHAM reweighting for the number of water molecules within 

the INDUS cavity (N) for several representative SAMs of varying hydrophobicity (including mixed SAMs 

in both checkered and separated patterns, as shown in Figure 1A of the main text). The black line indicates 

a Gaussian (quadratic) fit, which accurately describes the most hydrophilic (100 mol% OH) surface. While 

all SAMs share the most probable value of N, the more hydrophobic surfaces exhibit non-Gaussian 

distributions with fat tails at low values of N. 
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S1.5 SAM-Water Interface Definition 

We define the SAM-water interface as the constant water density isosurface adjacent to the 

SAM (24). We calculated the isosurface by generating a coarse-grained density field of the water 

molecules by applying a Gaussian kernel function (Equation S2) to the positions of the water 

molecules. The width (𝜎) was set to 0.24 nm. This value was selected because it is approximately 

the bulk correlation length of liquid water such that this value reduces the number of voids in the 

coarse-grained density profile. The water density was histogrammed by discretizing the simulation 

box into a 3D grid with grid points separated by 0.1 nm in each Cartesian direction. The isosurface 

was calculated from the averaged density profile from the final 1000 configurations of the initial 

equilibration simulation by interpolating between points on this grid to obtain the contour of which 

the water density was equal to half the density of bulk water (16 water molecules/nm3). 

 

S2: Data-Centric Analysis Description 

 We calculated 10 water structural parameters (152 water structural features) to train the 

data-centric regression methods used in this study. This section provides details about the water 

structural parameter calculations and validation of the regression models. Water structure 

parameters are summarized in Table S1. 
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Table S1. Summary of water structure parameters calculated in unbiased MD simulations. 

 

S2.1 Calculation of Water Structural Parameters  

 Water structural parameters were computed from interfacial water molecule positions 

obtained from the unbiased MD simulations. For all calculations, interfacial water molecules were 

defined as water molecules with centers of mass within 0.3 nm of the SAM-interface. This distance 

is equal to the z-dimension of the INDUS cavity. The SAM-water interface is defined in Section 

S1.5. Post-analysis of the MD trajectories was performed using Python scripts to calculate the 

interfacial water triplet angle distribution (Figure S7), OH bond orientational angle distribution 

(Figure S8), and the distribution of the number of hydrogen bonds between SAM-SAM (Figure 

S9), SAM-water (Figure S10), water-water (Figure S11), and all (Figure S12). Details on each of 

these parameters are provided in the following sections. 

 

Water structure parameter Symbol Number of Features 

Triplet angle distribution  𝑝(𝜃) 90 

OH bond orientational angle distribution  𝑝(𝜙) 18 

Number of all hydrogen bonds  𝑁All
ℎ𝑏 1 

Number of SAM-SAM hydrogen bonds  𝑁SAM−SAM
ℎ𝑏  1 

Number of SAM-water hydrogen bonds  𝑁SAM−water
ℎ𝑏  1 

Number of water-water hydrogen bonds  𝑁water−water
ℎ𝑏  1 

All hydrogen bonds distributions  𝑝(𝑁All
ℎ𝑏) 10 

SAM-SAM hydrogen bonds distribution  𝑝(𝑁SAM−SAM
ℎ𝑏 ) 10 

SAM-water hydrogen bonds distribution  𝑝(𝑁SAM−water
ℎ𝑏 ) 10 

Water-water hydrogen bonds distribution  𝑝(𝑁Water−water
ℎ𝑏 ) 10 
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S2.1.1 Triplet angle distribution 

The triplet angle distribution, 𝑝(𝜃), for interfacial water molecules was calculated according to 

Equation S5 (25, 26) 

𝑝(𝜃) =
1

𝑁𝐹
∫ [

1

𝑁𝑊(𝑡)
∫ ∫ 𝛿 (

𝒓𝑗

|𝒓𝑗|
∙

𝒓𝑘

|𝒓𝑘|
− cos 𝜃) 𝑑𝒓𝑗𝑑𝒓𝑘

|𝒓𝑘|< 𝑟𝑐|𝒓𝑗|< 𝑟𝑐

] 𝑑𝑡

𝑡

(S5) 

|𝒓𝑗| and |𝒓𝑘| are the distances between a central water oxygen atom (denoted by index i) and two 

neighboring water oxygen atoms (denoted by the indices 𝑗, 𝑘) with positions 𝒓𝑗 and 𝒓𝑘 relative to 

the central water oxygen atom. The two inner integrals are evaluated with respect to all possible 

triplets of water molecules such that both distances are within the neighbor cutoff distance 

𝑟𝑐 = 0.33 nm. The delta function selects angles consistent with the given value of the triplet angle, 

𝜃, which is thus defined as the angle between atoms 𝑗, i, and 𝑘. The number of interfacial water 

molecules, 𝑁𝑊(𝑡), is time dependent because it varies with each simulation configuration. The 

outer integral is thus over simulation time and 𝑁𝐹 is equal to the number of simulation frames. 

 𝑝(𝜃) values were histogrammed with 𝜃 ranging from 0°-180° in increments of 2°, leading to 90 

water structural features that correspond to the probabilities of different values of 𝜃. 
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Figure S7. Triplet angle distributions for each end group chemistry and for charge-scaled, checkered, and 

separated SAMs. The distribution for SAMs with methyl end groups is treated as a baseline and subtracted 

from each curve to highlight deviations in 𝑝(𝜃) for different end group chemistries. 
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S2.1.2 OH bond orientational angle distribution 

The water OH bond orientational angle distribution, 𝑝(𝜙), was calculated according to 

Equation S6. This metric quantifies the distribution of the angle of the OH bond vector with respect 

to the SAM surface normal. 

𝑝(𝜙) =
1

𝑁𝐹

1

sin 𝜙
 ∫ [

1

𝑁𝑊(𝑡)
∫ 𝛿 (

𝒓𝑖
OH

|𝒓𝑖
OH|

∙ 𝒏 − cos 𝜙) 𝑑𝒓𝑊

𝑖

] 𝑑𝑡

𝑡

(S6) 

The outer integral is the same as in the triplet angle distribution (Equation S5). The integral is also 

normalized by 1/ sin 𝜙 to correct for the contribution of the solid angle variation. The inner 

integral is evaluated for all interfacial water molecules for a given simulation configuration. 𝒓𝑖
OH 

is an OH bond vector for the ith water molecule and 𝒏 is the surface normal vector, which is always 

in the positive z-direction. The delta function selects angles consistent with the given value of the 

OH bond orientation angle, 𝜙, which is thus defined as the angle between an OH bond vector and 

the surface normal. 𝑝(𝜙) values were histogrammed with 𝜙 ranging from 0°-180° in increments 

of 10°, leading to 18 water structural features that correspond to the probabilities of different values 

of 𝜙. 
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Figure S8.  OH bond orientational angle distribution for each end group chemistry and for charge-scaled, 

checkered, and separated SAMs.   
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S2.1.3 Number of hydrogen bonds  

The number of hydrogen bonds was calculated using the Luzar-Chandler geometric 

criteria (27). A hydrogen bond was counted when the distance between the donor and acceptor 

atoms was less than 0.35 nm and the hydrogen-donor-acceptor angle was less than 30°. For 

example, a hydrogen bond between two water molecules would be counted if the distance between 

the oxygen atoms is less than 0.35 nm and the angle between the hydrogen and two oxygen atoms 

is less than 30°. The number of hydrogen bonds formed between interfacial water molecules with 

each other (water-water), interfacial water molecules and SAM ligand atoms (SAM-water), SAM 

ligand atoms with each other (SAM-SAM), and all hydrogen bonds formed by SAM ligands and 

interfacial water molecules were separately calculated, contributing 4 water structural features. All 

values were time-averaged over the entire simulation trajectory. 

S2.1.4 Hydrogen bond distributions 

The distribution of the number of hydrogen bonds, 𝑁hb, was calculated according to Equation S7 

𝑝(𝑁hb) =
1

𝑁𝐹
 ∫ [

1

𝑁𝑊(𝑡)
∫ 𝛿(𝑁𝑖

hb − 𝑁hb)𝑑𝒓𝑊

𝑖

] 𝑑𝑡

𝑡

(S7) 

The outer integral is the same as in Equations S5-S6. The inner integral is evaluated for all 

hydrogen bonding groups (polar end group or interfacial water molecule) for a given simulation 

configuration. 𝑁𝑖
hb is the number of hydrogen bonds formed by the ith hydrogen bonding group. 

The delta function selects the number of hydrogen bonds consistent with the value of interest (with 

hydrogen bonds defined following the approach in Section 2.1.2). 𝑝(𝑁hb) values were 

histogrammed with 𝑁hb ranging from 0-9 in increments of 1. Separate histograms were computed 

for SAM-SAM, SAM-water, water-water, and all hydrogen bonds (as defined in Section 2.1.2), 

leading to 10 water structural features for each different category of hydrogen bonds and 40 water 
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structural features in total. Figures S9-S12 show the distributions for SAM-SAM, SAM-water, 

water-water, and all hydrogen bonds, respectively. 

 

 

Figure S9. SAM-SAM hydrogen bond distributions for each end group chemistry and charge-scaled, 

checkered, and separated SAMs. 
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Figure S10. SAM-water hydrogen bond distributions for each end group chemistry and charge-scaled, 

checkered, and separated SAMs. 
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Figure S11. Water-water hydrogen bond distributions for each end group chemistry and charge-scaled, 

checkered, and separated SAMs. 
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Figure S12. Total hydrogen bond distributions for each end group chemistry and charge-scaled, checkered, 

and separated SAMs. 
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S2.2 Data-Centric Feature Selection Models 

 The most important features for predicting hydration free energy values were determined 

using Lasso and Random Forest regression models. Details of each model and hyperparameter 

tuning are provided below. Three independent data sets were generated from the three independent 

INDUS and unbiased simulations performed (Data Set 1, 2, and 3). Each data set consisted of 

hydration free energy labels and water structure feature vectors for each of the SAMs. The 

hydration free energy labels assigned a relative hydrophobicity value to each SAM. The water 

structural feature vector was created by appending each water structural feature (i.e., the numerical 

values described in Section S2) into a single vector. For each feature, values were standardized by 

subtracting the mean and dividing by the standard deviation of that feature’s values across the 

training data. Our goal was to train regression models to predict the set of labels using the set of 

feature vectors as input as described in the following sections. 

 

S2.2.1 Removal of Correlated Features 

 Before training the regression models, the water structural feature vectors were pre-

processed to remove correlated features. We calculated the pairwise Pearson’s correlation 

coefficient between all features for each data set. The second feature in the pair was removed if 

the coefficient absolute value was larger than 0.9. The removed feature is essentially arbitrary 

since the high correlation implies that information is preserved. The absolute value was used to 

remove both positively and negatively correlated features. If a feature appeared in one data set but 

not the others, that feature was retained for analysis of all data sets. This procedure reduced the 

total number of features from 152 to 45 features. Table S2 lists each of the features used to train 

the regression models. 
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Table S2. Set of features retained after removing highly correlated features (each associated with different 

structural parameters) used to train the regression models. Some features were only present in the specific 

data set indicated by the subscripts. 

 

 

 

 

 

 

 

 

 

 

Retained Features Used for Model Training 

 Triplet Angle Probabilities, 𝑝(𝜃) 

  42, 44, 461, 48, 60, 90, 110, 136, 138, 1401, 178 

 OH Bond Orientation Angle Probabilities, 𝑝(𝜙) 

  252,3, 35, 453, 65, 105, 1152,3, 135, 145, 155 

 Number of Hydrogen Bonds, 𝑁hb  

  All, SAM-SAM, SAM-Water 

 Hydrogen Bond Probabilities, 𝑝(𝑁hb) 

  

All: 

SAM-SAM: 

SAM-Water: 

Water-Water: 

0, 1, 22,3, 3, 6 

0, 2, 3, 4, 5 

0, 1, 23, 31, 4, 5 

02, 21, 3, 5, 6, 7 

1 Feature is only present for Data Set 1 
2 Feature is only present for Data Set 2 
3 Feature is only present for Data Set 3 
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S2.2.2 Lasso Regression 

We wish to predict the label (𝜇𝜈) using the minimum number of structural features. To do 

this, we formulated the problem using a Lasso regression model. Lasso regression, or L1 

regression, is based on linear regression (Equation S8) with a regularization term added to the cost 

function (Equation S9) 

𝜇𝑖 = 𝛽0 + 𝛽1𝑥𝑖,1 + 𝛽2𝑥𝑖,2 + ⋯ + 𝛽𝑝𝑥𝑖,𝑝 (S8) 

cost = ∑ (𝜇𝑖 − ∑ 𝛽𝑗𝑥𝑖𝑗

𝑝

𝑗=1

)

2

+ 𝛼 ∑|𝛽𝑗|

𝑝

𝑗=1

𝑁

𝑖=1

(S9) 

𝜇𝑖 is the hydration free energy of the ith SAM, 𝑥𝑖𝑗 is the value of the jth water structural feature 

computed for the ith SAM, 𝛽𝑗 is the jth coefficient, or weight, of the linear model, 𝛼 is the 

regularization parameter, 𝑁 is the number of SAMs used in the model training (𝑁 = 58), and 𝑝 is 

the total number of water structural features (i.e., the size of the feature vector) input into the model 

(𝑝 = 45). The first term in Equation S9 is the sum of squared errors and the second term is the L1 

penalty on the coefficient values. The regularization term, because of the L1 penalty, forces 

coefficients with values below a certain threshold to zero. This enables prediction of labels using 

a small number of features with coefficients for all other features reduced to 0; such features are 

unimportant for model predictions. The Lasso model has 46 model parameters: each linear 

coefficient (𝛽0, 𝛽1, … , 𝛽45) and 1 hyperparameter, the regularization parameter (𝛼). The linear 

coefficients were optimized by minimizing the cost function (Equation S9) using the gradient 

descent algorithm built into the Scikit-Learn Lasso regression function (28). The regularization 

term, 𝛼, was tuned by iteratively testing values for 𝛼 between 0.1 and 10 with a step size of 0.1. 

All SAMs were used as input to the Lasso model and the linear coefficients were determined for 

each tested value of 𝛼. The root-mean-squared error (RMSE) between the predicted and INDUS 
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calculated hydration free energies was computed as a function of 𝛼 (Figure S13A). Increasing 𝛼 

also influences the number of features not eliminated by Lasso (i.e., the number of non-zero 

coefficients). Figure S13B shows the number of features with non-zero coefficients as a function 

of 𝛼.  

 

 

Figure S13. Lasso hyperparameter optimization. (A) Root-mean-square error (RMSE) as a function of 

regularization term (𝛼). (B) Number of features with weights greater than zero as a function of 𝛼. (C) 

RMSE as a function of the number of SAMs in the training set (samples, 𝑁). Error bars in each plot are the 

standard deviation calculated from the three independent data sets. 

 

Based on these plots, we chose a value of 𝛼 = 1.45 which eliminates all but 5 features with 

an RMSE of approximately 4 kBT. We also determined the minimum value of 𝑁 needed to 

accurately train the Lasso model by iteratively training the model with 1 to 58 SAMs. Figure S13C 

shows how RMSE varies with increasing 𝑁. The lower RMSE values observed for 𝑁 < 10 indicate 

a highly overfit model, whereas model convergence around 𝑁 = 35 indicates a better fit. Knowing 

the model is fitted well for 𝑁 > 35 is important because we performed 5-fold cross validation using 

𝑁 ≈ 45 in each fold. We note that increasing the value of 𝛼 to 3.0 eliminates a feature, but also 

increases the RMSE by about 10% as described in more detail below. We elected to retain 5 
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features to reduce the RMSE and because all 5 features are physically interpretable; moreover, this 

number of features is still small enough to avoid overfitting.  Figure S14A shows the parity plot 

of labels predicted by the Lasso model versus INDUS-calculated hydration free energies 

determined by training on the full data set (𝑁 = 58) with 𝛼 = 1.45, then also predicting on the same 

full data set. The weights determined by Lasso by training on the full data set are shown in Figure 

S14B. Full descriptions for each feature are detailed in the main text. 

  

 

Figure S14. (A) Parity plot of the Lasso-predicted hydration free energies compared with the INDUS 

calculations. (B) Bar plot comparing the weights of the linear coefficients determined by Lasso regression. 

Error bars are the standard deviation from the three independent data sets. 

 

S2.2.3 5-Fold Cross Validation of Lasso Regression Model 

We used 5-fold cross validation to ensure that the features identified by Lasso were robust. 

Cross validation was performed by splitting the data set into five folds, each containing a training 

set of roughly 46 SAMs and a validation set of roughly 12 SAMs not present in the training set.  

The five folds were selected such that each SAM was held out of the training set and included in 
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the validation set exactly once. For each fold, a Lasso regression model with a set value of 𝛼 was 

independently fit on the training set and used to predict hydration free energies for the SAMs in 

the validation set. As was done for the linear regression model, the same five folds were used with 

~46 SAMs for training and ~12 SAMs for validation. The points in the parity plot in Figure S15A 

are the model predictions for the validation sets for 𝛼 = 1.45. The weights of the features for all 

five folds are shown in Figure S15B. The same five important features identified when the Lasso 

regression model is trained on all SAMs are also identified during 5-fold cross validation, 

confirming that these five features are universal and not specific to a single training set. The 

probability of 5 water-water hydrogen bonds also appears as a very small feature in some of the 

folds. This feature is eliminated when considering all SAMs (Figure S14). Error bars were 

calculated as the standard deviation from applying this procedure to all three data sets. Errors bars 

not visible are small than the points. We also performed 5-fold cross-validation using 𝛼 = 3.0, 

which eliminates a feature. We find that the cross-validation RMSE for 𝛼 = 3.0 increases by about 

10% (from 4.86 kBT to 5.33 kBT) while eliminating the probability of observing a triplet angle of 

90° as a feature in all five folds (Figure S15C), which is consistent with this feature having the 

lowest weight of the five features identified using 𝛼 = 1.45. Because this probability has a clear 

physical interpretation (as described in the main text and in section S3.3, below), we opted to retain 

five features for all models in the main text in order to reduce the RMSE. 
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Figure S15. Parity plot comparing the predicted hydration free energies determined by 5-fold Lasso 

regression and INDUS estimated values for (A) 𝛼 = 1.45 and (C) 𝛼 = 3.0. Bar plots for each of the folds 

comparing the nonzero coefficient weights for (B) 𝛼 = 1.45 and (D) 𝛼 = 3.0. 
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S2.2.4 5-Fold Cross Validation of the Linear Regression Model 

In the main text, Figure 2 shows the parity plot comparing INDUS-calculated and linear 

regression-predicted hydration free energies. Each data point is that plot corresponds to the 

validation set prediction obtained during 5-fold cross validation of the linear regression model 

using the minimum set of features identified by Lasso. We performed 5-fold cross validation to 

address model accuracy on data not seen by the model during training (to assess model 

generalizability). Cross validation was performed using the same procedure described in the 

preceding section for Lasso regression. For each fold, a linear regression model (using the five 

Lasso-identified features as input) was independently fit on the training set and used to predict 

hydration free energies for the SAMs in the validation set. Each point in Figure 2 of the main text 

corresponds to the hydration free energy predicted for the SAM for the fold in which it was 

included in the validation set. That is, Figure 2 only shows predictions for SAMs not included in 

model training, highlighting the potential of the model to generalize to unseen data. 
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S2.2.5 Correlation between Identified Features 

 Although highly correlated features were removed prior to model training, the threshold 

value of the Pearson’s correlation coefficient used to remove highly correlated features was itself 

high (0.9). We thus further computed correlation coefficients between the five features identified 

by Lasso regression. Figure S16 shows a matrix of pairwise Pearson’s correlation coefficient for 

these five features. Correlation coefficients are all low or modest (absolute values < 0.6-0.7) with 

the exception of the coefficient between the probability that an interfacial water molecule forms 

zero SAM-water hydrogen bonds, 𝑝(𝑁SAM−water = 0), and the average number of SAM-water 

hydrogen bonds, 𝑁SAM−water , which exhibit a higher correlation coefficient of -0.84.  However, 

both features have a high weight in the Lasso model, suggesting that their correlation is sufficiently 

low that each feature contributes useful information to model predictions.  

 

Figure S16. Matrix of Pearson’s correlation coefficients between 5 features identified by Lasso regression. 
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S2.2.6 Comparison of Identified Features to Mole Fraction of Polar Groups 

To demonstrate that the water structural features identified by Lasso regression are 

uncorrelated with mole fraction of polar end groups on the surface (𝑓𝑃), we calculated the Pearson 

correlation coefficient between (𝑓𝑃) and the 5 features identified by Lasso regression. Table S3 

lists the correlation coefficients. The magnitudes of all coefficients are less than 0.65 and three 

features have a magnitude less than 0.1; from this analysis, we conclude that only the total number 

of hydrogen bonds (𝑁total) is weakly correlated with 𝑓𝑃, as might be expected, whereas the other 

structural features are all uncorrelated. 

 

Table S3. Correlation of water structural features with mole fraction of polar groups (𝑓𝑃). 

 

 

  

Feature 
Pearson’s correlation 

coefficient with 𝑓𝑃 

𝑁total -0.620 

𝑝(𝜃 = 90°) -0.370 

𝑁SAM−water  0.097 

𝑝(𝜃 = 48°) -0.079 

𝑝(𝑁SAM−water = 0) -0.062 
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S2.2.7 Random Forest Regression 

Random Forest regression was used to further validate the features identified by Lasso 

regression. Random Forest is a nonlinear model that applies an ensemble of decision trees to 

predict hydration free energies. The Random Forest algorithm builds 𝑀 decision trees then makes 

a prediction by averaging the predictions of the individual trees. The variance of the decision trees 

is reduced by using bootstrap aggregation (bagging). The bagging process generates an ensemble 

of bootstrapped sample data sets. A bootstrapped sample is a random sample of the data taken with 

replacement (i.e., after a data point is selected for a sample, it remains available for further 

selection). Once the 𝑀 trees are built, their predictions are averaged to obtain the final prediction 

(Figure S17A). Figure S17B shows prediction RMSE as a function of the number of trees. From 

inspection, it was determined that 100 trees were sufficient for a converged prediction. During the 

bagging process, the decision trees were built using split-variable randomization where each time 

a split is performed, the search for the split variable is limited to a random subset of 𝑚 of the 

original 𝑝 features. Figure S17C shows the RMSE as a function of the fraction of features for each 

split. It was determined that limiting a split to 60% gave satisfactory performance.  

Random Forest alone does not eliminate nonimportant features. Consequently, we added a 

recursive feature elimination (RFE) wrapper to the Random Forest workflow. RFE eliminates 

features by recursively determining the importance of each feature from the initial set of features, 

then iteratively removing the least important features until the stopping criterion is met (e.g., 

minimum number of features). Figure S17D shows the RMSE as a function of the number of 

features retained by the RFE algorithm. The RMSE in Figure S17D has a minimum at 

approximately five features, indicating that five features are enough to accurately predict hydration 

free energies. Figure S17E shows the prediction accuracy as a function of the maximum tree depth. 
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Tree depth is the number of times a split (decision) with the data can be done (i.e., more splits 

equal larger tree depth). Figure S17F shows prediction accuracy versus number of SAM samples 

input as training data. Like the Lasso model, the Random Forest model is highly overfit when the 

number of samples is small (Figure S13C). The model converges when more than 20 SAM samples 

are used. This indicates that >20 SAM samples are needed to accurately predict hydration free 

energies with this model. 

 

Figure S17. (A) Schematic of Random Forest model. Model accuracy versus (B) number of trees, (C) 

Maximum sample fraction in split, (D) number of features retained, (E) maximum tree depth, and (F) 

number of samples in training data. 

 All SAMs were used to train the Random Forest model. Figure S18A shows the comparison 

between the model predicted hydration free energies and the INDUS estimates. Figure S18B shows 

importance metrics for each feature retained by the RFE algorithm. Three of the features found by 
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the Random Forest model are also found by the Lasso model suggesting 𝑝(𝜃 = 48°), 𝑁SAM−water, 

and 𝑝(𝑁SAM−water = 0) are robust features across the two models. The 𝑝(𝑁water−water = 5) 

feature found as third-most important in the Random Forest model is also found as a nonzero 

feature in some of the folds when 5-fold cross validation was performed using Lasso, indicating 

that this feature is slightly robust across models (Figure S18B). The 𝑁total feature identified by 

Lasso and the 𝑝(𝑁total = 0) features identified by Random Forest are highly correlated with an 

absolute Pearson’s correlation coefficient of 0.89. The criteria to eliminate features was 0.9. The 

strong correlation between the features suggests each of these features encodes similar information 

in the prediction. 

 

 

Figure S18. (A) Parity plot of Random Forest model trained and bagged using all SAMs. (B) Bar plot 

comparing features not eliminated by the RFE algorithm. 

 

Important features were also determined using 5-fold cross validation of the Random 

Forest model (Section S2.2.3).  Figure S19A shows a parity plot comparing the Random Forest-

predicted and INDUS-measured hydration free energies. The predicted values were computed 
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from the validation set during 5-fold cross validation. Figure S19B compares the averaged features 

weights across the 5 folds. The same five important features arise as when the model is trained on 

all SAMs providing an additional robustness check to these five features being universal across 

the surfaces. The error bars are the standard deviation from calculations performed with each of 

the three independent data sets. 

 

 

Figure S19. (A) Parity plot comparing hydration free energies predicted by 5-fold Lasso regression (with 

each point representing a validation set prediction) and hydration free energies calculated with INDUS. (B) 

Bar plot comparing feature importance in the Random Forest model. Error bars represent standard 

deviations across the five folds. 
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S3: Additional Results 

S3.1 Additional INDUS Results and Discussion 

 Figure S20 shows 𝜇𝜈 as a function of the scaling factor, k, for the charge-scaled SAMs. As 

expected, 𝜇𝜈 increases with increasing k in all cases, thereby sampling a continuous range of 

values. 

 

 

Figure S20. Hydration free energies (𝜇𝜈) calculated with INDUS as a function of the multiplicative scaling 

factor used to modulate the end group partial charges in charge-scaled SAMs. 
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S3.2 Test of Linear Regression Model on Unseen Chemically Heterogeneous SAMs 

The ability of the linear regression model trained in the main text to generalize to unseen 

chemically heterogeneous SAMs was tested by predicting values of 𝜇𝜈 for 153 SAMs obtained 

from Ref. (29). These SAMs contain the same set of polar end groups studied in the main text but 

in a broader range of mole fractions and patterns than studied in the 58 SAM training data set. 

Specifically, there are three sets of 51 mixed SAMs, each containing a mixture of methyl-

functionalized and either amine-, amide-, or hydroxyl-functionalized alkanethiol ligands (akin to 

the chemically heterogeneous SAMs used for model training). Each SAM includes a central 4×4 

patch of polar and nonpolar ligands surrounded by an additional 48 nonpolar ligands; the relative 

fraction of polar and nonpolar ligands and their spatial positions within the patch were randomly 

selected to generate 50 distinct SAMs (with 1 additional SAM including a patch containing only 

polar ligands). For each SAM, a 10 ns unbiased MD simulation was performed following the 

protocol from Section S1.2 and used to compute the 5 water structural features that were identified 

from Lasso regression following the same approach as all SAMs in the training data. Each feature 

was standardized using the same mean and standard deviation obtained from the 58 SAM training 

data set, then 𝜇𝜈 values were predicted for all SAMs using the linear regression model with the 

weights obtained from the training data. No parameters were refit specifically to the new set of 

SAMs. INDUS-calculated 𝜇𝜈 values were taken from Ref. (29), in which 𝜇𝜈 was calculated 

following the same procedure described in Section S1.3.  

Figure S21 shows the parity plot between INDUS-calculated and predicted 𝜇𝜈 values for 

the test set of unseen chemically heterogeneous SAMs. The RMSE of the linear regression model 

predictions for the test set is 5.21 kBT. This RMSE is only slightly larger than the RMSE for cross-

validation predictions of the 24 chemically heterogeneous SAMs with separated or checkered 



S40 

 

patterns (4.57 kBT) even though there is a much larger number of SAMs in the test set than in the 

training set, indicating the ability of the regression model to generalize to new patterned SAMs. 

The slight increase in the RMSE may be because the patterned chemically heterogeneous patch in 

these SAMs is embedded within a perimeter of purely nonpolar ligands, which may contribute to 

slight variations in water order parameters for those regions that do not reflect the patterned 

surface. Nonetheless, the encouraging RMSE suggests that the trained regression model is 

correctly capturing variations in the interfacial water structure across this wide range of surfaces. 

 

Figure S21. Parity plot comparing hydration free energies (𝜇𝜈) predicted from multivariate linear regression 

to those calculated by INDUS for a test set of 153 chemically heterogeneous SAMs not seen during model 

training. 

S3.3 Physical Basis for the Importance the θ = 90° Feature 

 We further examined the significance of the 𝑝(𝜃 = 90°) feature to understand how this 

feature distinguishes SAM patterns. Our analysis was motivated by two observations from past 

simulation studies: (1) 𝑝(𝜃 = 90°) is a maximum in the triplet angle distribution of an ideal gas, 

suggesting that large values of 𝑝(𝜃 = 90°) indicate random, vapor-like structural arrangements 
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(25, 26); and (2) interfacial water molecules near hydrophobic surfaces exhibit larger density 

fluctuations compared to more hydrophilic surfaces and form a liquid-vapor-like interface (8, 22, 

30). These two observations motivate our hypothesis that the water molecules near the large 

nonpolar domains of the separated SAMs will have higher values of 𝑝(𝜃 = 90°) because water 

molecules near large nonpolar domains exhibit behavior more similar to a liquid-vapor interface. 

To test this hypothesis, we measured 𝑝(𝜃 = 90°) for each interfacial water molecule and 

histogrammed these values based on the x-position of the molecule in the simulation box; note that 

ligands in separated SAMs were placed such that the polar and nonpolar ligands were on opposite 

ends of the x-axis. This approach thus quantifies spatial variations in 𝑝(𝜃 = 90°) for the nonpolar 

and polar domains of the separated SAMs. Figure S21 shows histogrammed values of 𝑝(𝜃 = 90°) 

as a function of x for the separated and checkered SAMs. Each value is normalized by the 

equivalent value computed for a purely nonpolar SAM (𝑓𝑃 = 0) to highlight deviations from a 

large nonpolar domain. Figures S21 reveals that there is minimal spatial variation in 𝑝(𝜃 = 90°) 

for all checked SAMs, reflecting the uniform distribution of polar and nonpolar end groups for this 

pattern. Conversely, the x-positions associated with nonpolar domains in the separated SAMs have 

higher probabilities of 𝑝(𝜃 = 90°), with values close to 1.00 (i.e., similar to values near a nonpolar 

SAM). These increased values lead to an average increase in 𝑝(𝜃 = 90°) for separated SAMs 

compared to checkered SAMs for nearly all SAMs in the data set, explaining the ability of this 

feature to distinguish checkered and separated SAMs. 



S42 

 

 

Figure S22. Probability of water molecules with a triplet angle of 90º as a function of x-position. Values 

are normalized by those of a nonpolar SAM (𝑓𝑃 = 0). Average values are shown as horizontal dashed lines. 



S43 

 

S3.4 Coordination Number Probability Distributions for Separated SAMs 

 

 

Figure S23. (A) Water coordination number (CN) probability density functions for all interfacial water 

molecules (blue lines) and only interfacial water molecules with a triplet angle of 48° (red lines). Bulk water 

probability density functions for all water molecules (dotted line) and water molecules with a triplet angle 

of 48° (dashed line) are included for reference. Shifts with increasing fP are indicated by the purple arrows. 

(B) Probability density function values for CN = 6. Stacked columns indicate the contributions from water-

water coordination (blue columns) and SAM-water coordination (red columns). A and B both consider only 

separated SAMs. 
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