Electronic Supplementary Material (ESI) for Chemical Science. This journal is © The Royal Society of Chemistry 2022

Supplementary Information

SrO-Layer Inserting in Ruddlesden-Popper Sn-based Perovskite Enables Efficient CO2 Electroreduction towards Formate

Jing Zhao^{#,a,b}, Peng Zhang^{#,a,b}, Lulu Li^{a,b}, Tenghui Yuan^{a,b}, Hui Gao^{a,b}, Gong Zhang^{a,b}, Tuo Wang^{a,b}, Zhi-Jian Zhao^{a,b} and Jinlong Gong^{a,b,c,d*}

- [a] School of Chemical Engineering and Technology; Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University,Tianjin, 300072, China,
- [b] Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
- [c] Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- [d] Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China

*Email: jlgong@tju.edu.cn

These authors contributed equally to this work.

Experimental Procedures

Materials

SrCO3 (99.5%) and SnO2 (99%) were purchased from Tianjin Guangfu Technology Development Co. Ltd. KOH (95%), HAuCl₄·3H₂O (99%) and NaOH (99%) were purchased from Aladdin Industrial Co. Ltd. $H₂SO₄$ (95-98%) was purchased from Sinopharm Chemical Reagent Co. Ltd. Na₂S₂O₃ (99.5%), isopropyl alcohol (99.8%), and HF (40.0%) were purchased from J&K Scientific Ltd. NH4F (96.0%), NH4Cl (99.5%) were purchased from Tianjin Yuanli Technology Development Co. Ltd. (China). Commercially available carbon-based gas diffusion layers (GDLs, AvCarb GDS3250) were purchased from Xima Laya Photo-Electric Technology Co., Ltd., China. All chemical reagents were used as received without further purification. Al₂O₃ polishing powder (0.05 μ m), 5 wt% Nafion solution and 99.999% purity carbon dioxide gas were purchased from Gaossunion Technology Co. Ltd., Dupont and Air Liquide, respectively. All aqueous solutions used ultrapure water (18.25 M Ω ·cm) as the solvent.

Characterization

The phase structures were characterized X-ray Diffractometer (XRD, Bruker D8 Focus) with Cu Ka radiation ($\lambda = 1.5418$ Å) at 40 kV and 40 mA. Transmission electron microscopy (TEM) images were performed on JEOL JEM-2100F, using the Tecnai G2 F20 microscope with an acceleration voltage of 200 kV. Scanning electron microscopy (SEM) images were carried out on Hitachi S-4800 with an acceleration voltage of 5 kV.

Catalyst synthesis

In this work, the SrSnO₃ and Sr₂SnO₄ oxides were synthesized via the traditional solid-state reaction route. Stoichiometric amounts of SrCO₃ and SnO₂ were weighed and mixed in a ball mill (Nanjing Nanda, QM-3SP4QM) for 2 h using ethanol as the solvent. The obtained mixture was dried at 100 °C for 10 h. The dried mixtures were mixed using agate mortar then calcined at 900 °C and 1200 °C in ambient air for 12 h to obtain a single phase of SrSnO₃ and Sr₂SnO₄, respectively. The control sample of SnO₂ underwent the same procedure and was calcined at 900 °C for 5 h.

Operando **Raman spectroscopy experiments**

Operando Raman Spectroscopy was carried out using a Raman spectrometer (LabRAM HR Evolution, Horiba Jobin Yvon). The Raman spectroscopy was recorded in a custom-designed flow cell (Figure S14), which was supplied by Gaossunion Co., Ltd., Tianjin. A three-electrode configuration (PEEK wrapped electrodes, Ag/AgCl electrode and Pt wire were served as the working electrode, reference electrode and counter electrode) was utilized in the flow cell for electrochemical experiments. The anion exchange membrane (AEM, FAA-3-PK-75, Fumatech) was used to separate the working electrode from the counter

electrode, to avoid mixing of products. The excitation wavelength was a visible light laser (λ = 532 nm). The CO₂RR was performed at −0.58 to −1.28 V *vs.* RHE in 0.5 M KHCO₃ solution on different catalysts, and the Raman signal was recorded after the reaction for each potential, when the current density retained a steady state, using workstation (Compact-Stat. e20250, IVIUM) to supply potential.

Operando **ATR-SEIRAS experiments**

Operando ATR-SEIRAS was recorded by using the FT-IR spectrometer (is50, Nicolet). The *operando* electrochemical cell was based on the design of Xu et al.^[1] and manufactured by Gaossunion Co., Ltd., Tianjin. An Si prism, Ag/AgCl electrode and Pt foil were served as the working electrode, reference electrode and counter electrode. The Si prism covered with gold film by chemical deposition and more detailed about the preparation process could be found in $Deng$ ^[2] Subsequently, the catalyst suspension (3 mg/mL) was dropped onto the surface. Later, 20 ml electrolyte was bubbled with $CO₂$ for 30 min before the test. The background was taken at 0.1 V *vs.* RHE Ar-saturated electrolyte before each test. We acquired the spectra by LSV, the final spectra were acquired with resolution of 4 cm⁻¹ by accumulating 2 scans during the potential interval from −0.38 to −1.38 V *vs*. RHE.

CO2RR performance test in H-cell

The electrochemical test was carried out in a three-electrode system, Ag/AgCl and Pt foil were served as reference and counter electrodes, respectively. Electrode potential was provided with an Ivium electrochemical workstation. The performance CO2RR was detected in a homemade H-cell (30 ml of single cell) with an ion-exchange membrane (Nafion). The 0.5 M KHCO₃ electrolyte was bubbled with $CO₂$ for 30 min before the electrochemical reaction. The $CO₂$ flow rate was controlled by a mass flow meter (MC-Series, Alicat Scientific) with a flow rate control of 20 sccm. After the amount of e-flowing through the cathode has accumulated to 30 C, the products were quantified. All potentials were not *iR* corrected.

CO2RR performance test in flow cell

1 M KOH solution was served as both the catholyte and the anolyte in a homemade flow cell configuration (Gaossunion Co., Ltd.) equipped with a gas diffusion layer, reference electrode (Hg/HgO) and nickel foam anode. The CO2 flow rate is controlled by a mass flow meter, and the inlet flow rate is controlled at 40 sccm. To ensure the accuracy of the product selectivity calculation, another flow meter was used to accurately measure the outlet CO₂ flow rate, because OH^{$-$} can react with CO₂ to form HCO₃^{$-$} or CO₃^{2 $-$}. The current fluctuations are due to the addition of electrolyte to avoid the formation of (bi)carbonate salts on the diffusion layer. After the amount of e- flowing through the cathode has accumulated to 50 C, the products were quantified. All potentials were not *iR* corrected.

Analysis of CO2RR products

The gaseous products were delivered to the gas chromatography (GC, Ruimin GC, 2060) for on-line analysis. CO and H2 were detected by a flame ionization detector (FID) and thermal conductivity detector (TCD), respectively. The liquid products were quantified by ${}^{1}H$ NMR and ${}^{1}H$ spectra were performed on Bruker (Advance). 1 mL of electrolyte (after reaction) was mixed with 0.1 mL mixture of 10 mL D2O and 0.01 mL dimethyl sulfoxide (DMSO) and were analyzed using a 400 MHz NMR spectrometer.

Computational details

Density functional theory (DFT) calculations were employed through the Vienna ab initio Simulation Package (VASP) code in conjunction with the computational hydrogen electrode (CHE) model.^[3,4] The surface energy of different SrSnO₃ surfaces were calculated according to the following equation.

$$
\gamma = E_{(cut)} + E_{(relax)} = \frac{1}{2A} \left[E_{slab}^{unrelax} - nE_{bulk} \right] + \frac{1}{A} \left[E_{slab}^{relax} - E_{slab}^{unrelax} \right]
$$

$$
E_{slab}^{unrelax} \cdot Energy \ of \ single \ point
$$

In all calculations, the model surfaces were conducted using a four-layer (2×2) periodic slab, where the two bottom layers were kept fixed, and the Monkhorst-Pack k-mesh of $3\times3\times1$ for $Sr_2SnO_4(002)$ with SrO as well as SnO layer, and SrSnO₃(001), $4 \times 3 \times 1$ for SnO₂(110) were adopted for integrations over the Brillouin zone for all systems.^[5] Besides, at least 15 \AA vacuum space was set between the slabs to the periodic images in the vertical direction. The generalized gradient approximation (GGA) was adopted in the form of the PBE functional and projector augmented wave (PAW) pseudopotentials to describe the electron exchange and correlation effects.^[6] Cut-off energy of 400 eV and atomic force convergence of 0.02 eV/Å were employed. In addition, the spin polarization scheme was adopted for all calculations. The free energy for each intermediate state was calculated through $G = E_{DFT} + ZPE + \delta_{H0} - TS$, where E_{DFT} is the DFT total energy, ZPE is the zero-point vibrational energy, δ_{H0} is the integrated heat capacity, T is the reaction temperature and S is the entropy. For gas and liquid phase species, the δ_{H0} and entropy S at 298.15 K were obtained from the references or adsorbates, the entropy was calculated with the Harmonic oscillator approximation.^[8,9] In this study, we calculated both $CO₂RR$ and HER. The asterisk (*) denotes the substrate. The whole process including the $CO₂RR$ to HCOOH or CO, and the competing HER to H₂ consists of the following main steps:

(1)
$$
CO_2(g) + * + H^+(aq) + e^- \rightarrow ^*OCHO
$$
, $\Delta G_{R1} = G \cdot ^*OCHO - 1/2G_{H2} - G_{CO2}$

(2)
$$
^{\ast}
$$
OCHO + H⁺ (aq) + e⁻ \rightarrow HCOOH (aq), Δ Gr2 = Ghcooh (aq) – 1/2GH2 – G^{*}OCHO

(3) $CO_2(g) + * + H^+(aq) + e^- \rightarrow *COOH, \Delta G_{R3} = G * coOH - 1/2G_{H2} - G_{CO2}$

- (4) * COOH + H⁺ (aq) + e⁻ → CO (g) + H₂O (l), Δ G_{R4} = G_{CO} + G_{H2O} 1/2G_{H2} G*cooh
- (5) $H^+(aq) + e^- + * \rightarrow^* H$, $\Delta G_{R5} = G_{*H} 1/2G_{H2}$

The crystal orbital Hamilton population (COHP) analysis was conducted through the Lobster 3.2.0 code and the Integrating the COHP (iCOHP) up to the Fermi level was calculated to compute the pairwise interatomic interaction strength.[7]

Supplementary Figures

Figure S1. SEM images of (a) SnO₂, (b) SrSnO₃ and (c) Sr₂SnO₄.

Figure S2. EDS mapping images of SrSnO₃.

Figure S3. EDS mapping images of Sr₂SnO₄.

Figure S4. (a) Chronoamperometric curves and (b) FEs for products of SnO₂ at different potentials.

Figure S5. (a) Chronoamperometric curves and (b) FEs for products of SrSnO₃ at different potentials.

Figure S7. Partial current density of HCOO[−] for SnO2, SrSnO3 and Sr2SnO4.

Figure S8. Chronoamperometric curves for Sr_2SnO_4 in a flow cell at different potentials.

Figure S9. Long-term stability test of Sr2SnO4 for CO2RR at the potential of −0.68 V *vs.* RHE in a flow cell.

Figure S10. Electrochemical cell for collecting *operando* Raman spectra.

Figure S11. XRD patterns of (a) SnO₂, (b) SrSnO₃ and (c) Sr₂SnO₄ after stability tests.

Figure S12. SEM images of (a) SnO₂, (b) SrSnO₃ and (c) Sr₂SnO₄ after CO₂RR stability test.

Figure S13. HRTEM images of SnO₂ (a) before and (b) after CO₂RR stability test.

Figure S14. HRTEM images of SrSnO₃ (a) before and (b) after CO₂RR stability test.

Figure S15. HRTEM image of Sr_2SnO_4 after CO_2RR stability test.

Figure S16. EDS mapping images of Sr₂SnO₄ after CO₂RR stability test.

Figure S17. Surface phase diagrams of (a) SrSnO₃ and (b) Sr₂SnO₄.

Figure S18. Illustration of the reaction pathway for CO₂RR to HCOOH over Sr₂SnO₄(002).

Figure S19. Surface phase diagrams of the SrO-layer in Sr₂SnO₄(002). The SrO-layer in Sr₂SnO₄(002) is thermodynamically stable.

Figure S20. The calculated free energy for HCOOH and H₂ for the SrO-layer in Sr₂SnO₄(002).

Table S1. The CO₂RR performance of the state-of-the-art electrocatalysts towards formate.

Surface	001	110	200	220	310
Surface energy (meV/\AA^2)	60.53		96.75 63.81 130.27		64.72

Table S2. The surface energy of diffrerent SrSnO₃ surfaces.

Table S3. Calculated oxygen vacancy formation energy of SnO2.

Bulk oxygen vacancy $(O_{v, \text{ bulk}})$

In-plane oxygen vacancy $(O_{v, ip})$

Sample	$\Delta E(1O_{v, sur})$	$\Delta E(O_{v, bulk})$
SrSnO ₃	-1.41 eV	0.94 eV
Sr ₂ SnO ₄	-0.03 eV	1.72 eV

Table S4. Calculated oxygen vacancy formation energy of SrSnO₃ and Sr₂SnO₄.

Surface oxygen vacancy $(O_{v, sur})$

References

- 1. J. Li, X. Chang, H. Zhang, A. S. Malkani, M. J. Cheng, B. Xu and Q. Lu, *Nat. Commun.,* 2021, **12**, 3264.
- 2. W. Deng, L. Zhang, L. Li, S. Chen, C. Hu, Z.-J. Zhao, T. Wang and J. Gong, *J. Am. Chem. Soc.,* 2019, **141**, 2911-2915.
- 3. G. Kresse and J. Furthmüller, *Phys. Rev. B* 1996, **54**, 11169-11186.
- 4. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Nørskov, *Energy Environ. Sci.,* 2010, **3**, 1311-1315.
- 5. H. J. Monkhorst and J. D. Pack, *Phys. Rev. B,* 1976, **13**, 5188-5192.
- 6. G. Kresse and D. Joubert, *Phys. Rev. B,* 1999, **59**, 1758-1775.
- 7. J. A. Dean, in Lang's Handbook of Chemistry 13th Ed. McGraw-Hill Professional, Columbus, America, 1998, Sec. 6.
- 8. R. Dronskowski and P. E. Blöchl, *J. Phys. Chem.,* 1993, **97**, 8617-8624.
- 9. V. L. Deringer, A. L. Tchougreeff and R. Dronskowski, *J. Phys. Chem. A,* 2011, **115**, 5461-5466.