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1 Top performing hypothetical structures

All CIF and adsorption profile html files for the top eight performing hypothetical structures are

available through this link. Loading and selectivity data is available in Tables 1 - 3.

We have included here the structures of the three top performing real and hypothetical structures,

MFI, TON, and TER, as well as PCOD-8063931, -8321668, and -8330068.

Figure 1: Structure of a supercell of the topology MFI viewed along the [1 0 0] and [0 1 0] axes

respectively, rotated for ease of inspection. Silicon is shown in blue, and oxygen in red.

Figure 2: Structure of a supercell of the topology TON viewed along the [1 0 0] and [0 0 1] axes

respectively, rotated for ease of inspection. Silicon is shown in blue, and oxygen in red.
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Figure 3: Structure of a supercell of the topology TER viewed along the [1 0 0] and [0 0 1] axes

respectively, rotated for ease of inspection. Silicon is shown in blue, and oxygen in red.

Figure 4: Structure of a supercell of the topology PCOD-8063931 viewed along the [1 0 0] and [0 1

0] axes respectively, rotated for ease of inspection. Silicon is shown in blue, and oxygen in red.
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Figure 5: Structure of a supercell of the topology PCOD-8321668 viewed along the [0 1 0] and [0 0

1] axes respectively, rotated for ease of inspection. Silicon is shown in blue, and oxygen in red.

Figure 6: Structure of a supercell of the topology PCOD-8330068 viewed along the [0 1 0] and [0 0

1] axes respectively, rotated for ease of inspection. Silicon is shown in blue, and oxygen in red.

With respect to the three highest performing hypothetical structures shown in Figures 4, 5, and

6, the key structural feature responsible for the heightened performance of these frameworks is the

shape of the channel network. In all three, sinusoidal channels are arranged in a hexagonal shape,

allowing for the xylene ring to tightly fit at the intersections of the channel, with the methyl groups
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pointing into the channels themselves. This finding is in good agreement with the results of Caro-

Ortiz et al.[1] in their study of nine zeolite topologies. These adsorption patterns are shown clearly

in the adsorption profiles available through this link.[2]

With reference to the known zeolite topologies studied, this hexagonal shaped channel structure is

not present, which could be a deciding factor in the reduced selectivity for these frameworks. In MFI

and TER, the multi dimensional channel network of sinusoidal channels allows for efficient packing

of meta-xylene. Section 1 details how this particular channel network shape restricts the transport

of meta-xylene in comparison to the other two isomers, and shows how MEL, a similar topology

to MFI but with straight channels, shows a lower selectivity due to more favourable adsorption of

para-xylene.

TON has a one dimensional channel system, and its adsorption behaviour is likewise dominated

by its ability to preferentially accommodate meta-xylene in its sinusoidal channels. The shape of

the channels allows optimal packing of meta-xylene, with an enthalpic penalty to the adsorption of

para- and ortho-xylene in comparison. As seen in the main text of the article, some of the highest

performing structures have one dimensional channel systems, whose improved selectivity over TON

arises from a higher penalty to the adsorption of para-xylene, with more pronounced zig-zag patterns

in the channel system.

1.1 Comparison of MFI and MEL

Figure 7: Structure of the siliceous form of the zeolite MFI shown as top) ball and stick form, atoms

shown with their van der Waals radii and bottom) polyhedral form to show the silica tetrahedra. The

structure is viewed along the [010] axis and shows a fragment cut from the extended solid. Silicon

atoms and tetrahedra are shown in blue, and oxygen atoms are shown in red.

5

https://github.com/d4n-hewitt/d4n-hewitt/tree/main/Adsorption_Profiles/Xylene_Separation_Structures/


Figure 8: Structure of the siliceous form of the zeolite MEL shown as top) ball and stick form, atoms

shown with their van der Waals radii and bottom) polyhedral form to show the silica tetrahedra. The

structure is viewed along the [010] axis and shows a fragment cut from the extended solid. Silicon

atoms and tetrahedra are shown in blue, and oxygen atoms are shown in red.

The two topologies MEL and MFI (see Figures 7 and 8 respectively) are both notable for having

very similar structures, both being built from twelve unique tetrahedral (T) atoms (here, silicon).

These twelve T atoms form pentasil layers; in MFI these layers are related by inversion, whereas in

MEL they are related by mirroring. In MFI this gives rise to zig-zag channels parallel to the a axis,

and straight channels parallel to the b axis, while in MEL this arrangement yields straight channels

along the a and b axes. Due to the similarity between the two structures, it is worth asking the

question as to why MFI showed such high selectivity in the meta-xylene isomerisation reaction, while

MEL did not.

Structure Adsorbate Loading / mol kg -1

MFI Ortho-xylene 0.006

Meta-xylene 0.493

Para-xylene 0.029

MEL Ortho-xylene 0.071

Meta-xylene 0.411

Para-xylene 0.164

Table 1: Comparison of the adsorption behaviour of the three xylene isomers in the zeolites MFI

and MEL.
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The results from the CFC-MC calculations allowed for us to determine that both MFI and MEL

showed similar loading values for both meta- and ortho-xylene, with the most remarkable difference

in their adsorption behaviour coming from para-xylene. From Table 1 we can see that MEL was able

to accommodate 0.164 mol kg-1 of para-xylene compared to the 0.029 mol kg-1 of MFI.

With reference to their structures, this difference can be rationalised by the channel shapes of

the two materials. Similarly to the high-performing hypothetical materials we have examined, MFI’s

zig-zag channel structure is able to allow the aromatic group of meta-xylene to adsorb strongly in the

zig-zag nodes, with the methyl groups pointing into the edges. On the other hand, MEL has straight

channels, and so is able to accommodate meta-xylene at channel intersections, but is also able to

accommodate para-xylene favourably in the channels themselves. This difference in channel shape

can thus be shown to be responsible for the difference in the materials’ performance, and shows

how these structure-property relationships can be powerful tools in guiding synthesis for optimal

catalysts.

1.2 Loading and selectivity data

2 Computational Details

2.1 GCMC

All RASPA files are available through this link, showing examples of molecule files, force field files,

pseudo atoms, and a simulation input file for the CFC-MC simulations.

2.2 Molecular Dynamics

Table 4 and 5 shows the tabulated results for the molecular dynamics simulations at 1223 K for the

2 and 3D hypothetical structures, as well as MFI. The order N MSD is shown in its raw form from

the simulations whereas in the image in the main text it is log10 transformed. These simulations

were run 10 times for 100 nanoseconds each, and the mean of the MSD for these 10 runs is shown.

The structure which showed the greatest diffusion of para-xylene underwent further molecular

dynamics simulatons in order to determine a temperature at which its performance was equal to

MFI’s performance at 1223 K. This is in order to give an estimate as to the percentage reduction in

temperature that this structure would allow, while maintaining the same selectivity and activity as

MFI. These simulations were run for 100 ns as well. Since the MSD of meta- and ortho-xylene was

trivially low for these structures, we only sought to find structures with an MSD of para-xylene greater

than that of MFI. 10 simulations per structure were run at temperatures from 1223 K downwards in

steps of 100 K in order to find the lowest temperature at which these structures outperformed MFI.
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Loading / mol kg-1

Framework Name Ortho-xylene Meta-xylene Para-xylene Selectivity

8153395 0.000014 0.208888 0.000059 2474.608439

8304211 0.000116 0.287876 0.000013 1930.208854

8192542 0.00018 0.206703 0.000111 613.88164

8234953 0.000252 0.35198 0.000488 411.645143

8294334 0.000486 0.247417 0.000085 375.628269

8326107 0.000066 0.390116 0.000849 369.109618

8182279 0.000103 0.205062 0.000431 332.268152

8234449 0.000448 0.411077 0.000725 303.383217

8300828 0.001052 0.457654 0.000372 278.08689

8324947 0.000602 0.319269 0.000552 239.558114

8295817 0.000716 0.47607 0.001259 208.690074

8162380 0.000782 0.331849 0.000716 191.753047

8162607 0.0001 0.232953 0.001271 147.117953

8118253 0.000797 0.307366 0.001282 127.967274

8122465 0.000657 0.290369 0.002341 83.856342

8134003 0.002213 0.404361 0.002138 80.458176

8120915 0.00069 0.304184 0.003002 71.326517

8282411 0.000333 0.488563 0.005638 70.837163

8302163 0.000595 0.353084 0.004132 64.654673

8078462 0.000109 0.219843 0.002913 62.981747

8053163 0.000118 0.216388 0.002898 62.110414

8082742 0.001642 0.390675 0.004147 58.420401

8145624 0.000126 0.307714 0.00447 57.968923

8133140 0.002131 0.315188 0.002671 56.830297

8322162 0.000243 0.325912 0.004928 54.554846

8140263 0.000185 0.443176 0.007202 51.933992

8282410 0.000621 0.520492 0.009114 46.283125

Table 2: Loading and Selectivity data for the top 81 structures.

The results are tabulated in Table 6.

Further reductions in temperatures resulted in a decrease in diffusion of para-xylene to below the

level of MFI.
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Loading / mol kg-1

Framework Name Ortho-xylene Meta-xylene Para-xylene Selectivity

8174633 0.002748 0.651516 0.010225 43.475637

8306225 0.00315 0.230511 0.001568 42.291522

8067175 0.000157 0.272368 0.005425 42.235367

8215189 0.0054 0.435843 0.00467 37.467809

8151967 0.001862 0.344797 0.006242 36.83276

8321505 0.001449 0.444593 0.00974 34.397402

8083598 0.002056 0.264578 0.004782 33.491981

8049254 0.002163 0.201458 0.003086 33.219719

8300211 0.003216 0.218026 0.002803 31.358043

8133318 0.001479 0.259677 0.005707 31.281122

8193408 0.005251 0.727923 0.015336 30.609195

8152865 0.001617 0.353268 0.008417 30.478364

8306267 0.002093 0.250628 0.006121 26.414858

8268546 0.005468 0.444322 0.009228 26.173654

8319248 0.005046 0.802721 0.021551 26.126475

8215101 0.009345 0.386526 0.003469 26.112973

8321561 0.00131 0.49329 0.015299 25.709922

8156815 0.000012 0.253043 0.008651 25.285187

8095924 0.000526 0.260718 0.008495 25.020291

8248315 0.005287 0.527337 0.013171 24.731885

8133023 0.010438 0.557299 0.009821 23.813724

8330068 0.000015 0.206901 0.008258 21.649057

8227868 0.008304 0.764767 0.023006 21.144626

8094730 0.005867 0.466558 0.013384 20.979863

8295569 0.004903 0.49243 0.015553 20.839083

8251803 0.011747 0.296385 0.000602 20.775793

8301864 0.007939 0.424809 0.010355 20.101336

8325754 0.002208 0.257008 0.008894 20.039875

8281876 0.011068 0.593275 0.01473 19.907405

8167472 0.000344 0.440505 0.0194 19.314352

Table 3: Loading and Selectivity data for the top 81 structures continued.
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Loading / mol kg-1

Framework Name Ortho-xylene Meta-xylene Para-xylene Selectivity

8110796 0.000185 0.215053 0.009587 19.051691

8224932 0.006748 0.403402 0.012224 18.407627

8223024 0.002411 0.242428 0.009395 17.775991

8063931 0.002522 0.298706 0.012031 17.768086

8282464 0.00105 0.228024 0.010185 17.569071

8215290 0.007571 0.376143 0.011216 17.331906

8165995 0.024791 1.122487 0.031313 17.319842

8133881 0.01558 0.449831 0.007174 17.113904

8305940 0.0001 0.400199 0.020355 16.936339

8143363 0.003123 0.353286 0.01506 16.820071

8261866 0.004466 0.503576 0.022418 16.214959

8181417 0.011329 0.388987 0.009479 16.183015

8222628 0.000012 0.23845 0.012905 15.980824

8321668 0.018459 0.655294 0.017132 15.938586

8141101 0.001919 0.371289 0.018276 15.915461

8232569 0.000645 0.338938 0.01842 15.389991

8220059 0.002598 0.32717 0.015864 15.340623

8165792 0.015447 0.37037 0.005937 14.993763

8263582 0.000956 0.319799 0.017526 14.979026

8253718 0.023967 0.440155 0.001566 14.923222

8234885 0.009623 0.488433 0.018749 14.903085

8217007 0.020038 0.420665 0.004468 14.860196

8316000 0.00003 0.285965 0.018269 13.527978

8230305 0.010306 0.255288 0.00741 12.474505

Table 4: Loading and Selectivity data for the top 81 structures continued.

3 Neural Network details

3.1 Model architecture

Both the classification and regression models were trained using the TensorFlow implementation

of the Keras library.[3] Prior to training, 10% of the data was reserved as a test set, and 20% as

validation data in order to implement early stopping to prevent overfitting to the training data. For

the classification model, in both of these data splits stratified splitting was used in order to ensure
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Structure Adsorbate MSD / Å2

MFI Ortho 1.7

Meta 2.1

Para 2263.9

8263582 Ortho 3.5

Meta 130.1

Para 34243.8

8063931 Ortho 106.3

Meta 32.3

Para 201976.4

8281876 Ortho 1649.9

Meta 18.6

Para 42468.0

8162380 Ortho 1.0

Meta 1.4

Para 395.5

8330068 Ortho 4.5

Meta 0.4

Para 52666.3

8268546 Ortho 0.4

Meta 3.7

Para 2691.9

8261866 Ortho 0.9

Meta 2.5

Para 53.8

8321668 Ortho 34.5

Meta 12.1

Para 53143.6

8324947 Ortho 0.5

Meta 0.4

Para 2.3

Table 5: MSD data for MFI and the 2D hypothetical structure’s MD simulations at 1223 K, run for

100 ns.
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Structure Adsorbate MSD / Å2

MFI Ortho 1.7

Meta 2.1

Para 2263.9

8165995 Ortho 7.4

Meta 425.6

Para 21188.8

8304211 Ortho 0.6

Meta 1.3

Para 13126.1

8316000 Ortho 0.7

Meta 0.7

Para 3.1

Table 6: MSD data for MFI and the 3D hypothetical structure’s MD simulations at 1223 K, run for

100 ns.

Temperature / K MSD / Å2

923 3393.1

823 2760.1

723 2112.0

623 1647.6

Table 7: MSD data for MD simulations of structure 8063931 in steps of 100 K for the self-diffusion

of para-xylene.

that a representative number of highly selective structures were present in the training set. The data

for both models was normalised prior to training using a Keras normalisation layer.

3.2 Classification model

The model contained 3 fully connected hidden layers with 949 neurons, each with batch normalisation,

’relu’ activation, and dropout with a rate of 50%. This network was trained with binary cross-entropy

as the cost function, with early stopping implemented when this metric stopped decreasing for the

validation set. The Adam optimiser, which has been shown to be robust for a variety of cases, was

used, along with a biased initialisation in order to reduce training times.[4]

In order to prevent overfitting of the model to the over-represented class, class weights were used
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which allow the neural network to, in effect, pay more attention to the under represented class.

Similarly, as batch training was used, the batch size was chosen to be sufficiently large so that each

batch would likely contain structures from the under represented highly selective class.

3.3 Regression model

The regression model had a similar architecture to the classification model, but with 2 fully connected

hidden layers each with 433 neurons. Similarly, each dense layer used batch normalisation, a ’relu’

activation function, and dropout with a rate of 50%. The Huber loss was chosen as the loss function

with the Nadam optimiser which is similar to the Adam optmiser used for classification but with

Nesterov momentum.[5]

3.4 Descriptors

Topological descriptors were calculated using persistent homology. A similar workflow to the excellent

work of Krishnapriyan et al.[6] was used, using Diode to generate the alpha shapes, then Dionysus 2

in order to calculate persistence diagrams. Finally PersIm was used to convert these into persistence

images. We scaled our persistence images to a 50x50 resolution, scaled by the maximum birth and

persistence values, as done in their work. We employed a sigma value (the spread of the Gaussian’s

transforming the persistence diagrams into persistence images) of σ = 0.2. For a more in-depth

explanation of these descriptors we refer the reader to their work.[6]

PoreBlazer was used to calculate textural descriptors. An example of an output file from a

PoreBlazer calculation for MFI is shown below, indicating the textural descriptors we used in our

study for the training of neural networks.

Zeo++ was used to calculate the pore limiting diameter and largest cavity diameter for the initial

screening of structures based on their PLD being greater than 4 Å. These values were also used as

descriptors for training the neural networks.
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V Hecm
3/g 0.144 Helium pore volume, V (He, T ), cm3/g

V G3
A 17695.910 Geometric pore volume, V (G,T ), Å3
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