
 S1 

 

 

Electronic Supplementary Information 

 

 

 

Orientational self-sorting in cuboctahedral Pd cages 

 

Ru-Jin Li,a Andrew Tarzia,b Victor Posligua,b Kim E. Jelfs,b Nicolas 

Sanchez,c Adam Marcus,c Ananya Baski,d Guido H. Clever,d Farzaneh 

Fadaei-Tirani,a and Kay Severin*a 

 

a Institut of Chemical Sciences and Engineering, École Polytechnique Fédérale de 

Lausanne (EPFL), 1015 Lausanne, Switzerland 

b Department of Chemistry, Molecular Sciences Research Hub, Imperial College 

London, White City Campus, 82 Wood Lane, London, W12 0BZ, UK. 

c Institut of Mathematics, EPFL, 1015 Lausanne, Switzerland 

d Fakultät für Chemie und Chemische Biologie, Technische Universität Dortmund, 

Universität Dortmund, 44227 Dortmund, Germany 

  

Electronic Supplementary Material (ESI) for Chemical Science.
This journal is © The Royal Society of Chemistry 2022



 S2 

Table of Contents 

1 General ....................................................................................................................... 3 

2 Syntheses ................................................................................................................... 4 

2.1 Synthesis of the ligands ............................................................................................... 4 

2.2 Syntheses of the cages ............................................................................................... 10 
2.2.1 [Pd12(L1)24](BF4)24 .......................................................................................................................... 10 
2.2.2 [Pd12(L1)24](NO3)24.......................................................................................................................... 14 
2.2.3 [Pd24(L2)48](BF4)48 .......................................................................................................................... 18 

3 Geometric analyses of potential isomers ............................................................ 20 

3.1 Analysis of [Pd12L24]24+ ................................................................................................ 20 

3.2 Analysis of [Pd6L12]12+ .................................................................................................. 22 

3.3 Analysis of [Pd24L48]48+ ................................................................................................ 24 

4 Computational analysis of the potential isomers ............................................... 26 

4.1 Counting with the Orbit–Stabilizer Theorem ............................................................ 27 

4.2 Computational considerations ................................................................................... 29 

4.3 Numerical results ......................................................................................................... 30 

5 Computational modelling of cage structures ...................................................... 31 

5.1 Cage construction ....................................................................................................... 31 

5.2 Density functional theory calculations ..................................................................... 32 

5.3 Cage analysis ............................................................................................................... 33 

5.4 Analysis of Pd24L48 systems ....................................................................................... 34 

6 Crystallographic analysis ...................................................................................... 35 

7 References ............................................................................................................... 37 
 

  



 S3 

1 General 

All chemicals were obtained from commercial sources and used without further purification unless 

stated otherwise.  

NMR spectra were measured on a Bruker Avance III HD spectrometer (1H: 400 MHz) equipped with 

a BBFO-Plusz 5 mm probe, a Bruker Avance III spectrometer (1H: 400 MHz) equipped with a BBFOz 5 

mm probe, and a Bruker Avance III spectrometer (1H: 800 MHz) equipped with a Prodigy BBO 10 mm 

cryoprobe, a Bruker Avance II HD spectrometer (13C: 201 MHz) equipped with a TBIxyz 5 mm probe. 

The chemical shifts are reported in parts per million (ppm) using the solvent residual signal as a 

reference. 

High resolution mass spectrometry experiments were carried out using a hybrid ion trap-Orbitrap 

Fourier transform mass spectrometer, Orbitrap Elite (Thermo Scientific) equipped with a TriVersa 

Nanomate (Advion) nano-electrospray ionization source. Mass spectra were acquired with a minimum 

resolution setting of 120,000 at 400 m/z. To reduce the degree of analyte gas phase reactions leading 

to side products unrelated to solution phase, the transfer capillary temperature was lowered to 50 °C. 

Experimental parameters were controlled via standard and advanced data acquisition software. 

Cryo spray ionization (CSI) mass spectrometry experiment was operated in the positive ion mode and 

performed on a Bruker timsTOF instrument with Cryo spray attachment. The temperature of the 

nebulizing and drying gases was set at –40 °C. The sample was introduced into the mass spectrometer 

ion source by direct infusion using a syringe pump (sample concentration: 18.75 μM, solvent: 

acetonitrile, flow rate: 180uL/h, capillary voltage: 2500 V, end plate offset voltage: 200 V, dry 

temperature: 233 K, funnel 1 RF: 150V, funnel 2 RF: 150 V, multiple RF: 150 V, deflection delta: 60 V, 

quadrupole ion energy: 3 V, collision energy: 3 V, transfer time: 80 µs, prepulse storage: 15 µs).  
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2 Syntheses 

2.1 Synthesis of the ligands 

 

L-Br: 1,4-Dibromobenzene (472 mg, 2.0 mmol), pyridin-4-ylboronic acid (246 mg, 2.0 mmol), Pd(PPh3)4 

(115 mg, 0.1 mmol), and K2CO3 (0.6 g, 4 mmol) were combined in a 50 mL Schlenk tube. After 

vacuum/backfilling with N2 for three times, 20 mL degassed toluene/EtOH/H2O (2:1:1) was added with 

a syringe. The mixture was heated at 85 °C overnight. After cooling to RT, and reaction was quenched 

with water. The product was extracted with DCM (2 x 50 mL). The combined organic phase was washed 

with water (2 x 50 mL) and brine (50 mL), and dried over MgSO4. The solvent was removed under 

reduced pressure, and the residue was purified by column chromatography on silica to yield L-Br as a 

white powder (300 mg, 1.28 mmol, 64%). 1H NMR (400 MHz, CDCl3) δ 8.72 – 8.66 (m, 2H), 7.69 – 7.63 

(m, 2H), 7.60 – 7.56 (m, 2H), 7.56 – 7.50 (m, 2H). 13C NMR (101 MHz, CDCl3) δ 148.70, 136.44, 132.70, 

128.82, 124.52, 122.03. ESI-MS: m/z calculated for C11H9NBr [M+H]+ 235.99, found 235.99. 

 

Figure S1. 1H NMR (400 MHz, CDCl3) spectrum of L-Br.  
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Figure S2. 13C NMR (101 MHz, CDCl3) spectrum of L-Br.  
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L1: Pyridin-3-ylboronic acid (185 mg, 1.5 mmol), L-Br (300 mg, 1.28 mmol), Pd(PPh3)4 (81 mg, 

0.07 mmol), and K2CO3 (0.6 g, 4 mmol) were combined in a 50 mL Schlenk tube. After 

vacuum/backfilling with N2 for three times, 20 mL degassed toluene/EtOH/H2O (2:1:1) was added with 

a syringe. The mixture was heated at 85 °C overnight. After cooling to RT, the reaction was quenched 

with water, and the product was extracted with DCM (2 x 50 mL). The combined organic phase was 

washed with water (2 x 50 mL) and brine (50 mL), and dried over MgSO4. The solvent was removed 

under reduced pressure, and the residue was purified by column chromatography on silica to yield L1 

as a brown powder (140 mg, 0.60 mmol, 47%). 1H NMR (400 MHz, CD3CN) δ 8.92 (dd, J = 2.4, 0.8 Hz, 

1H), 8.68 – 8.62 (m, 2H), 8.59 (dd, J = 4.8, 1.6 Hz, 1H), 8.06 (ddd, J = 8.0, 2.4, 1.6 Hz, 1H), 7.91 – 7.86 

(m, 2H), 7.85 – 7.80 (m, 2H), 7.70 – 7.65 (m, 2H), 7.46 (ddd, J = 7.9, 4.8, 0.9 Hz, 1H). 13C NMR (101 

MHz, CD3CN) δ 151.27, 149.83, 148.97, 147.98, 139.45, 138.48, 136.33, 135.18, 128.74, 128.61, 

124.69, 122.30. ESI-MS: m/z calculated for C16H13N2 [M+H]+ 233.11, found 233.11. 

 

Figure S3. 1H NMR (400 MHz, CD3CN) spectrum of ligand L1.  
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Figure S4. 13C NMR (101 MHz, CD3CN) spectrum of ligand L1.  
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L2: Excess imidazole (870 mg, 12.8 mmol), L-Br (300 mg, 1.28 mmol), CuI (25 mg, 0.13 mmol), and 

K2CO3 (0.3 g, 2 mmol) were combined in a 25 mL Schlenk tube. After vacuum/backfilling with N2 for 

three times, the mixture was heated at 150 °C overnight without any solvent. After cooling to RT, DCM 

(150 mL) was added. The organic phase was washed with water (2 x 100 mL) and brine (100 mL), and 

dried over MgSO4. The solvent was removed under reduced pressure, and the residue was purified by 

column chromatography on silica to yield L2 as a brown powder (246 mg, 1.11 mmol, 87%).  

1H NMR (400 MHz, CD3CN) δ 8.69 – 8.61 (m, 2H), 8.02 (t, J = 1.1 Hz, 1H), 7.92 – 7.83 (m, 2H), 7.70 – 

7.62 (m, 4H), 7.53 (t, J = 1.4 Hz, 1H), 7.14 (t, J = 1.2 Hz, 1H). 13C NMR (101 MHz, CD3CN) δ 151.33, 

147.42, 138.94, 137.46, 136.55, 131.16, 129.40, 122.35, 122.23, 118.96. ESI-MS: m/z calculated for 

C14H12N3 [M+H]+ 222.10, found 222.10. 

 

Figure S5. 1H NMR (400 MHz, CD3CN) spectrum of ligand L2.  
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Figure S6. 13C NMR (101 MHz, CD3CN) spectrum of ligand L2.  
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2.2 Syntheses of the cages 

2.2.1 [Pd12(L1)24](BF4)24 

 

The cage [Pd12(L1)24](BF4)24 was synthesized by stirring a mixture of ligand L1 (9 μmol, 200 μL of a 

45 mM stock solution of L1 in d6-DMSO) and [Pd(CH3CN)4](BF4)2 (4.5 μmol, 150 μL of a 30 mM stock 

solution in d6-DMSO) in 650 μL d6-DMSO at 80 °C for 2 days to give 1000 μL of a 0.375 mM solution 

of cage [Pd12(L1)24](BF4)24. 1H NMR (400 MHz, d6-DMSO) δ 9.87 (s, 8H), 9.74 (s, 8H), 9.65 (b, 8H), 

9.55 (b, 16H), 9.51 (s, 8H), 9.38 (b, 16H), 9.36 – 9.30 (b, 16H), 9.22 (b, 16H), 8.48 (b, 24H), 8.20 (b, 

48H), 8.11 – 7.86 (b, 120H). 13C NMR (201 MHz, d6-DMSO) δ 150.93, 150.00 (b), 149.14 (b), 138.67 

(b), 137.11, 136.39, 135.14, 128.08 (b), 124.25 (b). 

 

Figure S7. 1H NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](BF4)24. 
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Figure S8. 13C NMR spectrum (201 MHz, d6-DMSO) of [Pd12(L1)24](BF4)24. 

 

Figure S9. 1H-1H COSY NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](BF4)24.  
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Figure S10. 1H-1H NOESY NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](BF4)24. 

 

Figure S11. 1H-1H DOSY NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](BF4)24 

(D = 5.44 x 10-11 m2 s–1, rdosy = 20 Å). 



 S13 

 

Figure S12. High-resolution ESI mass spectrum of [Pd12(L1)24+nBF4](24–n)+ (n = 11–18). 
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2.2.2 [Pd12(L1)24](NO3)24 

 

The cage [Pd12(L1)24](NO3)24 was synthesized by stirring a mixture of ligand L1 (9 μmol, 200 μL of a 

45 mM stock solution of L1 in d6-DMSO) and Pd(NO3)2 (4.5 μmol, 150 μL of a 30 mM stock solution in 

d6-DMSO) in 650 μL d6-DMSO at 80 °C for 2 days to give 1000 μL of a 0.375 mM solution of cage 

[Pd12(L1)24](NO3)24. 1H NMR (400 MHz, d6-DMSO) δ 10.01 (s, 8H), 9.89 (s, 8H), 9.70 (s, 8H), 9.66 (b, 

8H), 9.57 (b, 16H), 9.47 (b, 16H), 9.43 – 9.36 (b, 16H), 9.33 (b, 16H), 8.49 (b, 24H), 8.23 (b, 48H), 8.05 

(b, 96H), 7.90 (b, 24H). 13C NMR (201 MHz, d6-DMSO) δ 151.04, 150.03 (m), 149.12 (m), 138.39 (m), 

137.11, 136.23, 135.01, 128.10 (b), 124.23 (m). 

 

Figure S13. 1H NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](NO3)24. 
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Figure S14. 13C NMR spectrum (201 MHz, d6-DMSO) of [Pd12(L1)24](NO3)24. 

 

Figure S15. 1H-1H COSY NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](NO3)24.  
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Figure S16. 1H-1H NOESY NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](NO3)24. 

 

Figure S17. 1H-1H DOSY NMR spectrum (400 MHz, d6-DMSO) of [Pd12(L1)24](NO3)24 

(D = 5.40 x 10-11 m2 s-1, rdosy = 20 Å). 
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Figure S18. High-resolution ESI mass spectrum of [Pd12(L1)24+nNO3](24-n)+ (n = 17 or 18). 
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2.2.3 [Pd24(L2)48](BF4)48 

 

The cage [Pd24(L2)48](BF4)48 was synthesized by stirring a mixture of ligand L2 (9 μmol, 200 μL of a 

45 mM stock solution of L2 in CD3CN) and [Pd(CH3CN)4](BF4)2 (4.5 μmol, 150 μL of a 30 mM stock 

solution in CD3CN) in 650 μL d6-DMSO at 70 °C for 3 h to give 1000 μL of a 0.188 mM solution of cage 

[Pd24(L2)48](BF4)48. 

The 1H NMR spectrum of the reaction mixture showed broad peaks in the aromatic region (Fig. S19). It 

is worth noting that line broadening of the NMR signals is expected for assemblies of this size. 

According to the DOSY NMR spectrum, the peaks belong to species with a uniform diffusion coefficient 

(Fig. S20). The MS data confirmed that a [Pd24(L2)48]48+ assembly had formed (Fig. S21). Unfortunately, 

the available analytical data do not allow us to draw conclusions about the degree of orientational self-

sorting for this system. 

 

Figure S19. 1H NMR spectrum (800 MHz, CD3CN) of [Pd24(L2)48](BF4)48. 
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Figure S20. 1H-1H DOSY NMR spectrum (400 MHz, CD3CN) of [Pd24(L2)48](BF4)48 

(D = 2.31 x 10-10 m2 s-1, rdosy = 28 Å). 

 

Figure S21. Cryo spray ionization (CSI) mass spectrum of [Pd24(L2)48+nBF4](48–n)+ (n = 33–38). 
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3 Geometric analyses of potential isomers 

3.1 Analysis of [Pd12L24]24+ 

 

 

Figure S22. When combined with a linear connector M, a low-symmetry ligand L with a 120° angle 
between the coordinate vectors can form three different M6L6 hexagons (A–C). 
 

 
Figure S23. Re-construction of a cuboctahedron from hexagon A gives three M12L24 isomers. The 
bottom view shows the relative orientation of the ligands and the point group of the assembly. 
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Figure S24. Re-construction of a (distorted) cuboctahedron from hexagon C gives one M12L24 isomer. 
The bottom view shows the relative orientation of the ligands and the point group of the assembly (D2h). 
 

 

 

Figure S25. Graphic representations of the structures A4-1, A4-2, A4-3, and C4 (top row) and the number 
of chemically distinct ligands for these assemblies (bottom row). The color coding shows the symmetry-
related ligands. 
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3.2 Analysis of [Pd6L12]12+ 

Assemblies of type M6L12 can be deconstructed into three orthogonal M4L4 tetragons, with the metal 

centers having an occupancy of 50% (Fig. S26a). Let’s consider the case, which is schematically 

depicted in Fig. S26b. The assemblies are based on ditopic ligands having the following general 

characteristics: the ligand is perfectly rigid, the donor groups are chemically distinct (red/blue), the 

coordinate vectors form an angle of 90°, and there is an equal distance between the donor atoms and 

the intersection of the coordinate vectors (a = b). When combined with metal ions that act as linear 

connectors (e.g. Pd2+), these ligands can form four different M4L4 tetragons (D–G). The final M6L12 

complex can be obtained from all possible D/E/F/G combinations. Consequently, there is no intrinsic 

bias for a particular isomer. 

 

 

Figure S26. a) Deconstruction of a M6L12 assembly into three tetragons with a metal occupancy of 50%; 
b) A ligand with two distinct donor groups (blue/red), a 90° angle between the coordinate vectors, and 
equal lengths a and b can form four different M4L4 tetragons (D–G). All possible combinations of 
tetragons allow the construction of an M6L12 assembly; c) A ligand with two distinct donor groups 
(blue/red), a 90° angle between the coordinate vectors, and non-equal lengths a and b can form two 
different M4L4 tetragons, D’ and E’. The construction of an M6L12 assembly can only be achieved from 
D’, leading to a complex with exclusive cis coordination at the metal centers (for simplicity, the M12L24 
complex is depicted with linear ligands). 
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A different situation is encountered when the distance between the donor atoms and the intersection of 

the coordinate vectors is not equal (Fig. S26c). A geometric match between the ligands and the linear 

metal (M) connectors is only found for two tetragons, D’ and E’. An M6L12 complex can be formed from 

three D’, but not from three E’, or from a mixture of D’ and E’ (the M···M distances are not compatible). 

There is only one way to construct an M6L12 assembly from D’, and the resulting complex shows 

exclusively cis coordination at the six metal centers. 

The conclusion from this geometrical analysis is the following: for rigid, ditopic ligands with a 90° angle 

between the coordinate vectors, the distances a and b between the donor atoms and the intersection 

of the coordinate vectors are crucial. For ligands with a large difference between a and b, orientational 

self-sorting is expected, and the preferred M6L12 isomer has exclusive cis coordination at the six metal 

centers. 
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3.3 Analysis of [Pd24L48]48+ 

A rhombicuboctahedron can be deconstructed into 8 octagons (Fig. S27). A low-symmetry ligand with 

a bend angle of 135° and distinct lengths a and b can form four different octagons (H–K), assuming 

that the metals connect the ligands in a perfectly linear fashion. Re-construction of a 

rhombicuboctahedron can be achieved from H, but not from I, J or K, or from mixtures of H/I/J/K. The 

combination of six octagons H allows forming six different M24L48 isomers. All six isomers display 

exclusive cis coordination at the metal centers. As for octahedral and cuboctahedral assemblies, a cis 

arrangement is favored from a purely geometrical point of view. 

c 

Figure S27. a) Deconstruction of an M24L48 assembly into six octagons with a metal occupancy of 50%; 
b) A ligand with two distinct donor groups (blue/red), a 135° angle between the coordinate vectors, and 
non-equal lengths a and b can form four different M8L8 hexagons (H–K). The construction of an M24L48 
assembly can be achieved from hexagon H (six possible combinations), but not from I, J or K, or from 
mixtures of H/I/J/K. 
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Figure S28. The two opposite triangles in the rhombicuboctahedron define the orientations of the six 

octagons H. There are four triangles with different orientations of the ligands (, , , ). The combination 
of the triangles gives six M24L48 isomers (10 isomers in total, H6-1, H6-2, H6-3, H6-5 are chiral). 
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4 Computational analysis of the potential isomers 

The algorithm  sed to co nt distinct isomers (‘config rations’) is similar to the one introduced in our 

previous work,1 and it is similar in spirit to the one used by Cronin and co-workers.2 These previous 

algorithms, while s fficient for smaller assemblies (e.g. octahedral M6L12 cages), are not suitable for 

larger M12L24 and M24L48 cages due to the explosion in the n mber of config rations. As a res lt, we 

were forced to modify the primary counting method in a way that could accommodate these larger 

cages (a modification which we attempt to explain here). 

The primary idea of the modification is to co nt the n mber of distinct config rations indirectly  sing 

use the Orbit–Stabilizer Theorem3 in a way that is referred to in the combinatorics literat re as “ ólya 

en meration.” The general flow of the algorithms is shown in Fig re S29 (the construction of the 

config rations with at least 1 symmetry) and Fig re S30 (the co nting of the distinct config rations). 

 

 

Figure S29. Constr ction of config rations with at least 1 symmetry.  
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Figure S30. Co nting the distinct config rations. 

 

4.1 Counting with the Orbit–Stabilizer Theorem 

The Orbit–Stabilizer Theorem3 provides a relationship between the n mber of distinct config rations 

(with respect to a collection of symmetries) and the n mber of symmetries each config ration 

possesses. The advantage of this approach comes from the fact that there are a (very) large number 

of config rations with no symmetries at all. So rather than examining all config rations in an exha stive 

manner (as is done previously1,2), we instead generate the m ch smaller set of config rations that have 

symmetries by iterating over all possible symmetries (and then examine these config rations in an 

exha stive manner). The fact that all other config rations have no symmetries is s fficient to  se the 

Orbit–Stablilizer Theorem without having to generate them explicitly. As the algorithm depends directly 

on o r ability to generate all config rations with symmetries correctly and efficiently, we will attempt to 

explain this part in a way accessible to non-mathematicians. For those interested in learning more, we 

recommend the work by Dummet and Foote.3 

We start by explaining the use of the Orbit–Stabilizer Theorem. For the purpose of this explanation, 

let  s define an ‘action’ on a 3-dimensional cage to be any rigid transformation comprised of a sequence 

of rotations and or reflections with the property that every ligand either 

1. moves to a place where a different ligand was previo sly, or 

2. stays in the same place but reverses direction. 

The number of possible actions will depend on the number of ligands as well as the structure of the 

cage. This idea of ‘actions’ is intended to give us a way to count what we know (intuitively) as a 

‘symmetry’ in a config ration.  recisely, a ‘symmetry’ exists in a config ration whenever there exists an 

action for which the orientation of ligands is the same before and after that action. 
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When it comes to the way actions affect ligands, there will be two nat ral things we will want to 

consider 

• or each ligand l, we will consider the set of sites that this ligand visits over repeated application 

of an action g (which we will call its ‘cycle  nder g). 

• For each action g, we will consider the set of config rations for which the action g is a symmetry 

— that is, the config rations before and after applying g are the same. We will call such 

config rations “fixed points of g” and denote the set of these config rations as fix(g). 

As an example, consider a cube sitting on a table under the action g = “spin the c be 90 degrees in 

s ch a way that the bottom face stays in contact with the table.” Then Fig re S31(a) shows the 3 cycles 

(blue, green, and red) caused by g, and (b) and (c) are two of the config rations in fix(g) for this g. 

 

Figure S31. (a) The cycles (red, blue, green) formed by g and (b), (c) two elements of fix(g) (where 
g is the 90 degree spin that leaves the bottom face touching the table). 
 

It is possible for a given config ration to be fixed with respect to m ltiple actions (say g1 and g2), in 

which case it will be listed in fix(g1) and fix(g2). Returning to the example above, each of the 

config rations shown in Fig re S31 will appear in fix(g) for (at least) 3 different actions g: 

1. the 90 degrees turn that keeps the bottom face in contact with the table 

2. the same turn, but 180 degrees 

3. the same turn, but 270 degrees 

Note that if we do the same turn, but 360 degrees, then it takes us back to where we started (so is 

not a tr e “action”) and larger degrees simply repeat the actions listed above (for example, 450 degrees 

is the same as 90 degrees as far as the ligands are concerned). 

As mentioned previously, the Orbit–Stabilizer Theorem provides a relationship between the number 

of distinct config rations that one can obtain by applying a collection of actions and the number of 

symmetries it has, and the n mber of symmetries a config ration has can now be determined by 

co nting the n mber of times a config ration appears in some fix(g). Specifically, if there are d distinct 

actions and we define 

• orbit(C) to be the n mber of different config rations that can be achieved by applying all 

possible actions to the config ration C, and 

• symm(C) to be the n mber of times the config ration C appears in some fix(g), 

thena 

 
a Note that is not true for any collection of actions — the actions must form what is known in mathematics as a 
“gro p” — b t it will apply for collections of the type “all actions that correspond to rotations” and “all actions that 
correspond to combinations of rotations and reflections” which are the ones we will be interested in here. 
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(orbit(C) + 1) × (symm(C) + 1) = d + 1 

 

Note that the  1 appears each time beca se we need to incl de the original config ration in each 

count (not just the ones generated by actual actions).b 

Another way to think about orbit(C) is as the set of config rations that we want to treat as being ‘the 

same’ with respect to these actions. So once we know the n mber of config rations in orbit(C) for every 

C, we know how many config rations to s btract from (or divide o t of) the total. 

 

4.2 Computational considerations 

The main reason for using the approach above (as opposed to the brute force method) is com-

putational. For n > 20, the ability to work with all of the 2n different config rations becomes increasingly 

diffic lt. The method disc ssed above wo ld (theoretically) allow  s to work with a substantially smaller 

set of config rations and as a res lt co ld (theoretically) be applied to isomers with a larger n mber of 

ligands. O r  se of the word “theoretically” at this point is d e to the fact that there are still two things 

that will affect the running time of the algorithm: 

• The n mber of config rations with at least 1 symmetry 

• The constr ction of the sets fix(g) for each g (this was done in an exhaustive manner in our 

previous work,1 which will be too slow) 

Both issues can be resolved using the cycle decompositions mentioned earlier. A config ration 

remains fixed  nder a given action if and only if all of its cycles remain fixed  nder that action. 

F rthermore, it is easy to calc late which which ligand orientations that can remain fixed within a given 

cycle. 

• If a cycle results in a ligand returning to the same location but with opposite orientation (like a 

reflection) than there will be 0 orientations that remain fixed 

• Otherwise, there will be 2 orientations that remain fixed — start with one ligand (in either of two 

possible orientations) and then orient the other ligands in whatever way the action tells you to. 

The set of config rations fixed by an action g will then consist of all possible ways of combining the 

fixed cycle orientations — a total of 0 (if any of the cycles has 0 orientations) or 2m. Furthermore, we 

can record these config rations efficiently by simply recording the cycle orientations (and not b ilding 

the f ll config rations explicitly). 

Hence we can b ild each fix(g) q ickly, and so it remains to see how many config rations will arise 

o t of this proced re. For this, let  s ret rn to the definition of ‘actions’ and note that if the second 

possibility happens (some ligand stays in the same place b t reverses direction), then fix(g) will have 

no config rations in it. So we only need to consider those actions g for which the first possibility (every 

ligand moves to a place where a different ligand was previously). But the fact that every ligand moves 

to a new place means that every cycle formed by such an action must have at least 2 ligands in it. Since 

the cycles are disjoint, this means an isomer with n ligands will be able to have at most n/2 cycles under 

 
b Another way to accomplish this (and the way it is typically done in mathematics) is to allow for a ‘do nothing’ 
action — for this reason, form las here will differ slightly from ones in mathematical texts by this factor of 1. 
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such an action g. Hence the maxim m n mber of config rations that we will need to consider for each 

g will be 2n/2. 

This gives us an indication as to which cages we expect that this algorithm will be able to handle 

(essentially double the number of ligands we were able to handle previously). This makes the 

cuboctahedron (24 ligands) easily accessible using this method but still puts the rhombicuboctahedron 

(48 ligands) in precario s territory. However, some small modifications can be applied that speed up 

the handling of the extreme case (when all cycles are size 2) and this speeds up the algorithm enough 

to allow it to handle the rhombic boctahedron as well. F rther improvements (and possibly a different 

approach) would be needed to handle isomers with more than 48 ligands. 

 
 

4.3 Numerical results 

Here we present the exact results for M12L24 (the cuboctahedron) and M24L48 (the 

rhombicuboctahedron). We will use the following notation: for an integer t, we will let 

1. at = the n mber of config rations with t−1 reflection symmetries  

2. bt = the n mber of config rations with t−1 rotation reflection symmetries 

3. ct = the number of chiral pairs in at 

4. dt = the number of non-chiral (reflection symmetric) config rations in at 

Note that the t−1 comes from the fact that the counts in at and bt incl de the original config rations 

as well. In both cases (cuboctahedron and rhombicuboctahedron), at and bt were computed using the 

program above and then ct and dt derived using the identities 

 

at = 2ct + dt and b2t = c2t + dt 

 
Table S1. Results for M12L24 (the cuboctahedron). 

 
 
 

Table S2. Results for M24L48 (the rhombicuboctahedron). 

 
 
The code for the computations is publicly available at doi: 10.5281/zenodo.6614832 
  

https://zenodo.org/record/6614833#.Yr8JH3axUQ8
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5 Computational modelling of cage structures 

5.1 Cage construction 

Using stk,4,5 we built a single conformer of ligand L1, then ran a CREST6 conformer search in the 

gas phase using an energy window of 5 kcal mol–1 to get the lowest energy conformer, which was 

further optimized at the GFN2-xTB7,8 level of theory with “extreme” convergence criteria (energy 

converged within 5E-8 Eh and gradient norm converged within 5E-5 Ehbohr–1) and used to build all 

subsequent cages. 

The cage construction process places palladium atoms on the four-connected nodes and the ligand 

on two-connected nodes of the M12L24 topology graph defined in stk. The ditopic ligands are aligned 

such that their pyridyl functional groups point toward their neighboring Pd atom. Different isomers are 

defined by modifying the relative orientation of each ligand. The default alignment in stk does not fit with 

a specific symmetry and is used here as a benchmark for a low-symmetry isomer (“def”). The different 

ligand orientations (termed “vertex alignment” in stk) required to generate the four expected isomers, 

“A4-1”, “A4-2”, “A4-3” and “C4” were determined by vis al inspection. The maps are provided in the code 

https://github.com/andrewtarzia/big_unsymm/blob/main/build_cage.py.  

Each cage has a charge of 24+ and undergoes an optimization sequence similar to recent work on 

unsymmetrical Pd2L4 cages:9 

1. stk assembles structures based on predefined topology graphs with unphysical, long bonds 

between building blocks (nodes).  

2. The cage structure is geometry optimized using UFF 10–12 in the General Utility Lattice Program 

(GULP; version 5.1),13,14 with the conjugate gradient method and then the Newton-Raphson 

method. The atom typing is handled by a  ython implementation of the “ForceFieldHelpers” 

module in RDKit,15 except for the metal atoms, which are manually typed to match the target 

types in UFF (because RDKit does not handle the metal-atom typing). Palladium atoms are 

assigned the sq are planar atom type, “ d2+”. The bonding  sed within GUL  matches the 

bonding in the stk molecule. 

3. A conformer search is performed starting from the UFF optimized cage structure using high-

temperature molecular dynamics (MD). Two sequential MD runs in the NVT ensemble, using 

the leapfrog verlet integrator, are performed using UFF and GULP at 1000 K. The first run is a 

short equilibration with a time step of 0.25 fs for 1.0 ps. The production run is performed for 

200.5 ps with a time step of 0.75 fs. From the production run, 40 conformers are extracted at 

5.0 ps intervals.  

4. Each extracted conformer is optimized using UFF in Gulp. 

5. The lowest energy cage conformer is optimized using GFN2-xTB7,8 in the xtb software8 with the 

extreme convergence criteria in the gas phase.  

6. Finally, using Gaussian16 code16, density functional theory calculations (DFT) were also 

performed to optimize the cage structures. For these calculations, hybrid (PBE0D3BJ17) and 

screened-hybrid (HSE0618,19) functionals were considered.  

https://github.com/andrewtarzia/big_unsymm/blob/main/build_cage.py
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5.2 Density functional theory calculations 

We performed DFT geometry optimizations to validate the relative energetics of def, A4-1, A4-2, 

A4-3, and C4 cage structures. Hybrid and hybrid-screened methods on the models mentioned above 

were performed using the Gaussian16 code.16 The calculations were all-electron (i.e., no 

pseudopotentials were employed) and the Ahlrichs basis set Def2-SVP20 was used to expand the 

wavefunctions, which has polarization in all atoms. Each palladium has a charge of 2+ (giving the 

system a charge of 2n, where n is the number of Pd atoms) and was assumed to be in the low-spin 

state. 

As shown in Debefve and  ollock’s work,21 the Perdew-Burke-Ernzerhof hybrid functional (PBE0)17 

is suitable for modelling structures of complexes containing third-row transition metals. PBE0 contains 

calibrated parameters only in the added dispersion term, which promises low-cost computational 

geometry optimizations for large systems.22 Grimme’s D3BJ dispersion correction23 was used in PBE0 

calc lations together with an acc rate pr ned grid ('S perfinegrid’ option in Ga ssian16), as 

recommended for optimizations of large systems.16 Relative energies obtained from the optimized 

cages suggest that the three A4 isomers are more stable than isomers C4 and def. 

To take into account the effects of nonlocal exchange, we applied the screened hybrid functional 

developed by Heyd, Scuseria and Ernzerhof (HSE06).18,19 This functional is similar to PBE0 but uses a 

screened Coulomb interaction for the exact exchange part with an empirically determined screening 

parameter.24 It is well known that the HSE06 functional predicts accurate electronic structures and band 

gap values25–29 and exhibits significant improvement with respect to PBE0 as shown in Cui et al..24 

However, this functional allowed us to describe the geometries and relative energies of our models, 

taking A4-3 as the most stable cage which agrees with previous GFN2-xTB calculations and 

experimental data. 

It is imperative to understand that all the results obtained through these approximations (GFN2-xTB 

and DFT calculations) demonstrate the difficulty in discerning which is the most stable cage, especially 

between A4 isomers (~4 kJ mol-1). 

Input files and output files for DFT calculations can be accessed at: 

https://github.com/andrewtarzia/citable_data/tree/master/li_2022   

https://github.com/andrewtarzia/citable_data/tree/master/li_2022
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5.3 Cage analysis 

 

Figure S32. [Pd12L24]24+ structures of five cage isomers after (top) GFN2-xTB, (middle) PBE0/Def2-
SVP and (bottom) HSE/Dev2-SVP optimization. Hydrogen atoms are omitted for clarify, carbon atoms 
are grey, nitrogen is blue, and palladium is cyan. 

 

 

Table S3. Relative energies of the five Pd12L24 cage isomers (in kJ mol–1) for different methods 

Method def A4-1 A4-2 A4-3 C4 

GFN2-xTB 117.73 44.47 7.64 0.00 104.45 

PBE0-D3BJ/Def2-SVP 155.05 0.00 7.09 1.93 152.82 

HSE/Def2-SVP 158.53 7.33 4.21 0.00 156.51 
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5.4 Analysis of Pd24L48 systems 

Models of six Pd24L48 isomers were constructed manually as xyz files. Each structure was geometry 

optimized using GFN2-xTB to the ‘normal’ convergence criteria (energy converged within 5E-6 Eh and 

gradient norm converged within 1E-3 Ehbohr–1) and their final energies shown in Table S4. Figure S31 

shows their structures. All files are available at: 

https://github.com/andrewtarzia/citable_data/tree/master/li_2022  

 

Table S4. Relative energies of the six Pd24L48 isomers (in kJ mol–1) after GFN2-xTB optimization 

Method H6-1 H6-2 H6-3 H6-4 H6-5 H6-6 

GFN2-xTB 0.0 7.9 7.3 5.1 8.4 15.4 

 

 
 

Figure S33. [Pd24L48]48+ structures of six cage isomers after GFN2-xTB optimization. Hydrogen atoms 
are omitted for clarify, carbon atoms are grey, nitrogen is blue, and palladium is cyan. 

 
  

https://github.com/andrewtarzia/citable_data/tree/master/li_2022
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6 Crystallographic analysis 

A single colorless block crystal of [Pd12(L1)24]Cl24 was obtained by slow vapor diffusion of 

THF/Et2O (v/v = 1 : 1) into a DMSO solution of [Pd12(L1)24](NO3)24 (0.375 mM) for several months. The 

origin of the chloride anions is not known. Maybe there were traces of chloride in the Pd(NO3) starting 

material (for a discussion of this problem, see: 

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01714?ref=PDF ), and the cage with chloride anions 

crystallized preferentially, or there was some anion exchange with the glassware during the very long 

crystallization period. 

Bragg-intensities of [Pd12(L1)24]Cl24 were collected at 140 K using CuKα radiation. A suitable 

crystal with dimensions 0.23 × 0.16 × 0.08 mm3 was selected and mounted on an XtaLAB Synergy 

R, DW system, and HyPix-Arc 150 diffractometer. The dataset was reduced and corrected for 

absorption, with the help of a set of faces enclosing the crystals as snugly as possible, with the latest 

available version of CrysAlisPro.30 

The structure solution and refinement were performed by the latest available version of ShelXT31 

and ShelXL32 using Olex233 as the graphical interface. All non-hydrogen atoms were refined 

anisotropically using full-matrix least-squares based on |F|2. The hydrogen atoms were placed 

at calc lated positions employing the “riding” model, where each H-atom was assigned a fixed 

isotropic displacement parameter with a value equal to 1.2 Ueq of its parent C-atom. The RIGU and SIMU 

restraints were applied to the displacement parameters of all non-hydrogen atoms. Additional counter-

ions and solvent molecules, too disordered to be located in the electron density map, were taken into 

account using the Olex233 solvent-mask procedure. 

Crystallographic and refinement data of [Pd12(L1)24]Cl24 are summarized in Table S5. The CCDC 

number 2161290 contains the crystallographic data for the compound [Pd12(L1)24]Cl24, in this paper. 

These data can be obtained free of charge via www.ccdc.cam.ac.uk/data_request/cif. 

 

Figure S32. Molecular structures of [Pd12(L1)24]Cl24 as determined by X-ray crystallography. 
Displacements ellipsoids are drawn at the 50% probability level. Hydrogen atoms have been omitted 
for clarity. 
  

https://pubs.acs.org/doi/10.1021/acs.inorgchem.1c01714?ref=PDF
http://www.ccdc.cam.ac.uk/data_request/cif
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Table S5. Crystal data and structure refinement for [Pd12(L1)24]Cl24 

 

Compound [Pd12(L1)24](Cl)24 

Formula C384H288Cl24N48Pd12  

Dcalc./ g cm-3 0.267  

/mm-1 1.286  

Formula Weight 7702.21  

Color colourless  

Shape irregular-shaped  

Size/mm3 0.22×0.13×0.07  

T/K 140.00(10)  

Crystal System orthorhombic  

Space Group Cmme  

a/Å 54.9549(13)  

b/Å 61.3516(13)  

c/Å 56.7355(12)  

/° 90  

/° 90  

/° 90  

V/Å3 191288(7)  

Z 4  

Z' 0.25  

Wavelength/Å 1.54184  

Radiation type CuKα 

min/° 2.121  

max/° 44.573  

Measured Refl's. 243338  

Ind't Refl's 38617  

Refl's with I > 2σ(I) 14506  

Rint 0.1401  

Parameters 871  

Restraints 1639  

Largest Peak/e Å-3 1.366  

Deepest Hole/e Å-3 -0.948  

GooF 1.107  

wR2 (all data) 0.4058  

wR2 0.3536  

R1 (all data) 0.1868  

R1 0.1224  

CCDC number 2161290 
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