Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Asymmetric higher-order [10+n] cycloadditions of palladium-containing $10\pi\text{-cycloaddends}$

Ao Li,a,‡ Yang Gao,a,‡ Jian-Bin Lu,a Zhi-Chao Chen,a Wei Du,*a and Ying-Chun Chen*a,b

^a Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.

E-mail: duweiyb.scu.edu.cn; ycchen@scu.edu.cn

Supplementary Information

Table of Contents

1. General methods	S1
2. Procedure for preparation of allylic alcohol and carbonate 1	S2
3. Procedure for preparation of ligand L4	S7
4. Detailed screening conditions for asymmetric [10+n] cycloadditions	S8
5. General procedure for asymmetric cycloadditions	S13
6. More screening studies for substrate scope	S40
7. Asymmetric reaction on a 1.0 mmol scale	S44
8. Crystal data and structural refinement for enantiopure 3a	S45
9. Mechanism study	S47
10. References	S50
11 NMR HRMS spectra and HPLC chromatograms	S51

^b College of Pharmacy, Third Military Medical University, Shapingba, Chongqing 400038, China.

[‡] A. Li and Y. Gao equally contributed to this work.

1. General methods

Unless otherwise noted, all reactions were carried out at ambient temperature; when the reactions required heating, the heat source was oil bath. ¹H NMR (400 or 600 MHz), ¹³C NMR (100 or 150 MHz) and ¹⁹F NMR (376 MHz) spectra were recorded on Varian INOVA-400/54, Agilent DD2-600/54 or Bruker AscendTM 400 instruments (Chemical shifts were reported in ppm from tetramethylsilane with the solvent resonance as the internal standard in CDCl₃ solution, unless otherwise noted). The following abbreviations were used to explain the multiplicities: s = singlet, d = doublet, t = triplet, dd = double doublet, ddd = double doublet, dt = double triplet; td = triple doublet; tt = triple triplet, m = multiplet, br = broad, and coupling constants (J) are reported in Hertz (Hz). High resolution mass spectra (HRMS) were recorded on a Waters SYNAPT G2, Agilent G1969-85000 or Shimadzu LCMS-IT-TOF using a time-of-flight mass spectrometer equipped with electrospray ionization (ESI) source. X-ray diffraction experiments were carried out on an Agilent Gemini or Bruker APEX-II CCD diffractometer and the data obtained were deposited at the Cambridge Crystallographic Data Centre. In each case, diastereomeric ratio was determined by ¹H NMR analysis and enantiomeric excess was determined by HPLC (Agilent Technologies: 1220 Infinity II, 1200 Series, 1260 Infinity) analysis on a chiral column in comparison with an authentic racemate, using a Daicel Chiralpak AD-H Column (250 × 4.6 mm), Chiralpak IE (250 × 4.6 mm) or Chiralpak IA Column ($250 \times 4.6 \text{ mm}$). UV detection was monitored at 254 nm. The specific optical rotation was obtained from Rudolph Research Analytical Autopol I automatic polarimeter in CHCl₃ solution at 25 °C. The melting points were obtained from WRX-4 Mel-Temp apparatus. Column chromatography was performed on silica gel (200–300 mesh) eluting with ethyl acetate (EtOAc) and petroleum ether. TLC was performed on glass-backed silica plates. UV light, I₂, and solution of potassium permanganate were used to visualize products or starting materials. All chemicals were used without purification as commercially available unless otherwise noted. Petroleum ether (60–90 °C) was redistilled. (S)-(+)-1,1'-Binaphthyl-2,2'-diyl phosphate (S)-A1 and diphenyl phosphate A2 were passed over a column of silica to remove water. 2-Methylene-2,3-dihydro-1*H*-inden-1-one S1, 5-nitro-1-indanone S7, α -cyano chalcones 2, α barbiturate-derived alkenes **4.** benzylidene Meldrum's acid **6.** barbiturate-heptafulvene **8.** 6 2-benzylidenebenzo[b]thiophen-3(2H)-one **10**,⁷ and (2S,5R)-2-(((tert-butyldimethylsilyl)oxy)methyl)-5-phenylpyrrolidine **S13**⁸ were prepared according to the literature procedures.

S1

2. Procedure for preparation of allylic alcohol and carbonate 1

CeCl₃ (0.222 g, 0.901 mmol, 1.0 equiv) was added to a stirred solution of **S1** (0.130 g, 0.902 mmol, 1.0 equiv) in MeOH (2 mL) at 0 °C. After 10 min, NaBH₄ (34.0 mg, 0.900 mmol, 1.0 equiv) was added, and the mixture was stirred for 0.2 h. Water (5 mL) was added and the resultant slurry was filtered through Celite and washed with Et₂O (15 mL). The combined filtrates were washed with saturated NaHCO₃ (2 × 20 mL), brine (2 × 20 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **S2** (0.123 g, 84% yield) as a colorless oil.

DMAP (9.8 mg, 0.080 mmol, 0.2 equiv) was added to a stirred solution of **S2** (60.0 mg, 0.411 mmol, 1.0 equiv) in DCM (5 mL). (Boc)₂O (0.140 mL, 0.620 mmol, 1.5 equiv) was added dropwise at 0 °C, and the mixture was stirred for 0.2 h. After completion, the mixture was concentrated and purified by chromatography on silica gel (EtOAc/petroleum ether = 1/15) to afford **1a** (18.1 mg, 18% yield) as a yellow oil.

OBOC tert-Butyl (2-methylene-2,3-dihydro-1*H*-inden-1-yl) carbonate (1a): Colorless oil; ${}^{1}H$ NMR (400 MHz, CDCl₃): δ (ppm) 7.43 (d, J = 7.2 Hz, 1H), 7.35 (d, J = 7.6 Hz, 1H), 7.29–7.21 (m, 1H), 7.22–7.13 (m, 1H), 6.83 (s, 1H), 5.00 (s, 2H), 3.44 (s, 2H), 1.50 (s, 9H); ${}^{13}C$ NMR (100 MHz, CDCl₃): δ (ppm) 153.5, 144.2, 143.5, 142.7, 130.7, 126.4, 124.9, 123.7, 121.2, 82.3, 65.2, 39.4, 27.8; **HRMS** (ESI-TOF) m/z: [M + Na] $^{+}$ Calcd for C₁₅H₁₈O₃Na $^{+}$ 269.1148; Found 269.1140.

A solution of potassium nitrate (8.79 g, 86.9 mmol, 2.25 equiv) in concentrated sulfuric acid (50 mL) was added dropwise to the solution of **S3** (5.15 g, 39.0 mmol, 1.0 equiv) in concentrated sulfuric acid (30 mL) at 0 °C over 0.5 h. The mixture was stirred at 0 °C for 1 h. Then the mixture was poured into ice water (300 mL) and extracted with EtOAc (3×50 mL). After the removal of solvent, the crude product was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **S4a** (2.99 g, 43% yield) and **S4b** (1.31 g, 19% yield) as a brown solid.

To a suspension of **S4a** (2.20 g, 12.4 mmol, 1.0 equiv), (HCHO)_n (1.49 g, 49.6 mmol, 4.0 equiv) and TFA· i-Pr₂NH (2.67 g, 12.4 mmol, 1.0 equiv) in toluene (60 mL) was added TFA (0.090 mL, 1.2 mmol, 0.1 equiv). The mixture was stirred at 80 °C. After completion, the mixture was cooled to room temperature and filtered through Celite. The cake was washed with EtOAc (3 × 20 mL). The combined filtrates were washed with saturated NaHCO₃ (2 × 30 mL), brine (2 × 30 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **S5a** (1.60 g, 68% yield) as a white solid. **S5b** was prepared similarly from **S5b**.

CeCl₃ (0.389 g, 1.58 mmol, 1.0 equiv) was added to a stirred and cooled (0 °C) solution of **S5a** (0.300 g, 1.59 mmol, 1.0 equiv) in MeOH (5 mL). After 10 min, NaBH₄ (0.0597 g, 1.58 mmol, 1.0 equiv) was added, and the mixture was stirred at 0 °C for 0.2 h. Water (5 mL) was added and the resultant slurry was filtered through Celite and washed with Et₂O (25 mL). The combined filtrates were washed with saturated NaHCO₃ (2 × 20 mL), brine (2 × 20 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **1c** (0.209 g, 69% yield) as a white solid. **1d** was prepared similarly from **S5b**.

DMAP (12.7 mg, 0.104 mmol, 0.2 equiv) was added to a stirred solution of 1c (0.100 mg, 0.523 mmol, 1.0 equiv) in DCM (7 mL). (Boc)₂O (0.180 mL, 0.784 mmol, 1.5 equiv) was added dropwise at 0 °C, and the mixture was stirred for 0.2 h. After completion, the mixture was concentrated and purified by chromatography on silica gel (EtOAc/petroleum ether = 1/15) to afford 1b (0.136 g, 90% yield) as a colorless oil.

OBOC *tert*-Butyl (2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-yl) carbonate O₂N (1b): Yellow oil; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 8.35 (s, 1H), 8.21 (d, J = 8.4 Hz, 1H), 7.41 (d, J = 8.4 Hz, 1H), 6.43 (s, 1H), 5.63 (s, 1H), 5.45 (s, 1H), 3.89 (d, J = 20.4 Hz, 1H), 3.67 (d, J = 21.0 Hz, 1H), 1.54 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 153.4, 149.9, 145.2, 141.6, 125.4, 124.8, 121.5, 115.5, 83.1, 78.8, 36.8, 27.8, 27.4; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₅H₁₇NO₅Na⁺ 314.0999; Found 314.0990.

2-Methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol (1c): White solid, mp: 59–61 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (d, J = 2.4 Hz, 1H), 8.13 (dd, J = 8.4, 2.4 Hz, 1H), 7.38 (d, J = 8.4 Hz, 1H), 5.55–5.53 (m, 2H), 5.35–5.33 (m, 1H), 3.80–3.65 (m, 2H), 2.43 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.1, 148.3, 147.7, 145.7, 125.4, 124.0, 120.3, 111.6, 75.7, 36.6; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₀NO₃⁺ 192.0661; Found 192.0652.

2-Methylene-4-nitro-2,3-dihydro-1*H*-inden-1-ol (1d): Yellow solid, mp: 53–55 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.15 (d, J = 8.4 Hz, 1H), 7.78 (d, J = 7.2 Hz, 1H), 7.49–7.44 (m, 1H), 5.55–5.52 (m, 2H), 5.40–5.38 (m, 1H), 4.21–4.01 (m, 2H), 2.25 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.8, 147.7, 137.3, 131.0, 128.4, 124.4, 111.6, 75.6, 37.8; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₁₀H₁₀NO₃⁺ 192.0661; Found 192.0670.

S4a (3.54 g, 20.0 mmol, 1.0 equiv) and Et_3SiH (12.7 mL, 79.7 mmol, 4.0 equiv) were added into $BF_3 \cdot Et_2O$ (48%, 50 mL) at room temperature and the solution was stirred for 8 h. After completion, it was quenched with water (100 mL) and extracted with EtOAc (2 × 20 mL). The organic layer was dried over anhydrous Na_2SO_4 and concentrated in vacuo. Crude product **S6** was obtained as a yellow solid and used without further purification.

To a solution of **S6** (0.196 g, 1.20 mmol, 1.0 equiv) in AcOH (50 mL) was added CrO₃ (6.00 g, 60.0 mmol, 5.0 equiv), and the mixture was stirred at 50 °C for 30 h. Then the mixture was poured into water (200 mL) and extracted with EtOAc (2 \times 50 mL). The organic layer was dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **S7** (0.766 g, 36% yield) as a yellow solid.

To a suspension of **S7** (0.640 g, 3.61 mmol, 1.0 equiv), (HCHO)_n (0.434 g, 14.5 mmol, 4.0 equiv) and TFA· i-Pr₂NH (0.744 g, 3.60 mmol, 1.0 equiv) in toluene (30 mL) was added TFA (0.030 mL, 0.40 mmol, 0.1 equiv). The mixture was stirred at 80 °C for 6 h. The mixture was cooled to room temperature and filtered through Celite. The cake was washed with EtOAc (3 × 10 mL). The combined filtrates were washed with saturated NaHCO₃ (2 × 20 mL), brine (2 × 20 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford **S8** (0.381 g, 56% yield) as a yellow solid.

CeCl₃ (0.493 g, 2.00 mmol, 1.0 equiv) was added to a stirred solution of S8 (0.381 g, 2.02 mmol, 1.0 equiv) in MeOH (5 mL) at 0 °C. After 15 min, NaBH₄ (0.0740 g, 1.96 mmol, 1.0 equiv) was added, and the mixture was stirred for 0.2 h. Water (5 mL) was added and the resultant slurry

was filtered through Celite and washed with Et₂O (15 mL). The combined filtrates were washed with saturated NaHCO₃ (2 × 20 mL), brine (2 × 20 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to afford **1e** (0.211 g, 55% yield) as a white semisolid.

2-Methylene-5-nitro-2,3-dihydro-1*H*-inden-1-ol (1e): White semisolid; ${}^{1}H$ NMR (400 MHz, CDCl₃): δ (ppm) 8.13–8.07 (m, 2H), 7.59 (d, J = 8.4 Hz, 1H), 5.52 (s, 2H), 5.34 (s, 1H), 3.77–3.67 (m, 2H), 2.38 (s, 1H); ${}^{13}C$ NMR (100 MHz, CDCl₃): δ (ppm) 151.1, 151.0, 148.4, 142.3, 125.6, 122.8, 120.0, 111.4, 75.7, 36.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₀H₉NO₃Na⁺ 214.0475; Found 214.0470.

To a suspension of **S9** (0.314 g, 2.00 mmol, 1.0 equiv), (HCHO)_n (0.240 g, 7.99 mmol, 4.0 equiv) and TFA· i-Pr₂NH (0.430 g, 2.00 mmol, 1.0 equiv) in toluene (10 mL) was added TFA (0.015 mL, 0.20 mmol, 0.1 equiv). The mixture was stirred at 80 °C for 6 h. The mixture was cooled to room temperature and filtered through Celite. The cake was washed with EtOAc (3 × 20 mL), and the combined filtrates were washed with saturated NaHCO₃ (2 × 30 mL), brine (2 × 30 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **S10** (0.280 g, 83% yield) as a white solid.

CeCl₃ (0.409 g, 1.66 mmol, 1.0 equiv) was added to a stirred solution of **S10** (0.280 g, 1.66 mmol, 1.0 equiv) in MeOH (5 mL) at 0 °C. After 10 min, NaBH₄ (0.614 g, 1.62 mmol, 1.0 equiv) was added, and the mixture was stirred for 0.2 h. Water (5 mL) was added and the resultant slurry was filtered through Celite and washed with Et₂O (15 mL). The combined filtrates were washed with saturated NaHCO₃ (2 × 20 mL), brine (2 × 20 mL) and dried over anhydrous Na₂SO₄. After concentration, the residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to afford **1f** (0.115 g, 39% yield) as a white solid.

DMAP (4.3 mg, 0.035 mmol, 0.1 equiv) was added to a stirred solution of **1f** (30.0 mg, 0.175 mmol, 1.0 equiv) in DCM (2 mL). (Boc)₂O (65.0 μ L, 0.283 mmol, 1.5 equiv) was added dropwise at 0 °C, and the mixture was stirred for 0.2 h. After completion, the mixture was concentrated and purified by chromatography on silica gel (EtOAc/petroleum ether = 1/15) to afford **1g** (47.1 mg, 99% yield) as a white solid.

3-Hydroxy-2-methylene-2,3-dihydro-1*H*-indene-5-carbonitrile (1f): White solid, mp: 75–76 °C; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.73 (s, 1H), 7.55 (dd, J = 8.0, 1.2 Hz, 1H), 7.36–7.34 (m, 1H), 5.53–5.51 (m, 1H), 5.48 (s, 1H), 5.34–5.32 (m, 1H), 3.79–3.59 (m, 2H), 2.35 (s, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 151.0, 146.3, 145.4, 132.4, 128.9, 125.6, 119.1, 111.4, 110.9, 75.7, 36.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₁H₉NONa⁺ 194.0582; Found 194.0584.

OBoc tert-Butyl (6-cyano-2-methylene-2,3-dihydro-1*H*-inden-1-yl) carbonate (1g): White solid, mp: 89–90 °C; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.79 (s, 1H), 7.59 (d, J = 6.0 Hz, 1H), 7.36 (d, J = 6.0 Hz, 1H), 6.37 (s, 1H), 5.60 (s, 1H), 5.43 (s, 1H), 3.86 (d, J = 18.0 Hz, 1H), 3.63 (d, J = 18.0 Hz, 1H), 1.53 (s, 9H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 153.5, 148.1, 145.0, 141.4, 133.2, 130.1, 125.7, 118.8, 115.4, 111.1, 83.0, 79.0, 37.0, 27.8; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₁₆H₁₇NO₃Na⁺ 294.1101; Found 294.1109.

3. Procedure for preparation of ligand L4

A 25 mL Schlenk flask was charged with **S11** (0.570 g, 1.99 mmol), phosphorus trichloride (1.75 mL, 20.1 mmol, 10.0 equiv) and 1-methyl-2-pyrrolidinone (2.0 μ L, 0.021 mmol) under argon. The mixture was heated to 90 °C for 30 min, then the volatiles was evaporated under vacuum and further coevaporat with dry toluene three times to afford crude product **S12** as an orange solid and crude product **S12** was used directly in the next step.

A 25 mL round-bottom flask was charged with **S12** (0.292 g, 1.00 mmol, 1.0 equiv), Et₃N (0.690 mL, 4.97 mmol, 5.0 equiv), DMAP (24.4 mg, 0.200 mmol, 0.2 equiv) and toluene (1 mL). **S13** (0.525 g, 1.50 mmol, 1.5 equiv) was dissolved in THF (1 mL) and the mixture was transferred to the former flask at 0 °C under argon. The mixture was stirred at rt for 6 h. The solid was removed by filtration. The filtrate was concentrated and purified by flash column chromatography (EtOAc/petroleum ether = 1/50) to afford **L4** (0.301 g, 50% yield) as a white semisolid.

(2*S*,5*R*)-2-(((*tert*-Butyldimethylsilyl)oxy)methyl)-1-(dinaphtho[2,1-*d*: 1',2'-f][1,3,2]dioxaphosphepin-4-yl)-5-phenylpyrrolidine (L4): White semisolid; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.94 (d, J = 9.2 Hz, 1H), 7.91–7.85 (m, 3H), 7.48 (d, J = 8.8 Hz, 1H), 7.42–7.40 (m, 6H), 7.36–7.37 (m, 3H), 7.26–7.23 (m, 3H), 4.90–4.83 (m, 1H), 3.65 (dd, J =

6.0, 4.0 Hz, 1H), 3.31 (t, J = 9.6 Hz, 1H), 3.20 (s, 1H), 2.32–2.25 (m, 1H), 1.89–1.82 (m, 2H), 1.80–1.76 (m, 1H), 0.53 (s, 9H), -0.32 (s, 3H), -0.57 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 150.4, 150.3, 149.6, 144.5, 132.80, 132.76, 131.4, 130.8, 130.2, 129.8, 128.4, 128.2, 127.1, 126.6, 126.0, 124.8, 124.5, 122.3, 122.0, 121.5, 65.6, 62.5, 62.3, 60.3, 34.9, 34.8, 28.4, 25.5, 17.8, -5.5, -5.9; **HRMS** (ESI-TOF) m/z: [M + H]⁺ Calcd for C₃₇H₄₁NO₃PSi⁺ 606.2593; Found 606.2604.

4. Detailed screening conditions for asymmetric [10+n] cycloadditions

Table S1. Asymmetric [10+2] cycloaddition of allyl tert-butyl carbonate 1b with alkene 2a^a

^a Reactions were performed with allylic alcohol **1b** (0.1 mmol), alkene **2a** (0.12 mmol), $Pd_2(dba)_3$ (5 mol%) and **L** (20 mol%) in toluene (1 mL) at 50 °C under Ar for 24 h. After completion, Et_3N (20 mol%) was added and the mixture was stirred at rt for 2 h. ^b Yield of isolated product. ^c Determined by HPLC analysis on a chiral stationary phase.

Table S2. Asymmetric [10+2] cycloaddition of allylic alcohol 1c with alkene 2a^a

13	Toluene	L10	(R)-A1	45	-14
14	Toluene	L11	(R)-A1	<5	/
15	Toluene	L12	(R)-A1	<5	/
16	Toluene	L13	(R)-A1	35	-15
17	Toluene	L14	(R)-A1	<5	/
18	Toluene	L15	(R)-A1	60	27
19	Toluene	L16	(R)-A1	35	-15
20	Toluene	L17	(R)-A1	40	-28
21	Toluene	L18	(R)-A1	30	0
22	Toluene	L19	(R)-A1	45	-46
23	Toluene	L20	(R)-A1	40	18
24	Toluene	L4	(S)-A1	68	91
25	THF	L4	(S)-A1	35	82
26	$CHCl_3$	L4	(S)-A1	55	85
27	DCM	L4	(S)-A1	52	86
28^d	Toluene	L4	(S)-A1	70	91
29^e	Toluene	L4	(S)-A1	72	91
30 ^f	Toluene	L4	(S)-A1	72	91
$31^{e,g}$	Toluene	L4	(S)-A1	70	90
$32^{e,h}$	Toluene	L4	(S)-A1	65	91
$33^{e,i}$	Toluene	L4	(S)-A1	68	90
$34^{e,j}$	Toluene	L4	(S)-A1	72	91
35 ^e	Toluene	L4	A8	70	80
36 ^e	Toluene	L4	A9	72	80
37 ^e	Toluene	L4	A10	<5	/
38^e	Toluene	L4	TFA	<5	/
39 ^e	Toluene	L4	A2	99	91
·					· · · · · · · · · · · · · · · · · · ·

^a Unless noted otherwise, reactions were performed with allylic alcohol **1c** (0.1 mmol), alkene **2a** (0.12 mmol), Pd₂(dba)₃ (5 mol%), **L** (20 mol%), **A** (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 50 °C under Ar for 24 h. After completion, Et₃N (20 mol%) was added and the mixture was stirred at rt for 2 h. ^b Yield of isolated product. ^c Determined by HPLC analysis on a chiral stationary phase. ^d At 40 °C. ^e At 30 °C. ^f At rt for 36 h. ^g With 3 Å MS (100 mg). ^h With 5 Å MS (100 mg). ⁱ With 4 Å MS (50 mg). ^j With 4 Å MS (150 mg).

Table S3. Asymmetric [10+2] cycloaddition of allylic alcohol 1c with alkene 4a^a

Α1

A2 L4

Entry	A	Solvent	Yield (%) ^b	ee (%) ^c
1	(S)- A1	Toluene	65	93
2	(R)-A1	Toluene	73	85
3	(S)-A1	THF	57	80
4	(S)-A1	CHCl ₃	60	77
5	(S)-A1	DCM	45	72
6^d	(S)-A1	Toluene	62	90
7^e	(S)-A1	Toluene	60	88
$8^{f,g}$	A2	Toluene	99	93

^a Unless noted otherwise, reactions were performed with allylic alcohol **1c** (0.1 mmol), alkene **4a** (0.12 mmol), Pd₂(dba)₃ (5 mol%), **L4** (20 mol%), **A** (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 30 °C under Ar for 12 h. After completion, Et₃N (20 mol%) was added and the mixture was stirred at rt for 2 h. ^b Yield of isolated product. ^c Determined by HPLC analysis on a chiral stationary phase. ^d At 40 °C. ^e At 50 °C. ^f At 15 °C. ^g Data in parentheses were obtained with acid **A2** (15 mol%).

Table S4. Asymmetric [10+4] and [10+2] cycloaddition of allyl *tert*-butyl carbonate 1g with 2-benzylidenebenzo[b]thiophen-3(2H)-one 10 a

Entry	A	Yield of 11 (%) ^b	ee of 11 (%) ^c	Yield of 12 (%) ^b	ee of 12 (%) ^c
1	/	60	61	<20	/
2	(S)-A1	<5	/	<5	/
3	(R)-A1	<5	/	<5	/
4	A2	33	46	<20	/
5	A8	54	87	<20	/
6	A11	45	33	<20	/
7	A12	49	60	<20	/
8	A13	60	65	<20	/
9	A14	49	85	<20	/
10	A15	51	77	<20	/
11	A16	<20	/	47	86
12^d	A8	<20	/	<20	/

^a Unless noted otherwise, reactions were performed with allylic alcohol **1g** (0.1 mmol), 2-benzylidenebenzo[b]thiophen-3(2H)-one **10** (0.12 mmol), Pd₂(dba)₃ (5 mol%), **L4** (20 mol%), **A** (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 30 °C under Ar for 24 h. After completion, Et₃N (20 mol%) was added and the mixture was stirred at rt for 2 h. ^b Yield of isolated product. ^c Determined by HPLC analysis on a chiral stationary phase. ^d At 15 °C.

5. General procedure for asymmetric cycloadditions

5.1 Asymmetric [10+2] cycloadditions of allylic alcohol 1 with alkenes 2

A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (0.0050 mmol), **L4** (0.020 mmol), acid **A** (0.020 mmol) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added **1** (0.10 mmol) and **2** (0.12 mmol), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2–24 h. After completion, Et₃N (0.020 mmol) was added to the mixture and stirred at rt for 0.5–2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the product.

Synthesis of 3a': A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzoyl-3-phenylacrylonitrile **2a** (28.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3a'**:

40.4 mg, 99% yield, as a yellow solid; mp: 111–113 °C; $[\alpha]_D^{25} = +76.5$ (c = 1.5 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 15.34 min, t (major) = 18.27 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.12 (d, J = 2.4 Hz, 1H), 7.93–7.85 (m, 3H), 7.64 (dd, J = 7.6, 2.4 Hz, 2H), 7.59 (t, J = 7.6 Hz, 1H), 7.48–7.38 (m, 5H), 7.01 (d, J = 8.0 Hz, 1H), 6.64 (s, 1H), 4.70 (d, J = 13.6 Hz, 1H), 3.88 (dd, J = 17.2, 2.4 Hz, 1H), 3.64 (d, J = 13.6 Hz, 1H), 3.40 (d, J = 17.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 191.0, 154.4, 149.6, 148.9, 148.3, 135.2, 134.3, 133.6, 129.5, 129.3, 128.91, 128.88, 123.8, 123.77, 123.75, 120.4, 120.1, 116.1, 62.9, 57.5, 52.2, 38.6; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₁₈N₂O₃Na⁺ 429.1210; Found 429.1218.

Synthesis of 3a: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (*E*)-2benzoyl-3-phenylacrylonitrile 2a (28.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3a**: 40.1 mg, 99% yield, as a yellow solid; mp: 124–125 °C; $[\alpha]_D^{25} = +107.5$ (c = 1.5 in CHCl₃); >19:1 dr; 91% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 12.03 min, t (major) = 14.91 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 2.0 Hz, 1H), 8.19–8.10 (m, 2H), 8.03 (dd, J = 8.4, 2.0 Hz, 1H), 7.66 (t, J = 7.2 Hz, 1H, 7.56 - 7.50 (m, 2H), 7.44 - 7.36 (m, 3H), 7.34 - 7.26 (m, 2H), 6.81 (d, J = 8.4 Hz, 1H),5.18 (s, 1H), 3.82 (d, J = 18.8 Hz, 1H), 3.74–3.59 (m, 2H), 3.51 (dd, J = 22.8, 2.8 Hz, 1H); ¹³C **NMR** (100 MHz, CDCl₃): δ (ppm) 190.6, 153.3, 148.4, 146.2, 145.8, 145.5, 136.0, 134.4, 132.8, 130.0, 129.1, 129.0, 128.93, 128.91, 123.2, 119.7, 119.5, 119.3, 62.4, 53.8, 41.8, 35.7; **HRMS** (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{26}H_{18}N_2O_3Na^+$ 429.1210; Found 429.1208.

Synthesis of 3b: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv),

L4 (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 $^{\circ}$ C for 10 min. To another dry tube equipped with a magnetic stirring bar were added

2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (*E*)-2benzoyl-3-(2-chlorophenyl)acrylonitrile 2b (32.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3b**: 42.1 mg, 96% yield, as a yellow solid; mp: 130–131 °C; $[\alpha]_D^{25} = +95.2$ (c =1.8 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (major) = 15.33 min, t (minor) = 16.96 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 (d, J = 2.0 Hz, 1H), 8.13–8.04 (m, 3H), 7.64 (t, J = 7.4 Hz, 1H), 7.55– 7.48 (m, 3H), 7.33 (td, J = 7.6, 1.6 Hz, 1H), 7.24 (td, J = 7.6, 1.6 Hz, 1H), 7.11 (dd, J = 8.0, 2.0 Hz, 1H), 6.94 (d, J = 8.0 Hz, 1H), 5.81 (s, 1H), 3.77 (s, 2H), 3.64 (d, J = 23.6 Hz, 1H), 3.51 (dd, J = 23.6 Hz, 1H), 3.51 22.8, 2.8 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 190.7, 153.4, 148.4, 146.5, 145.7, 145.5, 134.8, 134.3, 134.2, 132.7, 130.2, 130.0, 129.9, 129.8, 128.8, 127.4, 123.3, 119.6, 119.5, 119.4, 60.8, 50.3, 42.8, 35.8; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₁₇ClN₂O₃Na⁺ 463.0825 (³⁵Cl) and 465.0796 (³⁷Cl); Found 463.0822 (³⁵Cl) and 465.0800 (³⁷Cl).

Synthesis of 3c: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and

back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv), (E)-2-benzoyl-3-(3-chlorophenyl)acrylonitrile **2c** (32.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was

added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product 3c: 35.2 mg, 80% yield, as a yellow solid; mp: 122–123 °C; $[\alpha]_D^{25} = +82.7$ (c = 1.7 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 12.75 min, t (major) = 15.10 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 (d, J = 2.0 Hz, 1H), 8.20–8.09 (m, 2H), 8.07 (dd, J = 8.4, 2.4 Hz, 1H), 7.68 (t, J = 7.6 Hz, 1H), 7.59–7.51 (m, 2H), 7.42–7.32 (m, 2H), 7.31–7.29 (m, 1H), 7.20 (dt, J = 6.8, 1.6 Hz, 1H), 6.85 (d, J = 8.4 Hz, 1H), 5.25 (s, 1H), 3.75 (s, 1H), 3.66 (d, J = 24.0 Hz, 1H), 3.50 (dd, J = 23.2, 3.6 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.2, 153.4, 148.3, 145.7, 145.6, 145.5, 138.1, 135.0, 134.6, 132.7, 130.4, 130.0, 129.2, 129.1, 129.0, 127.3, 123.3, 119.6, 119.4, 119.3, 62.4, 52.8, 42.1, 35.8; HRMS (ESI-TOF) m/z: [M + H]⁺ Calcd for C₂₆H₁₈ClN₂O₃ + 441.1006 (³⁵Cl) and 443.0976 (³⁷Cl); Found 441.1000 (³⁵Cl) and 443.0976 (³⁷Cl).

Synthesis of 3d: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe.

The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzoyl-3-(4-bromophenyl)acrylonitrile 2d (37.3 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 12 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product 3d: 32.5 mg, 67% yield, as a yellow solid; mp 118– 119 °C; $[\alpha]_D^{25} = +86.6$ (c = 1.5 in CHCl₃); >19:1 dr; 89% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 13.89 min, t (major) = 20.92 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 (d, J = 2.0 Hz, 1H), 8.16–8.06 (m, 2H), 8.06 (dd, J = 8.4, 2.0 Hz, 1H), 7.70-7.67 (m, 1H), 7.66-7.52 (m, 4H), 7.19 (d, J = 8.4 Hz, 2H), 6.82 $(d, J = 8.4 \text{ Hz}, 1\text{H}), 5.25 (d, J = 1.2 \text{ Hz}, 1\text{H}), 3.74 (s, 2\text{H}), 3.68-3.47 (m, 2\text{H}); {}^{13}\text{C NMR} (100 \text{ MHz}, 100 \text{ MHz})$ CDCl₃): δ (ppm) 190.3, 153.3, 148.3, 145.8, 145.6, 145.5, 135.0, 134.6, 132.7, 132.3, 130.8, 130.0, 129.0, 123.2, 123.0, 119.6, 119.5, 119.3, 62.5, 52.8, 42.1, 35.8; **HRMS** (ESI-TOF) m/z: [M + H]⁺

Calcd for $C_{26}H_{18}BrN_2O_3^+$ 485.0501 (⁷⁹Br) and 487.0480 (⁸¹Br); Found 485.0509 (⁷⁹Br) and 487.0473 (⁸¹Br).

$$O_2N$$
 O_2N
 O_2N

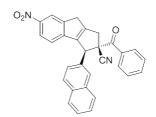
Synthesis of 3e: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added

by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzoyl-3-(4-nitrophenyl)acrylonitrile 2e (33.4 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 24 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product **3e**: 31.5 mg, 70% yield, as a yellow solid; mp: 121–122 °C; $[\alpha]_D^{25} = +93.9$ (c = 1.6 in CHCl₃); >19:1 dr; 90% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 60/40, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 12.47 min, t (major) = 19.31 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.31 (d, J = 2.0 Hz, 1H), 8.29–8.25 (m, 2H), 8.19-8.14 (m, 2H), 8.08 (dd, J = 8.4, 2.0 Hz, 1H), 7.70 (t, J = 7.4 Hz, 1H), 7.65-7.46 (m, 4H), 6.82 $(d, J = 8.4 \text{ Hz}, 1\text{H}), 5.55 \text{ (s, 1H)}, 3.86 \text{ (d, } J = 17.6 \text{ Hz}, 1\text{H}), 3.79 - 3.63 \text{ (m, 2H)}, 3.52 \text{ (dd, } J = 23.2, 1.50 \text{ ($ 3.2 Hz, 1H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 189.8, 153.5, 148.3, 148.1, 145.8, 145.3, 145.1, 143.5, 134.8, 132.5, 130.2, 130.0, 129.1, 124.2, 123.3, 119.8, 119.3, 119.1, 62.7, 52.2, 42.5, 35.9; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{17}N_3O_5Na^+$ 474.1066; Found 474.1057.

Synthesis of 3f: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and

(*E*)-2-benzoyl-3-(2-methoxyphenyl)acrylonitrile **2f** (31.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3f**: 43.2 mg, 99% yield, as a yellow solid; mp: 120–121 °C; $[\alpha]_D^{25}$ = +88.5 (c = 1.6 in CHCl₃); >19:1 dr; 95% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 12.24 min, t (minor) = 16.42 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (s, 1H), 8.11–8.03 (m, 3H), 7.63 (t, J = 7.4 Hz, 1H), 7.55–7.45 (m, 2H), 7.42–7.32 (m, 1H), 7.05 (s, 1H), 6.98–6.91 (m, 3H), 5.60 (s, 1H), 3.95–3.56 (m, 6H), 3.51 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 191.9, 157.4, 153.9, 148.5, 146.3, 145.4, 133.9, 133.4, 130.1, 129.6, 128.7, 124.5, 123.2, 120.9, 120.1, 119.5, 110.8, 61.9, 55.1, 48.3, 42.5, 35.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₀N₂O₄Na⁺ 459.1321; Found 459.1327.


Synthesis of 3g: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and

back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (*E*)-2-benzoyl-3-(3-methoxyphenyl)acrylonitrile **2g** (31.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 12 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product **3g**: 32.7 mg, 75% yield, as a yellow solid; mp: 126–127 °C; $[\alpha]_D^{25} = +84.4$ (c = 1.6 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min-1, $\lambda = 254$ nm, t (minor) = 14.03 min, t (major) = 15.44 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.35 (d, J = 2.0 Hz, 1H), 8.18–8.14 (m, 2H), 8.04 (dd, J = 8.0, 2.8 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.56–7.50 (m, 2H), 7.35–7.31 (m, 1H),

6.92 (dd, J = 8.3, 2.6 Hz, 1H), 6.90–6.82 (m, 3H), 5.12 (s, 1H), 3.85–3.75 (m, 4H), 3.86–3.77 (m, 4H), 3.72–3.58 (m, 2H), 3.50 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.5, 160.0, 153.4, 148.3, 146.1, 145.8, 145.4, 137.5, 134.4, 132.7, 130.1, 130.0, 128.9, 123.2, 121.3, 119.6, 119.5, 119.3, 115.2, 113.7, 62.3, 55.3, 53.8, 41.8, 35.7; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for $C_{27}H_{20}N_2O_4Na^+$ 459.1321; Found 459.1312.

Synthesis of 3h: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe.

The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzoyl-3-(4-methoxyphenyl)acrylonitrile **2h** (31.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product **3h**: 43.2 mg, 99% yield, as a yellow solid; mp: 120– 121 °C; $[\alpha]_D^{25} = +83.4$ (c = 1.5 in CHCl₃); >19:1 dr; 88% ee, determined by HPLC analysis [Chiralpak IB, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 14.59 min, t (minor) = 18.06 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.26 (d, J = 2.0 Hz, 1H), 8.16–8.12 (m, 2H), 8.03 (dd, J = 8.4, 2.0 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.57–7.49 (m, 2H), 7.24–7.20 (m, 2H), 6.96-6.90 (m, 2H), 6.82 (d, J = 8.4 Hz, 1H), 5.11 (s, 1H), 3.86-3.77 (m, 4H), 3.71-3.58 (m, 2H), 3.50 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.7, 159.9, 153.1, 148.4, 146.4, 145.9, 145.5, 134.4, 132.8, 130.3, 130.0, 128.9, 127.8, 123.2, 119.8, 119.5, 119.2, 114.5, 62.6, 55.3, 53.4, 41.7, 35.7; **HRMS** (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{27}H_{21}N_2O_4^+$ 437.1501; Found 437.1494.

Synthesis of 3i: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0

mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzoyl-3-(naphthalen-2-yl)acrylonitrile 2i (34.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product 3i: 45.1 mg, 99% yield, as a yellow solid; mp: 123–124 °C; $[\alpha]_D^{25} = +73.6$ (c = 1.8 in CHCl₃); >19:1 dr; 91% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (major) = 16.03 min, t (minor) = 19.28 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (d, J = 2.0 Hz, 1H), 8.23–8.13 (m, 2H), 7.97 (dd, J = 8.4, 2.0 Hz, 1H), 7.91–7.78 (m, 4H), 7.66 (t, J = 7.6 Hz, 1H), 7.56–7.47 (m, 4H), 7.38 (dd, J = 8.4, 2.0 Hz, 1H), 6.78 (d, J = 8.4 Hz, 1H), 5.35 (s, 1H), 3.87 (d, J = 17.6 Hz, 1H), 3.77 (d, J = 17.6 Hz, 1H), 3.69 (d, J = 23.2 Hz, 1H), 3.54 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100) MHz, CDCl₃): δ (ppm) 191.5, 152.6, 148.4, 147.3, 146.0, 145.6, 134.4, 134.2, 132.8, 132.3, 132.2, 130.0, 129.5, 129.3, 128.9, 127.02, 127.00, 126.0, 125.4, 123.2, 123.1, 119.7, 119.58, 119.51, 61.9, 48.1, 43.5, 35.8; **HRMS** (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{30}H_{21}N_2O_3^+$ 457.1552; Found 457.1559.

Synthesis of 3j: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzoyl-3-(thiophen-2-yl)acrylonitrile **2j** (28.7 mg, 0.123 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether =

1/8) to give product **3j**: 28.8 mg, 70% yield, as a yellow solid; mp: 117–118 °C; $[\alpha]_D^{25} = +90.6$ (c = 1.5 in CHCl₃); >19:1 dr; 88% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 14.09 min, t (major) = 17.10 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 2.0 Hz, 1H), 8.24–8.20 (m, 2H), 8.09 (dd, J = 8.4, 2.0 Hz, 1H), 7.68 (t, J = 7.4 Hz, 1H), 7.62–7.53 (m, 2H), 7.34 (dd, J = 5.2, 1.6 Hz, 1H), 7.11–7.07 (m, 2H), 7.01 (d, J = 8.4 Hz, 1H), 5.49 (s, 1H), 3.77 (d, J = 17.6 Hz, 1H), 3.70 (dd, J = 17.6, 2.0 Hz, 1H), 3.64 (d, J = 22.8 Hz, 1H), 3.51 (dd, J = 22.8, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.1, 153.3, 148.2, 146.0, 145.6, 145.5, 138.7, 134.5, 132.5, 130.1, 129.0, 127.7, 127.6, 126.5, 123.2, 119.6, 119.3, 119.1, 62.5, 48.7, 40.9, 35.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₁₆N₂O₃SNa⁺ 435.0779; Found 435.0773.

Synthesis of 3k: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and

back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (*E*)-2-(2bromobenzoyl)-3-phenylacrylonitrile 2k (37.3 mg, 0.120 mmol, 1.2 equiv), evacuated and backfilled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 14 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product 3k: 35.2 mg, 73% yield, as a yellow solid; mp: 114–115 °C; $[\alpha]_D^{25} = +90.4$ (c = 1.7 in CHCl₃); >19:1 dr; 91% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 15.36 min, t (major) = 16.34 min]; ¹H NMR (400) MHz, CDCl₃): δ (ppm) 8.30 (d, J = 2.4 Hz, 1H), 8.06 (dd, J = 8.4, 2.0 Hz, 1H), 7.71–7.61 (m, 1H), 7.48-7.44 (m, 1H), 7.42-7.34 (m, 5H), 7.23-7.18 (m, 2H), 6.83 (d, J=8.4 Hz, 1H), 5.22 (s, 1H), 3.74 (dd, J = 17.2, 1.6 Hz, 1H), 3.71–3.55 (m, 2H), 3.52 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100) MHz, CDCl₃): δ (ppm) 196.4, 153.5, 148.4, 146.0, 145.8, 145.6, 138.9, 135.3, 133.7, 132.3, 129.0, 128.98, 128.95, 127.6, 127.4, 123.2, 119.6, 119.4, 119.1, 118.7, 65.9, 54.5, 42.3, 35.8; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{26}H_{17}BrN_2O_3Na^+$ 507.0320 (^{79}Br) and 509.0300 (^{81}Br); Found 507.0313 (⁷⁹Br) and 509.0291 (⁸¹Br).

Synthesis of 3l: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv), and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added

by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-(3-bromobenzoyl)-3-phenylacrylonitrile **2l** (37.3 mg, 0.120 mmol,1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 14 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product 31: 36.3 mg, 75% yield, as a yellow solid; mp: 128–129 °C; $[\alpha]_D^{25} = +88.5$ (c = 1.7 in CHCl₃); >19:1 dr; 82% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 90/10, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (major) = 24.16 min, t (minor) = 27.15 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 2.0 Hz, 1H), 8.24–8.23 (m, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.03 (dd, J = 8.4, 2.0 Hz, 1H), 7.80-7.76 (m, 1H), 7.45-7.36 (m, 4H), 7.32-7.27 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 5.11 (s, 1H), 3.83 (d, J = 17.2 Hz, 1H), 3.74-3.60 (m, 2H), 3.52 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.5, 153.2, 148.3, 146.0, 145.7, 145.5, 137.3, 135.6, 134.5, 133.0, 130.3, 129.2, 129.1, 128.4, 123.3, 123.2, 119.6, 119.3, 119.26, 62.5, 54.0, 41.6, 35.8; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for $C_{26}H_{17}BrN_2O_3Na^+$ 507.0320 (⁷⁹Br) and 509.0300 (⁸¹Br); Found 507.0314 (⁷⁹Br) and 509.0296 $(^{81}Br).$

Synthesis of 3m: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was

evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-(4-chlorobenzoyl)-3-phenylacrylonitrile **2m** (32.0 mg, 0.120 mmol, 1.2 equiv), evacuated

and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 0.5 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3m**: 43.9 mg, 99% yield, as a yellow solid; mp: 113–114 °C; $[\alpha]_D^{25} = +72.6$ (c = 1.4 in CHCl₃); >19:1 dr; 93% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 12.40 min, t (major) = 16.17 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 2.0 Hz, 1H), 8.10–8.06 (m, 2H), 8.03 (dd, J = 8.4, 2.0 Hz, 1H), 7.52–7.48 (m, 2H), 7.44–7.39 (m, 3H), 7.31–7.27 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 5.12 (s, 1H), 3.81 (d, J = 17.8 Hz, 1H), 3.73–3.58 (m, 2H), 3.51 (dd, J = 23.6, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.5, 153.2, 148.3, 146.1, 145.7, 145.5, 141.2, 135.7, 131.4, 131.0, 129.3, 129.2, 129.06, 129.03, 123.2, 119.56, 119.52, 119.3, 62.4, 54.0, 41.7, 35.7; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₆H₁₇ClN₂O₃Na⁺ 463.0825 (³⁵Cl) and 465.0976 (³⁷Cl); Found 463.0821 (³⁵Cl) and 465.0803 (³⁷Cl).

Synthesis of 3n: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was

evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (*E*)-2-(4-bromobenzoyl)-3-phenylacrylonitrile **2n** (37.3 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 24 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3n**: 36.8 mg, 76% yield, as a yellow solid; mp: 116–117 °C; $[\alpha]_D^{25} = +94.4$ (c = 1.5 in CHCl₃); >19:1 dr; 94% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 13.50 min, t (major) = 17.42 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 2.4 Hz, 1H), 8.10–7.92 (m, 3H), 7.70–7.65 (m, 2H), 7.46–7.38 (m, 3H), 7.32–7.22 (m, 2H), 6.81 (d, J = 8.4 Hz, 1H), 5.12 (s, 1H),

3.82 (d, J = 18.0 Hz, 1H), 3.73–3.60 (m, 2H), 3.52 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 189.7, 153.2, 148.3, 146.1, 145.7, 145.5, 135.7, 132.3, 131.4, 130.0, 129.2, 129.0, 123.2, 119.6, 119.5, 119.2, 62.4, 54.0, 41.7, 35.7; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for $C_{26}H_{17}BrN_2O_3Na^+$ 507.0320 (⁷⁹Br) and 509.0300 (⁸¹Br); Found 507.0316 (⁷⁹Br) and 509.0301 (⁸¹Br).

Synthesis of 3o: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv), and 4 Å MS (100.0 mg), and the flask was evacuated and

back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.2 equiv) and (*E*)-2-(2methylbenzoyl)-3-phenylacrylonitrile 20 (29.6 mg, 0.120 mmol, 1.2 equiv), evacuated and backfilled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 14 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product **30**: 37.8 mg, 90% yield, as a yellow solid; mp: 124–125 °C; $[\alpha]_D^{25} = +80.9$ (c =1.7 in CHCl₃); >19:1 dr; 89% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 11.52 min, t (major) = 12.75 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.21 (d, J = 2.0 Hz, 1H), 7.97 (dd, J = 8.4, 2.4 Hz, 1H), 7.67 (d, J = 7.6 Hz, 1H), 7.36 (td, J = 7.6, 1.2 Hz, 1H), 7.32-7.29 (m, 3H), 7.26-7.19 (m, 2H), 7.19-7.15 (m, 2H), 6.74(d, J = 8.4 Hz, 1H), 5.13 (s, 1H), 3.64 (d, J = 17.2 Hz, 1H), 3.61-3.51 (m, 2H), 3.43 (dd, J = 23.2, 1.5)3.6 Hz, 1H), 2.34 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 195.8, 153.4, 148.4, 146.2, 145.9, 145.5, 138.7, 135.7, 134.8, 132.2, 132.1, 129.04, 129.02, 128.9, 127.9, 125.6 123.2, 119.58, 119.56, 119.4, 65.0, 54.3, 42.5, 35.8, 21.1; **HRMS** (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{27}H_{21}N_2O_3^+$ 421.1552; Found 421.1553.

Synthesis of 3p: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv)

and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1Hinden-1-ol 1c (19.1 mg, 0.100 mmol, 1.2 equiv) and (E)-2-(3-methylbenzoyl)-3-phenylacrylonitrile 2p (29.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 12 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product **3p**: 30.1 mg, 72% yield, as a yellow solid; mp: 121–122 °C; $[\alpha]_D^{25} = +86.4$ (c = 1.5 in CHCl₃); >19:1 dr; 91% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 11.16 min, t (major) = 12.86 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.26 (d, J = 2.0Hz, 1H), 8.06 (dd, J = 8.4, 2.0 Hz, 1H), 7.95 (d, J = 7.6 Hz, 1H), 7.91 (s, 1H), 7.49–7.44 (m, 1H), 7.44-7.38 (m, 4H), 7.32-7.28 (m, 2H), 6.80 (d, J = 8.4 Hz, 1H), 5.14 (s, 1H), 3.85 (d, J = 17.2 Hz, 1H), 3.74–3.56 (m, 2H), 3.51 (dd, J = 23.2, 3.2 Hz, 1H), 2.42 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.8, 153.5, 148.4, 146.2, 145.9, 145.5, 138.8, 136.0, 135.2, 132.8, 130.6, 129.1, 129.0, 128.8, 128.7, 127.2, 123.2, 119.7, 119.5, 119.2, 62.5, 54.0, 41.8, 35.8, 21.4; **HRMS** (ESI-TOF) m/z: $[M + H]^{+}$ Calcd for $C_{27}H_{21}N_{2}O_{3}^{+}$ 421.1552; Found 421.1549.

Synthesis of 3q: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and

back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-(4-methylbenzoyl)-3-phenylacrylonitrile **2q** (29.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 1 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3q**: 41.6 mg, 99% yield, as a yellow solid; mp: 113–114 °C; [α]²⁵ = +79.3 (c = 1/8) to give product **3q**: 41.6 mg, 99% yield, as a yellow solid; mp: 113–114 °C; [α]²⁵ = +79.3 (c =

1.5 in CHCl₃); >19:1 dr; 92% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 13.35 min, t (major) = 16.62 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.26 (d, J = 2.0 Hz, 1H), 8.07–8.01 (m, 3H), 7.46–7.36 (m, 3H), 7.37–7.28 (m, 4H), 6.81 (d, J = 8.4 Hz, 1H), 5.16 (s, 1H), 3.82 (d, J = 18.0 Hz, 1H), 3.75–3.58 (m, 2H), 3.51 (dd, J = 23.2, 3.2 Hz, 1H), 2.45 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.1, 153.4, 148.4, 146.3, 145.9, 145.7, 145.5, 136.1, 130.2, 130.1, 129.6, 129.1, 128.9, 123.2, 119.8, 119.5, 119.2, 62.3, 53.9, 41.8, 35.7, 21.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₀N₂O₃Na⁺ 443.1372; Found 443.1365.

Synthesis of 3r: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was

added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-(2-naphthoyl)-3-phenylacrylonitrile **2r** (34.0 mg, 0.120 mmol,1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3r**: 41.6 mg, 91% yield, as a yellow solid; mp: 115–116 °C; $[\alpha]_D^{25} = +79.2$ (c = 1.5 in CHCl₃); >19:1 dr; 90% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 17.17 min, t (major) = 19.02 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.67 (d, J = 2.0 Hz, 1H), 8.26 (d, J = 2.0 Hz, 1H), 8.13 (dd, J = 8.8, 2.0 Hz, 1H), 8.01 (dd, J = 8.4, 2.0 Hz, 1H), 7.94 (d, J = 8.8 Hz, 1H), 7.90 (dd, J = 8.0, 2.8 Hz, 2H, 7.69 - 7.63 (m, 1H), 7.61 - 7.55 (m, 1H), 7.46 - 7.40 (m, 3H), 7.38 - 7.32 (m, 2H),6.78 (d, J = 8.4 Hz, 1H), 5.18 (s, 1H), 3.96 (d, J = 17.6 Hz, 1H), 3.73 (d, J = 17.6 Hz, 1H), 3.65 (d, J = 23.2 Hz, 1H), 3.52 (dd, J = 23.2, 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.5, 153.6, 148.4, 146.1, 145.8, 145.5, 136.0, 135.9, 132.5, 132.1, 130.1, 129.9, 129.5, 129.2, 129.1, 129.0, 128.8, 127.8, 127.3, 125.0, 123.2, 119.9, 119.5, 119.2, 62.5, 54.4, 41.8, 35.8; **HRMS** (ESI-TOF) m/z: $[M + H]^+$ Calcd for $C_{30}H_{21}N_2O_3H^+$ 457.1552; Found 457.1546.

Synthesis of 3s: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon.

Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-4-nitro-2,3dihydro-1*H*-inden-1-ol **1d** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-2-benzovl-3phenylacrylonitrile 2a (28.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 5 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product 3s: 40.1 mg, 99% yield, as a yellow solid; mp: 120–121 °C; $[\alpha]_D^{25} = +101.5$ (c = 1.4 in CHCl₃): >19:1 dr: 89% ee. determined by HPLC analysis [Chiralpak IA. n-hexane/i-PrOH = 80/20. 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 15.94 min, t (major) = 16.96 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.20–8.13 (m, 2H), 7.98 (d, J = 8.0 Hz, 1H), 7.66 (t, J = 7.4 Hz, 1H), 7.56–7.50 (m, 2H), 7.46-7.36 (m, 3H), 7.34-7.30 (m, 2H), 7.29-7.25 (m, 1H), 7.02 (d, J = 7.2 Hz, 1H), 5.21 (s, 1H), 4.05 (d, J = 23.2 Hz, 1H), 3.90 (dd, J = 24.0, 3.2 Hz, 1H), 3.80 (d, J = 17.6 Hz, 1H), 3.71 (d, J = 1.0 Hz, 1H), 3.71 (d, J = 1.0 Hz, 1H), 3.80 (d, J = 1.0 Hz), 3.= 17.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.7, 149.5, 145.4, 144.7, 143.1, 142.5, 136.2, 134.4, 132.8, 130.0, 129.1, 129.0, 128.9, 128.8, 128.1, 125.1, 120.2, 119.7, 62.6, 53.8, 41.6, 37.2. **HRMS** (ESI-TOF) m/z: $[M - H]^{-}$ Calcd for $C_{26}H_{17}N_2O_3^{-}$ 405.1250; Found 405.1247.

Synthesis of 3t: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (5.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 3-hydroxy-2-methylene-2,3-dihydro-1*H*-indene-5-carbonitrile **1f** (17.1 mg, 0.100 mmol, 1.0 equiv) and (*E*)-2-benzoyl-3-phenylacrylonitrile **2a** (28.0 mg, 0.120 mmol, 1.2 equiv), evacuated and backfilled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The

mixture was stirred at 30 °C for 2 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give product **3t**: 38.5 mg, 99% yield, as a yellow solid; mp: 112–113 °C; $[\alpha]_D^{25}$ = +78.4 (c = 1.7 in CHCl₃); >19:1 dr; 89% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 14.40 min, t (major) = 17.50 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.15 (d, J = 4.4 Hz, 2H), 7.73–7.64 (m, 2H), 7.56–7.51 (m, 2H), 7.44–7.37 (m, 4H), 7.33–7.28 (m, 2H), 6.81 (d, J = 5.2 Hz, 1H), 5.17 (s, 1H), 3.83–3.66 (m, 2H), 3.64–3.40 (m, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 190.5, 151.4, 148.0, 146.3, 143.9, 136.0, 134.3, 132.7, 131.2, 130.0, 129.03, 129.02, 128.9, 128.8, 127.4, 119.9, 119.7, 119.6, 107.9, 62.4, 53.8, 41.6, 35.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₁₈N₂ONa⁺ 409.1311; Found 409.1318.

5.2 Asymmetric [10+2] cycloadditions of allylic alcohol 1c with alkenes 4

A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (0.0050 mmol), **L4** (0.0200 mmol), (*S*)-**A1** (0.020 mmol) or **A2** (0.015 mmol) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added **1c** (0.100 mmol) and **4** (0.120 mmol), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 10–30 °C for 2–12 h. After completion, Et₃N (0.020 mmol) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether) to give the product.

Synthesis of 5a: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (3.8 mg, 0.015 mmol, 0.15 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three

times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 5-benzylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione **4a** (29.3 mg, 0.120 mmol, 1.0 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 15 °C for 3 h. After completion, Et₃N (2.8 μ L,

0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **5a**: 41.2 mg, 99% yield, as a yellow solid; mp:

138–139 °C; $[\alpha]_D^{25} = +96.6$ (c = 1.4 in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 17.48 min, t (major) = 14.40 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) δ 8.22 (d, J = 2.0 Hz, 1H), 7.93 (dd, J = 8.4, 2.0 Hz, 1H), 7.34–7.20 (m, 3H), 6.92 (d, J = 7.8 Hz, 2H), 6.54 (d, J = 8.4 Hz, 1H), 4.64 (s, 1H), 3.74–3.42 (m, 4H), 3.37 (s, 3H), 2.47 (s, 3H).); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.1, 167.6, 157.8, 149.8, 147.6, 145.2, 144.1, 141.0, 133.5, 128.1, 127.8, 127.6, 122.0, 118.5, 117.7, 67.9, 60.8, 35.3, 34.9, 28.2, 27.1; HRMS (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{23}H_{19}N_3O_5Na^+$ 440.1217; Found 440.1217.

Synthesis of 5b: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three

times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 5-(4-bromobenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione **4b** (38.7 mg, 0.120 mmol,

1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 12 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **5b**: 29.7 mg, 60% yield; as a white solid; mp: 145–146 °C; $[\alpha]_D^{25} = +93.6$ (c = 1.5 in CHCl₃); 94% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 12.59 min, t (major) = 13.69 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (d, J = 2.0 Hz, 1H), 8.01 (dd, J = 8.4, 2.0 Hz, 1H), 7.45 (d, J = 8.0 Hz, 2H), 6.89 (d, J = 6.8 Hz, 2H), 6.60 (d, J = 8.4 Hz, 1H), 4.67 (s, 1H), 3.76–3.49 (m, 4H), 3.43 (s, 3H), 2.62 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.0, 168.4, 159.2, 150.7, 148.6, 145.8, 145.2, 141.6, 133.6, 132.0, 130.2, 123.2, 123.1, 119.6, 118.6, 68.6, 60.9, 36.6, 35.9, 29.3, 28.2; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₈BrN₃O₅Na⁺ 518.0328 (⁷⁹Br) and 520.0307 (⁸¹Br); Found 518.0304 (⁷⁹Br) and 520.0287 (⁸¹Br).

Synthesis of 5c: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (3.8 mg, 0.015 mmol, 0.15 equiv) and 4 Å MS (100.0

mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 1,3-dimethyl-5-

(4-methylbenzylidene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **4c** (31.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 15 °C for 2 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **5c**: 42.8 mg, 99% yield, as a yellow solid; mp: 120–121 °C; $[\alpha]_D^{25} = +94.7$ (c = 1.4 in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 8.39 min, t (major) = 11.68 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.27 (d, J = 2.0 Hz, 1H), 7.99 (dd, J = 8.4, 2.0 Hz, 1H), 7.11 (d, J = 7.6 Hz, 2H), 6.87 (d, J = 7.6 Hz, 2H), 6.61 (d, J = 8.4 Hz, 1H), 4.68 (s, 1H), 3.78–3.47 (m, 4H), 3.43 (s, 3H), 2.55 (s, 3H), 2.34 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.1, 167.6, 157.8, 149.8, 147.6, 145.2, 144.1, 141.0, 133.5, 128.1, 127.8, 127.6, 122.0, 118.5, 117.7, 67.9, 60.8, 35.3, 34.9, 28.2, 27.1; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₁N₃O₅Na⁺ 454.1373; Found 454.1362.

Synthesis of 5d: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (3.8 mg, 0.015 mmol, 0.15 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The

mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1H-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 5-(4-methoxybenzylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione **4d** (32.9 mg, 0.100 mmol, 1.0 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 15 °C for 2 h. After completion, Et₃N (2.8 μ L, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completin, the solvent was evaporated in vacuo. The residue was purified by flash chromatography

on silica gel (EtOAc/petroleum ether = 1/5) to give product **5d**: 44.6 mg, 99% yield, as a yellow solid; mp: 131–132 °C; $[\alpha]_D^{25} = +98.4$ (c = 1.5 in CHCl₃); 80% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 14.40 min, t (major) = 19.63 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (d, J = 2.0 Hz, 1H), 7.99 (dd, J = 8.4, 2.0 Hz, 1H), 6.97–6.87 (m, 2H), 6.86–6.79 (m, 2H), 6.62 (d, J = 8.4 Hz, 1H), 4.67 (s, 1H), 3.80 (s, 3H), 3.74–3.49 (m, 4H), 3.43 (s, 3H), 2.61 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 171.3, 168.7, 160.1, 158.6, 150.9, 148.6, 146.3, 145.1, 142.3, 129.8, 126.3, 123.0, 119.5, 118.7, 114.2, 69.0, 61.4, 55.3, 36.1, 35.9, 29.2, 28.3; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₄H₂₁N₃O₆Na⁺ 470.1323; Found 470.1314.

Synthesis of 5e: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (3.8 mg, 0.015 mmol, 0.15 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The

mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 1,3-dimethyl-5-(naphthalen-2-ylmethylene)pyrimidine-2,4,6(1H,3H,5H)-trione **4e** (35.9 mg, 0.122 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 14 °C for 2 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product 5e: 35.2mg, 75% yield, as a yellow solid; mp: 135–136 °C; $[\alpha]_D^{25} = +96.4$ (c = 1.6 in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 22.11 min, t (major) = 26.36 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.30 (d, J = 2.0 Hz, 1H), 7.94 (dd, J = 8.4, 2.0 Hz, 1H), 7.85-7.70 (m, 3H), 7.55-7.45 (m, 3H), 7.07 (s, 1H), 6.59 (d, J = 8.4 Hz, 1H), 4.89 (s, 1H), 3.95–3.52 (m, 4H), 3.47 (s, 3H), 2.31 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 171.2, 168.6, 159.0, 150.8, 148.6, 146.3, 145.1, 142.1, 133.2, 133.0, 131.9, 128.6, 128.1, 128.0, 127.7, 126.9, 125.8, 123.1, 119.5, 118.8, 69.0, 61.9, 36.4, 36.0, 29.3, 28.1. **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₇H₂₁N₃O₅Na⁺ 490.1373; Found 490.1372.

Synthesis of 5f: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (3.8 mg, 0.015 mmol, 0.15 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three

times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv), 5-(furan-2-ylmethylene)-1,3-dimethylpyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **4f** (28.1 mg, 0.120 mmol,

1.2 equiv) and evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 10 °C for 2 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **5f**: 36.3 mg, 89% yield, as a white solid; mp: 127–128 °C; $[\alpha]_D^{25}$ = +92.8 (c = 1.2 in CHCl₃); 96% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 19.90 min, t (minor) = 24.15 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.29 (d, J = 2.4 Hz, 1H), 8.09 (d, J = 7.6 Hz, 1H), 7.40 (s, 1H), 6.91 (d, J = 8.4 Hz, 1H), 6.36 (s, 1H), 6.08 (d, J = 3.2 Hz, 1H), 4.85 (s, 1H), 3.72–3.47 (m, 4H), 3.44 (s, 3H), 2.88 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.8, 168.5, 159.0, 151.0, 148.9, 148.5, 146.0, 145.3, 143.4, 139.8, 123.1, 119.5, 118.7, 111.1, 110.4, 67.7, 54.4, 36.5, 35.9, 29.3, 28.8; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇N₃O₆Na⁺ 430.1010; Found 430.1020.

Synthesis of 5g: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 1,3-dimethyl-5-(thiophen-2-ylmethylene)pyrimidine-2,4,6(1*H*,3*H*,5*H*)-trione **4g** (30.0 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the

first Schlenk tube by syringe. The mixture was stirred at 30 °C for 12 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **5g**: 27.1 mg, 64% yield, as a yellow solid; mp: 133–134 °C; $[\alpha]_D^{25} = +95.6$ (c = 1.4 in CHCl₃); 87% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 10.88 min, t (major) = 14.17 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 8.28 (d, J = 2.0 Hz, 1H), 8.04 (dd, J = 8.4, 2.0 Hz, 1H), 7.30 (d, J = 4.8 Hz, 1H), 7.01–6.96 (m, 1H), 6.79–6.72 (m, 2H), 4.99 (s, 1H), 3.78–3.48 (m, 4H), 3.43 (s, 3H), 2.76 (s, 3H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.9, 168.5, 158.7, 150.9, 148.5, 146.0, 145.2, 141.8, 136.6, 128.0, 127.5, 126.6, 123.0, 119.5, 118.8, 69.1, 56.2, 36.5, 35.9, 29.3, 28.5; HRMS (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₁H₁₇N₃O₅SNa⁺ 446.0781; Found 446.0791.

Synthesis of 5h: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), **A2** (3.8 mg, 0.015 mmol, 0.15 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three

times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and (E)-1,3-dimethyl-5-(3-phenylallylidene)pyrimidine-2,4,6(1H,3H,5H)-trione **4h** (32.4 mg, 0.120) mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 15 °C for 2 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/5) to give product **5h**: 40.5 mg, 91% yield, as a yellow solid; mp: 130–131 °C; $[\alpha]_D^{25} = +97.6$ (c = 1.5 in CHCl₃); 80% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 80/20, 1.0 mL min⁻¹, λ = 254 nm, t (major) = 13.32 min, t (minor) = 14.42 min]; 1 **H NMR** (400 MHz, CDCl₃): δ (ppm) 8.26 (d, J = 2.0 Hz, 1H), 8.09 (dd, J = 7.6, 1.6 Hz, 1H), 7.37-7.27 (m, 5H), 7.11 (d, J = 8.0 Hz, 1H), 6.66 (d, J = 16.0 Hz, 1H), 6.07 (dd, J = 16.0, 9.6 Hz, 1H), 4.24 (d, J = 9.2 Hz, 1H), 3.59–3.49 (m, 4H), 3.41 (s, 3H), 3.14 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 171.2, 169.0, 157.7, 151.2, 148.6, 146.4, 145.2, 142.5, 136.1, 135.5, 128.9,

 $128.7,\ 126.7,\ 123.9,\ 123.1,\ 119.5,\ 118.3,\ 67.3,\ 58.8,\ 36.7,\ 35.7,\ 29.3,\ 28.8;\ \textbf{HRMS}\ (ESI-TOF)\ m/z:\\ [M+Na]^+\ Calcd\ for\ C_{25}H_{21}N_3O_5Na^+\ 466.1373;\ Found\ 466.1362.$

5.3 Asymmetric [10+2] cycloaddition of allylic alcohol 1c with alkene 6

$$O_2N$$

Synthesis of 7: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.020 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled

three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (19.1 mg, 0.100 mmol, 1.0 equiv) and 5benzylidene-2,2-dimethyl-1,3-dioxane-4,6-dione 6 (27.8 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 16 h. After completion, Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/7) to give product 7: 26.7 mg, 66% yield, as a white solid; mp: 146– 147 °C; $[\alpha]_D^{25} = +78.5$ (c = 1.3 in CHCl₃); 87% ee, determined by HPLC analysis [Chiralpak IA, *n*-hexane/*i*-PrOH = 80/20, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (minor) = 15.57 min, t (major) = 22.12 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.22 (d, J = 2.0 Hz, 1H), 7.93 (dd, J = 8.4, 2.0 Hz, 1H), 7.33–7.20 (m, 3H), 6.92 (d, J = 7.8 Hz, 2H), 6.54 (d, J = 8.4 Hz, 1H), 4.65 (s, 1H), 3.75–3.42 (m, 3H), 3.37 (s, 3H), 2.47 (s, 3H); 13 C NMR (100 MHz, CDCl₃): δ (ppm) 170.3, 168.9, 157.2, 149.8, 149.5, 148.2, 134.4, 129.2, 129.1, 128.7, 123.5, 123.1, 119.8, 115.9, 105.6, 65.5, 58.6, 57.5, 36.5, 30.3, 27.6; **HRMS** (ESI-TOF) m/z: $[M + Na]^+$ Calcd for $C_{23}H_{19}N_3O_6Na^+$ 428.1105; Found 428.1100.

5.4 Asymmetric [10+8] cycloaddition of allylic alcohol 1c with alkene 8

Synthesis of 9: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.020 mmol, 0.2 equiv), (*S*)-**A1** (7.0 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe.

The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (22.9 mg, 0.120 mmol, 1.2 equiv) and 5-(cyclohepta-2,4,6-trien-1-ylidene)-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione **8** (24.4) mg, 0.100 mmol, 1.0 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 14 h. After completion, Et₃N (2.8 µL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/6) to give product 9: 25.8 mg, 62% yield, as a white solid; mp: 146–147 °C; $[\alpha]_D^{25} = +78.5$ (c = 1.3 in CHCl₃); 93% ee, determined by HPLC analysis [Chiralpak AD-H, n-hexane/i-PrOH = 90/10, 1.0 mL min⁻¹, $\lambda = 254$ nm, t (major) = 9.25min, t (minor) = 11.90 min]; ¹**H NMR** (400 MHz, CDCl₃): δ (ppm) 8.30 (d, J = 2.0 Hz, 1H), 8.19 (dd, J = 8.4, 2.0 Hz, 1H), 7.30 (d, J = 8.3 Hz, 1H), 6.84 (dd, J = 11.2, 5.2 Hz, 1H), 6.67 (dd, J = 11.2, 5.2 Hz, 1H)11.2, 6.0 Hz, 1H), 6.41–6.28 (m, 1H), 6.02 (d, J = 5.6 Hz, 1H), 5.32 (dd, J = 9.2, 6.8 Hz, 1H), 3.68– 3.62 (m, 3H), 3.44 (s, 3H), 3.10 (m, 4H), 2.79 (d, J = 3.2 Hz, 1H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 170.8, 169.5, 150.8, 150.7, 145.4, 145.2, 143.5, 133.9, 132.2, 129.8, 128.9, 128.6, 126.0, 123.1, 122.5, 118.9, 118.1, 56.0, 40.7, 38.0, 32.2, 29.4, 29.1; **HRMS** (ESI-TOF) m/z: [M + Na]⁺ Calcd for C₂₃H₁₉N₃O₅Na⁺ 440.1222; Found 440.1217.

5.5 Asymmetric [10+4] and [10+2] cycloadditions of allylic carbonate 1g with alkene 10

Synthesis of 11: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), BzOH (2.4 mg, 0.020 mmol, 0.2 equiv) and 4 Å MS (100.0 mg), and the flask was evacuated and back-filled three

times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added tert-butyl (6cyano-2-methylene-2,3-dihydro-1*H*-inden-1-yl) carbonate **1g** (27.1 mg, 0.100 mmol, 1.0 equiv) and (Z)-2-benzylidenebenzo[b]thiophen-3(2H)-one **10** (28.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15) to give product 10: 21.2 mg, 54% yield, as a white solid; mp: 110–111 °C; $[\alpha]_{D}^{25} = -59.2$ (c = 0.6 in CHCl₃); 87% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 95/5, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 22.75 min, t (major) = 24.87 min]; ¹H NMR (400 MHz, CDCl₃): δ (ppm) 7.73 (d, J = 7.2 Hz, 1H), 7.70–7.60 (m, 2H), 7.52–7.49 (m, 3H), 7.38–7.31 (m, 1H), 7.31–7.26 (m, 3H), 7.19–7.17 (m, 2H), 5.34–5.26 (m, 2H), 5.03 (d, J = 15.6 Hz, 1H), 3.56 (s, 2H); ¹³C NMR (100 MHz, CDCl₃): δ (ppm) 149.3, 146.7, 144.9, 142.2, 141.9, 137.7, 135.4, 134.3, 131.2, 129.0, 127.7, 127.4, 126.9, 125.0, 124.6, 124.2, 122.4, 120.7, 119.9, 119.7, 108.1, 69.2, 44.1, 40.1; **HRMS** (ESI-TOF) m/z: [M +H]⁺ Calcd for C₂₆H₁₈NOS⁺ 392.1104; Found 392.1103.

Synthesis of 12: A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added Pd₂(dba)₃ (4.6 mg, 0.0050 mmol, 0.05 equiv), **L4** (12.1 mg, 0.0200 mmol, 0.2 equiv), *o*-F-BzOH (2.8 mg, 0.020

mmol, 0.2 equiv) and 4 $\rm \mathring{A}$ MS (100.0 mg), and the flask was evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at 30 °C for 10

min. To another dry tube equipped with a magnetic stirring bar were added tert-butyl (6cyano-2-methylene-2,3-dihydro-1*H*-inden-1-yl) carbonate **1g** (27.1 mg, 0.100 mmol, 1.0 equiv) and (Z)-2-benzylidenebenzo[b]thiophen-3(2H)-one 10 (28.6 mg, 0.120 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (0.5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 6 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/15) to give the unisomerized [10+2] product. The unisomerized [10+2] product was dissolved in toluene (0.5ml), and Et₃N (2.8 μL, 0.020 mmol, 0.2 equiv) was added to the reaction mixture. The mixture was stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/10) to give product 12: 18.4 mg, 47% yield, as a white solid; mp: 67–69 °C; $[\alpha]_D^{25} = +112.0$ (c = 0.6 in CHCl₃); 86% ee, determined by HPLC analysis [Chiralpak IA, n-hexane/i-PrOH = 95/5, 1.0 mL min⁻¹, λ = 254 nm, t (minor) = 30.94 min, t (major) = 32.53 min]; ¹H NMR (600 MHz, CDCl₃): δ (ppm) 7.88–7.76 (m, 1H), 7.69 (d, J = 3.6 Hz, 1H), 7.54 - 7.36 (m, 2H), 7.25 - 7.18 (m, 4H), 7.14 (dd, J = 8.4, 4.2 Hz, 1H), 7.03-7.00 (m, 2H), 6.86 (dd, J = 8.4, 4.2 Hz, 1H), 4.85 (s, 1H), 3.65-3.51 (m, 2H), 3.46 (d, J = 23.4Hz, 1H), 3.35 (d, J = 23.4 Hz, 1H); ¹³C NMR (150 MHz, CDCl₃): δ (ppm) 203.8, 153.4, 152.1, 148.3, 147.1, 144.9, 137.6, 136.1, 131.2, 129.6, 129.0, 128.8, 128.3, 127.8, 127.3, 127.1, 124.8, 123.8, 120.1, 119.9, 107.4, 56.1, 44.4, 35.6; **HRMS** (ESI-TOF) m/z: [M +H]⁺ Calcd for C₂₆H₁₈NOS⁺ 392.1104; Found 392.1109.

6. More screening studies for substrate scope

6.1 More screening studies on other allylic alcohols

Reactions were performed with allylic alcohol or allyl *tert*-butyl carbonate (0.1 mmol), activated alkene **2a** (0.12 mmol), Pd₂(dba)₃ (5 mol%), **L4** (20 mol%), acid (*S*)-**A1** (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 30 °C.

6.2 More screening studies on activated alkenes 2

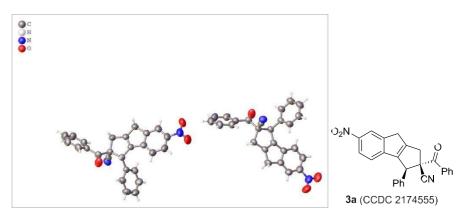
EWG.

Reactions were performed with allylic alcohol (0.1 mmol), activated alkene **2** (0.12 mmol), $Pd_2(dba)_3$ (5 mol%), **L4** (20 mol%), acid (*S*)-**A1** (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 30 °C.

6.3 More screening studies on tropone derivatives

Reactions were performed with allylic alcohol (0.1 mmol), tropone derivative (0.12 mmol), $Pd_2(dba)_3$ (5 mol%), **L4** (20 mol%), acid (S)-**A1** (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 30 °C.

6.4 More screening studies on other electrophiles


Reactions were performed with allylic alcohol 1c (0.1 mmol), electrophile (0.12 mmol), $Pd_2(dba)_3$ (5 mol%), L4 (20 mol%), acid (S)-A1 (20 mol%) and 4 Å MS (100 mg) in toluene (1 mL) at 30 °C.

7. Asymmetric reaction on a 1.0 mmol scale

A flame-dried 10 mL Schlenk tube equipped with a magnetic stirring bar was cooled to room temperature. To this flask were added $Pd_2(dba)_3$ (45.8 mg, 0.0500 mmol, 0.05 equiv), **L4** (121.1 mg, 0.2001 mmol, 0.2 equiv), **A2** (50.0 mg, 0.200 mmol, 0.2 equiv) and 4 Å MS (1.0 g), and the flask evacuated and back-filled three times with argon. Then toluene (5 mL) was added by syringe. The mixture was stirred at 30 °C for 10 min. To another dry tube equipped with a magnetic stirring bar were added 2-methylene-6-nitro-2,3-dihydro-1*H*-inden-1-ol **1c** (191.1 mg, 1.000 mmol, 1.0 equiv) and (*E*)-2-benzoyl-3-phenylacrylonitrile **2a** (279.7 mg, 1.200 mmol, 1.2 equiv), evacuated and back-filled three times with argon. Then toluene (5 mL) was added by syringe. The mixture was stirred at rt for 5 min. Then the latter solution was added to the first Schlenk tube by syringe. The mixture was stirred at 30 °C for 12 h. After completion, Et₃N (28.0 μ L, 0.202 mmol, 0.2 equiv) was added to the reaction mixture and stirred at rt for 2 h. After completion, the solvent was evaporated in vacuo. The residue was purified by flash chromatography on silica gel (EtOAc/petroleum ether = 1/8) to give the product **3a**: 370.7 mg, 91% yield, as a yellow solid; >19:1 dr; 88% ee.

8. Crystal data and structural refinement for enantiopure 3a

Preparation of the single crystals of enantiopure 3a: 35.0 mg of compound 3a (91% ee) was dissolved in DCM (1.0 mL) in a 10 mL tube, and n-hexane (3.0 mL) was added. The tube was sealed by a piece of weighing paper with several tiny holes, thus allowing slow evaporation of the solvents at room temperature. After 4 days, several small particles could be observed at the bottom of the tube. The crystals were chosen and subjected to the single crystal X-ray diffraction analysis for the determination of the absolute configuration of 3a. The data were collected by an Agilent Gemini equipped with a Cu radiation source ($K\alpha = 1.54184 \text{ Å}$) at 296.0(9) K. CCDC 2174555 (3a) contains the supplementary crystallographic data for this paper. These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif.

(ellipsoid contour probability 50%)

Identification code	3a
Empirical formula	$C_{26}H_{18}N_2O_3$
Formula weight	406.42
Temperature/K	296.0(9)
Crystal system	monoclinic
Space group	P2 ₁
a/Å	6.34570(7)
b/Å	12.49324(16)
c/Å	29.7405(4)
α/°	90
β/°	93.4861(11)
γ/°	90
Volume/Å ³	2353.41(5)
Z	4
ρ_{cale} g/cm ³	1.147
μ/mm^{-1}	0.613
F(000)	848.0
Crystal size/mm ³	$0.45\times0.35\times0.3$
	S45

Radiation

2Θ range for data collection/°

Index ranges

Reflections collected

Independent reflections

Data/restraints/parameters

Goodness-of-fit on F²

Final R indexes [$I \ge 2\sigma(I)$]

Final R indexes [all data]

Largest diff. peak/hole / e Å⁻³

Flack parameter

 $CuK\alpha (\lambda = 1.54184)$

7.678 to 142.826

 $-7 \le h \le 5, -15 \le k \le 15, -33 \le 1 \le 36$

25763

9006 [$R_{int} = 0.0406$, $R_{sigma} = 0.0314$]

9006/1/559

1.037

 $R_1 = 0.0505, wR_2 = 0.1373$

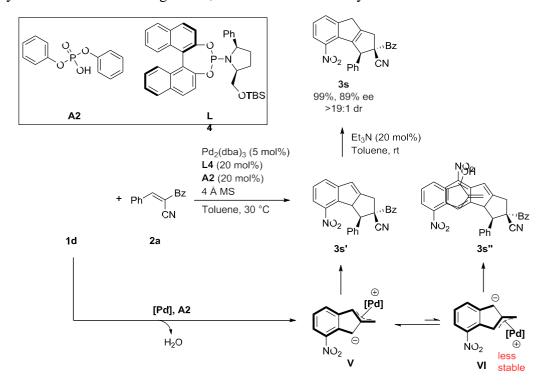
 $R_1 = 0.0543, wR_2 = 0.1426$

0.15/-0.24

-0.01(14)

9. Mechanism study

9.1 Control experiments

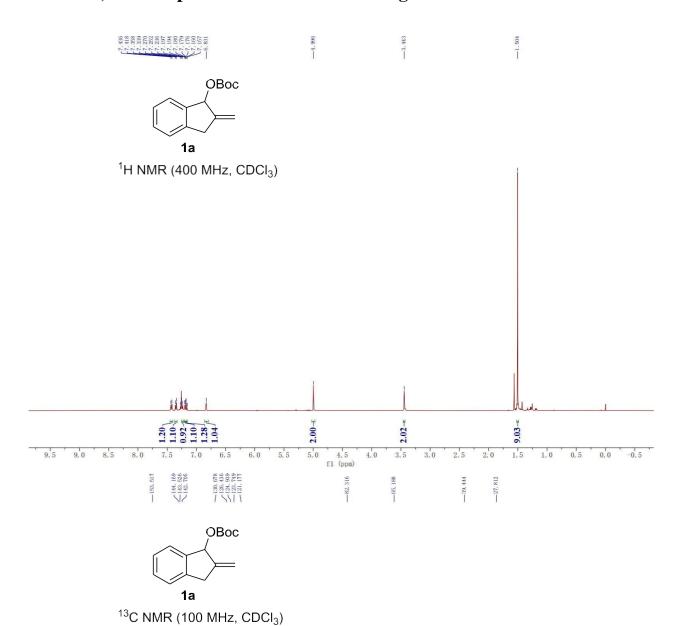

a) The formation of 3a with 5-ntiro 1e as the substrate

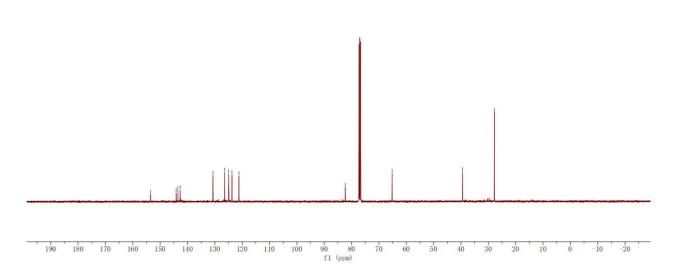
When 5-nitro 1e was utilised as the substrate, 3a was isolated in a moderate yield after treatment with Et₃N. The results indicated an isomerisation process of the 10π -intermediate would be involved. Under the catalysis of Pd/A2, 1e underwent an oxidative addition/deprotonation to give intermediate I', which would isomerise to the more stable intermediate I to afford 3a followed by [10+2] cycloaddition with 2a and isomerisation.

b) With acyclic alcohol 13 as the substrate

9.2 The formation of 3s with 1d as the substrate

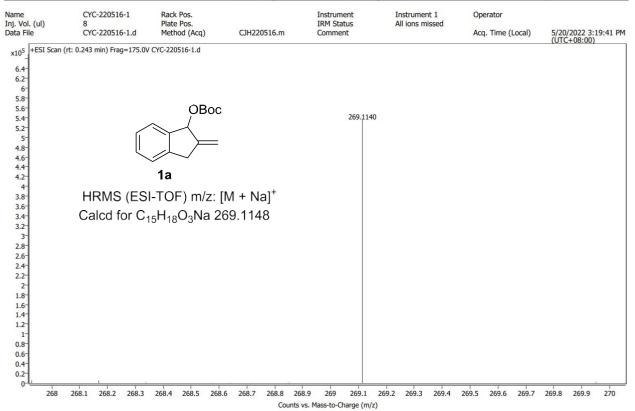
When 1d with a 4-nitro group was applied to the reaction with 2a under the standard conditions, 3s (confirmed by ¹H NMR and ¹³C NMR) was obtained in a quantitative yield with good enantioselectivity, and no isomerisation phenomenon for the zwitterionic intermediate was observed. It was envisaged that 1d underwent oxidative addition and deprotonation reaction, and resultant intermediate V was formed. The anion at the C-3 position could be stabilised by the *ortho*-NO₂ group; in contrast, intermediate VI would be relatively less stable. Indeed, cycloadduct 3s" has not been detected, indicating that the isomerisation process was not favored. Instead, V participated in [10+2] cycloaddition with 2a to give 3s', and then 3s was finally afforded after treatment with Et₃N.

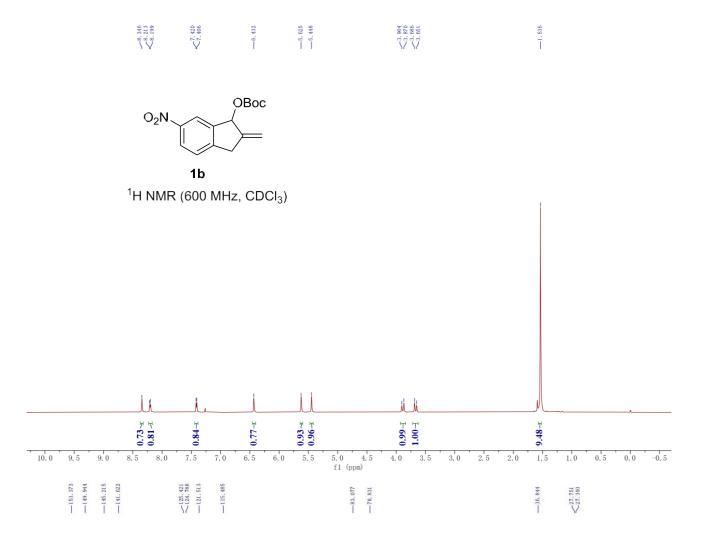


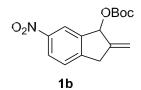

9.3 Proposed catalytic cycle

10. References

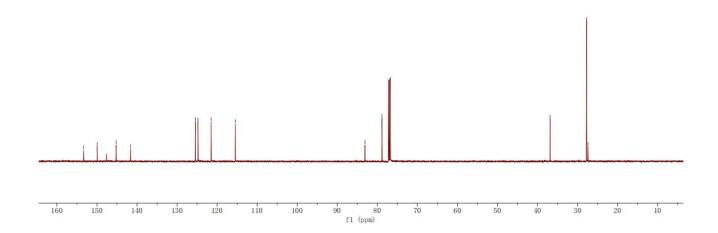
- 1. P. Zhao, Z. Li, J. He, X. Liu and X. Feng, Sci. China Chem., 2021, 64, 1355.
- 2. Y. Yang, Y. Jiang, W. Du and Y.-C. Chen, *Chem. Eur. J.*, 2020, **26**, 1754.
- 3. K.-K. Wang, P. Wang, Q. Ouyang, W. Du and Y.-C. Chen, Chem. Commun., 2016, 52, 11104.
- 4. E. Fillion, A. Kavoosi, K. Nguyen and C. Ieritano, *Chem. Commun.*, 2016, **52**, 12813.
- 5. T. Drennhaus, L. Öhler, S. Djalali, S. Höfmann, C. Müller, J. Pietruszka and D. Worgull, *Adv. Synth. Catal.*, 2020, **362**, 2385.
- 6. Z.-Z. Gao, C. Wang, L.-J. Zhou, C.-H. Yuan, Y.-M. Xiao and H.-C. Guo, Org. Lett., 2018, 20, 4302.
- 7. T. B. Nguyen and P. Retailleau, Org. Lett., 2018, 20, 186.
- 8. A. Turočkin, W. Raven and P. Selig, Eur. J. Org. Chem., 2017, 296.

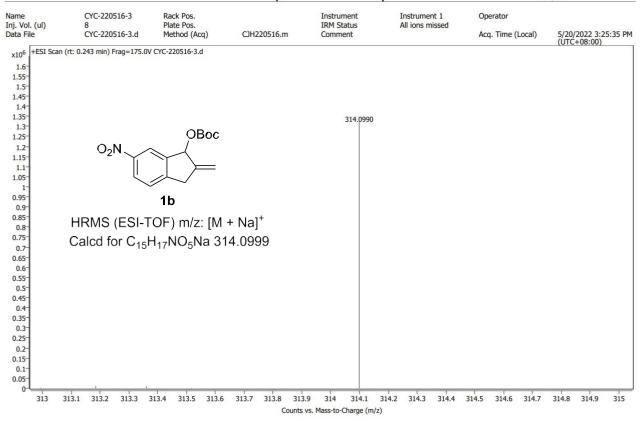

11. NMR, HRMS spectra and HPLC chromatograms

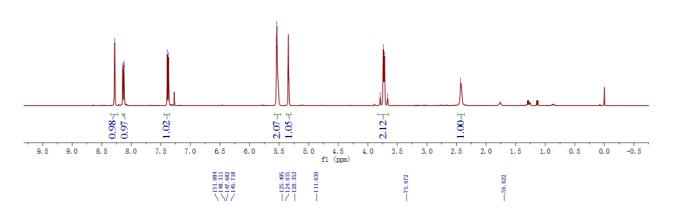




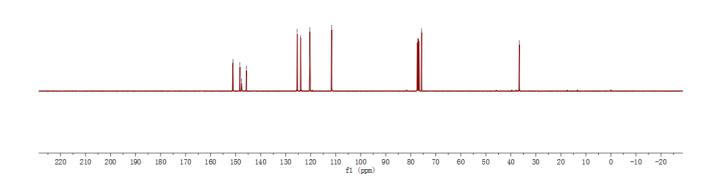
User Spectrum Plot Report



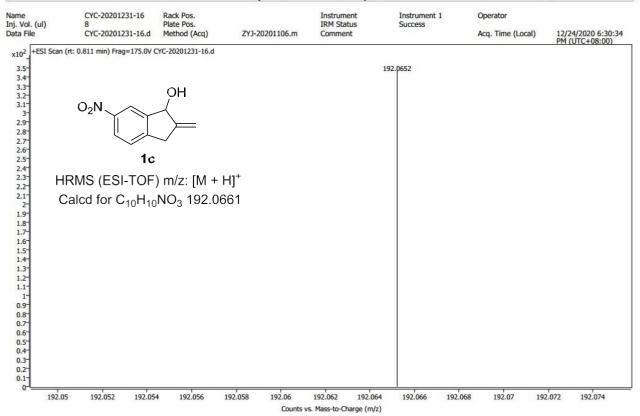




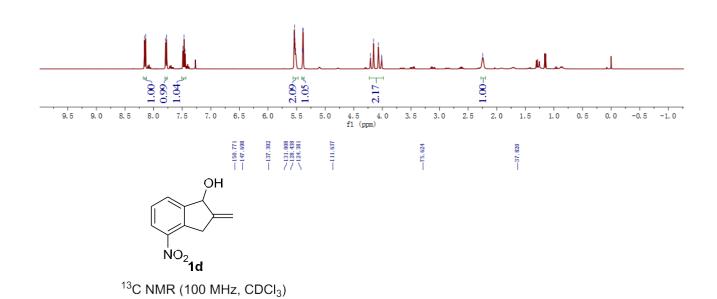
¹³C NMR (150 MHz, CDCl₃)

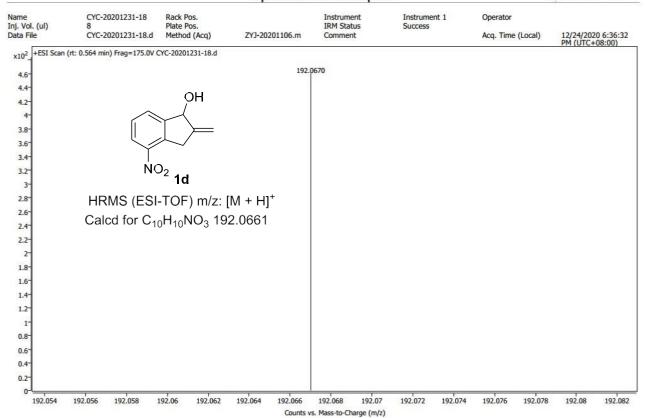


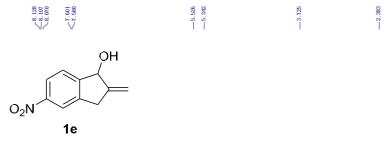
¹H NMR (400 MHz, CDCl₃)


$$O_2N$$
 OH O_2

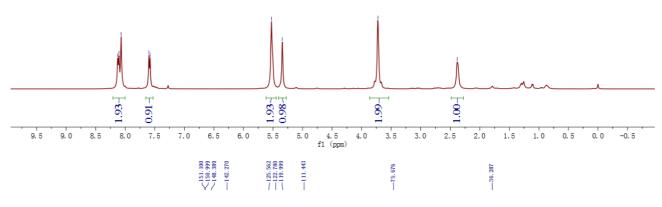
 13 C NMR (100 MHz, CDCl $_3$)


Spectrum Plot Report

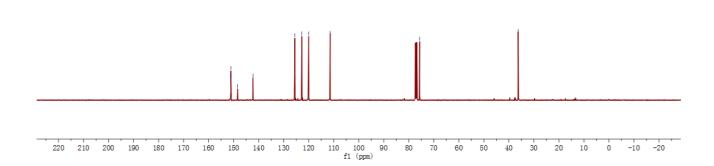


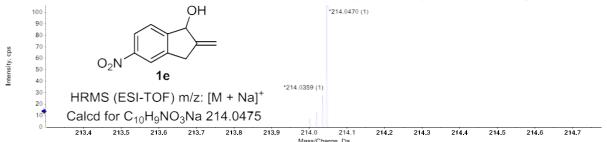


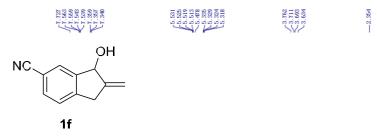
¹H NMR (400 MHz, CDCl₃)



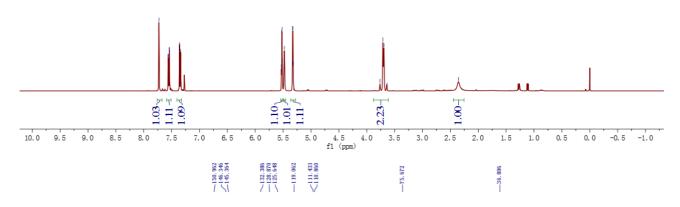
220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 f1 (ppm)



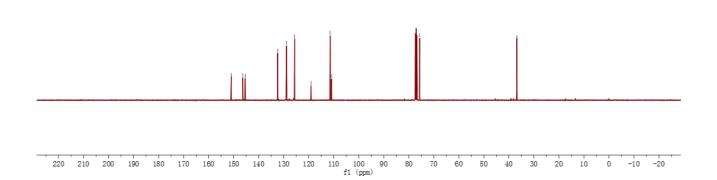

¹H NMR (400 MHz, CDCl₃)

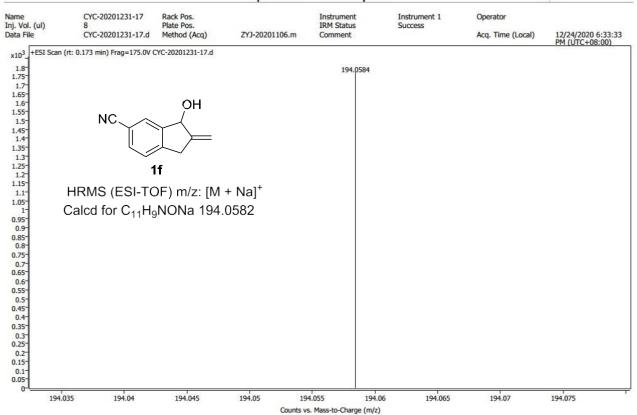


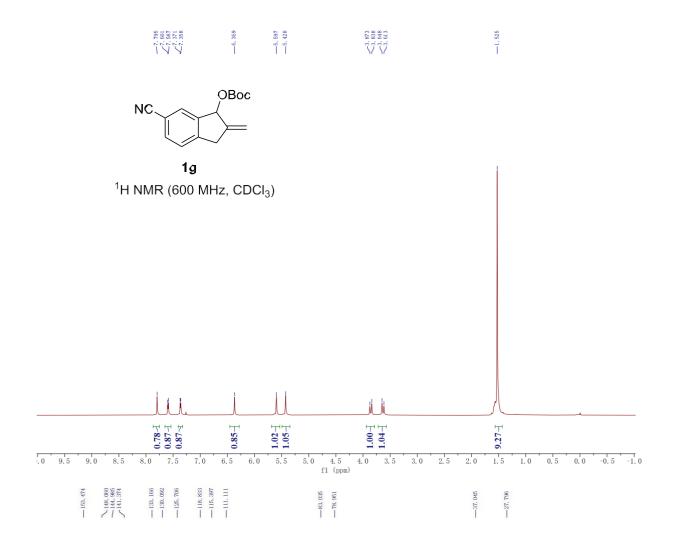
 13 C NMR (100 MHz, CDCl₃)



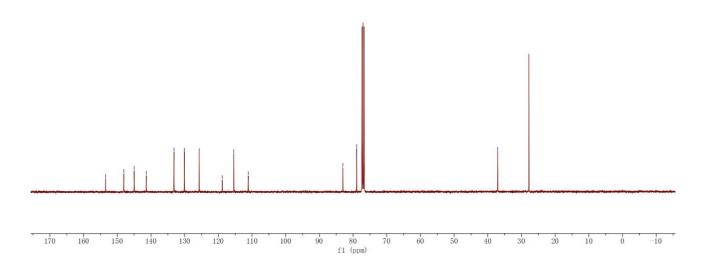
Spectrum from 20220122.wiff2 (sample 90) - 77, +TOF MS (100 - 600) from 0.023 to 0.048 min, subtra...122.wiff2 (sample 90) - 77, +TOF MS (100 - 600) from 1.234 to 1.588 min], Recalibrated, centroided

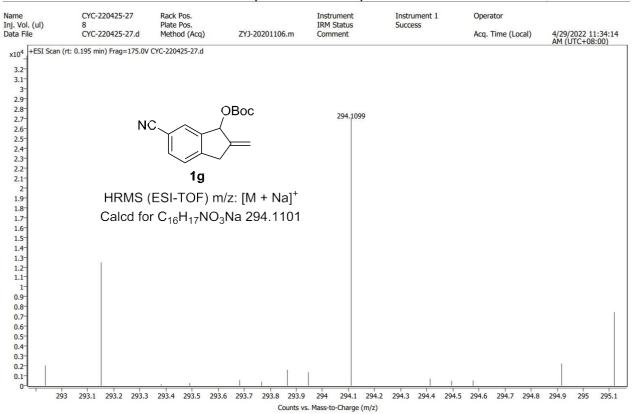


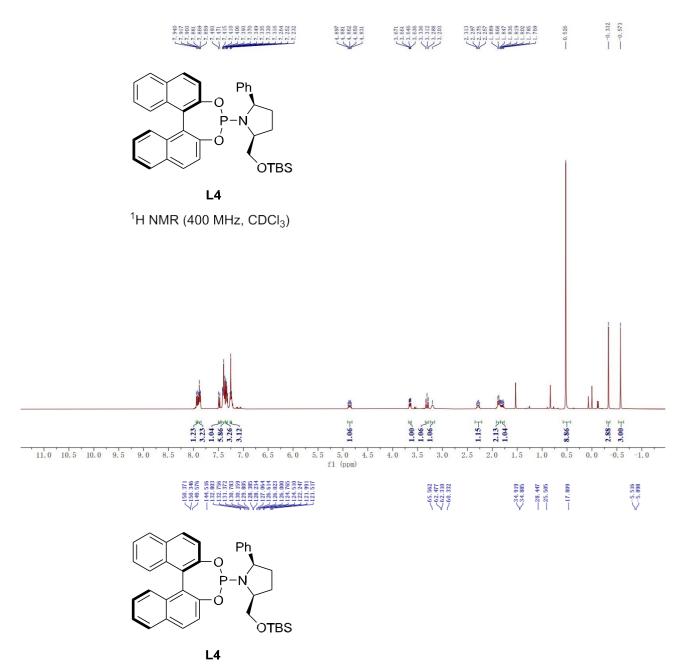

¹H NMR (400 MHz, CDCl₃)

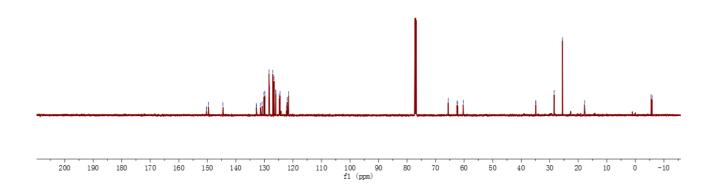


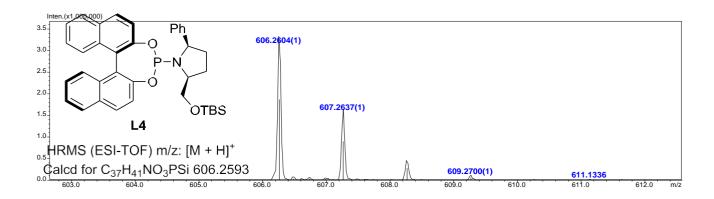
¹³C NMR (100 MHz, CDCl₃)

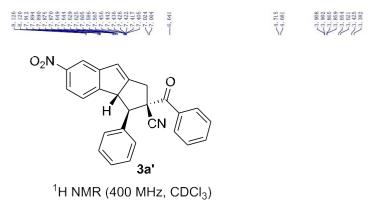


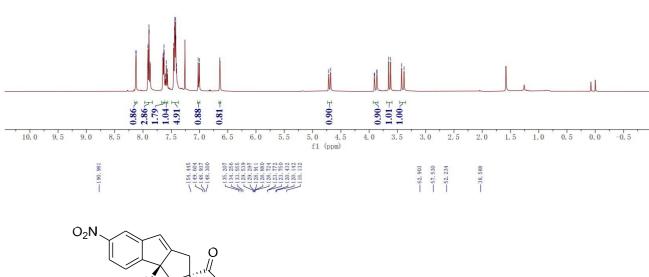

Spectrum Plot Report

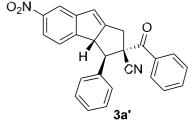


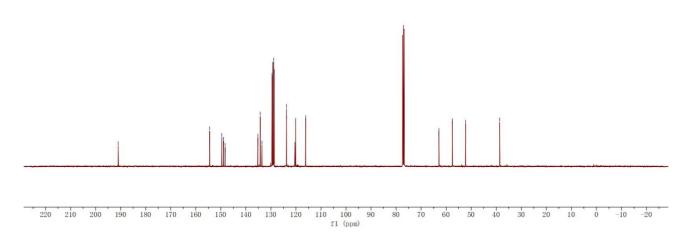

 $${\mbox{1g}}$$ $^{13}\mbox{C NMR}$ (150 MHz, CDCl3)

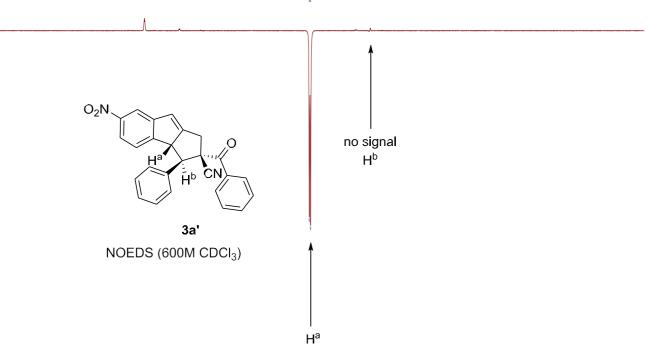


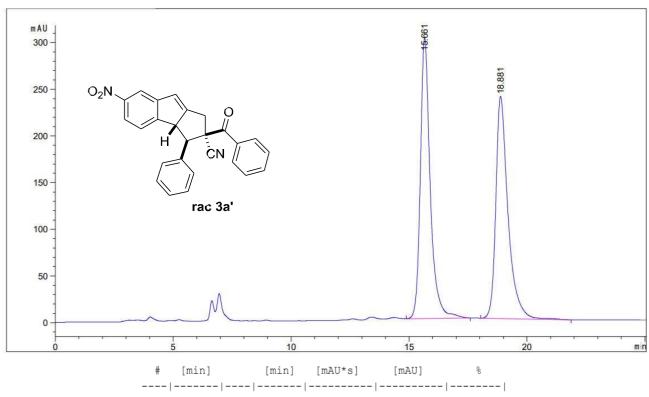




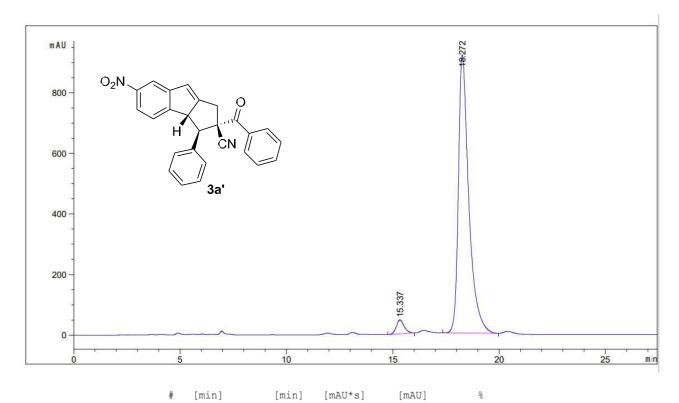

¹³C NMR (100 MHz, CDCl₃)

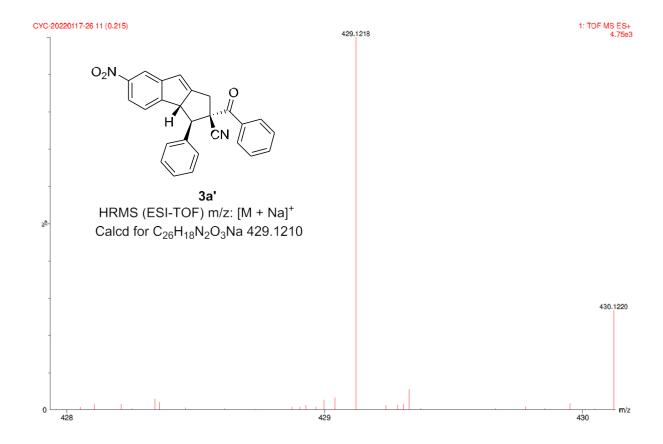




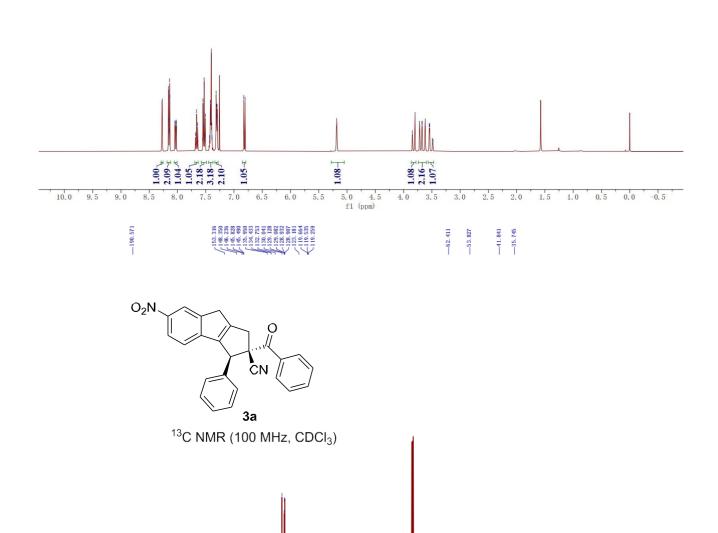


 13 C NMR (100 MHz, CDCl₃)

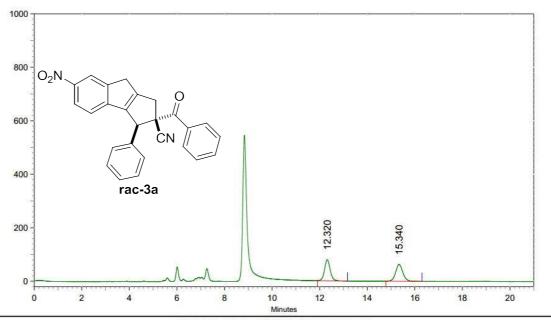


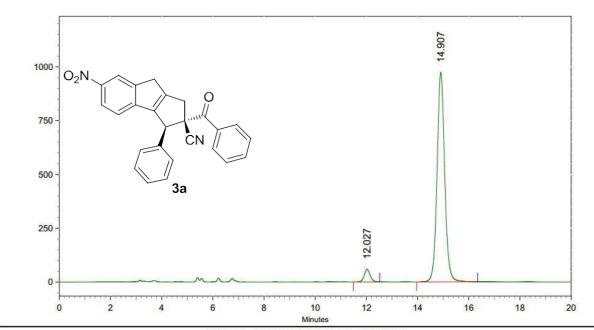


1 15.661 BB 0.4346 8752.58008 300.37457 50.5949 2 18.881 BB 0.5311 8546.74219 238.00890 49.4051

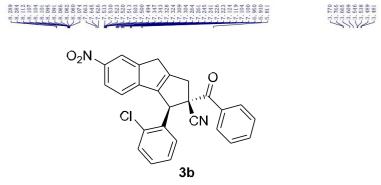


1 15.337 BB 0.3931 1189.36987 46.04202 3.6688 2 18.272 BB 0.5013 3.12292e4 918.93475 96.3312

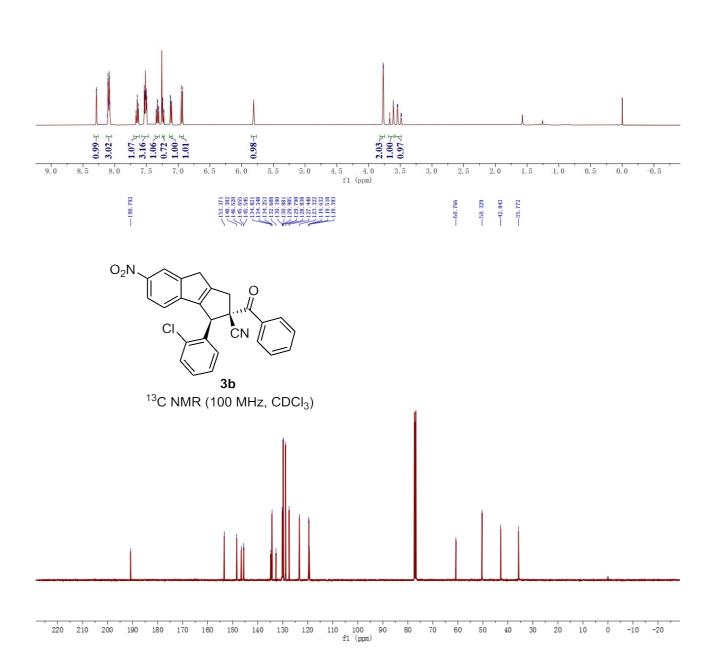


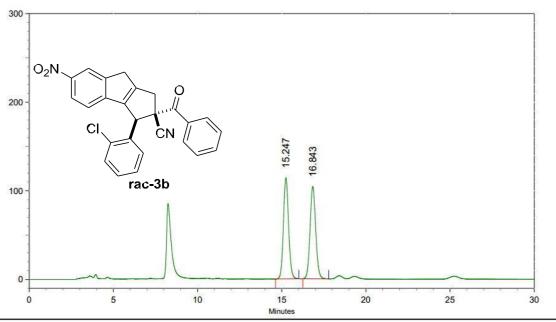

138 NMR (400 MHz, CDCl₃)

220 210 200 190 180 170 160 150 140 130 120 110 100 90 80 70 60 50 fl (ppm)



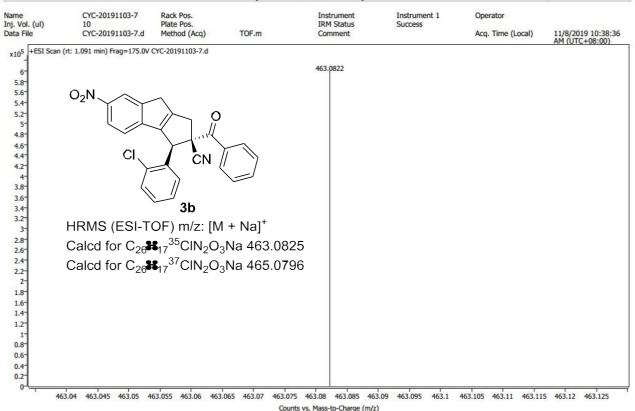
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.320	1.267	1321520	21879568	49.5716
2	15.340	1.513	1055084	22257713	50.4284




Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.027	1.033	998434	16335364	4.6023
2	14.907	2.383	16334320	338606828	95.3977

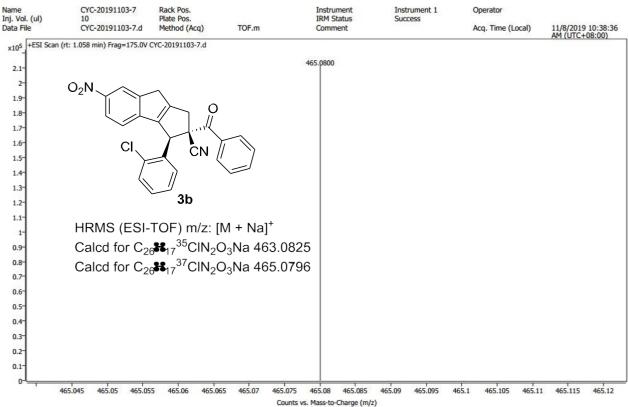
¹**¥8** NMR (400 MHz, CDCl₃)

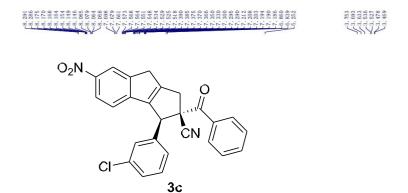
AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.247	1.390	1914824	40880904	50.0501
2	16.843	1.537	1747360	40799080	49.9499

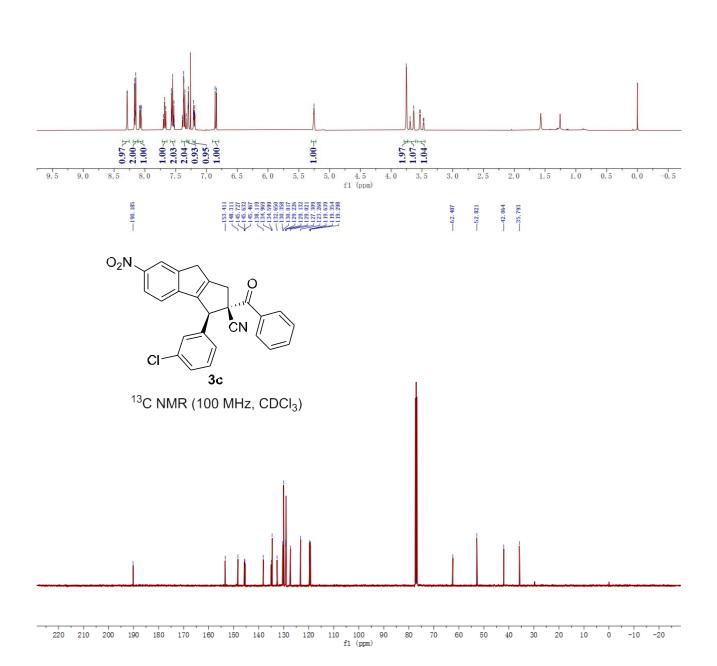
AREA PERCENT REPORT

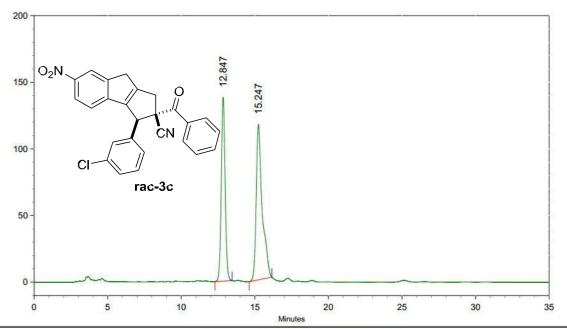
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.330	1.707	5427810	118074680	96.7091
2	16.960	1.330	173703	4017953	3.2909

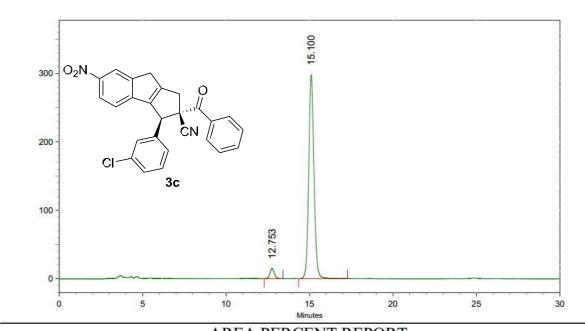




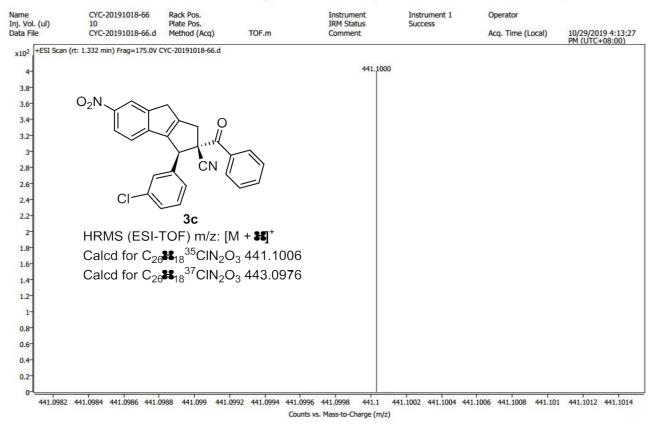
Spectrum Plot Report

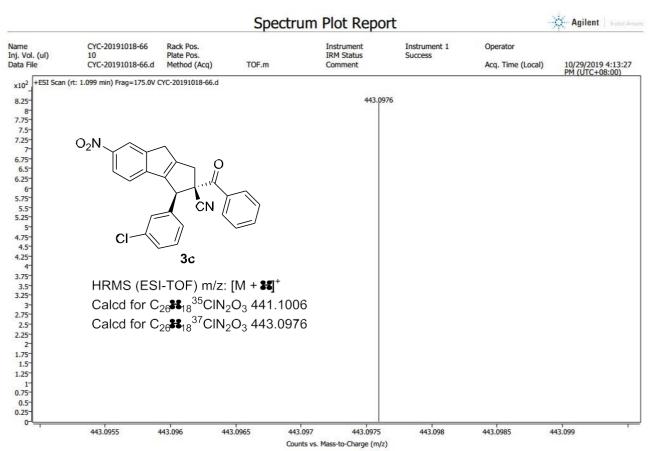


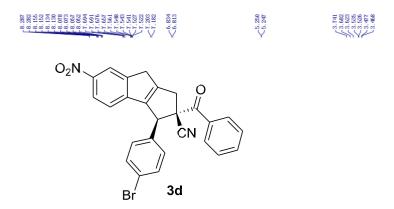

Agilent Instead


188 NMR (400 MHz, CDCl₃)

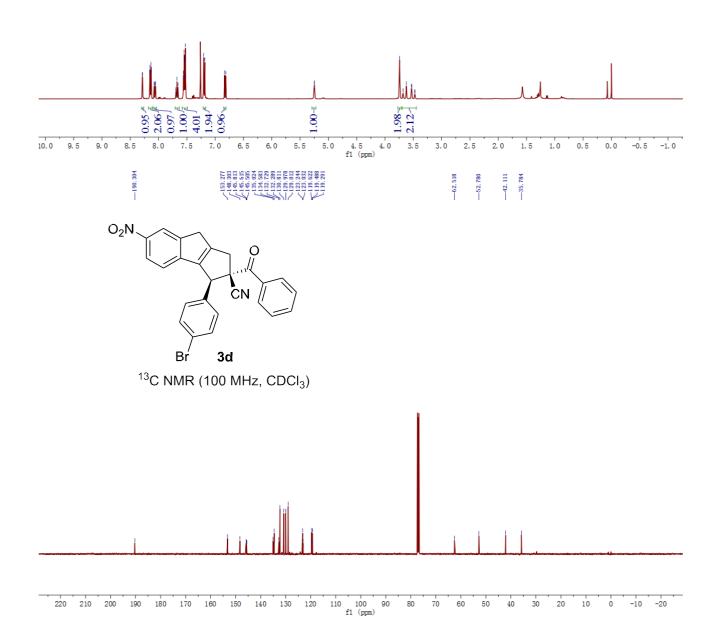
AREA PERCENT REPORT

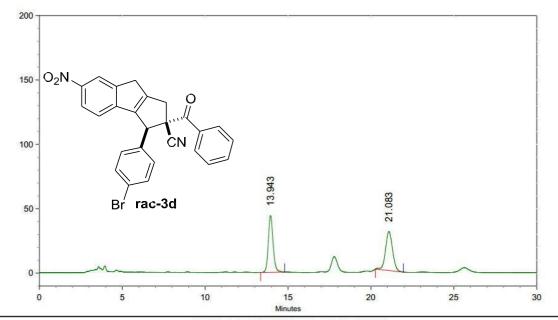

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.847	1.163	2314980	42109270	43.1324
2	15.247	1.537	1957978	55518592	56.8676



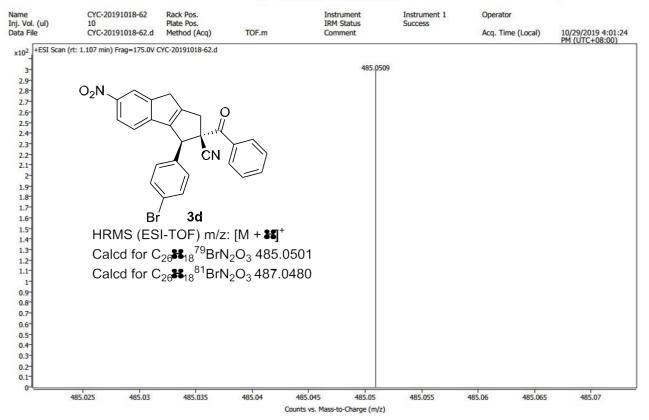

AREA PERCENT REPORT

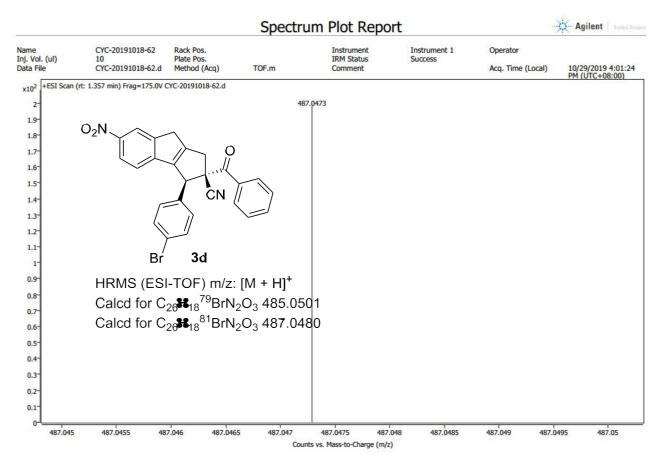
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.753	1.117	253142	4582450	4.0329
2	15.100	2.930	5005440	109043702	95.9671

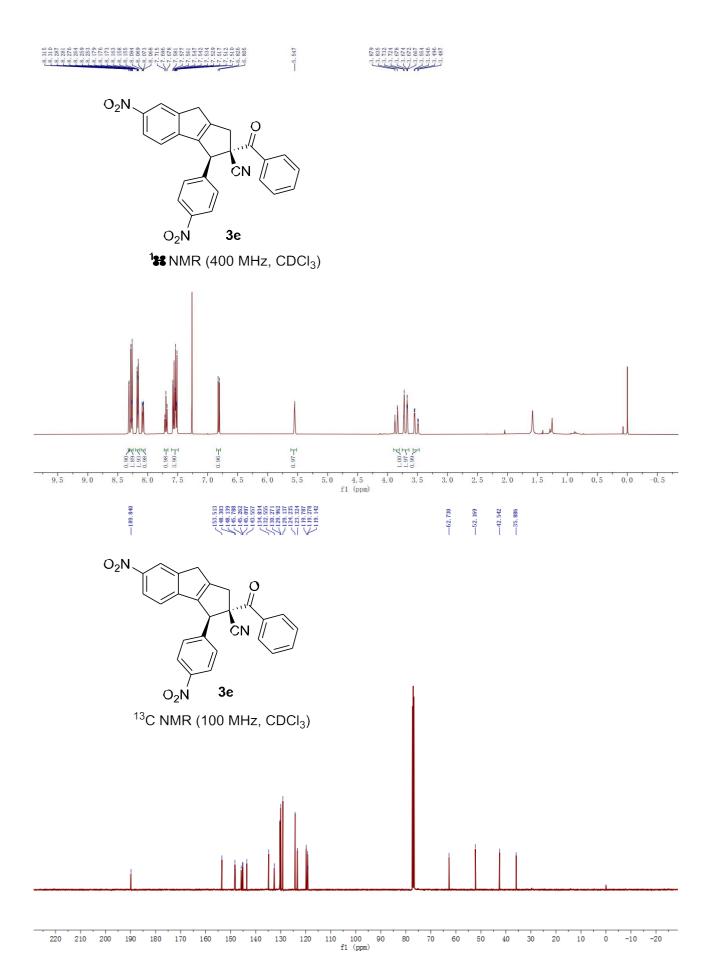


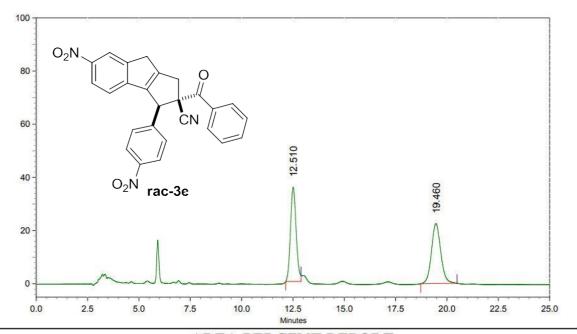


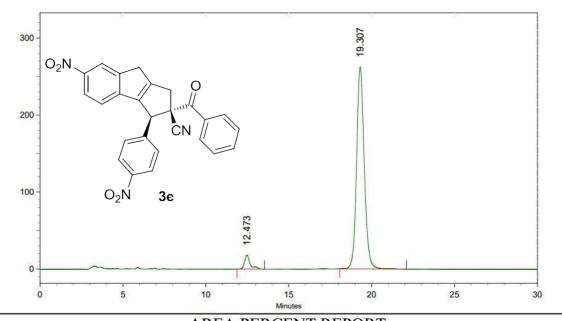

¹**₩** NMR (400 MHz, CDCl₃)

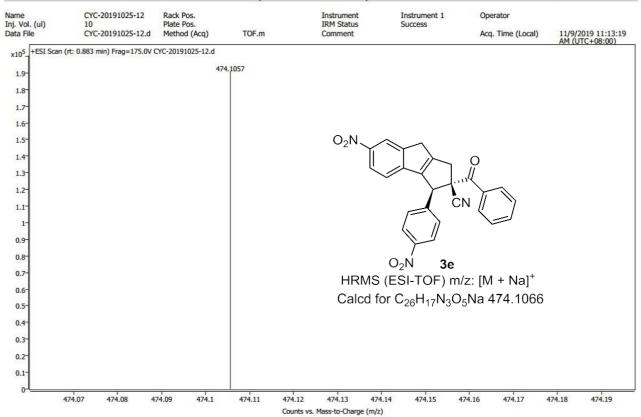

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.943	1.443	738074	14700066	49.4505
2	21.083	1.693	508083	15026763	50.5495

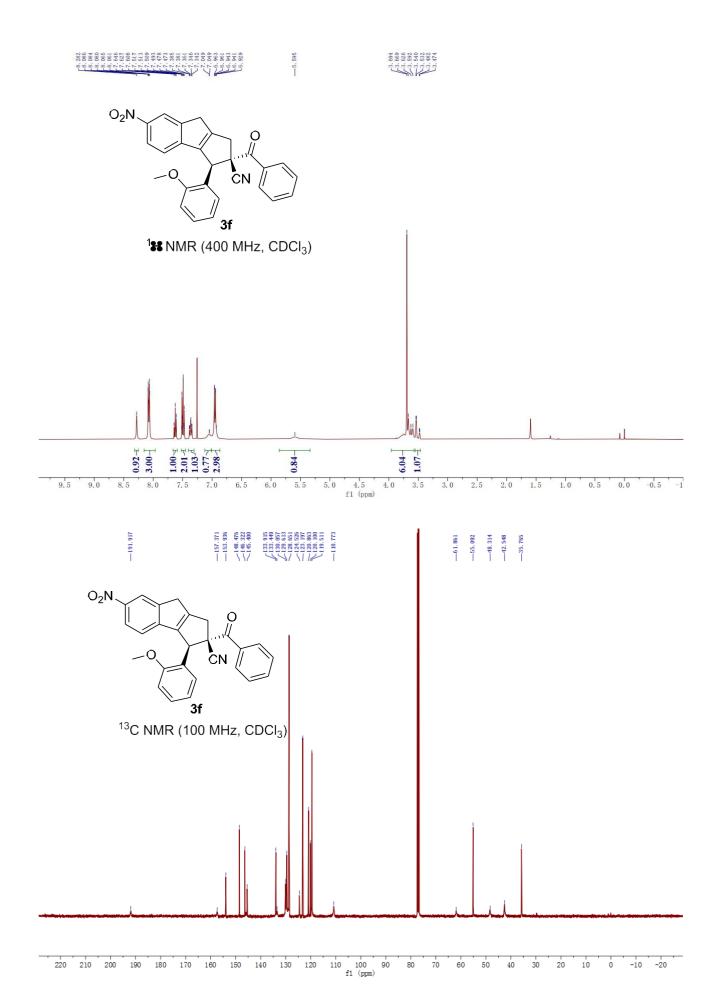

44

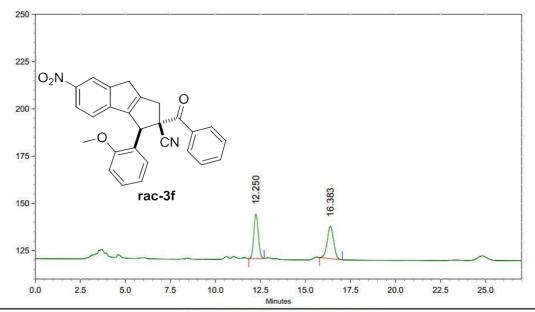



Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.887	1.200	336924	6551077	5.5246
2	20.920	2.540	3758984	112030071	94.4754



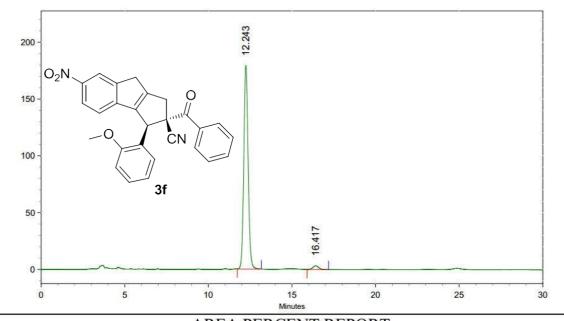

AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.510	0.747	595146	11400732	48.8354
2	19.460	1.770	378707	11944488	51.1646

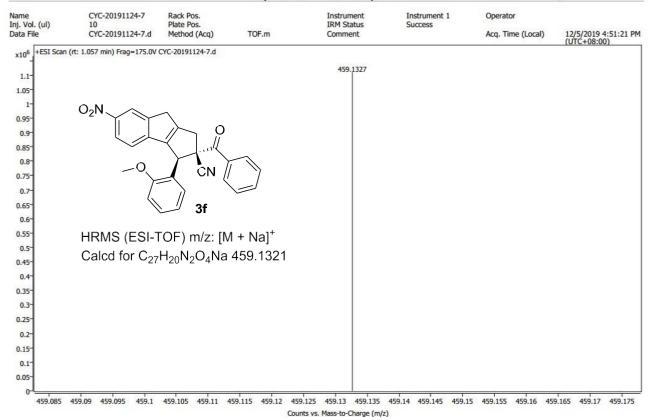


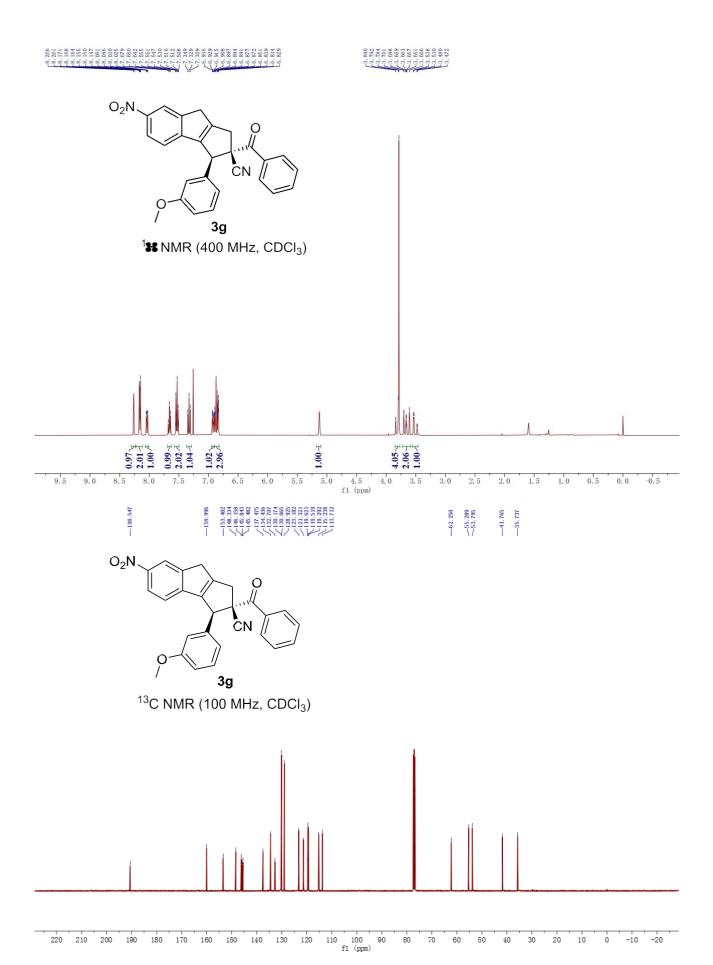
AREA PERCENT REPORT

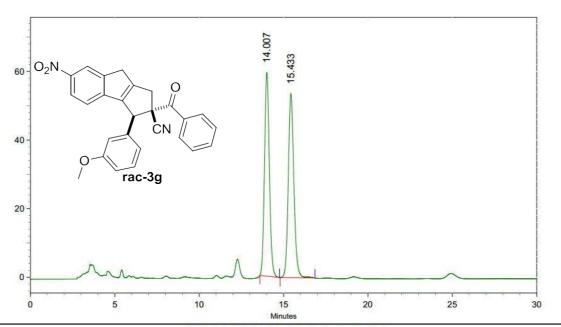
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.473	1.667	307638	7123908	4.7871
2	19.307	4.040	4404650	141689719	95.2129



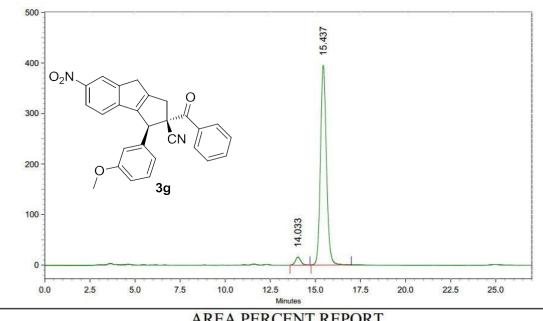
AREA PERCENT REPORT

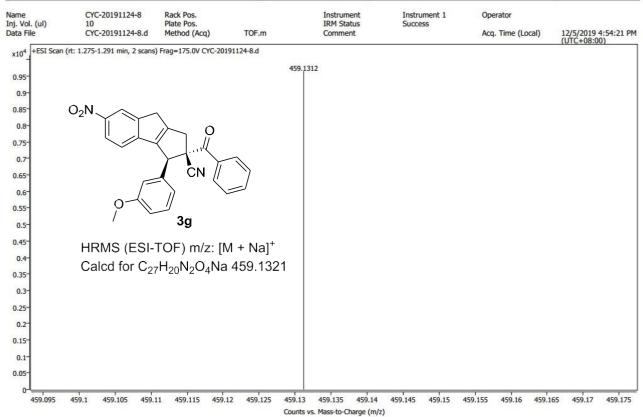

	Peak No.	Ret Time	Width	Height	Area	Area [%]
8-2	1	12.250	0.857	394552	6888211	49.3050
	2	16.383	1.260	287049	7082392	50.6950

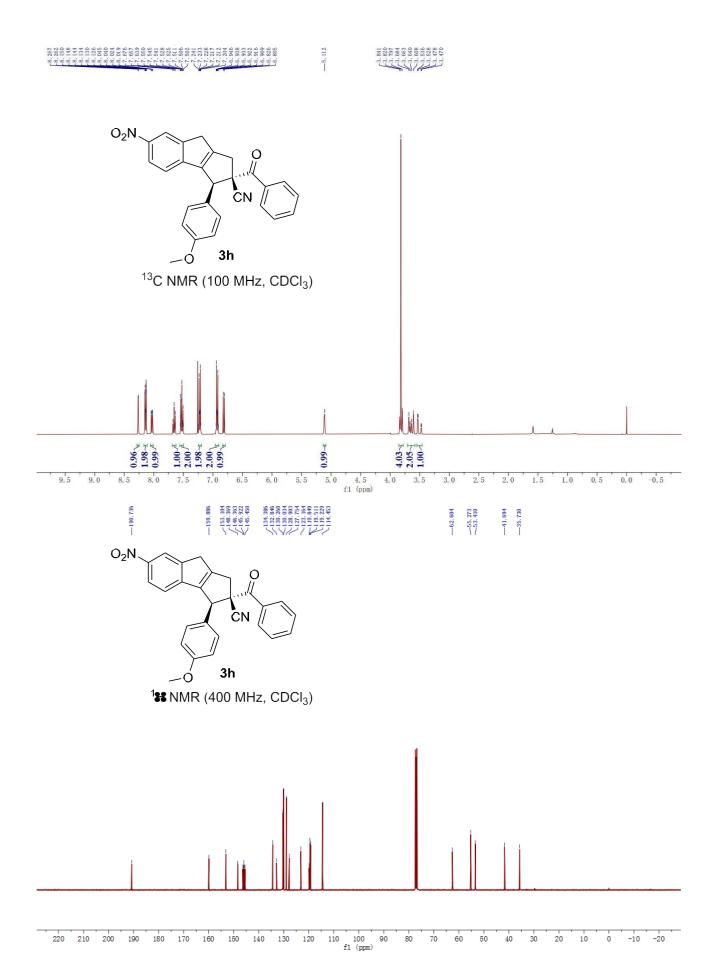


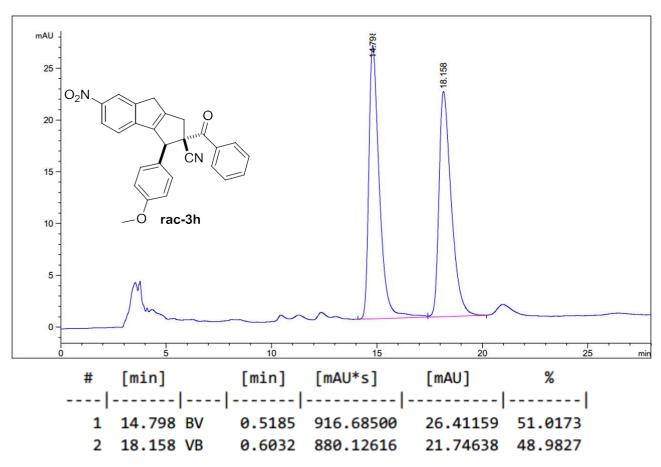

AREA PERCENT REPORT

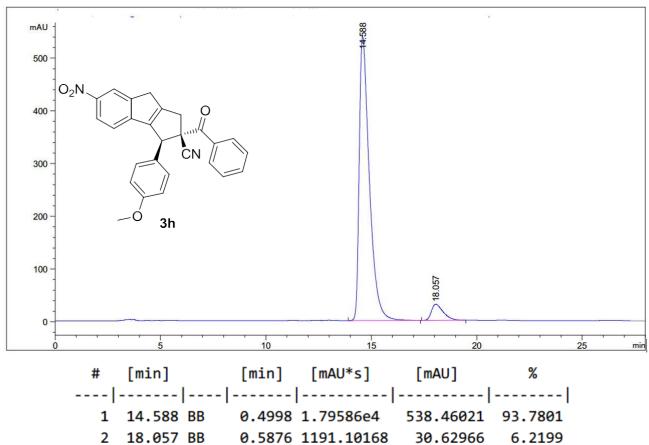
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.243	1.447	3007452	53967482	97.6296
2	16.417	1.283	54190	1310315	2.3704



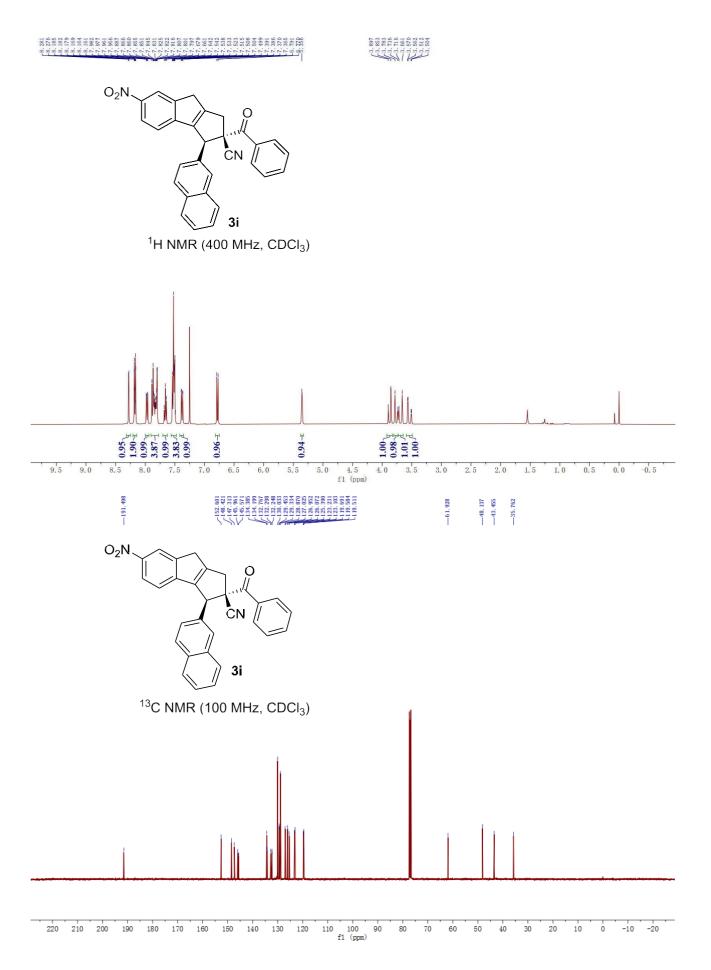


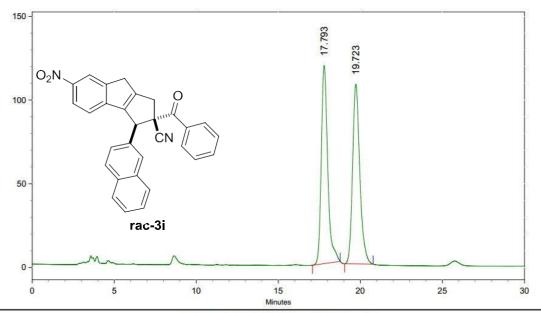

AREA PERCENT REPORT

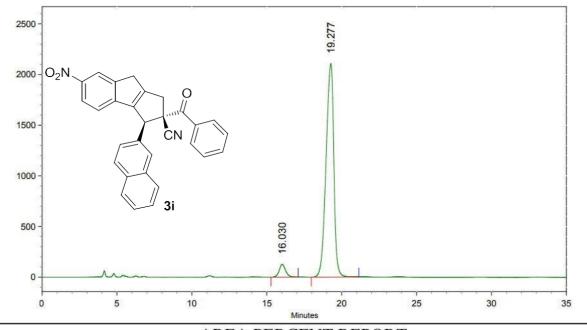

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.007	1.160	995546	19941547	49.0340
2	15.433	2.063	899527	20727274	50.9660

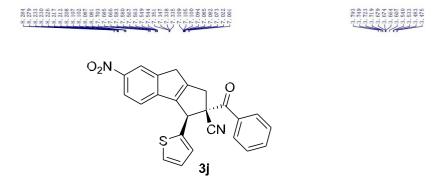


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.033	1.103	265650	5415212	3.4250
2	15.437	2.237	6635977	152694927	96.5750

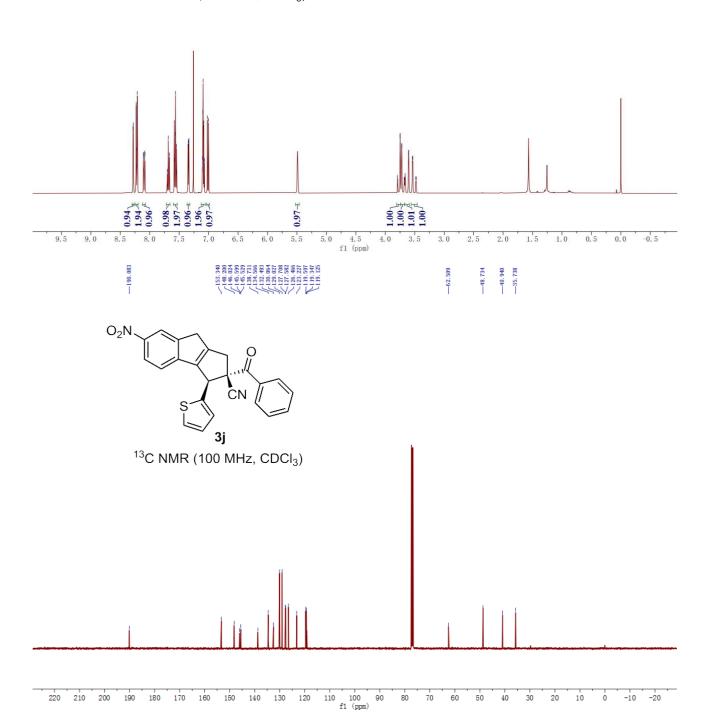


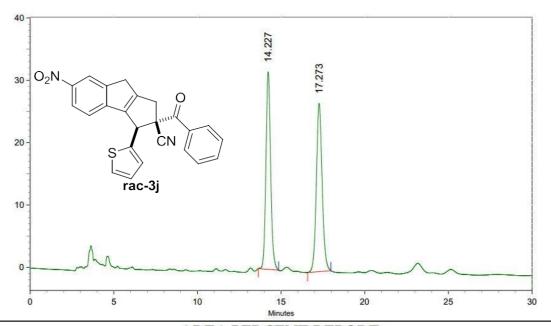




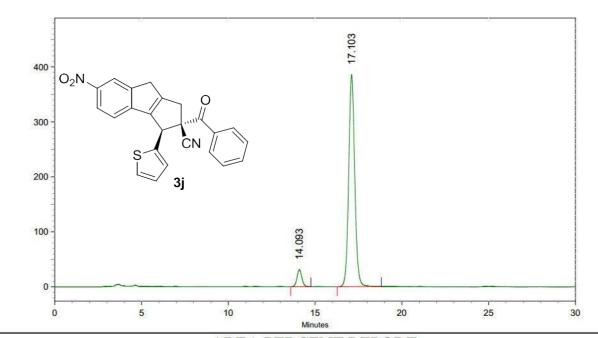

AREA PERCENT REPORT

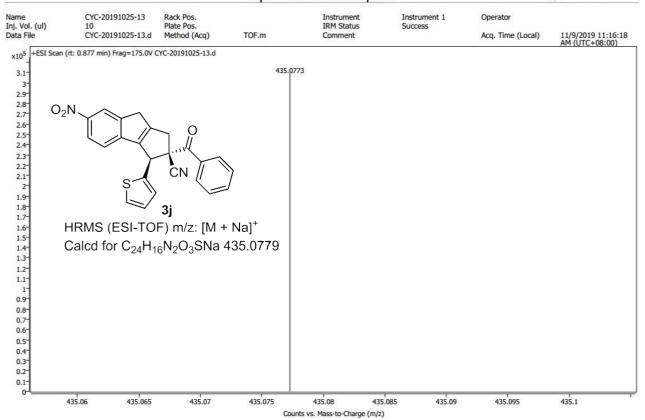
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.793	1.690	1985813	54130810	49.5316
2	19.723	1.727	1800208	55154706	50.4684

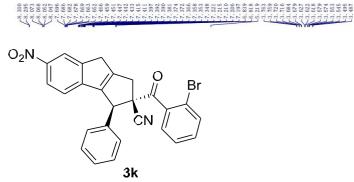


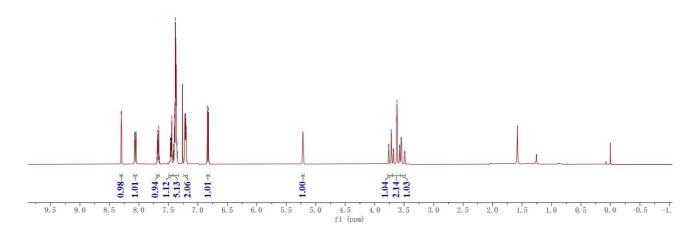

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	16.030	1.817	2130800	62356236	4.6631
2	19.277	3.173	35341117	1274867679	95.3369

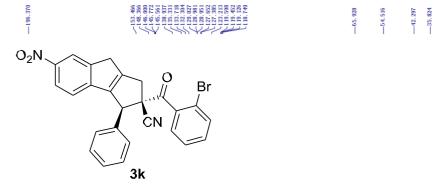
Counts vs. Mass-to-Charge (m/z)

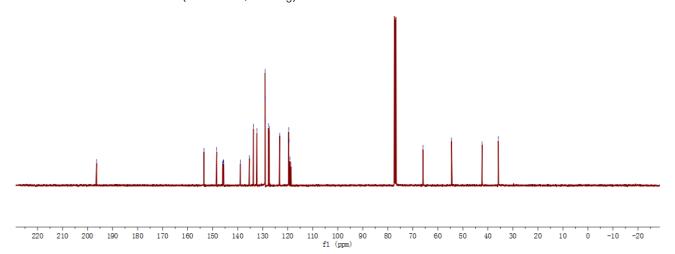

¹H NMR (400 MHz, CDCl₃)

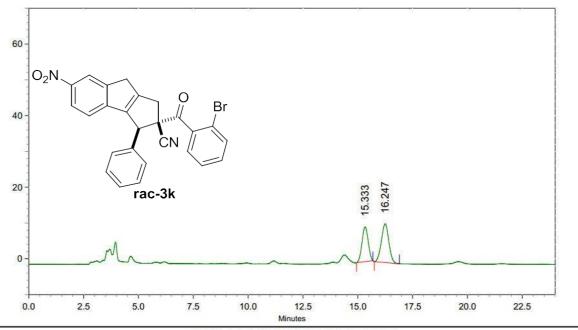

AREA PERCENT REPORT

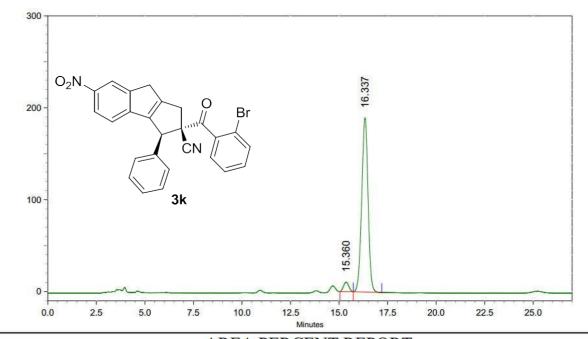

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.227	1.213	531413	10359157	48.7273
2	17.273	1.393	452753	10900289	51.2727


AREA PERCENT REPORT

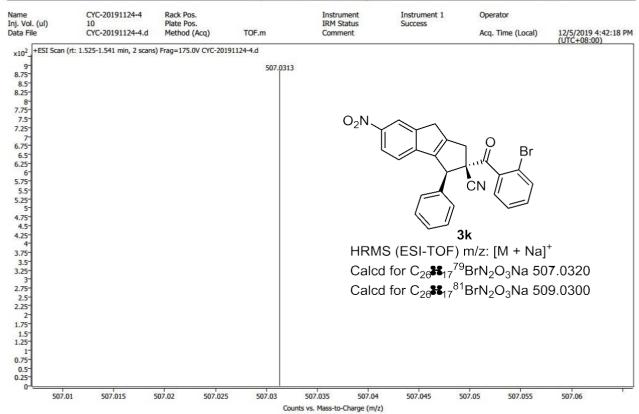

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.093	1.163	521715	10180607	6.1114
2	17.103	2.537	6470737	156403300	93.8886

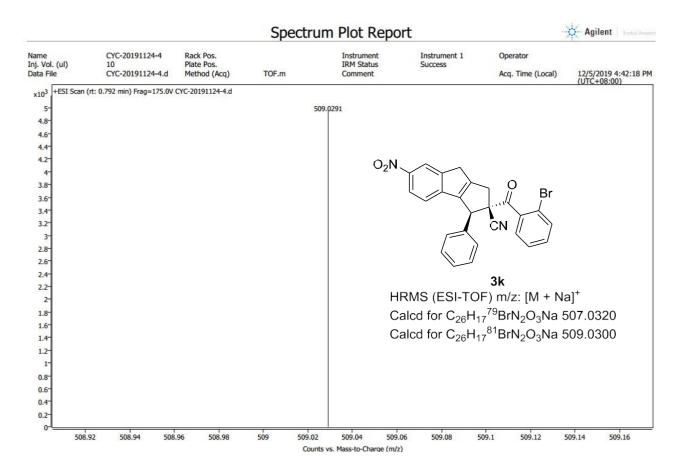


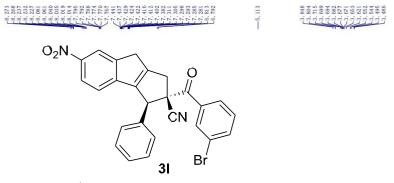

138 NMR (400 MHz, CDCl₃)



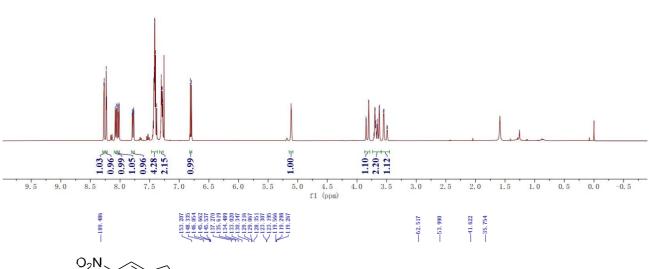
 $^{13}\mathrm{C}$ NMR (100 MHz, $\mathrm{CDCI_3})$

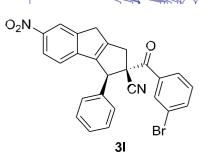


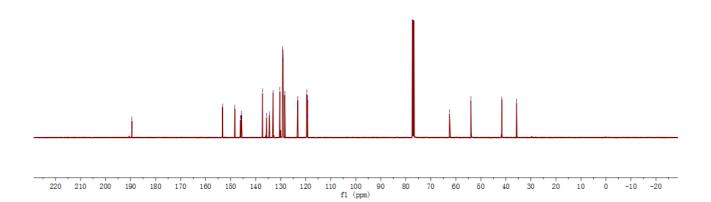

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.333	0.743	162762	3189159	42.6258
2	16.247	1.143	182088	4292591	57.3742

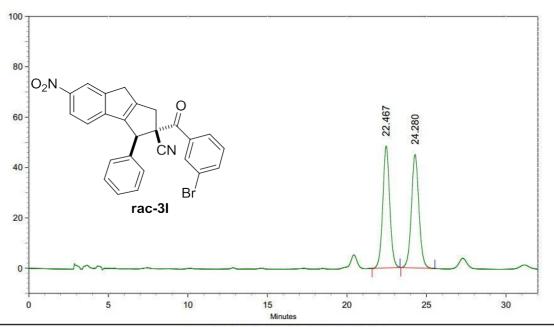


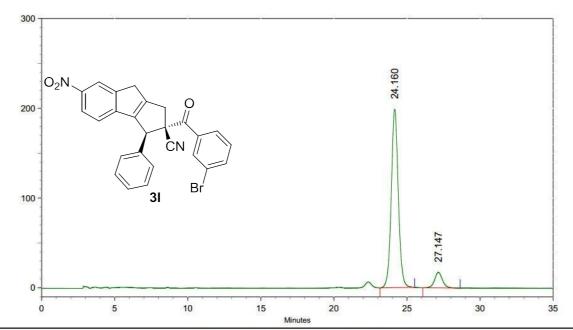
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.360	0.693	173993	3270873	4.3318
2	16.337	1.470	3182051	72237483	95.6682



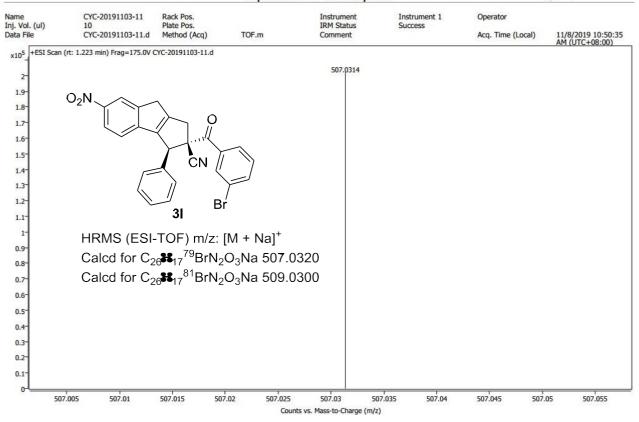


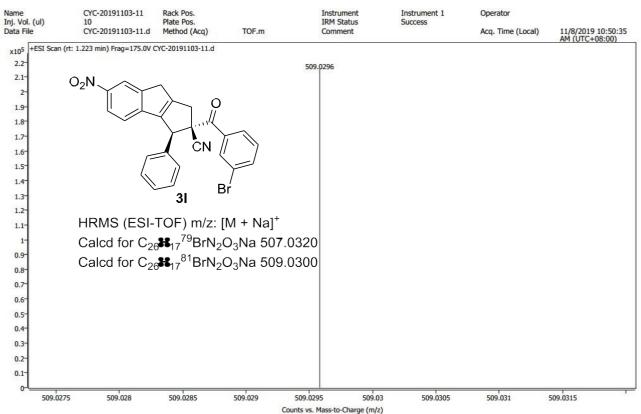


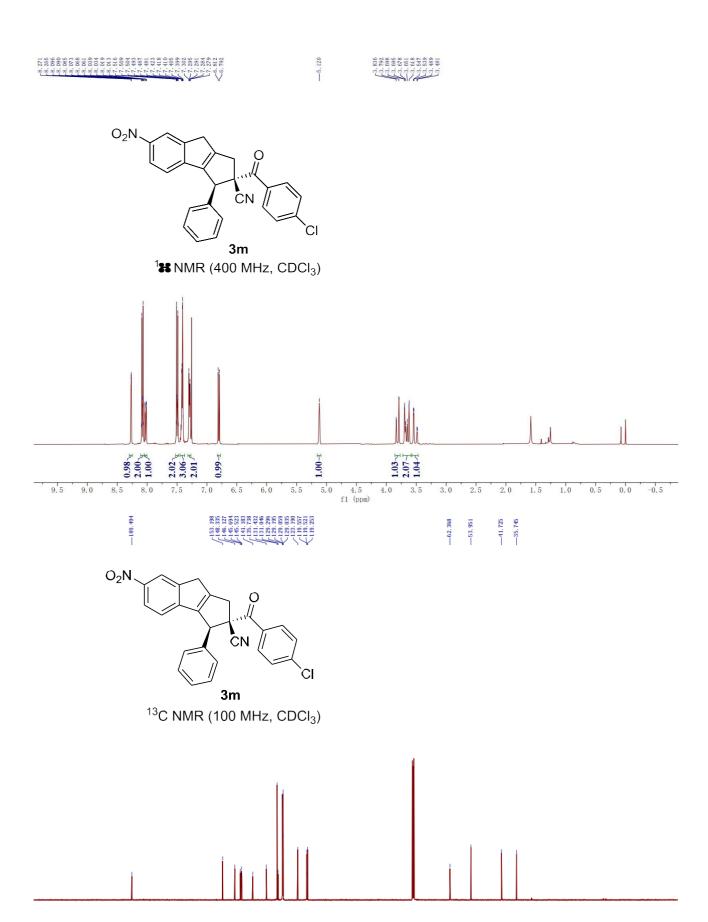

¹**¥8** NMR (400 MHz, CDCl₃)

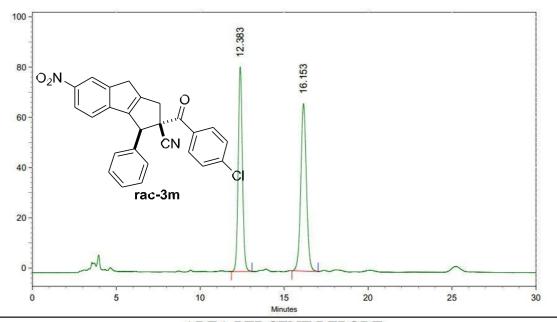

 13 C NMR (100 MHz, CDCl₃)

AREA PERCENT REPORT

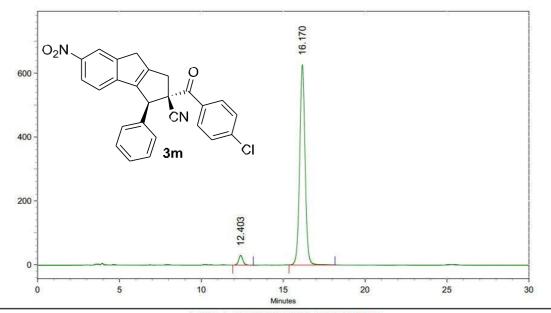

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	22.467	1.753	812614	24766805	49.8434
2	24.280	2.143	755892	24922454	50.1566


AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	24.160	2.377	3335325	111500414	91.0943
2	27.147	2.557	292741	10900693	8.9057

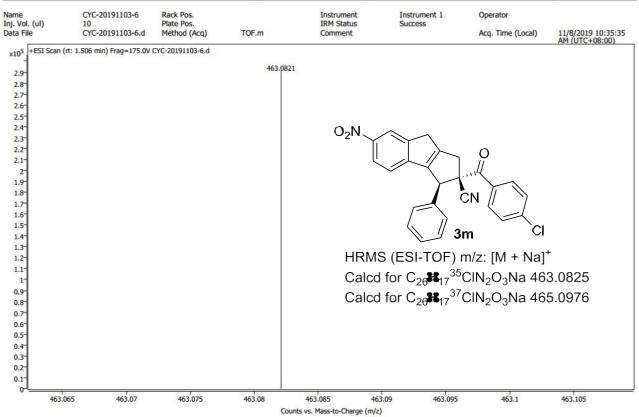


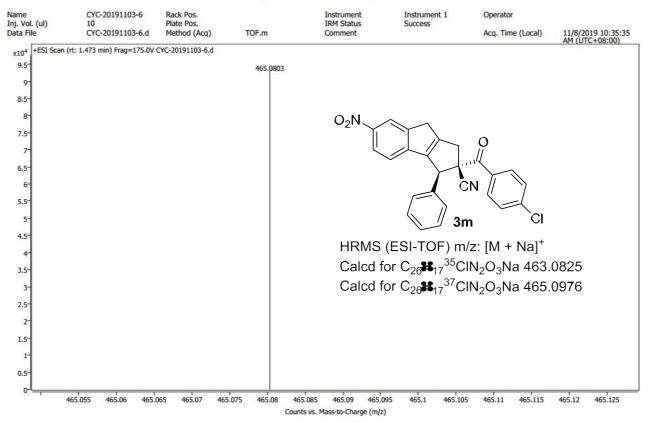
70

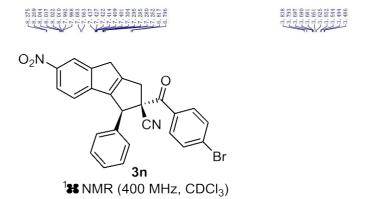

140 130 120 110 100 90 f1 (ppm)

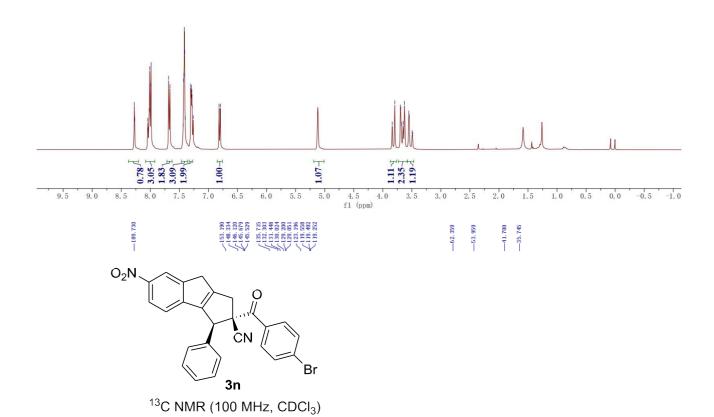
170 160

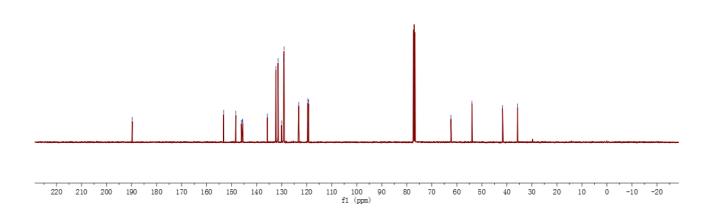
AREA PERCENT REPORT

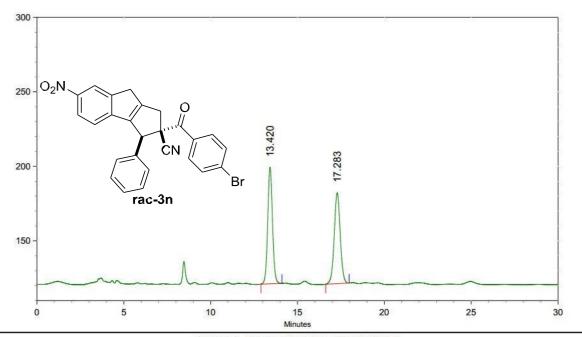

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.383	1.223	1366179	23725204	47.5559
2	16.153	1.567	1118453	26163836	52.4441

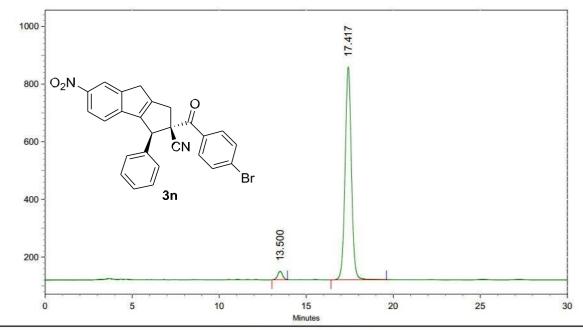

AREA PERCENT REPORT

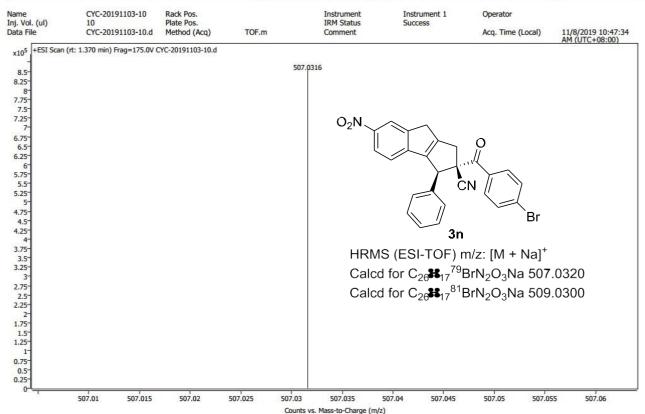

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.403	1.257	514824	9090498	3.6274
2	16.170	2.803	10529019	241519212	96.3727



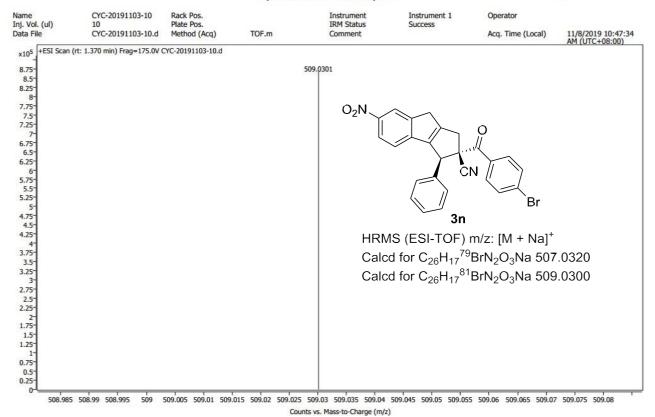


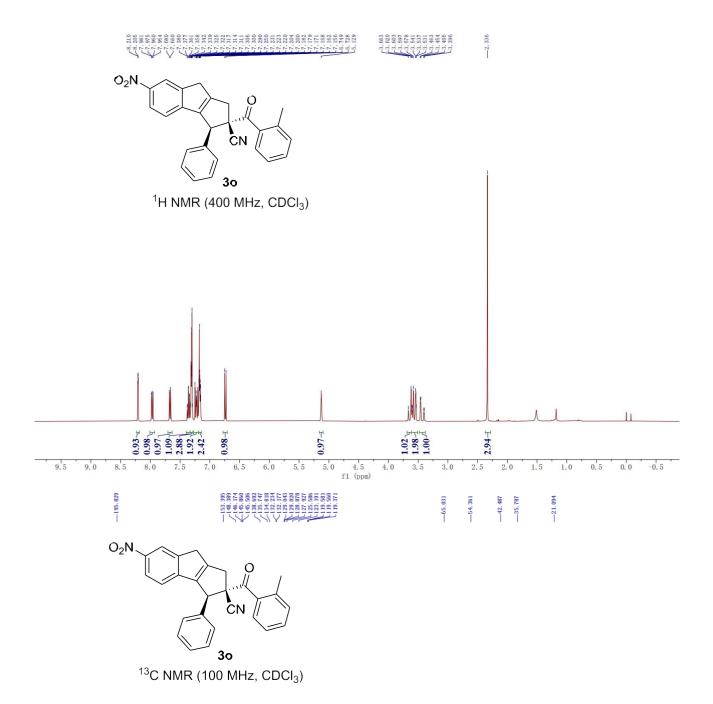


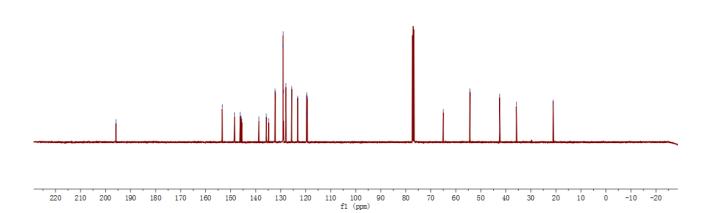


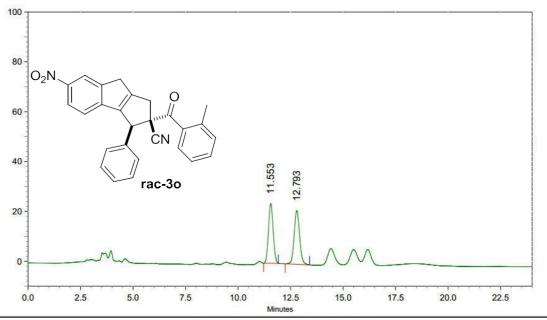

AREA PERCENT REPORT

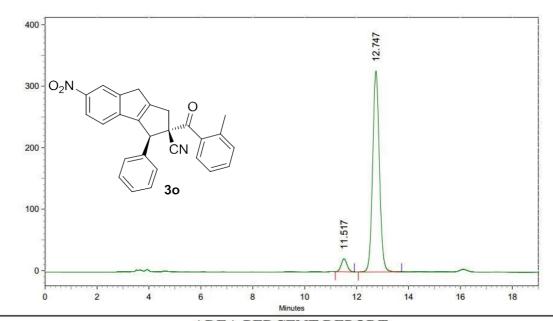
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.420	1.210	1313502	25019512	50.4931
2	17.283	1.343	1022344	24530872	49.5069

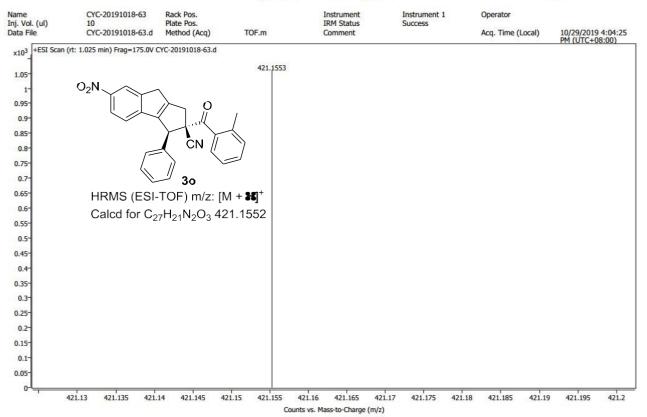


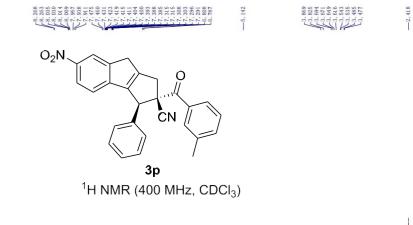

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.500	0.887	490356	9592131	2.9857
2	17.417	3.183	12390634	311678228	97.0143

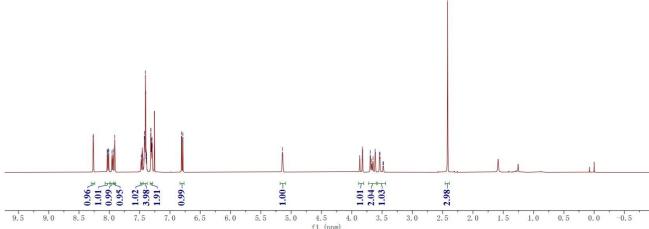


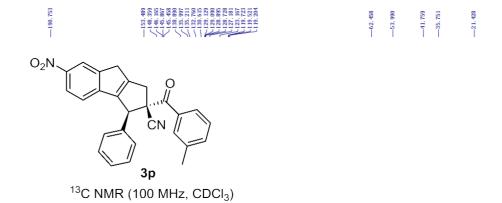


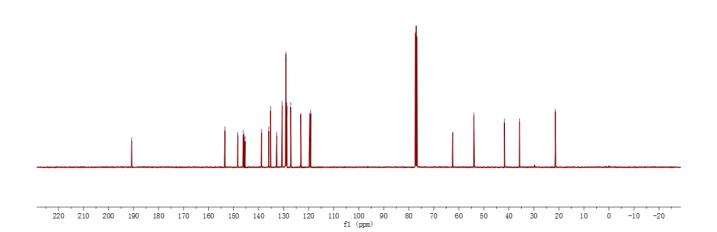


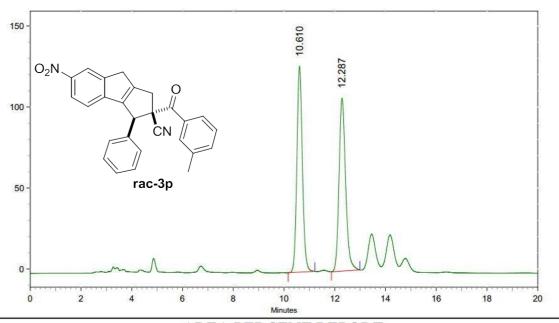


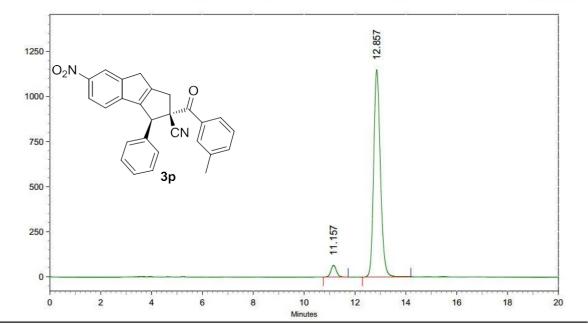

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.553	0.707	402004	6228146	48.9014
2	12.793	1.163	361638	6507974	51.0986

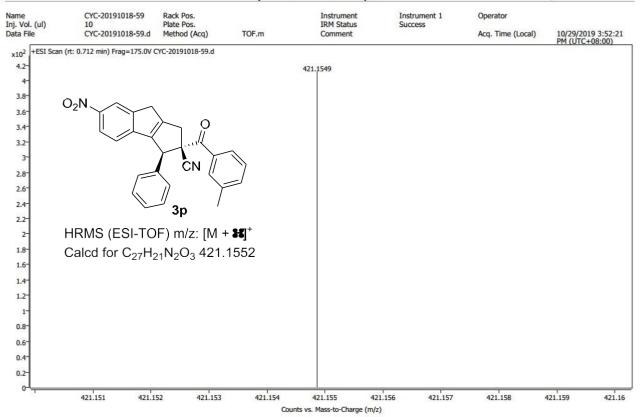


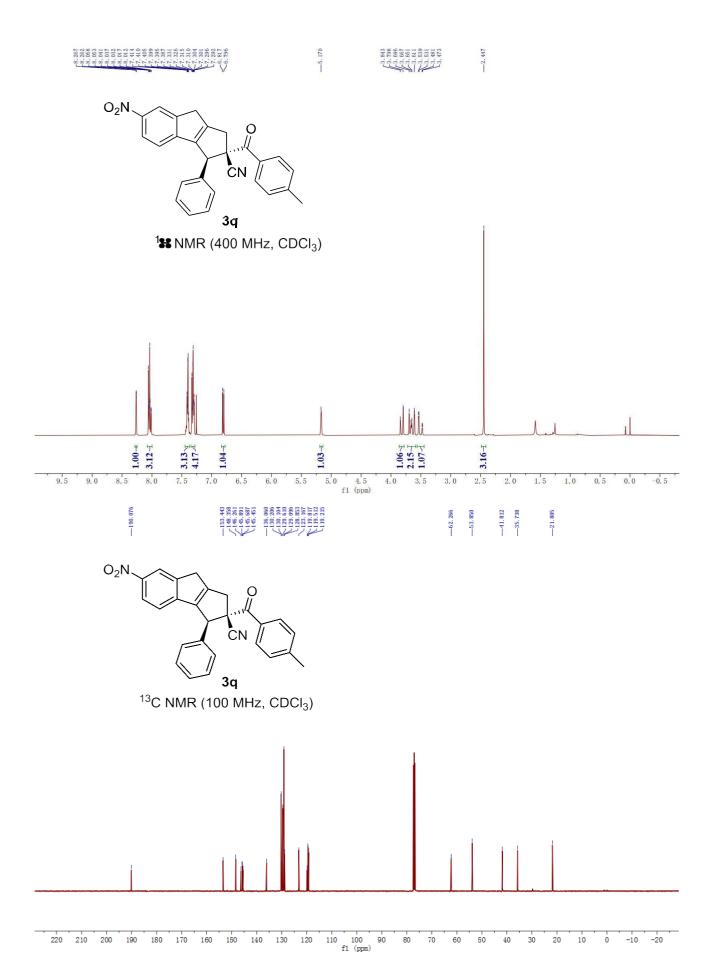

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.517	0.740	354759	5524992	5.2765
2	12.747	1.670	5480554	99183875	94.7235

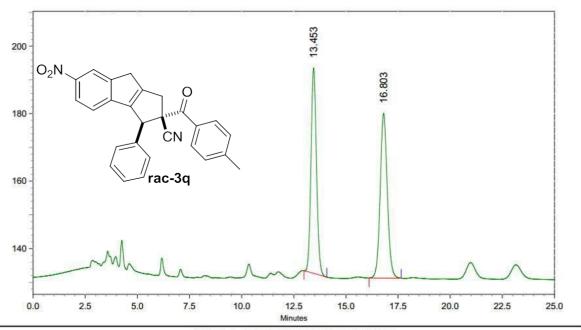




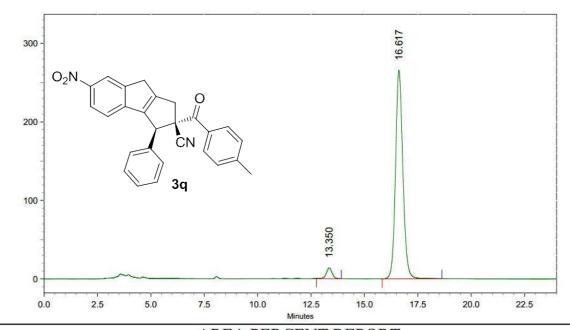


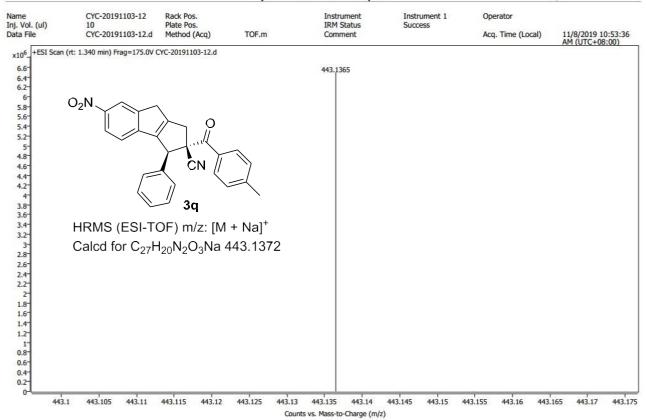

AREA PERCENT REPORT

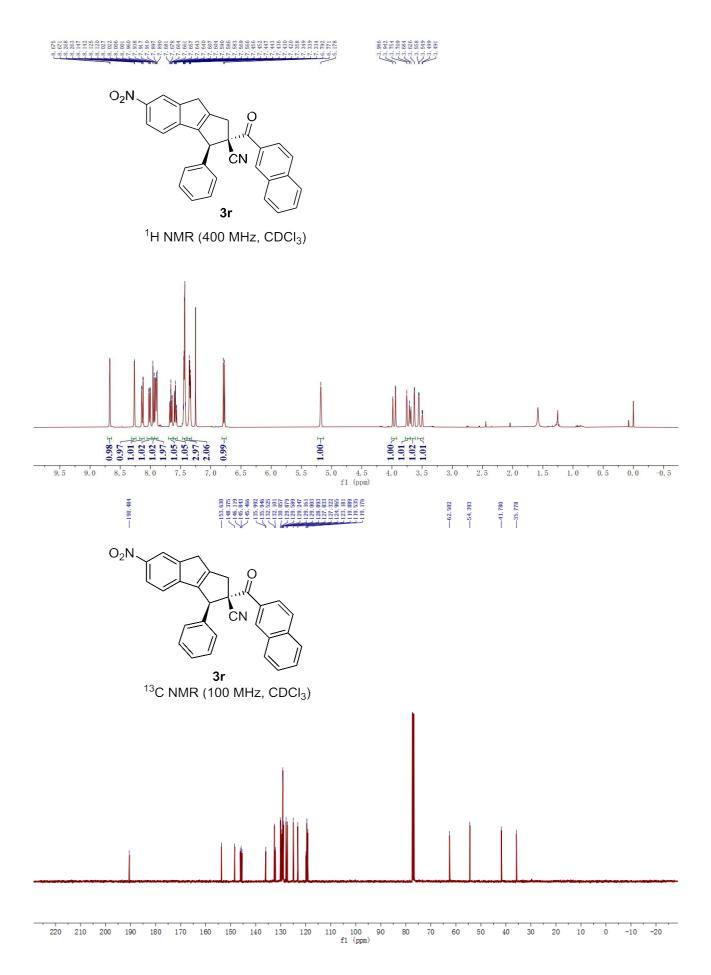

Pe	eak No.	Ret Time	Width	Height	Area	Area [%]
1		10.610	1.053	2131351	32150434	49.8933
2		12.287	1.120	1789656	32287971	50.1067

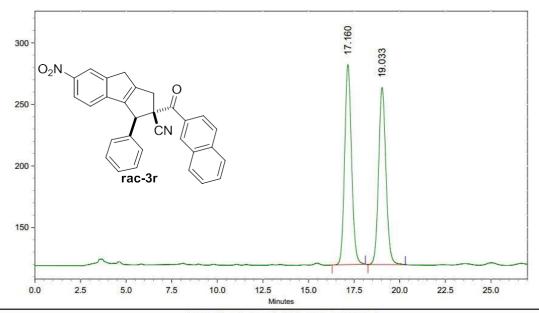


AREA PERCENT REPORT

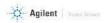

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	11.157	0.977	1099093	16538190	4.4579
2	12.857	1.907	19301059	354450217	95.5421

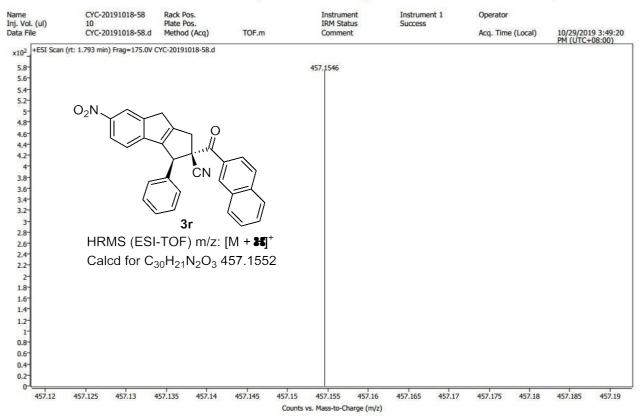


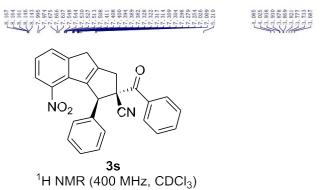


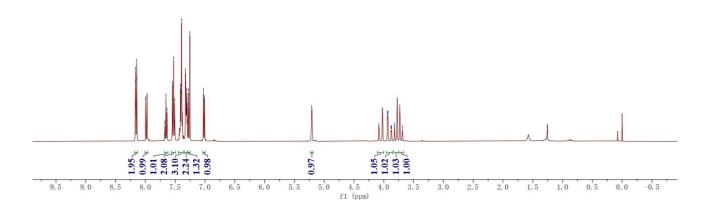

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.453	1.090	1021182	18628741	48.9803
2	16.803	1.540	819142	19404378	51.0197

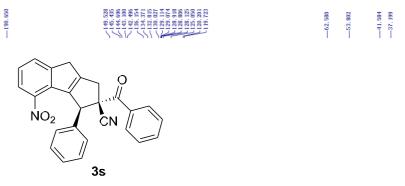
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	13.350	1.167	229248	4293777	3.8584
2	16.617	2.793	4460575	106989874	96.1416

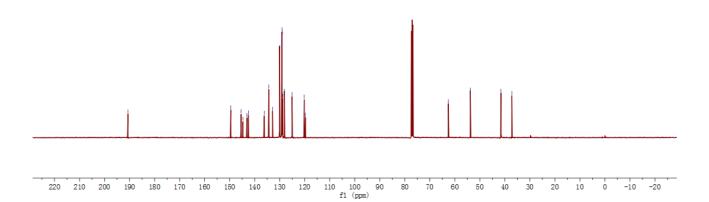

AREA PERCENT REPORT

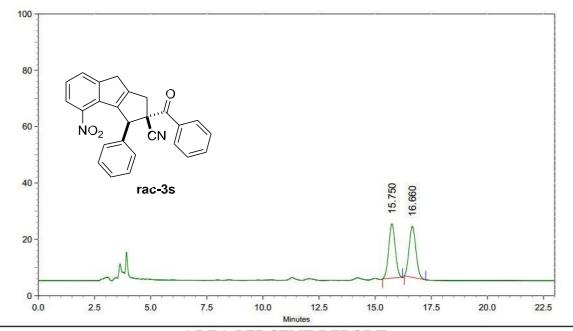

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.160	1.820	2727111	72005261	51.5611
2	19.033	2.050	2415633	67645165	48.4389

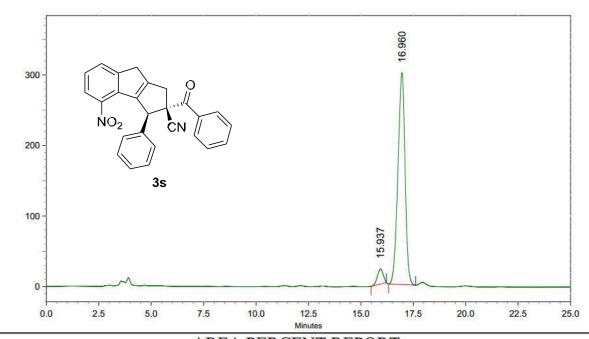



AREA PERCENT REPORT

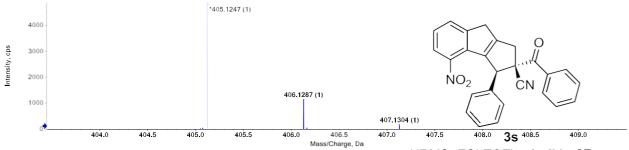

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	17.173	1.480	1527549	39200306	5.1541
2	19.017	3.563	24445602	721371191	94.8459





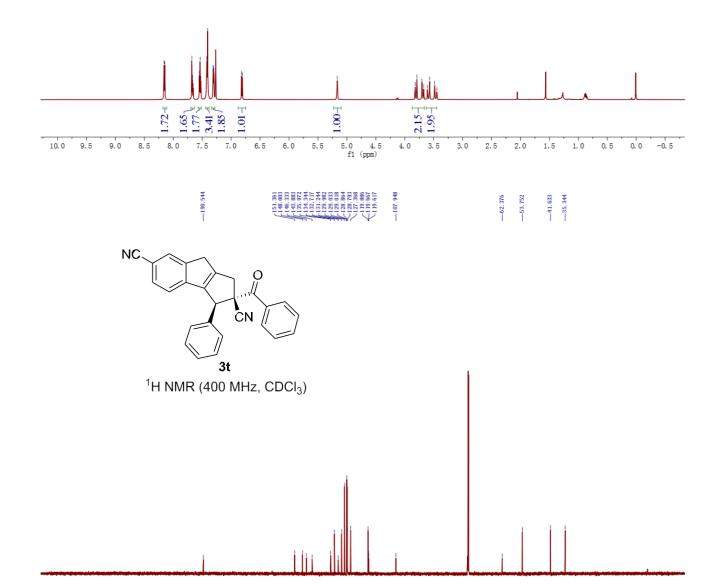

 $^{13}\mathrm{C}$ NMR (100 MHz, $\mathrm{CDCI_3})$

AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.750	0.877	323440	6548981	50.5386
2	16.660	0.953	303604	6409392	49.4614

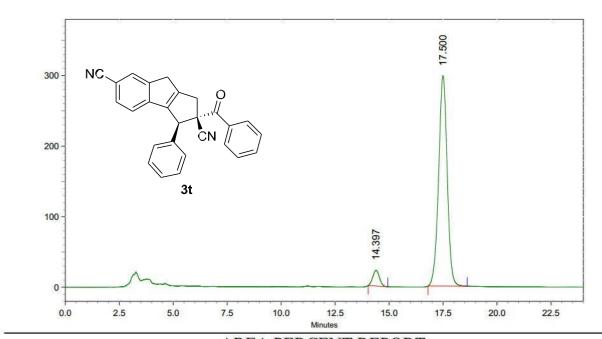
AREA PERCENT REPORT

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	15.937	0.737	357278	6930989	5.4934
2	16.960	1.280	5037079	119237371	94.5066

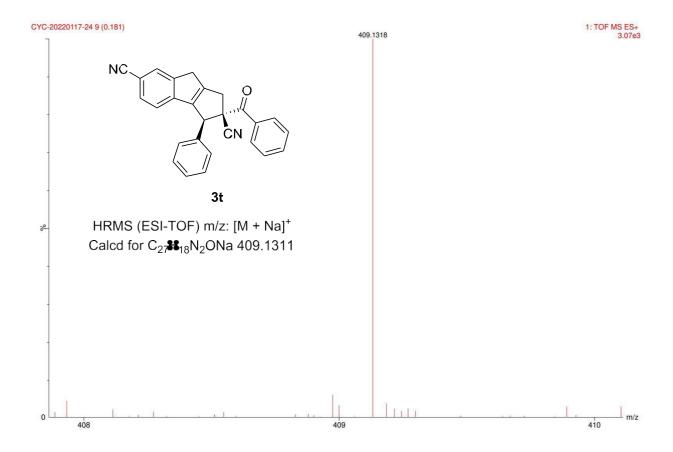

Spectrum from 20220219.wiff2 (sample 184) - 112-1, -TOF MS (200 - 600) from 0.058 to 0.088 min, sub...wiff2 (sample 184) - 112-1, -TOF MS (200 - 600) from 1.090 to 1.214 min], Recalibrated, centroided

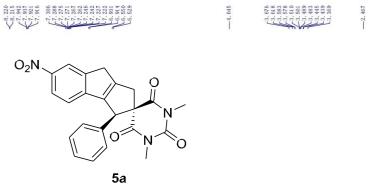
HRMS (ESI-TOF) m/z: $[M - 37]^-$ Calcd for $C_{26}H_{17}N_2O_3$ 405.1250

 $^{13}\text{C NMR}$ (100 MHz, CDCl₃)

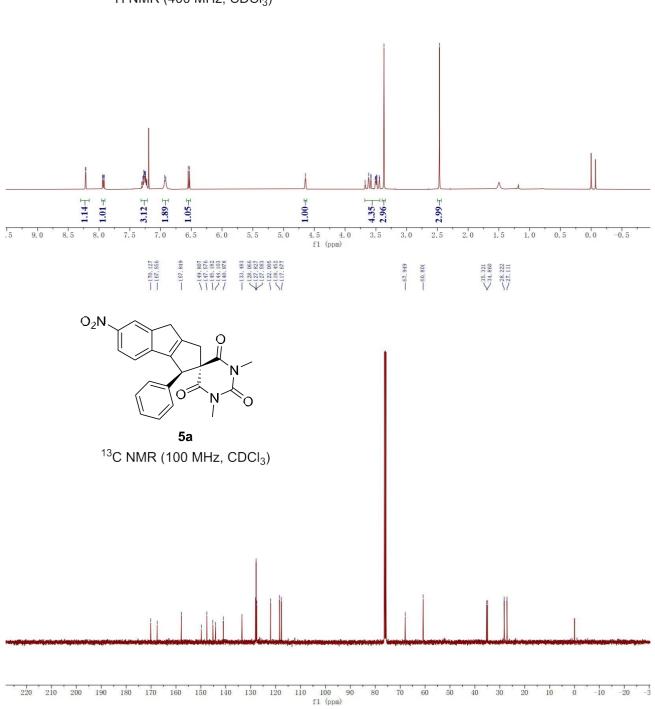


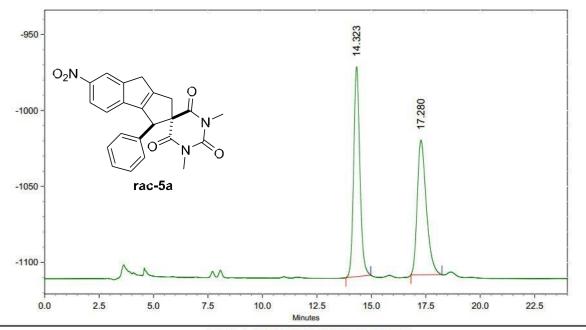
70

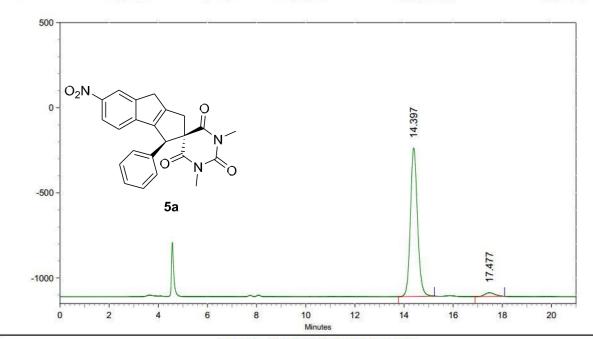

50 250 240 230 220 210 200 190 180 170 160 150 140 130 120 110 100 90 f1 (ppm)



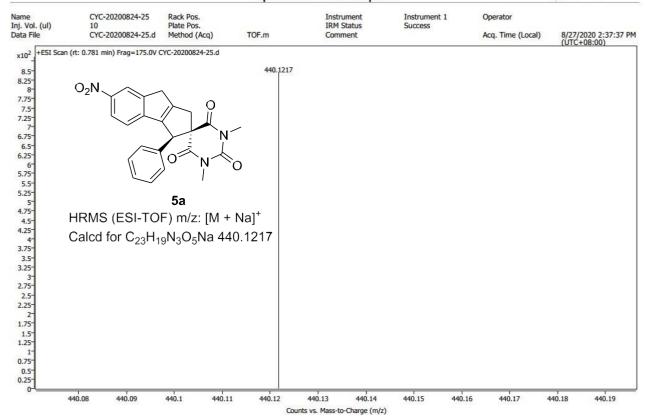
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.397	1.250	790811	17832981	49.8193
2	17.520	1.387	668040	17962342	50.1807

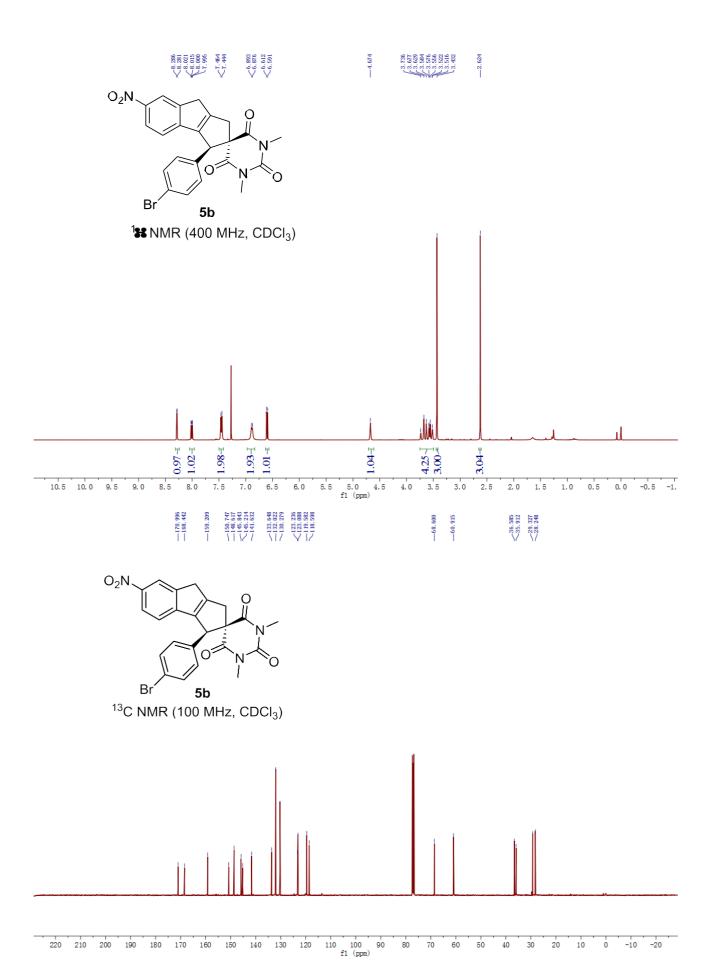


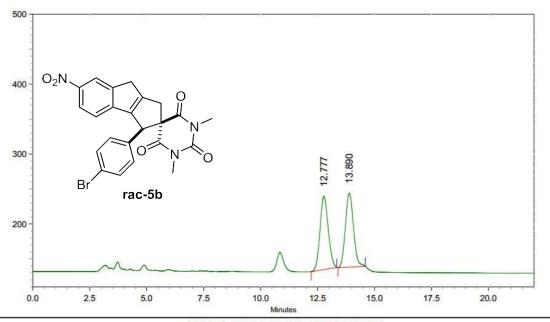

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.397	0.907	374621	8037502	5.4937
2	17.500	1.813	5003610	138265756	94.5063


 $^{1}\text{H NMR}$ (400 MHz, CDCl $_{3}$)

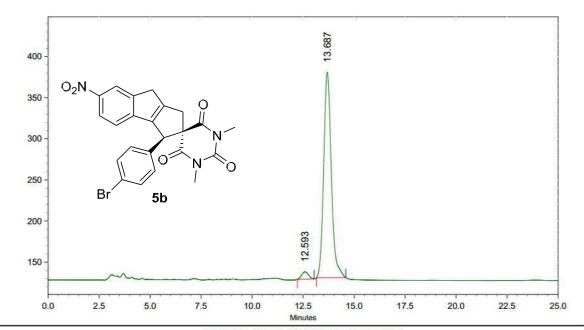
AREA PERCENT REPORT

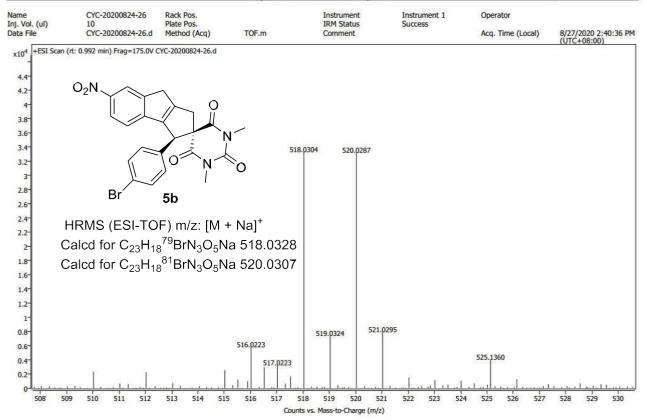

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.323	1.143	2318072	45990372	51.6594
2	17.280	1.423	1487545	43035705	48.3406

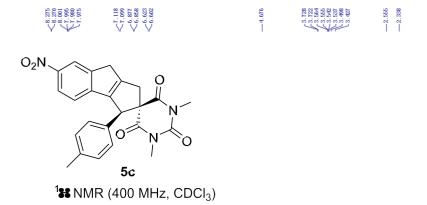


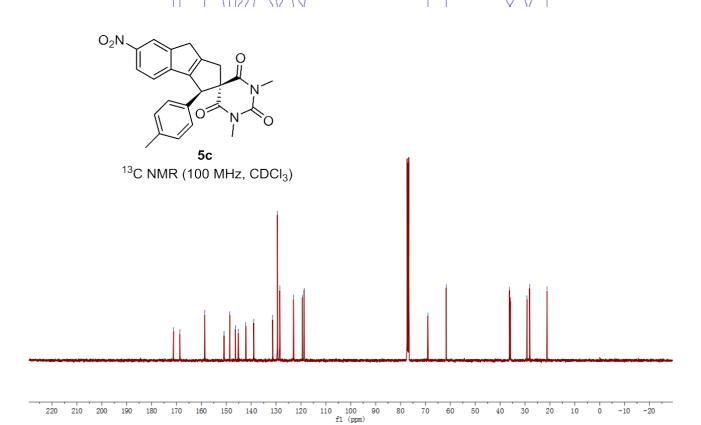

AREA PERCENT REPORT

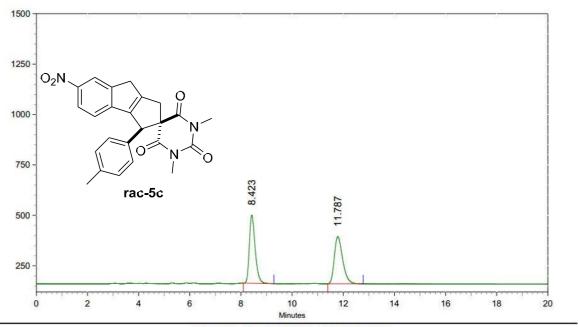
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.397	1.467	14625986	293562871	96.5107
2	17.477	1.203	369676	10613487	3.4893






Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.777	1.120	1762208	44032693	50.1633
2	13.890	1.200	1774725	43745957	49.8367

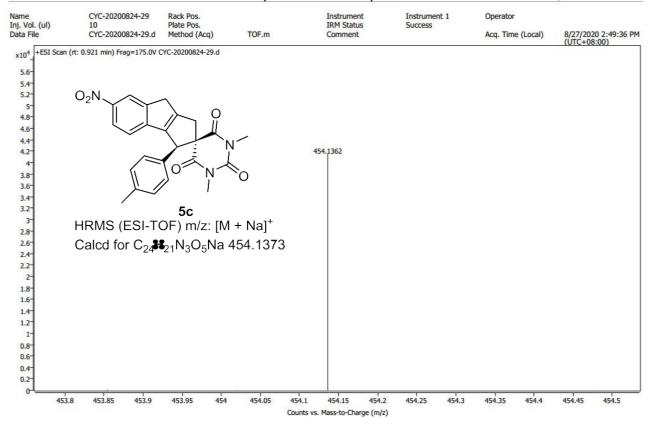


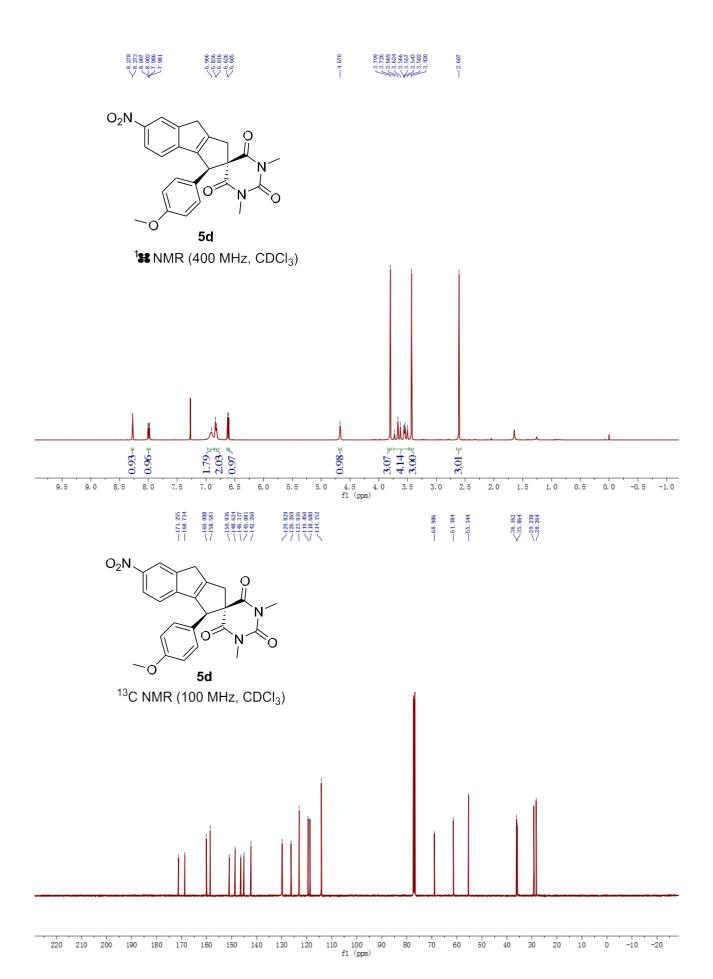

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	12.593	0.820	149833	3452028	3.0683
2	13.687	1.440	4190582	109055039	96.9317

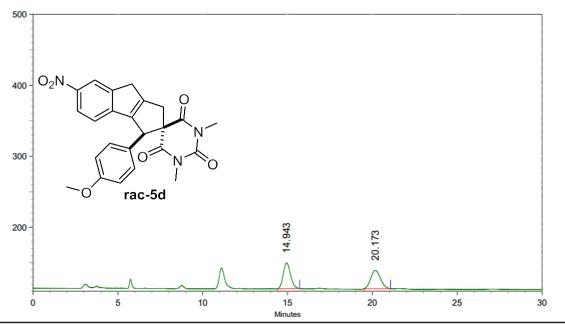
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	8.423	1.200	5678778	89672989	50.2062
2	11.787	1.387	3921789	88936385	49.7938
1500 -					
1					
1250 - OaN	^ -				
1250 - O ₂ N					
		O N		11.677	
1000 -				11.677	
	5c			11.677	

AREA PERCENT REPORT

10 Minutes 12

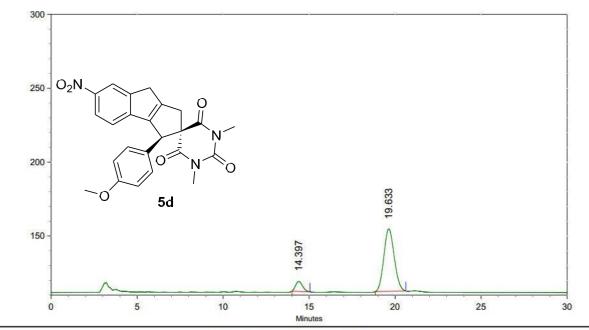

18

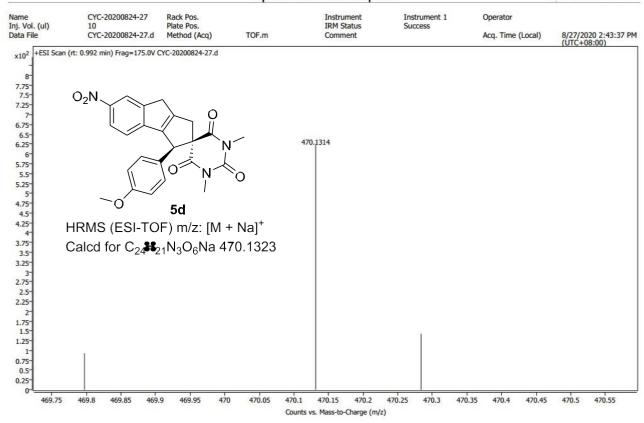

16

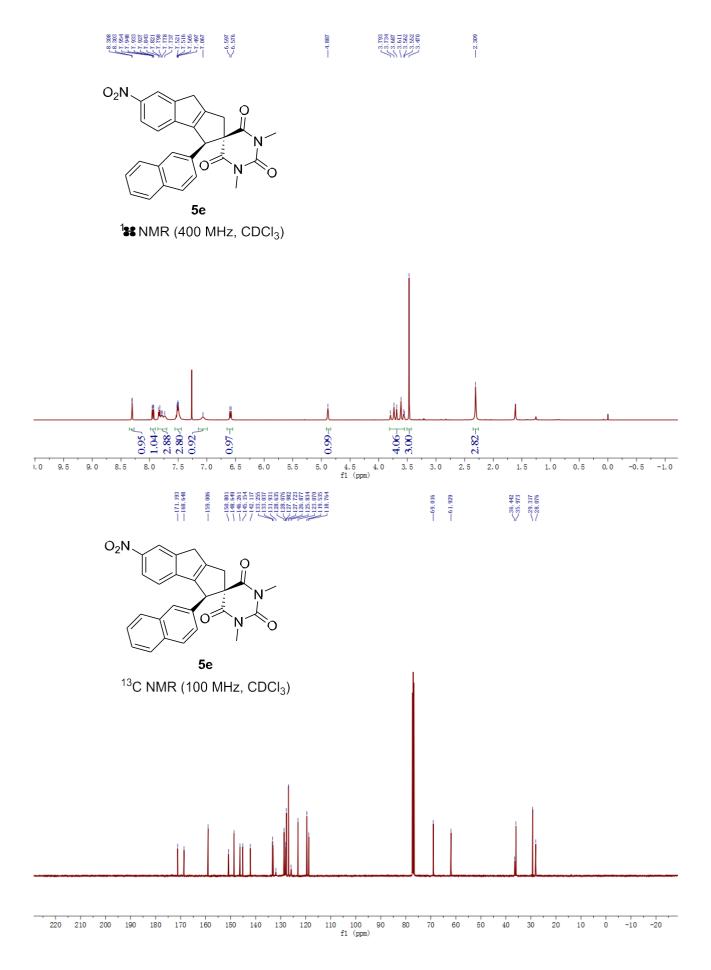

8.390

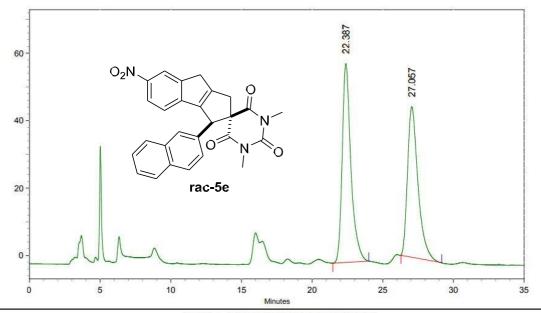
250

Peak No.	Ret Time	Width	Height	Area	Area [%]
1	8.390	2.047	540551	9743247	3.5409
2	11.677	2.003	11214717	265421495	96.4591



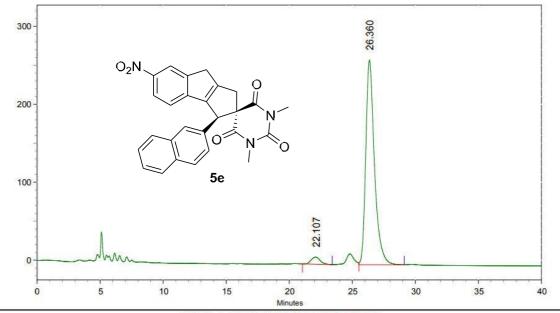

AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.943	1.307	608903	18110113	51.0009
2	20.173	1.573	435975	17399257	48.9991

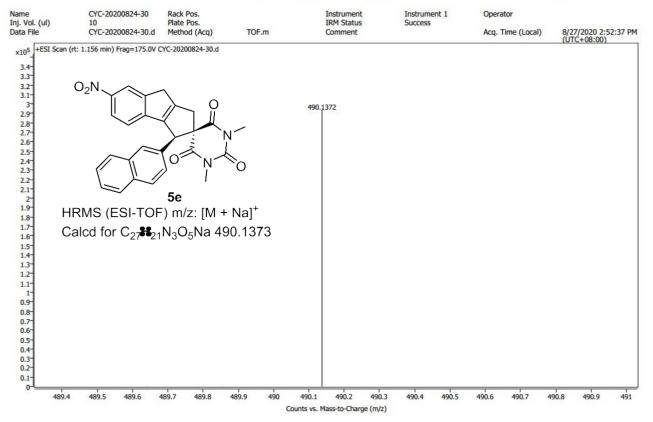


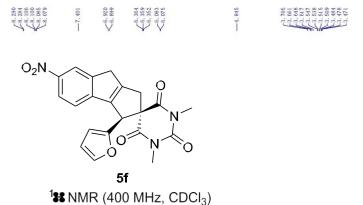
AREA PERCENT REPORT

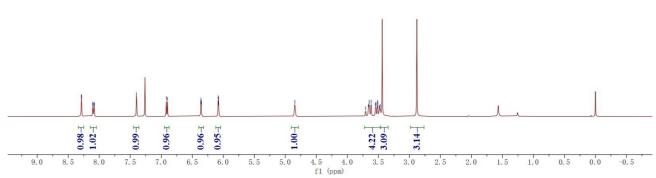
Peak No.	Ret Time	Width	Height	Area	Area [%]
1	14.397	1.040	113070	3190962	9.6905
2	19.633	1.760	709381	29737678	90.3095

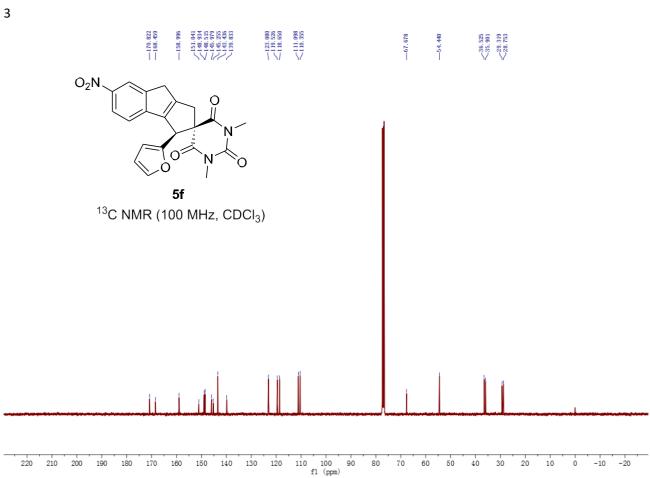


AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	22.387	2.540	989286	42525262	52.4179
2	27.057	2.880	748518	38602032	47.5821




AREA PERCENT REPORT


Peak No.	Ret Time	Width	Height	Area	Area [%]
1	22.107	2.363	152557	7509188	3.4318
2	26.360	3.603	4406361	211301278	96.5682

