Supporting Information for

Two-dimensional Be₂Au Monolayer with Planar Hexacoordinate s-Block Metal Atoms: A Superconducting Global Minimum Dirac Material with Two Perfect Dirac Node-Loops

Meng-hui Wang,^a Zhong-hua Cui,^{*a,e} Sheng Wang,^c Quan Li,^c Jijun Zhao,^d and Zhongfang Chen^{*b}

^aInstitute of Atomic and Molecular Physic, Jilin University, Changchun 130012, China E-mail: zcui@jlu.edu.cn

^bDepartment of Chemistry, University of Puerto Rico, San Juan, PR 00931, United States

E-mail: zhongfangchen@gmail.com

^cState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130023, People's Republic of China

^dKey Laboratory of Materials Modification by Laser, Ion and Electron Beams (Dalian University of Technology), Ministry of Education, Dalian 116024, China

^eKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), Jilin University, Changchun 130012, China

Figure S1. The structures and relative energies in kcal/mol of the low-lying energy isomers of $Be_6Au_7^-$ computed at the CCSD(T)/def2-TZVP//PBE0/def2-TZVP. The bond distances in Å and WBI values (in square brackets) of phAu are given. Gold and green balls represent Au and Be atoms, respectively.

Figure S2. The RMSD vs simulation time of the isolated phAu $Be_6Au_7^-$ at 300K (black line) and 600K (red line) computed at the PBE0/def2-SVP level.

Figure S3. Simulated photoelectron spectroscopy (PES) of the phAu Be₆Au₇⁻ cluster.

Figure S4. a) NICS_{zz}, b) NICS_{zz}(π), c) NICS_{zz}(σ -delocalization), d) NICS_{zz}(σ -localization) of the D_{6h} Be₆Au₇⁻ at the PBE0/def2-TZVP level. Diatropic (aromaticity) and paratropic (anti-aromaticity) tensors are shown in red and green, respectively. NICS values are in ppm.

Figure S5. AdNDP of d-type lone pairs at a) phAu and b) bridging Au atoms.

Figure S6. A schematic view of part of the extended 2D Be_2Au monolayer as constructed from the starlike Be_6Au_7 unit. The circles represent the bridging Au atoms in Be_6Au_7 unit that are shared by three units.

Figure S7. Three low-lying isomers of 2D Be₂Au found by particle swarm search. Gold and green balls represent Au and Be atoms, respectively.

Figure S8. Snapshots of the equilibrium of the Be_2Au monolayer from 300 to 2000K (top and side views) at the end of 10 ps based on AIMD simulation, and bonds to atoms outside this 4 × 4 section exit but are not show.

Figure S9. The 3D representation of ELF of Be₂Au monolayer.

Figure S10. Band structure of Be_2Au monolayer calculated by HSE06 functional.

Figure S11. Projected band structures of Be₂Au monolayer, indicating the α/β bands are contributed by in-plane orbitals: Be p_x/p_y , Au $p_x/p_y/d_{xy}/d_x^2-y^2$, and the γ band is contributed by out-of-plane orbitals: Be p_z , Au p_z .

Figure S12. Atom-projected density of states (PDOS) of the Be_2Au monolayer computed by HSE06 functional. The Fermi level is at 0 eV.

Figure S13. The three-dimensional band structure of the graphene.

Figure S14. Phonon dispersion spectra for Be_2Au monolayer under carrier doping from +0.2 to -0.5 electron per unit cell.

Figure S15. (a) Phonon dispersion with electron-phonon coupling strength, (b) phonon density of states (PhDOS), (c) Eliashberg spectral function $\alpha^2 F(\omega)$ and the overall electron-phonon coupling strength $\lambda(\omega)$ of the Be₂Au monolayer under doping of 0.2 electrons per unit cell, and (d) evolution of the logarithmic average frequency ω_{log} , the density of states at the Fermi level N(E_f), the superconducting transition temperature T_c and the cumulative frequency-dependent EPC $\lambda(\omega)$ versus the applied carrier doping.

Figure S16 (a). Phonon dispersion spectra for Be_2Au monolayer under hole doping from 0.1 to 0.3 hole per unit cell based on a strain of -1.6%.

Figure S16 (b). Phonon dispersion spectra for Be_2Au monolayer under electron doping from -0.1 to -0.5 electron per unit cell based on a strain of -1.6%.

Figure S17. (a) Phonon dispersion with electron-phonon coupling strength, (b) phonon density of states (PhDOS), (c) Eliashberg spectral function $\alpha^2 F(\omega)$ and the overall electron-phonon coupling strength $\lambda(\omega)$ of the Be₂Au monolayer under doping of 0.2 electrons per unit cell based on a strain of -1.6%, and (d) evolution of the logarithmic average frequency ω_{log} , the density of states at the Fermi level N(E_f), the superconducting transition temperature T_c and the cumulative frequency-dependent EPC $\lambda(\omega)$ versus the applied electron doping based on a strain of -1.6%.

Figure S18. Phonon dispersion spectra for Be_2Au monolayer under strain from -1.6% to 0.6%.

Figure S19. (a) Phonon dispersion with electron-phonon coupling strength, (b) phonon density of states (PhDOS), (c) Eliashberg spectral function $\alpha^2 F(\omega)$ and the overall electron-phonon coupling strength $\lambda(\omega)$ of the Be₂Au monolayer under strain = -1.6%.

Be₂Au/Si(111)

Figure S20. Top and side views of Be₂Au monolayer on Si(111) surface.