Electronic supplementary information

Crystallographic interface control of the plasmonic photocatalyst consisting of gold nanoparticles and titanium(IV) oxide

Shin-ichi Naya,^a Atsunobu Akita,^b Yoko Morita,^b Musashi Fujishima,^{b,c} and Hiroaki Tada^{*b,c}

^a Environmental Research Laboratory, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

^b Graduate School of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

[°] Department of Applied Chemistry, Faculty of Science and Engineering, Kindai University, 3-4-1, Kowakae, Higashi-Osaka, Osaka 577-8502, Japan.

* To whom correspondence should be addressed: TEL: +81-6-6721-2332, FAX: +81-6-6727-2024,

E-mail: <u>h-tada@apch.kindai.ac.jp</u>.

Table of contents

1.	Supplementary Figures	·S3-11
2.	Supplementary Tables	·S12-16

Fig. S1. Wide-scan XP spectra of anatase TiO_2 (A- TiO_2) and rutile TiO_2 (R- TiO_2).

Fig. S2. TEM images of Au/A-TiO₂ (a) and Au/R-TiO₂ (b).

Fig. S3. TEM images and Au size distributions of $Au/A-TiO_2$ prepared by the deposition precipitation under different conditions.

Fig. S4. TEM images and Au size distributions of Au/R-TiO₂ prepared by the deposition precipitation under different conditions.

Fig. S5. Au particle size control on anatase and rutile TiO_2 particles. The calcination temperature and time of Au/TiO₂ are shown above each data point.

Fig. S6. TEM image of Au/R-TiO₂ prepared at $T_c = 673$ K and $t_c = 1$ h. Faceted and non-faceted Au NPs are shown by dotted blue rectangle and black circle.

Fig. S7. Time courses for cinnamyl alcohol oxidation under visible-light irradiation ($\lambda_{ex} > 490$ nm, light intensity integrated from 420 to 485 nm = 3.3 mW cm⁻²) in the presence of Au/A-TiO₂ or Au/R-TiO₂ or Au/R-TiO₂ NR.

Fig. S8. Time courses for benzylamine oxidation under visible-light irradiation ($\lambda_{ex} > 430$ nm, light intensity integrated from 420 to 485 nm = 6.0 mW cm⁻²) in the presence of Au/A-TiO₂ or Au/R-TiO₂ or Au/R-TiO₂ NR.

Fig. S9. Time courses for 2-naphthol decomposition under visible-light irradiation ($\lambda_{ex} > 430$ nm, light intensity integrated from 420 to 485 nm = 6.0 mW cm⁻²) in the presence of Au/A-TiO₂ or Au/R-TiO₂ or Au/R-TiO₂ nR.

Fig. S10. Time courses for O₂ evolution from 10 mM aqueous solution of AgNO₃ (10 mL) containing La₂O₃ (20 mg) under visible-light irradiation ($\lambda_{ex} > 470$ nm, light intensity = 30 mW cm⁻²) in the presence of Au/A-TiO₂ or Au/R-TiO₂ or Au/R-TiO₂ NR (10 mg).

Fig. S11. SEM images and distribution of long and short axis length of $R-TiO_2 NR$.

Fig. S12. TEM image of Au/R-TiO₂ NR prepared at $T_c = 673$ K and $t_c = 1$ h. Faceted and non-faceted Au NPs are shown by dotted blue rectangle and black circle.

Fig. S13. TEM images of Au/R-TiO₂ NR after reactions: (a) the oxidations of cinnamyl alcohol to cinnamaldehyde, (b) benzylamine to benzaldehyde, (c) the oxidative degradation of 2-naphthol, and (d) O₂ evolution from 10 mM aqueous solution of AgNO₃.

Fig. S14. Au 4f-XP spectra of Au/A-TiO₂ (a) and Au/R-TiO₂ (b) with varying d_{Au} , and unmodified TiO₂ and Au film-coated glass plate for comparison. Ti 2p-XP spectra of Au/A-TiO₂ (c) and Au/R-TiO₂ (d) with varying d_{Au} , and unmodified TiO₂ and Au film-coated glass plate for comparison.

Reaction	Rea	ratio	Ref.	
	Rutile (R)	Anatase (A)	of R/A	
2-Propanol oxidation	0.545 μmol h ⁻¹	0.284 μmol h ⁻¹	1.96	S1,2
Cinnamyl alcohol oxidation	6.00 μmol h ⁻¹	1.03 μmol h ⁻¹	5.81	S3
Benzylamine oxidation	1.82 μmol h ⁻¹	0.102 µmol h-1	17.8	S4
H ₂ evolution	18.5 μmol h ⁻¹	0 μmol h ⁻¹		S5
Nitrobenzene reduction	7.38 µmol h ⁻¹	1.04 μmol h ⁻¹	7.10	S6
Oxygen evolution reaction	10.1 μmol h ⁻¹	2.24 μmol h ⁻¹	4.52	S 7
Water oxidation	4.46 μA cm ⁻²	0.109 μA cm ⁻²	40.9	S 8
Nonylphenol degradation	2.46 µmol h ⁻¹	0.321 µmol h-1	7.65	S9
2-Naphthol degradation	2.40 μmol h ⁻¹	0.238 μmol h ⁻¹	10.1	S10

Table S1. Crystal-form effect on the plasmonic photocatalytic activity of Au/TiO₂

Reference

(S1) E. Kowalska, R. Abe and B. Ohtani, Visible light-induced photocatalytic reaction of gold-modified titanium(IV) oxide particles: action spectrum analysis. *Chem. Commun.*, 2009, 45, 241-243.
(S2) E. Kowalska, O. O. P. Mahaney and B. Ohtani, Visible-light-induced photocatalysis through surface plasmon excitation of gold on titania surfaces. *Phys. Chem. Chem. Phys.*, 2010, 12, 2344-2355.
(S3) K. Kimura, S. Naya, Y. Jin-nouchi and H. Tada, TiO₂ crystal form-dependence of the Au/TiO₂ plasmon photocatalyst's activity. *J. Phys. Chem. C*, 2012, 116, 7111-7117.

(S4) S. Naya, K. Kimura and H. Tada, One-step selective aerobic oxidation of amines to imines by gold nanoparticle-loaded rutile titanium(IV) oxide plasmon photocatalyst. ACS Catalysis, 2013, 3, 10-13.

(S5) J. B. Priebe, J. Radnik, A. J. J. Lennox, M.-M. Pohl, M. Karnahl, D. Hollmann, K. Grabow, U. Bentrup, H. Junge, M. Beller and A. Bruckner, Solar hydrogen production by plasmonic Au-TiO₂ catalsyt: impact of synthesis protocol and TiO₂ phase on charge transfer efficiency and H₂ evolution rates. *ACS Catal.*, 2015, **5**, 2137-2148.

(S6) S. Naya, T. Niwa, T. Kume and H. Tada, Visible-light-induced electron transport from small to large nanoparticles in bimodal gold nanoparticle-loaded titanium(IV) oxide. *Angew. Chem. Int. Ed.*, 2014, 53 7305-7309.

(S7) S. Wang, Y. Gao, S. Miao, T. Liu, L. Mu, R. Li, F. Fan and C. Li, Positioning the water oxidation reaction sites in plasmonic photocatalysts. *J. Am. Chem. Soc.*, 2017, **139**, 11771-11778.

(S8) T. Onishi, M. Teranishi, S. Naya, M. Fujishima and H. Tada, Electrocatalytic effect on the photon-to-current conversion efficiency of gold-nanoparticle-loaded titanium(IV) oxide plasmonic electrode for water oxidation. *J. Phys. Chem. C*, 2020, **124**, 6103-6109.

(S9) S. Naya, T. Nikawa, K. Kimura and H. Tada, Rapid and complete removal of nonylphenol by gold nanoparticle/rutile titanium(IV) oxide plasmon photocatalyst. *ACS Catal.*, 2013, **3**, 903-907.

(S10) S. Naya and H. Tada, Dependence of the plasmonic activity of Au/TiO_2 for the decomposition of 2-naphthol on the crystal form of TiO₂ and Au particle size. *J. Catal.*, 2018, **364**, 328-333.

Catalysts	$d_{\rm Au}/{ m nm}$ (counts)	$x_{\rm Au}/$ mass%	Faceting probability / % (counts)	<i>T</i> _c / K	<i>t</i> c / h	
Au/A-TiO ₂	3.5 ± 0.9 (203)	4.25	negligible (1032)	673	1	
Au/A-TiO ₂	4.1 ± 0.8 (208)	4.20	negligible (1045)	673	4	
Au/A-TiO ₂	5.0 ± 0.9 (205)	4.21	negligible (1021)	773	4	
Au/A-TiO ₂	6.6 ± 1.4 (208)	4.24	0.1 (1032)	873	4	
Au/A-TiO ₂	7.9 ± 1.6 (209)	4.21	0.2 (1037)	873	24	
Au/R-TiO ₂	3.6 ± 1.1 (210)	4.22	14.1 (1017)	673	1	
Au/R-TiO ₂	4.0 ± 0.9 (211)	4.16	3.6 (1013)	673	4	
Au/R-TiO ₂	5.1 ± 1.0 (213)	4.21	1.8 (1009)	773	4	
Au/R-TiO ₂	7.5 ± 1.9 (213)	4.31	0.9 (1037)	873	4	
Au/R-TiO ₂	10.0 ± 2.2 (204)	4.19	0.8 (1019)	873	24	
Au/R-TiO ₂ NR	3.5 ± 0.7 (223)	4.20	94.2 (1029)	673	1	
Au/R-TiO ₂ NR	6.3 ± 1.1 (205)	4.18	88.7 (1034)	873	24	

 $\label{eq:table_solution} \textbf{Table S2.} Characterization results of the Au/A-TiO_2 and Au/R-TiO_2 plasmonic photocatalysts.$

Complet	1 / 2000	А	u	Т	ĩi
Samples	a _{Au} / IIII	$4 \mathbf{f}_{7/2} \ /e \mathrm{V}$	$4f_{5/2}$ / eV	$2p_{3/2} \ / \ eV$	$2p_{1/2} \;/\; eV$
A-TiO ₂				458.3	464.0
Au/A-TiO ₂	$3.5~\pm~0.9$	83.3	87.0	458.7	464.4
Au/A-TiO ₂	$4.1~\pm~0.8$	83.2	86.9	458.6	464.3
Au/A-TiO ₂	$5.0~\pm~0.9$	83.1	86.8	458.5	464.3
Au/A-TiO ₂	$6.6~\pm~1.4$	83.0	86.7	458.5	464.3
Au/A-TiO ₂	7.9 ± 1.6	83.2	86.9	458.7	464.3
R-TiO ₂				458.3	464.2
Au/R-TiO ₂	$3.6~\pm~1.1$	83.2	86.9	458.4	464.3
Au/R-TiO ₂	$4.0~\pm~0.9$	83.3	87.0	458.6	464.3
Au/R-TiO ₂	5.1 ± 1.0	83.2	86.9	458.4	464.3
Au/R-TiO ₂	7.5 ± 1.9	83.2	86.9	458.5	464.2
Au/R-TiO ₂	10.0 ± 2.2	83.1	86.7	458.4	464.2

Table S3. Au 4f and Ti 2p-XP binding energies

Model	$d_{\rm Au}$ / nm	λ / nm	Monitor plane	Maximum E / E ₀	Maximum $ \mathbf{E} ^2 / \mathbf{E}_0 ^2$
HS Au/A-TiO ₂	3.5	702	XZ	49.6	2.5E+03
			xy	59.9	3.6E+03
t-Oh Au/R-TiO ₂	3.6	675	XZ	138	1.9E+04
			xy	382	1.5E+05
		704	XZ	272	7.4E+04
			xy	453	2.1E+05
		722	XZ	448	2.0E+05
			xy	448	2.0E+05

Table S4. Comparison of the local electric field between HS Au/A-TiO₂ and t-Oh Au/R-TiO₂ systems calculated by the 3D-FDTD method