Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2022

Electronic Supplementary Information for

Cyclometalated Iridium-Coumarin Ratiometric Oxygen Sensors: Improved Signal Resolution and Tunable
Dynamic Ranges

Yanyu Wu, Gregory D. Sutton, Michael Halamicek, Xinxin Xing, Jiming Bao and Thomas S. Teets*

Department of Chemistry, University of Houston,
3585 Cullen Blvd. Room 112, Houston, TX 77204-5003, USA
email: tteets@uh.edu

Index Page
Experimental Section S2-S6
X-ray crystallography data for complexes 3a — 5a S7
NMR spectra of all new complexes S8-S25
High resolution mass spectrometric analysis of all new complexes S26-S31
UV-vis absorption and photoluminescence spectra of free coumarins S32
Summary of photoluminescence data recorded at 77 K S33
Overlaid UV-vis absorption and excitation spectra of iridium-coumarin complexes S34-S36
Photoluminescence spectra of iridium-coumarin complexes in deaerated and aerated solutions S37-S40
Reversibility tests for complex 3¢ S41
Singlet oxygen emission spectra for [Ru(bpy);]*>" and complexes 3a, 3¢, and 5a S42-S43
Photostability tests for complexes 3a, 3¢, and Sa S44-S45

S1



Experimental Section

Materials. All chemicals were purchased from commercially available sources and were used without further
purification unless otherwise specified. Solvents were deoxygenated and dried using a Grubbs Solvent
Purification System. Iridium precursor complexes 1a, 1b, 2a, and 2b were synthesized following previously
reported methods.!> Complexes 1¢ and 2¢ were prepared using analogous approaches.

Physical methods. 'H, '°F, and '3C{'H} NMR spectra were recorded at room temperature on a JEOL ECA-
400, ECA-500 or ECA-600 NMR spectrometer. UV—vis absorption spectra were recorded in screw-capped 1
cm quartz cuvettes using an Agilent Carey 8454 UV—vis spectrophotometer. Emission and excitation spectra
were obtained using a Horiba FluoroMax-4 spectrofluorometer. Room-temperature emission samples were
housed in 1 cm quartz cuvettes with septum-sealed screw caps and the low-temperature emission spectra were
recorded in a custom quartz EPR tube with high-vacuum valve immersed in liquid nitrogen using a finger
Dewar. Samples for emission and excitation measurements were prepared inside a nitrogen-filled glovebox
using dry and deoxygenated solvents to exclude air. Luminescence lifetimes were measured with a Horiba
DeltaFlex Lifetime System, using pulsed diode excitation and excited at 330 nm. Emission wavelengths were
selected by using appropriate long-pass filters, and the decay trace was fitted using the instrument’s analysis
software or the software Origin 2020b. Emission quantum yields for complex 4a were measured with respect
to a standard of quinine sulfate in 0.05 M sulfuric acid having a reported quantum yield (®r) of 0.523, while
quantum yields for complexes Sa, 3b, 4b and 3¢ were measured relative to tetraphenylporphyrin, which has
a reported @r of 0.11%. The quantum yields of the Ir-coumarin conjugates (®,) was calculated using Equation
5 below, where @, = the quantum yield of the standard, m, = the slope of emission intensity versus absorbance
for the samples, m = the slope of emission intensity versus absorbance for the standard compound, and 7«
and 7 are the refractive indexes of the solvents of the sample and standard, respectively.

@, = g [2] [22]° (5)

Mgsed LNst

Oxygen quenching experiments. Iridium-coumarin complex 3a, 3¢, or 5a was dissolved in dichloromethane in a
nitrogen-filled glovebox. For complexes 3a and Sa, the stock solutions were further diluted in quartz cuvettes to
concentrations of 1.0 x 107> M. The emission spectra for 3a and 5a were recorded under nitrogen atmosphere (pO2 =
0 mmHg), then aliquots of air were added to each cuvette (1-5 pL for 3a and 10-50 pL for 5a), and the emission
spectra were recorded after each addition using an excitation wavelength of 310 nm until phosphorescence was
completely quenched. The change in the ratio of phosphorescence to fluorescence intensity was used alongside the
change in oxygen partial pressure to get Stern-Volmer quenching constants (Ksy) for these two complexes. In the case
of 3¢, the stock solution was diluted in a quartz cuvette to a concentration of 3.0 x107® M. The emission spectrum was
recorded under nitrogen atmosphere (pO: = 0 mmHg), then 50—100 pL aliquots of air were added to the cuvette, and
the emission spectra were recorded after each addition using an excitation wavelength of 310 nm until atmospheric
levels of oxygen were reached (pO2 = 160 mmHg). Since 3¢ has adequately observable photoluminescence and a short
enough lifetime to get accurate measurements on our instrument, the lifetime was also taken under nitrogen
atmosphere and after each addition of air using 330 nm excitation for the lifetime decay. The Stern-Volmer quenching
constant Ksy and the quenching rate constant (kq) were calculated for complex 3c.

Reversibility experiments. A sample of iridium-coumarin complex 3¢, was dissolved in deoxygenated
dichloromethane in a nitrogen-filled glovebox. The stock solution was further diluted in a quartz cuvette to a
concentration of ca. 107 M. N»-saturated emission was recroded between 350—700 nm using an excitation
wavelength of 310 nm, and the emission was repeated after fully aerating the sample. To test for reversibility,
the solution was degassed via freeze-pump-thaw, added back to the cuvette inside the glovebox, and the
emission measurement was repeated.

Detection of singlet oxygen. Iridium-coumarin complexes 3a, 3¢, and 5a were dissolved in dichloromethane
under aerated conditions. Stock solutions of each complex were further diluted in quartz cuvettes to
concentrations on the order of 107> M, corresponding to absorbance values of 0.3 at the excitation wavelength
of 365 nm. A standard of [Ru(bpy):](PFe). was prepared in DMF and likewise diluted to give an absorbance
value of 0.3 at 365 nm. A 365-nm Thorlabs 500 mW LED was used for excitation and a Horiba Jobin Yvon
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iHR 320 spectrometer equipped with a Symphony liquid nitrogen cooled InGaAs NIR linear array detector
was used to obtain singlet oxygen emission spectra. To get sufficient signal-to-noise, an integration time of
240 seconds (4 minutes) was used and 2 scans were completed for each sample for a total of 480 seconds (8
minutes). A 1000-nm long pass filter was used, and the same path length of 1 cm was also used for every
sample. To calculate the singlet oxygen quantum yield (®,), the samples were compared to the [Ru(bpy);]**
standard which has a known ®, 0of 0.57 in DMF.> A modified quantum yield expression® (Equation S1 below)
was used, where @ag is the quantum yield of the sample, ®aris the quantum yield of the reference, I and I
are the fractions of incident light absorbed by the reference and sample, respectively, given by 1-1074 at the
excitation wavelength of 365 nm, /. and Ias are the integrated singlet oxygen emission intensities of the
reference and sample, respectively, and 1. and 15 are the singlet oxygen phosphorescence lifetimes in the
reference and sample solvents, respectively. The value of 7, in DMF is known to be 12.1 us’, while the value
of 74 in CH,Cl, is known to be 91 us.?

Bys = Py LT (SD)

Photostability experiments. Iridium-coumarin complexes 3a, 3¢, and 5a were dissolved in dichloromethane under
aerated conditions. Stock solutions of each complex were further diluted in quartz cuvettes to concentrations of
2.0x107° M. To test the photostability of each complex under UV light, the complexes were irradiated in the
fluorimeter directly using 310 nm irradiation in 15-minute increments for a total of 2 hours. In each UV irradiation
experiment the monochromator slit widths were opened to 10 nm during irradiation and were set back to 5 nm to
collect emission spectra. Since 3¢ also has absorption in the visible range, photostability tests were likewise performed
by irradiation using a glass bowl wrapped with blue LED strips, purchased from Creative Lighting Solutions (Model:
Sapphire Blue LED Tape —12vdc), and wrapped on the outside with aluminum foil. To maintain irradiation
temperature, the vessel was filled with water. During the experiments involving irradiation with blue LEDs the water
bath reached a maximum temperature of 30 °C. For all experiments, emission spectra were collected by exciting
at 310 nm and recording the emission spectrum from 350—-700 nm. The same path length of 1 cm was used
in each case.

X-ray crystallography details. Single crystals were grown by vapor diffusion or liquid-liquid layering. Crystals were
mounted on a Bruker Apex II three-circle diffractometer using MoKa radiation (A = 0.71073 A). The data was
collected at 123(2) K and was processed and refined within the APEXII software. Structures were solved by intrinsic
phasing in SHELXT and refined by standard difference Fourier techniques in the program SHELXL.® Hydrogen atoms
were placed in calculated positions using the standard riding model and refined isotropically; all non-hydrogen atoms
were refined anisotropically. The crystal of 3a was a non-merohedral twin, so for this crystal two unit cell domains
were identified in the program CELL NOW and the data was integrated against both components. The program
TWINABS was used to perform the absorption correction, and HKLF5 refinement was performed to refine the
structure against both domains. The structure of 4a included a disordered benzene solvent molecule, which was
modeled as a two-part disorder. The bond distances and angles in all disordered parts were restrained using SADI
commands, and the ellipsoid parameters were restrained with the rigid-bond restraints SIMU and DELU. The structure
of 5a included heavily disordered solvent electron density that could not be satisfactorily refined, necessitating the use
of the SQUEEZE function in PLATON.!? Crystallographic details are summarized in Table S1.

Syntheses

Synthesis of coumarin C-1. This compound was prepared as previously described.!! A mixture of 3-
pyridylacetic acid (1.10 g, 6.4 mmol), salicylaldehyde (0.5 mL, 3.5 mmol), acetic anhydride (1.2 mL, 11
mmol) and triethylamine (1 mL) was heated at 185 °C for 3 hours. Afterwards, the reaction was cooled down
and washed with DI-water and diethyl ether obtaining the final product as white powder. The spectral data
matches that previously reported for this compound. (Yield: 505 mg, 65%) '"H NMR (600 MHz, CDCl): § =
8.88 (s, 1H), 8.65 (s, 1H), 8.15 (d, 1H, J = 7.8 Hz), 7.90 (s, 1H), 7.58 (t, 2H, J = 9.0 Hz), 7.39-7.41 (m, 2H),
7.34 (t, 1H, J = 7.5 Hz).

Synthesis of coumarin C-2. This product was prepared as previously described.!? Inside the glovebox, a
solution containing coumarin-3-carboxylic acid (100 mg, 0.53 mmol), 4-hydroxypyridine (53 mg, 0.56 mmol)
and dimethylaminopyridine (6 mg) in anhydrous DCM (100 mL) was combined with EDC-HCI (110 mg,
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0.57 mmol) and allowed to stir at room temperature overnight. Afterwards, the mixture was washed with DI
water and the organic layer was collected and dried over MgSO,, which was then filtered, and the filtrate was
dried over vacuum. The obtained white solid was washed with ether and ethanol and recrystallized from
chloroform and diethyl ether. (Yield: 73 mg, 51%) 'H NMR (400 MHz, CDCl;): & = 8.88 (s, 1H), 7.87 (d,
2H, J=7.2 Hz), 7.72-7.76 (m, 2H), 7.42—7.47 (m, 2H), 6.68 (d, 2H, J = 7.6 Hz).

Synthesis of 3a. Inside the glovebox, complex 2a (100 mg, 0.14 mmol) was dissolved in 10 mL of CH>Cl,
and combined with AgPFs (34 mg, 0.13 mmol) and 3-(3-pyridyl)coumarin (C-1) (31 mg, 0.14 mmol), which
turned into a cloudy yellow suspension. The mixture was stirred overnight at room temperature. Then the
reaction mixture was filtered, and the solvent was removed under vacuum to obtain an oily yellow material.
The final product was obtained after silica gel column chromatography eluting with CH,Cl,/Ethyl acetate
(7:3) and recrystallization from CH>CL/Et,O as light-yellow powder. (Yield: 52 mg, 36%) 'H NMR (600
MHz, CD3;CN): 6 =9.40 (d, 1H, J = 5.4 Hz), 9.11 (s, 1H), 8.69 (s, 1H), 8.43 (t, 2H, J = 8.7 Hz), 8.34 (d, 1H,
J=9.0 Hz), 8.26 (d, 1H, J = 7.8 Hz), 8.13 (t, 1H, J = 8.1 Hz), 8.08 (t, 1H, J = 7.8 Hz), 7.97 (s, 1H), 7.66 (t,
2H,J=7.5Hz), 7.55 (t, 1H, J= 6.3 Hz), 7.45 (t, 1H, J = 6.6 Hz), 7.40 (t, 3H, J = 7.8 Hz), 7.25 (t, 1H, J = 7.8
Hz), 7.13 (d, 2H, ] = 7.2 Hz), 6.64-6.71 (m, 2H), 5.85 (d, 1H, J = 7.8 Hz), 5.74 (d, 1H, J = 6.6 Hz), 2.09 (s,
6H). "F NMR (564 MHz, CDsCN): § = —72.35 (d, 6F, J = 705.0 Hz, PF¢), —106.35 (q, 1F, J = 10.2 Hz,
Foppy), —107.65 (q, 1F, J = 10.2 Hz, F2ppy), —108.31 (t, 1F, J = 13.3 Hz, Foppy), —109.65 (t, 1F, J = 13.0 Hz,
Fappy). BC{'H} NMR (151 MHz, CDCI3): § =6 = 165.8, 164.4 (dd, Jcr = 260 Hz, 12 Hz), 164.1 (d, Jcr = 7.6
Hz), 162.6 (dd, Jcr = 230 Hz, 12.8 Hz), 161.6 (dd, Jcr = 263 Hz, 12 Hz), 161.2 (dd, Jcr = 334 Hz, 12.8 Hz),
160.6, 153.9, 150.6, 144.3, 144.2, 144.1, 144.01, 143.99, 142.7, 139.9, 139.7, 139.0, 135.6, 134.4, 132.8,
130.0, 129.6, 128.3, 127.6, 127.5, 126.1, 125.4, 125.3, 124.52, 124.48, 124.3, 124.2, 124.0, 122.4, 119.4,
116.4,114.3,114.1,113.0,112.9, 101.0 (t, Jcr = 30.0 Hz), 99.6 (t, Jcr = 30.0 Hz), 18.3. HRMS: m/z calculated
for C4sH30F10IrN4O,P [M—PF]": 927.1929, found: 927.1943.

Synthesis of 3b. Inside the glovebox, complex 2b (100 mg, 0.13 mmol) was dissolved in 10 mL of CH,Cl,
and combined with AgPFs (33 mg, 0.13 mmol) and 3-(3-pyridyl)coumarin (C-1) (30 mg, 0.13 mmol), which
turned into a cloudy orange suspension. The mixture was stirred overnight at room temperature, and then
filtered and the solvent was removed under vacuum. The crude product was purified by alumina column
chromatography using CH,Cl,/ethyl acetate (1:1) and crystallization from CH,Cl,/Et,O to obtain the final
product as orange powder. (Yield: 88 mg, 62%). 'H NMR (500 MHz, CD3CN): 6 =9.31 (d, 1H, J = 6.5 Hz),
9.05 (d, 2H, J =9.0 Hz), 8.93 (d, 1H, J = 8.5 Hz), 8.73 (s, 1H), 8.29-8.37 (m, 3H), 8.24-8.26 (m, 1H), 8.12—
8.17 (m, 2H), 7.80-7.97 (m, SH), 7.74-7.76 (m, 2H), 7.62-7.66 (m, 2H), 7.49-7.52 (m, 1H), 7.37-7.39 (m,
2H), 7.21 (q, 2H, J = 7.5 Hz), 7.09 (t, 3H, J = 7.5 Hz), 6.99 (t, 1H, J = 7.5 Hz), 6.83 (t, 1H, J = 7.5 Hz), 6.39
(d, 1H, J = 7.0 Hz), 6.27 (d, 1H, J = 7.5 Hz), 2.07 (s, 6H). °F NMR (470 MHz, CD;CN): & = —72.84 (d, 6F,
J =705.0 Hz, PF¢). *C{'H} NMR (151 MHz, CDCl3): 6 = 169.1, 168.4, 165.1, 153.8, 146.5, 145.3, 145.1,
143.2,141.7, 138.7, 137.4,137.3, 135.6, 135.5, 135.4, 134.0, 132.7, 132.3, 132.1, 132.0, 131.4, 131.0, 130.9,
130.4, 130.3, 129.6, 129.53, 129.49, 128.98, 128.97, 128.2, 128.1, 128.04, 127.95, 127.82, 127.81, 127.3,
127.2, 126.9, 126.7, 126.6, 125.3, 124.1, 123.5, 122.8, 122.6, 122.4, 119.4, 116.3, 18.4. HRMS: m/z
calculated for Cs3HssFsIrN4O,P [M—PFs]": 955.2619, found: 955.2616.

Synthesis of 3c. A mixture of 2¢ (30 mg, 0.035 mmol), 3-(3-pyridyl)coumarin (C-1) (7.7 mg, 0.035 mmol),
and AgPFs (8.7 mg, 0.035 mmol) was dissolved in 15 mL of CH,Cl, inside the glovebox. The reaction mixture
was stirred for 72 h at room temperature. The AgCl was filtered off and the solvent was removed under
vacuum. The orange solid was purified by washing three times with hexane and precipitation from
DCM/hexane. The orange solid was then washed three times with toluene and precipitated from
chloroform/pentane. Yield: 8 mg (20%) '"H NMR (500 MHz, CDCl;): 6 = 9.26 (t, 1H, J = 4.8 Hz), 8.95 (d,
1H, J = 8.5 Hz), 8.85 (d, 1H, J = 8.0 Hz), 8.61-8.67 (m, 3H), 8.40 (d, 1H, J = 8.0 Hz), 8.08-8.14 (m, 2H),
8.03 (d, 1H, J = 8.0 Hz), 7.95-8.02 (m, 2H), 7.90 (q, 2H, J = 7.0 Hz), 7.83—7.86 (m, 3H), 7.69 (t, 3H, J = 8.3
Hz), 7.63 (t, 1H, J =7.5 Hz), 7.52 (t, 1H, ] = 7.8 Hz), 7.32 (q, 2H, J = 8.0 Hz), 7.23-7.25 (m, 1H), 7.07-7.13
(m, 5H), 7.01 (d, 1H, J = 8.0 Hz), 6.87-6.94 (m, 4H), 6.37 (d, 1H, J = 7.5 Hz), 1.89 (s, 6H). '°F NMR (376
MHz, CDCI3): = -72.77 (d, 6F, J = 704.2 Hz, PFs). BC{'H} NMR (151 MHz, CDCl;): § = 169.4, 153.6,
142.7, 134.2, 134.13, 134.07, 133.5, 133.34, 133.30, 132.99, 132.96, 132.9, 132.7, 132.6, 132.5, 132.3,
130.42, 130.38, 130.3, 129.9, 129.8, 129.64, 129.56, 129.5, 129.42, 129.41, 129.37, 129.3, 129.0, 128.64,
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128.58, 128.5, 128.4, 128.2, 128.1, 128.0, 127.9, 127.7, 127.19, 127.16, 127.13, 127.11, 125.54, 125.52,
125.2, 125.14, 125.12, 124.2, 123.7, 123.44, 123.35, 123.1, 122.8, 122.7, 122.6, 119.2, 116.1, 18.3. HRMS:
m/z calculated for Ce1HaaFIrN4O2P [M—C14HoO2NPF4]*: 832.2298, found: 832.2296.

Synthesis of 4a. Inside the glovebox, complex 2a (100 mg, 0.14 mmol) was dissolved in CH»Cl, (10 mL)
and AgPFs (34 mg, 0.14 mmol) and C-2 (36 mg, 0.14 mmol) were added. The mixture was stirred at room
temperature for two days. The reaction was then filtered, and CH,Cl, was removed under vacuum. The final
product was obtained after silica gel column chromatography using CH,Cl,/Ethyl acetate (7:3) as the eluent
and recrystallization from CH,Cl/Et,O. (Yield: 57 mg, 38%) '"H NMR (600 MHz, CD;CN): 8 = 9.36 (d, 1H,
J=5.4Hz), 891 (s, 1H), 8.72 (s, 2H), 8.44 (d, 1H, J = 8.4 Hz), 8.35 (t, 2H, J = 5.7 Hz), 8.07-8.13 (m, 2H),
7.76-7.81 (m, 2H), 7.39-7.42 (m, 6H), 7.26 (t, 1H, J = 7.8 Hz), 7.14 (d, 2H, J = 7.8 Hz), 6.64—6.73 (m, 2H),
5.83 (dd, 1H, J = 2.1 Hz), 5.73 (dd, 1H, J = 2.1 Hz), 2.11 (s, 6H). '°F NMR (564 MHz, CD;CN): & = -72.81
(d, 6F, J = 701.6 Hz, PFe), —106.68 (q, 1F, J = 10.2 Hz, F.ppy), —108.01 (q, 1F, J = 10.2 Hz, J = 10.2 Hz,
Fappy), —108.70 (t, 1F, J = 13.3 Hz, Foppy), —110.10 (t, 1F, J = 12.7 Hz, Foppy). *C{'H} NMR (151 MHz,
CDCl): 6 =8=165.8,165.1, 164.8 (dd, Jcr = 245 Hz, 4.5 Hz), 164.24, 164.0, 163.4 (dd, Jcr =229 Hz, 11.3
Hz), 162.6 (dd, Jcr = 221 Hz, 11.3 Hz), 161.6 (dd, Jcr = 246 Hz, 12 Hz), 159.4, 158.9, 156.7, 155.5, 153.7,
152.8,151.8, 150.0, 140.0, 139.8, 139.7, 136.0, 135.8, 135.7, 135.5, 131.3, 130.7, 130.1, 128.3, 126.4, 125.6,
124.4,124.3, 124.2, 120.7, 117.9, 117.3, 116.7, 115.7, 1149, 114.2, 114.1, 113.0, 112.8, 101.1 (t, Jcr = 30.0
Hz), 99.6 (t, Jcr = 28.3 Hz), 18.4. HRMS: m/z calculated for C46H30F 10IrN4O4P [M—PF¢]": 971.1827, found:
971.1819.

Synthesis of 4b. Inside the glovebox, complex 2b (120 mg, 0.16 mmol) was dissolved in 10 mL DCM and
combined with AgPFs (40 mg, 0.16 mmol) and an excess amount of C-2 (50 mg, 0.19 mmol). The mixture
was allowed to react at room temperature for 2 days. The reaction mixture was then filtered and the solvent
was removed under vacuum. The crude product was purified through alumina column chromatography using
CH,Cly/ethyl acetate (4:1) and crystallization from CH,Cly/Et,O, obtaining the final product as orange
powder. (Yield: 65 mg, 36%) 'H NMR (600 MHz, CD3CN): 6 =9.28 (d, 1H, J= 6.6 Hz), 9.04 (d, 1H,J =84
Hz), 8.93 (d, 1H, J = 8.4 Hz), 8.88 (s, 1H), 8.78 (s, 2H), 8.34 (d, 1H, J = 8.4 Hz), 8.29 (d, 1H, J = 7.8 Hz),
8.26 (d, 1H, J = 6.0 Hz), 8.13-8.17 (m, 2H), 7.74-7.90 (m, 8H), 7.38-7.43 (m, 4H), 7.21 (t, 1H, J = 7.5 Hz),
7.14-7.15 (m, 1H), 7.07-7.10 (m, 3H), 6.97 (t, 1H, ] = 7.0 Hz), 6.83 (t, 1H, J = 7.8 Hz), 6.40 (d, 1H, ] =7.8
Hz), 6.24 (d, 1H, J = 7.8 Hz), 2.06 (s, 6H). '°F NMR (564 MHz, CD3CN): § = -72.51 (d, 6F, J = 695.4 Hz,
PF¢). *C{'H} NMR (151 MHz, CDCl3): & = 169.2, 168.9, 165.8, 165.3, 155.3, 153.9, 149.4, 146.4, 146.2,
145.0, 144.8, 144.1, 141.1, 137.24, 137.17, 135.3, 134.7, 132.5, 132.24, 132.20, 132.1, 131.3, 130.9, 130.8,
130.4, 130.3, 130.0, 129.8, 129.6, 129.1, 128.6, 128.3, 128.0, 127.92, 127.85, 127.7, 127.4, 127.03, 126.99,
126.7, 126.61, 126.57, 125.1, 124.0, 123.1, 122.7, 121.9, 118.0, 116.9, 115.4, 18.5. HRMS: m/z calculated
for C61H42F5II‘N402P [M—C15H904NPF6]+C 7321985, found: 732.1984.

Synthesis of 5a. A mixture of 1a (41 mg, 0.034 mmol) and AgPF¢ (17 mg, 0.068 mmol) was dissolved in 15
mL of DCM in the glovebox. After stirring for 2 hours, 3-(3-pyridyl)coumarin (C-1) (30 mg, 0.136 mmol)
was added and the reaction mixture was stirred for 48 h at room temperature. The AgCl was filtered off and
the solvent was removed under vacuum. The yellow solid was then washed three times with diethyl ether and
purified by precipitation from CH,Cl,/diethyl ether, followed by washing with toluene three times and
recrystallization from CH,Cly/hexane and chloroform/hexane/diethyl ether. (Yield: 25 mg, 32%). 'H NMR
(400 MHz, CDCls): 6 = 8.87 (s, 2H), 8.78 (d, 2H, J = 5.6 Hz), 8.46 (d, 2H, J = 5.6 Hz), 8.23 (d, 2H, J = 8.4
Hz), 8.07 (d, 2H, J = 8.0 Hz), 7.89 (t, 4H, J = 8.4 Hz), 7.50-7.60 (m, 8H), 7.26—7.31 (m, 4H), 6.43-6.49 (m,
2H), 5.80-5.83 (dd, 2H, J = 2.0 Hz). F NMR (564 MHz, CDsCN): 8 = —72.91 (d, 6F, J = 679.6 Hz, PF),
—-107.61 (q, 2F, J = 10.3 Hz, Faoppy), —110.18 (t, 2F, J = 13.0 Hz, Foppy). *C{'H} NMR (151 MHz, CDCl;):
o =166.6, 164.3, 163.5 (dd, Jcr = 274 Hz, 9.8 Hz), 161.0 (dd, Jcr = 211 Hz, 12 Hz), 153.9, 151.5, 151.1,
149.7,143.3,139.4, 138.6, 133.9, 132.8, 129.2, 128.1, 127.2, 125.2, 124.5, 123.8, 123.6, 122.9, 119.2, 116.5,
114.5, 99.4 (t, Jcr = 30.0 Hz). HRMS: m/z calculated for CsoH3oF 10IrN4O4P [M—PFs]": 1019.1827, found:
1019.1802.
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Table S1. Summary of X-ray crystallographic data for 3a, 4a and 5a.

3a-0.5C;Hs

4a-1.5C6H6

5a

CCDC

2126601

2126602

2126603

Crystal data

Chemical formula

Cag 50H34F 10IrN4OoP

CssH3oF 10IrN4O4P

CsoH30F 10IrN4O4P

M,

1117.96

1233.07

1163.95

Crystal system, space|Triclinic, PT Triclinic, PT Triclinic, PT

group

Temperature (K) 123 123 123

a,b,c(A) 12.373 (6), 19.541 (9), 21.137(10) |12.0293 (3), 13.6426 (3), |11.885 (2), 13.195 (3),
15.8219 (3) 16.517 (3)

o, B,y (°) 63.579 (5), 75.787 (5), 79.160 (1), 81.948 (1), 105.127 (2), 97.590 (2),

71.958 (5) 71.953 (1) 101.773 (2)

V(A% 4317 (3) 2415.43 (9) 2400.2 (8)

VA 4 2 2

Radiation type Mo Ka Mo Ko Mo Ka

u (mm™) 3.22 2.89 2.90

Crystal size (mm)

0.33x0.32x0.05

0.74 x 0.43 x 0.42

0.67x0.39x0.13

Data collection

observed [/ > 20(/)]
reflections

Diffractometer Bruker APEX-11 CCD Bruker APEX-I1 CCD Bruker APEX-11 CCD
Absorption correction |Empirical (using intensity Multi-scan Empirical (using intensity
measurements) twinabs SADABS measurements)
SADABS
Timin, Timax 0.501, 0.746 0.569, 0.746 0.546, 0.746
No. of measured,|16458, 16458, 14158 31358, 9804, 9473 33955, 11009, 10052
independent and

Rint 0.0625 0.020 0.032
(sin 6/A)max (A1) 0.658 0.625 0.650
Refinement

R[F? > 26(F?)], wR(F?),
S

0.045, 0.120, 1.06

0.023, 0.058, 1.05

0.030, 0.075, 1.05

No. of reflections 16458 9804 11009

No. of parameters 1204 697 668

No. of restraints 134 153 274

APrmaxs Apmin (€ A7) 242,-2.19 1.41,-0.94 2.82,-1.03
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Fig. S19. Simulated (top) and experimental (bottom) ESI-MS data for complex 3a, showing the isotropic distribution
pattern for the molecular ion peak ([M — PF¢]").
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Fig. S20. Simulated (top) and experimental (bottom) ESI-MS data for complex 3b, showing the isotropic distribution
pattern for the molecular ion peak ([M — PF¢]").
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Fig. S21. Simulated (top) and experimental (bottom) ESI-MS data for complex 3¢, showing the isotropic distribution
pattern for the peak ([M — Ci4HyO,NPF¢]").
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Fig. S22. Simulated (top) and experimental (bottom) ESI-MS data for complex 4a, showing the isotropic distribution
pattern for the molecular ion peak ([M — PF¢]").
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Fig. S23. Simulated (top) and experimental (bottom) ESI-MS data for complex 4b, showing the isotropic distribution
pattern for the peak ([M — C;sHyO4NPF4]").
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Fig. S24. Simulated (top) and experimental (bottom) ESI-MS data for complex 5a, showing the isotropic distribution
pattern for the molecular ion peak ([M — PF¢]").
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Fig. S26. Overlaid UV-vis absorption (black dashed line) and photoluminescence (red solid line) spectra of coumarin
C-2, recorded at 293 K in CH,Cl,.
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Table S2. Summary of photoluminescence data recorded at 77 K in a mixture of CH,Cly/toluene (1:3 v/v).

Aem/nm (77 K)
3a 396, 443, 467, 525, 567 (max), 613
3b 576, 624 (max), 677
3c 406, 614, 655 (max)
4a 407, 443, 489, 516 (max), 556
4b 577, 625 (max), 679
5a 406, 444, 475, 521, 565 (max), 614

S33
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Fig. S27. Overlaid UV-vis absorption (black solid line) and excitation spectra of 3a. Excitation spectra were monitored
at the peak fluorescence (red dashed line) and phosphorescence (magenta dash-dot line) wavelengths. The UV-vis
absorption spectrum of C-1 (blue dotted line) is included for reference.
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Fig. S28. Overlaid UV-vis absorption (black solid line) and excitation (red dashed line) spectra of 3b. The excitation
spectrum was monitored at the peak phosphorescence wavelength.
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Fig. S29. Overlaid UV-vis absorption (black solid line) and excitation spectra of 3¢c. Excitation spectra were monitored
at the peak fluorescence (red dashed line) and phosphorescence (magenta dash-dot line) wavelengths. The UV-vis
absorption spectrum of C-1 (blue dotted line) is included for reference.
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Fig. S30. Overlaid UV-vis absorption (black solid line) and excitation spectra of 4a. Excitation spectra were monitored
at the peak fluorescence (red dashed line) and phosphorescence (magenta dash-dot line) wavelengths. The UV-vis
absorption spectrum of C-2 (blue dotted line) is included for reference.
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Fig. S31. Overlaid UV-vis absorption (black solid line) and excitation (red dashed line) spectra of 4b. The excitation
spectrum was monitored at the peak phosphorescence wavelength.
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Fig. S32. Overlaid UV-vis absorption (black solid line) and excitation spectra of 5a. Excitation spectra were monitored
at the peak fluorescence (red dashed line) and phosphorescence (blue dotted line) wavelengths.
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Fig. S34. Photoluminescence spectra of complex 3b in deaerated and aerated solutions. Spectra were recorded at 293
Kin CHzClz.
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Fig. S35. Photoluminescence spectra of complex 3¢ in deaerated and aerated solutions. Spectra were recorded at 293
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Fig. S36. Photoluminescence spectra of complex 4a in deaerated and aerated solutions. Spectra were recorded at 293
Kin CHzClz.
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Fig. S37. Photoluminescence spectra of complex 4b in deaerated and aerated solutions. Spectra were recorded at 293
Kin CHzClz.
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Fig. S38. Photoluminescence spectra of complex Sa in deaerated and aerated solutions. Spectra were recorded at 293
K in CH,Cl,.
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Fig. S39. Photoluminescence spectra of complex 3a in deaerated and aerated solutions. Spectra were recorded at 293
K in deionized H>O.
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Fig. S40. Photoluminescence spectra of complex 3¢ in deaerated and aerated solutions. Spectra were recorded at 293
K in deionized H,O.
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Fig. S41. Photoluminescence spectra of 3¢ with repeated cycling of N> and aerobic atmospheres. 1) The initial N,-
saturated sample was prepared in a nitrogen-filled glovebox using deoxygenated CH,Cl,. 2) The sample was then
exposed to air to obtain the aerated spectrum. 3) The aerated sample was deareated with three freeze-pump-thaw
cycles on a Schlenk line, and then added back into the cuvette in the glovebox. This process was repeated over a
total of three cycles.
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Fig. S42. Singlet oxygen emission spectrum upon irradiation of a solution [Ru(bpy);](PFs). in aecrated DMF with
365 nm light. The absorbance of the solution at the excitation wavelength is 0.3.
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Fig. S43. Singlet oxygen emission spectrum upon irradiation of a solution 3a in aerated CH,Cl, with 365 nm light.
The absorbance of the solution at the excitation wavelength is 0.3.
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Fig. S44. Singlet oxygen emission spectrum upon irradiation of a solution 3¢ in aerated CH»Cl, with 365 nm light.
The absorbance of the solution at the excitation wavelength is 0.3.
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Fig. S45. Singlet oxygen emission spectrum upon irradiation of a solution 5a in aerated CH,Cl, with 365 nm light.
The absorbance of the solution at the excitation wavelength is 0.3.
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Fig. S46. Photoluminescence spectra of complex 3a upon irradiation with 310 nm light, in CH»Cl, under aerobic
conditions.

600000 ?

500000 - —t=0
» E ——t=15min
o) E ——t=30min
© 400000 E )
2 E ——t=45min
% 3 ——t=60 min
£ 300000 £ —— =90 min
c E —— t=120 min
K] E
$ 200000 E
S E
L =

100000 F-

0 E 11 1 I 11 1 1 I 11 1 1 I 11 1 1 11 1 I 11 1 1 I 11 1 1
350 400 450 500 550 600 650 700
A/ nm

Fig. S47. Photoluminescence spectra of complex 3¢ upon irradiation with blue light, in CH>Cl, under aerobic
conditions.
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Fig. S48. Photoluminescence spectra of complex 3¢ upon irradiation with 310 nm light, in CH,Cl, under aerobic
conditions.
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Fig. S49. Photoluminescence spectra of complex 5a upon irradiation with 310 nm light, in CH>Cl, under aerobic
conditions.
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