Supplementary Information

Theoretical Roadmap for Best Oxygen Reduction Activity in

Two-dimensional Transition Metal Tellurides

Xin Yang,^{a,b} Hanyu Liu,^{a,b,c,d} Zexing Qu,^e Yu Xie,^{*a,b,c} and Yanming Ma^{a,b,d} ^aState Key Laboratory of Superhard Materials, College of Physics, Jilin University, Changchun 130012, China ^bInternational Center of Computational Method and Software, College of Physics, Jilin University, Changchun 130012, China ^cKey Laboratory of Physics and Technology for Advanced Batteries (Ministry of Education), College of Physics, Jilin University, Changchun 130012, China ^dInternational Center of Future Science, Jilin University, Changchun 130012, China ^eInstitute of Theoretical Chemistry, College of Chemistry, Jilin University, Changchun, 130023, China Corresponding author: Yu Xie E-mail address: xieyu@jlu.edu.cn

This file includes:

- Methods
- Geometric and Electronic Properties (Figure S1-2)
- Origin of O₂ activation (Figure S3-11)
- ORR catalytic performance and linear scaling (Figure S12-18)
- Rational screening of activity descriptor (Figure S19-27)
- Supplementary Tables (Table S1-7)
- References

Methods

Computational details

Density functional theory computations were performed by using the Vienna *Ab initio* simulation package (VASP) within the projected augmented wave method.^{1, 2} The Brillouin zone was sampled using k-points of $4 \times 4 \times 1$ for the supercell with $a \times b$ of around 10 Å×10 Å.³ For some monolayers with $a \times b$ of around 20 Å×10 Å, such as Ta₄Pd₃Te₁₆, the *k*-points were sampled using $2 \times 4 \times 1$. The *p*-band center (ε_p) of the Te sites was calculated by

$$\varepsilon_p = \frac{\int_{-\infty}^{0} \varepsilon \rho_p(\varepsilon) d\varepsilon}{\int_{-\infty}^{0} \rho_p(\varepsilon) d\varepsilon}$$
(1)

where $\rho_p(\varepsilon)$ is the *p*-band density of states of a Te atom and ε is the energy of electrons.

ORR Reactions

The 4e⁻ dissociative and associative mechanism pathways for ORR are generally the following equations (2) and (3), respectively.⁴ Here, * denotes an adsorption site of the catalyst.

$$\begin{array}{c} O_2 \to O_2^* \to 20^* \to 0^* + 0H^* \to 0^* + H_2 0 \to 0H^* + H_2 0 \to 2H_2 0 \\ O_2 \to O_2^* \to 00H^* \to 0^* + H_2 0 \to 0H^* + H_2 0 \to 2H_2 0 \end{array}$$
(2) (3)

The free energy of each species can be expressed using the equation:

$$G = E_{DFT} + E_{ZPE} + \int C_p dT - TS \tag{4}$$

where E_{DFT} , E_{ZPE} and S are the ground state electronic energy, zero-point vibrational energy and entropy, respectively. The values of E_{ZPE} and S of intermediates are obtained from frequency calculations and the values for molecules are taken from the NIST database (Computational Chemistry Comparison and Benchmark Database), which are listed in Table S6. T is the temperature of 298.15 K. Solvent effects have been considered by using the Poissson-Boltzmann implicit solvation model.⁵ The dielectric constant ε is taken as 80 for water. The absorption free energy for the adsorbates can be calculated using the equation:

$$\Delta G_{ads} = \Delta E_{ads} + \Delta E_{ZPE} - T\Delta S \tag{5}$$

where ΔG_{ads} is the adsorption free energy of adsorbates, and ΔE_{ZPE} and ΔS are the difference of E_{ZPE} and S, respectively. The free energy of O₂ was computed by the equation: $G_{O_2} = 2G_{H_2O} - 2G_{H_2} - 4.92 \ eV$ (6)

The calculation of energy in volcano plots

The free energies for the four steps in dissociative mechanism can be defined as:

$$\Delta G_1 = G_{(0+0H)^*} - G_{(0+0)^*} - G_{(H^++e^-)} = \Delta G_{(0+0H)^*} - \Delta G_{(0+0)^*}$$
(7)

$$\Delta G_2 = G_{0^*} + G_{H_20} - G_{(0+OH)^*} - G_{(H^++e^-)} = \Delta G_{0^*} - \Delta G_{(0+OH)^*}$$
(8)

$$\Delta G_3 = G_{OH^*} - G_{O*} - G_{(H^+ + e^-)} = \Delta G_{OH^*} - \Delta G_{O*}$$
(9)

$$\Delta G_4 = G_* + G_{H_2O} - G_{OH*} - G_{(H^+ + e^-)} = -\Delta G_{OH*}$$
(10)

The relations between OH and other adsorbates can be used to define the limiting potentials in dissociative mechanism as a function of the OH adsorption energy as:

$$U_{L1} = -\Delta G_1 = - 0.2 \ \Delta G_{0H^*} + 1.6 \tag{11}$$

$$U_{L2} = -\Delta G_2 = 1.7 \Delta G_{0H*} - 0.6 \tag{12}$$

$$U_{L3} = -\Delta G_3 = -1.2\Delta G_{OH*} + 2.1 \tag{13}$$

$$U_{L4} = -\Delta G_4 = \Delta G_{OH*} \tag{14}$$

The free energies for the four steps in associative mechanism can be defined as:

$$\Delta G_1 = G_{00H^*} - G_{0_2} - G_* - G_{(H^+ + e^-)} = \Delta G_{00H^*} - 4.92$$
(15)

$$\Delta G_1 = G_{00H^*} - G_{0_2} - G_* - G_{(H^+ + e^-)} = \Delta G_{00H^*} - 4.92$$

$$\Delta G_2 = G_{0^*} + G_{H_20} - G_{00H^*} - G_{(H^+ + e^-)} = \Delta G_{0^*} - \Delta G_{00H^*}$$
(15)

$$\Delta G_2 = G_{0^*} + G_{H_2 0} - G_{00H^*} - G_{(H^+ + e^-)} = \Delta G_{0^*} - \Delta G_{00H^*}$$
(16)
$$\Delta G_3 = G_{0H^*} - G_{0^*} - G_{(H^+ + e^-)} = \Delta G_{0H^*} - \Delta G_{0^*}$$
(17)

$$\Delta G_4 = G_* + G_{H_20} - G_{OH^*} - G_{(H^+ + e^-)} = -\Delta G_{OH^*}$$
(18)

The relations between OH and other adsorbates can be used to define the limiting potentials in associative mechanism as a function of the OH adsorption energy as:

$$U_{L1} = -\Delta G_1 = -\Delta G_{0H^*} + 1.6 \tag{19}$$

$$U_{L2} = -\Delta G_2 = 1.2 \ \Delta G_{0H^*} + 1.2 \tag{20}$$

$$U_{L3} = -\Delta G_3 = -1.2 \ \Delta G_{OH^*} + 2.1 \tag{21}$$

$$U_{L4} = -\Delta G_4 = \Delta G_{OH^*} \tag{22}$$

The above equations result in four limiting potential lines for the four elementary steps, which could form the volcano plot.

Geometric and Electronic Properties

Figure S1. The calculated cleavage energies of studied 9 monolayer tellurides.

Figure S2. Band structure and density of states (DOS) of monolayer (a) NbTe₂, (b) WTe₂, (c) NbNiTe₂, (d) TaCo₂Te₂, (e) TaNi₂Te₃, (f) NbIrTe₄, (g) NbPdTe₅, (h) Ta₂Pd₃Te₅, and (i) Ta₃Pd₃Te₁₄. NbIrTe₄ is semi-metallic with zero band-gap and others are metallic.

Origin of O₂ activation

The O_2 adsorption configurations, energy barriers of O_2 dissociation, and the analysis of underlying O_2 adsorption mechanism are shown in this part.

Figure S3. The O₂ adsorption configurations of (a) NbTe₂, (b) WTe₂, (c) NbNiTe₂, (d) TaCo₂Te₂, (e) TaNi₂Te₃, (f) NbIrTe₄, (g) NbPdTe₅, (h) Ta₂Pd₃Te₅, and (i) Ta₃Pd₃Te₁₄.

Figure S4. The energy barriers of O_2 dissociation in monolayer (a) NbTe₂ and (b) NbIrTe₄ from NEB calculations.

Figure S5. The O_2 adsorption energy of studied tellurides versus charge transfer. The Te active sites are Te1 atoms that mainly interact with O_2 with stronger bonding strength. The previous studied tellurides PtTe, NiTe, TaTe₂, and Ni₂SbTe₂ have also been considered for comparison.⁶⁻⁹ Notably, the O_2 adsorption energy of NiTe was recalculated in this study and the details of the calculation of NiTe are shown in Table S7.

Figure S6. pDOS of Te1 and Te2 atoms in NbIrTe₄ (a) from -7.2 to -6.2 eV and (b) from -0.2 to 0 eV. (c) DOS of Te and O elements with orbitals of O_2 marked on the top and (d) integrated electrons of the difference of pDOS of Te1 and Te2 between NbIrTe₄ and O_2 -adsorpted NbIrTe₄. Notably, the orbitals here are O_2 that has adsorbed on NbIrTe₄. (e) Differential charge density distributions of O_2 adsorbed NbIrTe₄.

Figure S7. (a) pDOS of Te1 and O atoms in O_2 adsorpted PtTe and (b) Te atoms in PtTe. (c) DOS of Te and O elements with orbitals of O_2 marked on the top (d) integrated electrons of the difference of pDOS between PtTe and O_2 adsorbed PtTe. Notably, the orbitals here are O_2 that has adsorbed on PtTe. (e) Differential Charge density distributions of O_2 on PtTe monolayer.

Figure S8. (a) pDOS of Te1 and O atoms in O_2 adsorpted NbTe₂ and (b) Te atoms in NbTe₂. (c) DOS of Te and O elements with orbitals of O_2 marked on the top (d) integrated electrons of the difference of pDOS between NbTe₂ and O_2 adsorbed NbTe₂. Notably, the orbitals here are O_2 that has adsorbed on NbTe₂. (e) Differential Charge density distributions of O_2 on NbTe₂ monolayer.

Figure S9. (a) pDOS of Te1, Te2 and O atoms in O₂-adsorpted Ta₃Pd₃Te₁₄ and (b) Ta₃Pd₃Te₁₄. (c) DOS of Te and O elements with orbitals of O₂ marked on the top (d) integrated electrons of the difference of pDOS between Ta₃Pd₃Te₁₄ and O₂-adsorbed Ta₃Pd₃Te₁₄. Notably, the orbitals here are O₂ that has adsorbed on Ta₃Pd₃Te₁₄. (e) Differential Charge density distributions of O₂ on Ta₃Pd₃Te₁₄ monolayer.

Figure S10. Schematic representation for O2 molecule and calculated DOS and pCOHP curves.

Figure S11. (a) Schematic representation of π interactions and (b) the $5\tilde{\sigma}$, $1\tilde{\pi_p}$, $\tilde{p}_{1\pi}$, $\tilde{p}_{2\pi^*}$, and $2\tilde{\pi_p^*}$ orbitals for O₂ adsorbed on NbIrTe₄. Notably, $5\tilde{\sigma}$ contributes to the "donation" and $\tilde{p}_{2\pi^*}$ and $2\tilde{\pi_p^*}$ contributes to "back-donation" process.

ORR catalytic performance and linear scaling

The configurations and the free energy diagrams for monolayer NbTe₂, NbIrTe₄, and Ta₃Pd₃Te₁₄, the structural, electronic, and catalytic properties of NbIrTe₄ multilayers, and the relationship between ΔG_{O^*} and ΔG_{OH^*} are shown in this part.

Figure S12. (a) Scheme of the possible two ORR reaction pathways and (b) free energy diagram for the associative ORR pathway on monolayer NbTe₂.

Figure S13. (a) Scheme of the possible two ORR reaction pathways monolayer $Ta_3Pd_3Te_{14}$. and free energy diagrams for the associative ORR pathway on monolayer (b) NbIrTe₄ and (c) $Ta_3Pd_3Te_{14}$ at U=0 V.

Figure S14. The structures of (a) bilayer and (b) trilayer NbIrTe₄.

Figure S15. Band structure and density of states (DOS) of (a) bilayer and (b) trilayer NbIrTe4.

Figure S16. Free energy diagrams for the dissociative ORR pathway on (a) bilayer and (b) trilayer NbIrTe₄.

Figure S17. (a) The Variation of ΔG_0^* versus ΔG_{OH}^* in studied 9 tellurides. (b) Variation of ΔG_{OOH^*} as a function of ΔG_{OH^*} in newly found promising telluride catalysts. We here determined the limiting potentials: $U_L = \min\{-\Delta G_1, -\Delta G_2, -\Delta G_3, -\Delta G_4\}$, where $\Delta G_1, \Delta G_2, \Delta G_3$, and ΔG_4 are the free energy of four reaction steps. With the scaling relations between OH* and other adsorbates, the limiting potential of dissociation pathway can be given by equation:

 $U_L = \min\{-0.2 \ \Delta G_{OH^*} + 1.2, 1.9 \ \Delta G_{OH^*} - 0.9, -1.3 \ \Delta G_{OH^*} + 2.2, \Delta G_{OH^*}\}$ Thus the estimated highest limiting potentials for dissociation pathway is 0.94 V.

Figure S18. O₂ adsorption energy versus other considered descriptors of (a) *p* band center, (b) ε_{px} /2 + ε_{px} /2 + ε_{px} /2, (c) ε_{px} /2 + ε_{px} /2, and (d) ε_{px} /2 + ε_{px} /2, where ε_{px} , ε_{py} , and ε_{pz} defines centroid of the projected density of states of the p_x , p_y , and p_z orbitals relative to the Fermi level. The correlation coefficient R² of other descriptors are smaller than that of ε_{pz} .

Rational screening of activity descriptor

The calculated cleavage energies and ORR pathways of newly studied monolayer tellurides, and the analysis of the adsorption energies of oxygen-containing groups are shown here.

Figure S19. (a) The calculated cleavage energies of newly studied monolayer tellurides. (b) The calculated phase diagram of Nb-Rh-Te system.

Figure S20. Free energy diagrams for the dissociative ORR pathway on monolayer (a) NbRhTe₄, (b) TaRhTe₄, and (c) TaIrTe₄.

Figure S21. (a) Scheme of the dissociation reaction pathway and (b) free energy diagrams for the dissociative ORR pathway on monolayer Ta₄Pd₃Te₁₆.

Figure S22. Free energy diagrams for the associative ORR pathway on monolayer (a) NbRhTe₄, (b) TaRhTe₄, (c) TaIrTe₄, and (d) Ta₄Pd₃Te₁₆.

Figure S23. Free energy diagrams for the dissociative ORR pathway on (a) bilayer and (b) trilayer NbRhTe₄.

Figure S24. The structures of (a) M₃XTe₈(I) and (b) M₃XTe₈(II) and the phase diagrams of (c) Nb-Ir-Te, (d) Ta-Rh-Te, and (e) Ta-Ir-Te systems. The calculated formation energies of the bulk phases of hypothetic Nb₃RhTe₈, Nb₃IrTe₈, Ta₃RhTe₈, Ta₃IrTe₈ were 20, 24, 20, and 25 meV/atom, respectively. The phase diagram of Nb-Rh-Te system was shown in Figure S19.

Figure S25. Free energy diagrams for the dissociative ORR pathway on monolayer (a) Nb₃RhTe₈(I), (c) Ta₃RhTe₈(I) and (d) Ta₃IrTe₈(I) and the associative ORR pathway on monolayer (b) Nb₃IrTe₈(II).

Figure S26. Free energy diagrams for the associative ORR pathway on monolayer (a) Nb₃RhTe₈(I), (c) Ta₃RhTe₈(I) and (d) Ta₃IrTe₈(I) and the dissociative pathway on monolayer (b) Nb₃IrTe₈(II).

Figure S27. (a) O₂ adsorption energy versus the average p_z -band center of Te atoms for initially studied tellurides. Notably, the ΔG_{O_2} of NiTe was recalculated in this study and the details of the calculation are shown in Table S7. The ΔG_{O_2} of NiTe can't accord with the linear relationship, which might attract more attention in subsequent study. (b) The ΔG_0 versus the p_z -band center of active Te sites for all studied tellurides. (c)Variation of ΔG_{OOH^*} as a function of ΔG_{OH}^* for monolayer tellurides. (d) Catalytic activity of the materials as a function of intermediates formation free energies $\Delta G_{O^*} - \Delta G_{OH^*}$ and ΔG_{OH^*} . The circle, star, triangle, and square points represent initially-studied tellurides, newly-studied tellurides, M-doped variants, and known catalysts in other studies, respectively.

	Μ	X	Te1	Te2	Te3	Te4	Te5	Te6	Te7	Te8
	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)	(e)
NbTe ₂	-0.95		0.48	0.5	0.5					
WTe ₂	-0.48		0.28	0.19						
NbNiTe ₂	-1.03	0.29	0.36	0.37						
TaCo ₂ Te ₂	-1.12	0.4	0.24	0.02	0.12					
TaNi ₂ Te ₃	-1.15	X1 0.1	0.32	0.24	0.21					
		X2 0.26								
NbIrTe ₄	-1.15	0.58	0.50	0.07	-0.29	0.28				
NbPdTe ₅	-1.14	0.27	0.28	0.21	0.02	0.32	0.02			
Ta ₂ Pd ₃ Te ₅	-1.22	0.43	0.24	0.23	0.23					
Ta ₃ Pd ₃ Te ₁₄	-1.15	0.26	0.10	0.37	0.01	0.31	0.07	0.23	0.25	
MoTe ₂	-0.44		0.25	0.17						
TaNiTe ₂	-1.01	0.31	0.34	0.35						
Ta ₄ Pd ₃ Te ₁₆	-1.15	0.29	0.47	0.18	0.21	0.28	0.05	0.31	-0.03	0.35
NbRhTe ₄	-1.13	0.38	0.49	0.14	-0.24	0.33				
TaRhTe ₄	-1.12	0.38	0.47	0.15	-0.24	0.32				
TaIrTe ₄	-1.14	0.60	0.48	0.07	-0.30	0.27				
Ta ₂ Ni ₃ Te ₅	-1.15	0.22	0.38	0.26	0.33					

 Table S1. Bader charge calculation results of charge transfer in monolayer tellurides.

Table S2. Bader charge results of charge transfer and bond length of O₂-adsorbed tellurides.

Charge	Te1 (e)	Te2 (e)	O ₁ (e)	O ₂ (e)
NbTe ₂	-0.42	-0.41	0.40	0.39
NbIrTe ₄	-0.56	Te2 (A) -0.15	0.44	0.43
		Te2 (B) -0.14		
Ta ₃ Pd ₃ Te ₁₄	Tel (A) -0.35	-0.33	0.44	0.43
	Te1 (B) -0.28			
Ta4Pd3Te16	-0.53	Te2 (A) -0.28	0.52	0.31
		Te2 (B) -0.12		
NbRhTe ₄	-0.54	Te2 (A) -0.25	0.46	0.38
		Te2 (B) -0.18		
TaRhTe ₄	-0.55	Te2 (A) -0.25	0.38	0.47
		Te2 (B) -0.19		
TaIrTe ₄	-0.57	Te2 (A) -0.20	0.38	0.49
		Te2 (B) -0.18		
Bond length	Te1-O (Å)	Te2-O (Å)	O 1- O 2 (Å)	
NbTe ₂	2.22	2.28	1.38	
NbIrTe ₄	2.13	2.56	1.39	
Ta ₃ Pd ₃ Te ₁₄	2.35	2.25	1.37	
Ta ₄ Pd ₃ Te ₁₆	2.15	2.32	1.39	
NbRhTe ₄	2.14	2.43	1.38	
TaRhTe ₄	2.14	2.49	1.39	
TaIrTe ₄	2.13	2.51	1.39	

Adsorption energy (eV) _{Te1}	Te2	Te3	Te4	Te5	Te6	Te7	Te8
Monolayer								
NbTe ₂	-0.13	0.92	0.97					
WTe ₂	0.35	0.87						
NbNiTe ₂	0.50	0.71						
TaCo ₂ Te ₂	0.47	1.13	1.08					
TaNi ₂ Te ₃	0.44	0.65	0.79					
NbIrTe ₄	-0.09	0.82	0.73	0.94				
NbPdTe ₅	0.31	0.46	0.42	0.93	0.43			
Ta ₂ Pd ₃ Te ₅	0.27	0.84	0.91					
Ta ₃ Pd ₃ Te ₁₄	0.05	0.87	0.75	0.39	0.41	0.82	0.33	
MoTe ₂	0.27	0.85						
TaNiTe ₂	0.69	1.09						
Ta ₄ Pd ₃ Te ₁₆	-0.16	0.19	0.37	0.41	0.43	0.89	0.50	0.67
NbRhTe ₄	-0.11	0.86	0.52	0.87				
TaRhTe ₄	-0.07	0.88	0.55	0.89				
TaIrTe ₄	-0.05	0.95	0.75	0.99				
Ta ₂ Ni ₃ Te ₅	0.38	0.95	0.98					

Table S3. The O₂ adsorption energies on different Te sites in studied monolayers

Table S4. The free energy of four reaction steps, the limiting potential and corresponding overpotential in dissociation pathway

Monolayer	ΔG1	ΔG2	ΔG3	ΔG4	Limiting	Overpotential
	(eV)	(eV)	(eV)	(eV)	potential (V)	(V)
NbTe ₂	-1.37	-0.63	-1.11	-0.80	0.63	0.60
NbIrTe ₄	-1.25	-1.24	-0.88	-1.04	0.88	0.35
Ta ₃ Pd ₃ Te ₁₄	-1.38	-1.17	-0.80	-1.08	0.80	0.43
NbRhTe ₄	-1.21	-1.17	-0.98	-0.96	0.96	0.27
TaRhTe ₄	-1.26	-1.22	-0.84	-1.12	0.84	0.39
TaIrTe ₄	-1.32	-1.25	-0.78	-1.16	0.78	0.45
Ta4Pd3Te16	-1.48	-0.78	-1.00	-0.99	0.78	0.45
Nb ₃ RhTe ₈ (I)	-1.49	-0.86	-1.22	-0.82	0.82	0.41
Nb ₃ RhTe ₈ (II)	-0.96	-0.78	-0.92	-0.83	0.78	0.45
Nb ₃ IrTe ₈ (I)	-1.55	-0.79	-1.18	-0.79	0.79	0.44
Nb ₃ IrTe ₈ (II)	-1.37	-0.64	-1.15	-0.81	0.64	0.59
Ta3RhTe8(I)	-1.52	-0.96	-1.13	-0.90	0.90	0.33
Ta ₃ RhTe ₈ (II)	-1.47	-0.78	-1.25	-0.81	0.78	0.45
Ta ₃ IrTe ₈ (I)	-1.53	-0.90	-1.05	-0.93	0.90	0.33
Ta3IrTe8(II)	-1.28	-0.77	-1.07	-0.88	0.77	0.46

Monolayer	ΔG1	ΔG2	ΔG3	ΔG4	Limiting	Overpotential
	(eV)	(eV)	(eV)	(eV)	potential (V)	(V)
NbTe ₂	-0.80	-2.21	-1.11	-0.80	0.80	0.43
NbIrTe ₄	-0.65	-2.35	-0.88	-1.04	0.65	0.58
Ta ₃ Pd ₃ Te ₁₄	-0.45	-2.59	-0.80	-1.08	0.45	0.78
NbRhTe ₄	-0.67	-2.31	-0.98	-0.96	0.67	0.56
TaRhTe ₄	-0.45	-2.51	-0.84	-1.12	0.45	0.78
TaIrTe ₄	-0.52	-2.46	-0.78	-1.16	0.52	0.71
Ta4Pd3Te16	-0.49	-2.44	-1.00	-0.99	0.49	0.74
Nb ₃ RhTe ₈ (I)	-0.77	-2.10	-1.22	-0.82	0.77	0.46
Nb ₃ RhTe ₈ (II)	-0.73	-2.44	-0.92	-0.83	0.73	0.50
Nb ₃ IrTe ₈ (I)	-0.98	-1.97	-1.18	-0.79	0.79	0.44
Nb ₃ IrTe ₈ (II)	-0.83	-2.13	-1.15	-0.81	0.81	0.42
Ta ₃ RhTe ₈ (I)	-0.70	-2.19	-1.13	-0.90	0.70	0.53
Ta3RhTe8(II)	-0.79	-2.07	-1.25	-0.81	0.79	0.44
Ta ₃ IrTe ₈ (I)	-0.74	-2.20	-1.05	-0.93	0.74	0.49
Ta ₃ IrTe ₈ (II)	-0.73	-2.24	-1.07	-0.88	0.73	0.50

Table S5. The free energy of four reaction steps, the limiting potential and corresponding overpotential in association pathway

Table S6. Zero-point energy correction (ΔE_{ZPE}), entropy contribution($T\Delta S$), and total free energy correction ($\Delta E_{ZPE} - T\Delta S$) used in the calculations.

Species	$\varDelta E_{\rm ZPE}$ (eV)	<i>T∆S</i> (eV)	ΔE_{ZPE} - $T\Delta S$ (eV)
H ₂	0.27	0.40	-0.13
H ₂ O	0.56	0.67	-0.11
O_2^*	0.12	0.16	-0.04
0*	0.06	0.08	-0.02
OH*	0.33	0.13	0.21
OOH*	0.43	0.21	0.22

Table S7. The lattice parameters of bulk NiTe in R-3m phase and the adsorption energy of O₂ on monolayer NiTe in different calculations. The results of calculation in solvent model have been used in the above analysis.

	Lattice parameters (Å)
Experimental result ¹⁰	a=b=c=7.04
Theoretical result	a=b=c=7.06
Theoretical result (U=6 eV)	a=b=c=6.93
	Adsorption energy of O ₂ (eV)
Monolayer NiTe	Adsorption energy of O ₂ (eV) 0.13
Monolayer NiTe Monolayer NiTe (solvent model)	Adsorption energy of O ₂ (eV) 0.13 0.01

References

1 Wang, Y.; Perdew, J. P., Spin scaling of the electron-gas correlation energy in the high-density limit. *Phys. Rev. B* 1991, **43** (11), 8911-8916.

2 Kresse, G.; Furthmüller, J., Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. *Phys. Rev. B* 1996, **54 (16)**, 11169.

3 Monkhorst, H. J.; Pack, J. D., Special points for Brillouin-zone integrations. *Phys. Rev. B* 1976, **13 (12)**, 5188-5192.

4 Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jónsson, H., Origin of the Overpotential for Oxygen Reduction at a Fuel-Cell Cathode. *J. Phys. Chem. B* 2004, **108 (46)**, 17886-17892.

5 Mathew, K.; Sundararaman, R.; Letchworth-Weaver, K.; Arias, T. A.; Hennig, R. G. J. Chem. Phys. 2014, 140, 084106.

6 Wang, Y.; Li, Y.; Heine, T., PtTe Monolayer: Two-Dimensional Electrocatalyst with High Basal Plane Activity toward Oxygen Reduction Reaction. *J. Am. Chem. Soc.* 2018, **140 (40)**, 12732-12735. 7 Wang, Y.; Zhou, K., Two-dimensional metallic tantalum ditelluride with an intrinsic basal-plane activity for oxygen reduction: A microkinetic modeling study. *Green Energy Environ.* 2022, **7 (3)**, 525-532.

8 Liu, T.; Wang, Y.; Li, Y., NiTe Monolayer: Two-Dimensional Metal with Superior Basal-Plane Activity for the Oxygen Reduction Reaction. *J. Phys. Chem. C* **2021**, *125* (35), 19164-19170.

9 X Zhao, L.; Yu, G.; Huang, X.; Chen, W., Realizing Efficient Catalytic Performance and High Selectivity for Oxygen Reduction Reaction on a 2D Ni₂SbTe₂ Monolayer. *Inorg. Chem.* 2022, **61** (4), 2284-2291.

10 Dvoryankina, G. G.; Pinsker, Z. G. A Study of Thin Layers of Phases in the Ni-Te System. A study of the Beta-Phase of NiTe. *Sov. Phys. Crystallogr.* 1964, **8**, 448–451.