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S1. SETUP

We use the same basis and polyspherical coordinates as
Vendrell et al.1–3. The names and basis size of the used co-
ordinates are shown in Table S1.

TABLE S1. Coordinates of the Zundel cation and their basis size.
Symbol basis size meaning

𝑅 20 water-water stretch
𝑧 19 proton transfer
𝑥 7
𝑦 7
𝛼 11 water rotation
𝛾𝑎 19 water wagging
𝛾𝑏 19
𝛽𝑎 9 water rocking
𝛽𝑏 9
𝑟1𝑎 9 water 𝑎
𝑟1𝑏 9
𝜃𝑎 9
𝑟2𝑎 9 water 𝑏
𝑟2𝑏 9
𝜃𝑏 9

A. Tensor Tree

Both the tensor tree network state TTNS4 and the PES repre-
sentations (see Section S4) uses the same mode combination,
that is, several coordinates are combined to “logical” coordi-
nates to decrease the dimensionality of the problem from 15 to
6. Mode combination is used because the previous multicon-
figuration time-dependent Hartree (MCTDH) simulations1–3

benefited from it. This is not necessarily the case for multi-
layer (ML) MCTDH and TTNSs but cumbersome attempts to
refit the PESs without mode combination have not been done.
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Due to the limit overall dimensionality of the system, we did
not use a sophisticated tree with many layers but rather use a
so-called Tucker matrix product state (MPS), as displayed in
Fig. S1. A Tucker MPS is a MPS with additional transforma-
tion matrices added to the legs of the MPS, shown in green
in Fig. S1. These transformation matrices are added to reduce
the overall size of each tensor, which is required because the
basis size of the logical coordinates is very large (up to 729),
compared to the used bond dimension 𝐷 (size here between 50
and 150). Transformation matrices have not been added to the
ends of the MPS because there the tensors are two dimensional
and overall have small size (see Ref. [5] for a detailed discus-
sion). We optimized the order of the six logical coordinates
using the procedure from Ref. [4].

FIG. S1. Topology of the tensor tree used in the simulations. Dis-
played are the coordinates and the combined basis size. 𝐷𝑢 (𝐷𝑙) is
the bond dimension of the upper (lower) tree.

B. Eigenstate optimization

We use a density matrix renormalization group-like proce-
dure to optimize the TTNS for each eigenstate. See Ref. [4] for
a detailed discussion of the used procedure. For each eigen-
state the bond dimensions 𝐷 are adjusted based on a singular
value threshold 𝜖, which we set to 10−6. In addition, we fixed
the maximal used bond dimension 𝐷max to be either 50, 70,
100, or 150. For Fig. 1 in the main text, on the BBSM surface,
we used𝐷max = 100 for the lowest 383 states up to 1510 cm−1,
followed by𝐷max=70 for the lowest 540 states up to 1665 cm−1.
On the HBB surface, we used 𝐷max = 150 for the lowest 150
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states up to 1107 cm−1, followed by 𝐷max=100 for the lowest
249 states up to 1305 cm−1 and by 𝐷max=50 for the lowest 892
states up to 1920 cm−1.

To test the convergence, we compared the energies from the
optimizations with larger bond dimensionsions to those with
smaller bond dimensions. A comparison of the energy terms
up to ∼1030 cm−1 computed with a max. bond dimension of
either 100 or 150 leads to an error of less than 1.5 cm−1, much
less than the errors of the PES representation (see Section S4).
A comparison of the energy terms up to ∼1300 cm−1 com-
puted with a max. bond dimension of either 70 or 100 leads to
an error of less than 8.0 cm−1 (5 cm−1) on the HBB (BBSM)
surface.

C. Time evolution

We generated the infrared spectrum obtained by time evo-
lution by Fourier transforming the convoluted autocorrela-
tion function of the dipole-operated ground state, as shown in
Ref. [1]. As damping function we chose 𝑔(𝑡) = cos2(𝜋𝑡∕2𝑇 ).
The final propagation times 𝑇 were 2742 fs for the BBSM PES
and 2362 fs for the HBB PES.

The TTNSs were propagated using the time-depended
DMRG-based algorithm described in Refs. [6,7]. We gener-
ated the initial wavefunction |Ψ(𝑡 = 0)⟩ = �̂�𝑖|Ψ0⟩ by fitting
the action of one of the three dipole operators �̂�𝑥, �̂�𝑦, �̂�𝑧 to the
ground state |Ψ0⟩ using a DMRG-like procedure.8 Unlike the
eigenstate optimizations, to simplify the simulation, we kept
bond dimensions for the MPS (𝐷𝑢) and for the transformation
matrices (𝐷𝑙) fixed at 𝐷𝑢 = 50 and 𝐷𝑙 = 80, respectively.

S2. WAVEFUNCTIONS CUT

Plotting the two-dimensional wavefunction cuts requires de-
ciding which positions of the other coordinates need to be
fixed. As positions we chose the maxima of the diagonal of
the one-dimensional reduced density matrices (Ψ2 integrated
over all but one coordinate). In the cases where there were sev-
eral maxima, we analysed all possible wavefunction cuts and
chose the most representative one, typically that of the global
maximum of the reduced density matrix diagonal. The partic-
ular positions are listed in Table S2.

To reveal the excitations along the water-water stretch mo-
tion (𝑅), Fig. S2 shows additional cuts of the three states anal-
ysed in the main text.

S3. OVERLAP WITH TESTSTATES

Following the procedure introduced in Ref. [9] we confirm
our analysis of the decomposition of the eigenstates by com-
puting the overlap of the wavefunctions with zero-order states.
While there is some arbitrariness in defining these zero-order
states, they nevertheless provide a semi-quantitative confirma-
tion of the assignment. The teststates have been prepared sim-
ilar to Ref. [1]. |1𝑧⟩ and |1𝑅⟩ (|04 − 40⟩) have been generated

TABLE S2. Positions of the cuts of the wavefunctions displayed
in this work. For all wavefunctions, the following positions are the
same: 𝑥, 𝑦 = 0, 𝛼 = 1.57, 𝑟1𝑎 = 1.15, 𝑟2𝑎 = 3, 𝑟1𝑏 = 1.15, 𝑟2𝑏 = 3,
𝜃𝑎 = 𝜃𝑏 = 0, and 𝛽𝑎 = 𝛽𝑏 = 0. The angles are shown in radian.
Otherwise we use atomic units.

figure state cuts
2 ΨBBSM

𝑎 𝑅 = 4.78, ,𝛾𝑏 = 0
ΨBBSM

𝑏 𝑅 = 4.67, 𝛾𝑏 = 0
ΨBBSM

𝑐 𝑅 = 4.56, 𝛾𝑏 = 0
ΨHBB

𝑎 𝑅 = 4.78, 𝛾𝑏 = 0
ΨHBB

𝑏 𝑅 = 4.56, 𝛾𝑏 = 0
ΨHBB

𝑐 𝑅 = 4.67, 𝛾𝑏 = 0
3 ΨBBSM

𝑏 𝑧 = 0.20, 𝑅 = 4.67
ΨBBSM

𝑐 𝑧 = 0, 𝑅 = 4.56
ΨHBB

𝑏 𝑧 = −0.10, 𝑅 = 4.56
ΨHBB

𝑐 𝑧 = 0.15, 𝑅 = 4.67
S2 ΨBBSM

𝑎 𝑧 = 0.15, 𝛾𝑏 = 0
ΨBBSM

𝑏 𝑧 = −0.20, 𝛾𝑏 = 0
ΨBBSM

𝑐 𝑧 = 0, 𝛾𝑏 = 0
ΨHBB

𝑎 𝑧 = 0, 𝛾𝑏 = 0
ΨHBB

𝑏 𝑧 = 0.10, 𝛾𝑏 = 0
ΨHBB

𝑐 𝑧 = −0.15, 𝛾𝑏 = 0

TABLE S3. Overlap of zero-order states with the three wavefunctions
Ψ𝑖 around the doublet.

name & PES �̃�∕cm−1
⟨1𝑅, 02 − 20|Ψ⟩2 ⟨1𝑧|Ψ⟩2 ⟨04 − 40|Ψ⟩2

Ψ𝑎 HBB 897 0.34 0.09 0.00
Ψ𝑎 BBSM 920 0.46 0.19 0.00
Ψ𝑏 HBB 1043 0.04 0.20 0.30
Ψ𝑏 BBSM 1041 0.20 0.36 0.00
Ψ𝑐 HBB 1060 0.11 0.21 0.13
Ψ𝑐 BBSM 1095 0.02 0.00 0.44

from the 15-dimensional Hamiltonian with all but the 𝑧 and
𝑅 (𝛾𝑎 and 𝛾𝑏 coordinates fixed at the maxima of the ground-
state). |02 − 20; 1𝑅⟩ was generated by multiplying the cut of
|1𝑅⟩ in 𝑅 onto the |02 − 20⟩ state of the full Hamiltonian. For
all states up to a transition of 1310 cm−1, the zero-order states
only had significant overlap with the ones mentioned in the
main text.

Overlaps of the zero-order states with the wavefunctions
considered here are shown in Table S3. The table confirms
the previous, wavefunction-based analysis. While Fig. S2 dis-
plays a small contribution from |1𝑧⟩ in ΨHBB

𝑐 , there is no over-
lap between the |1𝑧⟩ zero-order state and ΨHBB

𝑐 . Although this
could be attributed to the quality and arbitrariness of the zero-
order state, a closer inspection of ΨHBB

𝑐 does not reveal a sig-
nificant excitations along the 1𝑧 modes, except for the small
contribution displayed in Fig. S2. Interestingly, compared to
ΨHBB
𝑎 and ΨHBB

𝑏 , the |1𝑧⟩ state is more dominant in ΨBBSM
𝑎

and ΨBBSM
𝑏 . This can be attributed to the missing contribu-

tions from |04 − 40⟩ for these states.
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FIG. S2. Representative cuts of the wavefunctions corresponding to either the doublet and a satellite peak (BBSM, upper panels), or the triplet
(HBB PES, lower panels) in the IR spectrum. Panel (𝑖) corresponds to wavefunction Ψ𝑖, see text for details. The abscissa shows the wagging
(pyramidalization) motion of one of the water molecules. The ordinate shows the water-water stretch motion. The red lines denote the zero
contours.

S4. FITTING OF THE POTENTIAL ENERGY SURFACE
AND DIPOLE MOMENTS IN SUM-OF-PRODUCTS FORM

The multi-dimensional potential and dipole moment sur-
faces are expressed in the form of a canonical polyadic
decomposition10 as

𝑉 (𝑞1,… , 𝑞𝑓 ) =
𝑅
∑

𝑟=1
𝑐𝑟
∏

𝜅
𝜗𝑟,𝜅(𝑞𝜅), S1

where 𝑞𝜅 are (logical) coordinates, 𝑐𝑟 are expansion coeffi-
cients and 𝜗 are basis functions. The basis functions are not
required to be orthogonal, which allows for a very compact
representation of the surfaces.

The generation of the decomposition is performed using a
Monte-Carlo variant (MCCPD) of the alternating least squares
(ALS) algorithm as outlined in Ref. [11].

A. HBB surface

The PES from Ref. [12] has been fitted with 𝑅 = 2048
terms. All symmetries have been implemented as in Ref. [11].
The PES differs from Ref. [11] by the use of more terms and
thus a slightly higher accuracy. TTNS-based reoptimization
of the first 239 states on the PES from Ref. [11] leads to dif-
ferences in the frequencies of max. 3.5 cm−1.

The sampling points for the Monte-Carlo integration within
the ALS algorithm were created with a Metropolis algorithm

such they resemble a Boltzmann distribution

𝑊 (𝑞1,… , 𝑞𝑓 ) = exp
(

𝛽𝑉 (𝑞1,… , 𝑞𝑓 )
)

S2

where 𝛽 = 1∕𝑘B𝑇 may be interpreted as an inverse tempera-
ture 𝑇 with 𝑘B being the Boltzmann constant.

In the present case three different sets of sampling points,
each containing 106 points, have been created with a Metropo-
lis algorithm at inverse temperatures of 1∕𝛽 =1000 cm−1,
1∕𝛽 =2000 cm−1 and 1∕𝛽 =4000 cm−1. These sets have been
subsequently combined into one single set for creating the fit.

The validation of the fit was performed using independent
path integral molecular dynamics (PIMD) configurations gen-
erated with the same settings as in Ref. [13]; see the next Sec-
tion S4 B for details. The mean and root-mean-square (RMS)
errors obtained with the validation sets for different tempera-
tures are outlined in Table S4.

All three dipole moment surfaces, 𝜇𝑥, 𝜇𝑦, and 𝜇𝑧, have been
fitted with 𝑅 = 1024 terms using the same sampling points as
for generating the PES fit. The obtained errors using the same
validation sets as for the PES fit are given in Table S5.

B. BBSM surface

The PES14 and dipole moments15 have been fitted using
PIMD configurations from Ref. [14] as sampling points. The
sets of PIMD configurations have been created at different tem-
peratures from 1.6K to 300K as outlined in Tables S6 and S7.
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TABLE S4. Errors of the HBB PES MCCPD (sum-of-products) rep-
resentation.

Test temperature Errors
𝑇 [K] [cm−1]

1.6 mean 0.1
RMS 9.7

5 mean 0.0
RMS 9.9

10 mean 0.0
RMS 9.9

20 mean 0.0
RMS 9.9

50 mean 0.1
RMS 10.3

100 mean 0.2
RMS 10.3

200 mean 0.2
RMS 10.8

250 mean 0.2
RMS 11.1

300 mean 0.1
RMS 11.4

TABLE S5. Errors of the HBB DMS MCCPD (sum-of-products)
representation.

Test temperature Errors [10−4 Debye]
𝑇 [K] 𝜇𝑥 𝜇𝑦 𝜇𝑧

1.6 mean 0.0 0.2 0.0
RMS 3.7 3.5 4.6

5 mean 0.1 0.2 0.1
RMS 3.8 3.7 4.7

10 mean 0.1 0.2 0.1
RMS 3.8 3.5 4.7

20 mean 0.1 0.2 0.0
RMS 3.8 3.5 4.7

50 mean 0.1 0.3 0.1
RMS 3.9 3.8 5.0

100 mean 0.1 0.2 0.1
RMS 3.9 3.8 5.0

200 mean 0.1 0.2 0.1
RMS 4.2 4.0 5.2

250 mean 0.1 0.1 0.1
RMS 4.3 4.2 5.4

300 mean 0.1 0.2 0.1
RMS 4.4 4.3 5.5

104 points from each temperature set have been merged into
a single set for creating the fits. 3⋅105 different points from
each set have been used for validation. The errors obtained
with the validation sets are outlined in Tables S6 and S7. All
fits (PES and DMS) have been created with 𝑅 = 400 terms.
We attribute the slightly worse fitting accuracy of the BBSM
DMS to the usage of fewer terms in the MCCPD representa-
tion as compared to the HBB DMS. As further validation of
the DMSs, we computed the intensities of the eigenfunctions
computed on the BBSM PES using both the HBB and BBSM
DMSs. We could not find any significant difference, indicat-

ing that, for the DMS, not only the MCCPD fits but also the
two DMSs are of similar, high quality.

TABLE S6. Errors of the BBSM PES MCCPD (sum-of-products)
representation.

Test temperature Errors
𝑇 [K] [cm−1]

1.6 mean 0.0
RMS 6.0

5 mean 0.0
RMS 5.9

10 mean 0.0
RMS 5.9

20 mean 0.0
RMS 6.0

50 mean 0.0
RMS 6.8

100 mean 0.0
RMS 7.0

200 mean 0.0
RMS 8.0

250 mean 0.0
RMS 9.4

300 mean 0.0
RMS 10.9

TABLE S7. Errors of the BBSM DMS MCCPD (sum-of-products)
representation.

Test temperature Errors [10−4 Debye]
𝑇 [K] 𝜇𝑥 𝜇𝑦 𝜇𝑧

1.6 mean 0.0 0.0 0.0
RMS 13.3 11.9 42.6

5 mean 0.0 0.0 -0.1
RMS 13.3 11.9 42.7

10 mean 0.0 0.1 -0.2
RMS 13.3 11.8 42.6

20 mean 0.0 0.0 -0.1
RMS 13.2 11.9 42.5

50 mean 0.0 -0.1 -0.3
RMS 13.8 12.6 43.9

100 mean 0.0 0.0 -0.2
RMS 14.5 13.0 45.4

200 mean 0.1 0.0 -0.2
RMS 16.4 14.3 48.8

250 mean 0.1 0.0 0.0
RMS 18.1 15.5 51.3

300 mean 0.2 0.0 -0.1
RMS 18.9 16.2 53.8

S5. COMPARISON WITH AB INITIO DATA

In order to provide a fair reference for the comparison of
the two PESs and the MCCPD fits of these PESs, for a sample
of configurations, we compare the energies of the PESs with
electronic structure energies. The electronic structure ener-
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gies were performed using basis set extrapolated coupled clus-
ter singles and doubles with perturbative triples, CCSD(T),
calculations. For that purpose, canonical CCSD(T)/aug-cc-
pVTZ and CCSD(T)/aug-cc-pVQZ correlation energies were
extrapolated using the formula 𝐸𝑛 = 𝐸CBS + 𝑎∕𝑛3,16,17

where 𝑛 is the cardinal number and 𝑎 a parameter; denoted as
CCSD(T)/CBS[34]. Hartree–Fock energies were not extrapo-
lated but taken directly from the larger basis set.

The samples were obtained by randomly selecting configu-
rations from diffusion Monte Carlo runs.18 For the two PESs
we selected each 1000 configurations from runs each with
4000 Monte Carlo walkers and 104 time steps (plus 103 equi-
librium steps) of size 10 a.u. Since the MCCPD fit is only valid
on the grid, we mapped these configurations onto the grid and
removed those that are outside the grid. We obtained 889 (957)
configurations on the HBB (BBSM) PES, for which explicit
CCSD(T)/CBS[34] calculations were performed.

The combined configurations are used for estimating the ac-
curacy of the PESs in Fig. S3 A-C. Both PESs have very good
accuracy but the newer BBSM PES is twice as accurate as the
HBB PES. For the HBB PES for the configurations we ob-
tain a mean absolute error (MAE) of 203 cm−1, whereas for
the BBSM PES we obtain a better accuracy with an MAE of
75 cm−1. We note in passing that the reference method used
for the BBSM PES (CCSD(T∗)-F12a/AVTZ) is expected to be
closer to the absolute basis set limit than the CBS[34] results19

suggesting in practice an even better performance of that PES.
We obtain similar results when analyzing the 1000 configura-
tions from each PES separately.

The MCCPD energies are then compared with the energies
from the PES. Note that this analysis is independent from Sec-
tions S4 A and S4 B as different samples and error measures
are used, thus providing an additional stringent validation test.
The accuracy of the MCCPD refits using these 1846 config-
urations is shown in Fig. S3 D-F. For the HBB MCCPD we
obtain an MAE of 16 cm−1, whereas for the BBSM MCCPD
we obtain an MAE of 13 cm−1. In addition to this analysis, we
compared the MCCPD directly with the CCSD(T)/CBS[34]
energies (not shown in Fig. S3). Then, for the HBB MCCPD
we obtain an MAE of 203 cm−1, whereas for the BBSM MC-
CPD we obtain an MAE of 76 cm−1. Both of these MAEs are
very similar to the benchmark of the original PESs, indicating
error cancellation between basis set incompleteness, as well as
PES and MCCPD fitting accuracy. The MCCPD fits are excel-
lent and, given the finite accuracy of the original PES fits, do
not decrease the accuracy, compared to the electronic structure
energies.
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FIG. S3. Benchmark of the PES fits (panels A-C) and the MCCPD refits (panels D-F). The PES energies are compared with CCSD(T)/CBS[34]
energies, whereas the MCCPD energies are compared with the PES energies for around 2000 configurations. Panels A and D: Correlation of
the fitted energies, where mean absolute errors (MAE) for both surfaces are stated in the respective color. Panels B and E: Histogram of the
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