SUPPORTING INFORMATION: PART A

Hydroxy-directed iridium-catalyzed enantioselective formal β -C(sp²)–H allylic alkylation of α , β -unsaturated carbonyls

Sankash Mitra, Rahul Sarkar, Aditya Chakrabarty and Santanu Mukherjee*

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA

*Corresponding author: E-mail: sm@iisc.ac.in

Table of Contents

A.	General information	S-2
B.	Representative bioactive natural products containing 3-hydroxypyranone	S-3
C.	Procedure for the synthesis of 3-hydroxypyranone derivatives	S-3
D.	Procedure for the synthesis of allylic alcohols	S-6
E.	Preliminary studies on asymmetric allylic alkylation of kojic acid	S-6
F.	Promoter and reaction conditions optimization for asymmetric allylic alkylation of kojic acid	S-7
G.	General procedure for the preparation of racemic products (rac-3)	S-9
H.	General procedure for the Ir-catalyzed asymmetric allylic alkylation of kojic acid	S-10
I.	Unsuccessful substrates for the asymmetric allylic alkylation reaction	S-21
J.	Large scale synthesis of 3aa and 3ba	S-22
K.	Procedure for the Staudinger reduction of 3da	S-22
L.	Procedure for the selective hydrogenation of the allylic olefin of 3aa	S-23
M.	Procedure for the double silulation and hydroboration of 3aa	S-23
N.	Procedure for the oxidation of 6	S-24
О.	Procedure for the ozonolysis induced cyclization of 7	S-25
P.	Procedure for the selective O-allylation of 3aa	S-26
Q.	Procedure for the ring closing metathesis of 9	S-26
R.	Procedure for the triflyl protection of 3ba	S-27
S.	Procedure for the Suzuki cross coupling of 11 with phenyl boronic acid	S-28
T.	Attempted reductive removal of triflate in 11	S-28

A. General information:

Infrared (FT-IR) spectra were recorded on a Bruker Alfa FT-IR, v_{max} in cm⁻¹ and the bands are characterized as broad (br), strong (s), medium (m), and weak (w). NMR spectra were recorded on Bruker Ultrashield spectrometer at 400 MHz (for ¹H-NMR) and 100 MHz (for ¹³C-NMR). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard [CDCl₃: δ 7.26, CD₃OD: δ 3.31, (CD₃)₂SO: δ 2.50 for ¹H-NMR and CDCl₃: δ 77.16, CD₃OD: δ 49.00, (CD₃)₂SO: δ 39.52 for ¹³C-NMR]. For ¹H-NMR, data are reported as follows: chemical shift, multiplicity (s = singlet, d = doublet, dd = double doublet, ddd = doublet of doublet of doublets, t = triplet, q = quartet, sep = septet, br = broad, m = multiplet), coupling constants (Hz) and integration. High resolution mass spectrometry was performed on Waters XEVO G2-XS QTof instrument. Optical rotations were measured on a JASCO P-2000 polarimeter. Melting points were measured in open glass capillary using Büchi M-560 melting point apparatus. Enantiomeric ratios were determined by Shimadzu LC-20AD HPLC instrument and SPD-20A Diode Array Detector using stationary phase chiral columns (25 cm × 0.46 cm) in comparison with authentic racemic compounds.

Unless stated otherwise, all reactions were carried out with distilled and dried solvents under an atmosphere of nitrogen or argon in oven (120 °C) dried glassware with standard vacuum-line techniques. Organic solvents used for carrying out reactions were dried using standard methods. [Ir(COD)Cl]₂, (*S*)-BINOL and *rac*-BINOL were purchased from Sigma-Aldrich, iminostilbene was purchased from Combi-Blocks and used as received. All work up and purification were carried out with reagent grade solvents in air. Thin-layer chromatography was performed using Merck silica gel 60 F_{254} pre-coated plates (0.25 mm). Column chromatography was performed using silica gel (230-400 or 100-200 mesh). NMR yields were determined by using mesitylene as an internal standard. Unless otherwise noted, all reported yields of the Ir-catalyzed allylation reactions are isolated yields. Chiral ligands used in this work were prepared according to the literature procedure.¹

¹ a) J. Y. Hamilton, D. Sarlah and E. M. Carreira, *Org. Synth*, 2015, **92**, 1-12. b) J. Y. Hamilton, D. Sarlah and E. M. Carreira, *Angew. Chem.*, *Int. Ed.*, 2013, **52**, 7532-7535.

B. Representative bioactive natural products containing 3-hydroxypyranone:

C. Procedure for the synthesis of 3-hydroxypyranone derivatives:

Kojic acid (1a) and 2-hydroxynaphthaquinone (1g) were procured from Avra Synthesis Pvt. Ltd and Sigma-Aldrich respectively and used as received. The other 3-hydroxypyranone derivatives 1b-f, 1h were prepared according to the previously reported procedure and the spectral data are consistent with those described in the literature.²

General procedure A: S1 was prepared according to the reported literature procedure.³ Acyl chlorides were prepared according to the reported literature procedure.⁴ 3-Hydroxypyranone derivatives **1i-j** and **1l** were prepared according to the following modified literature procedure:⁵

² (a) C. V. Credille, B. L. Dick, C. N. Morrison, R. W. Stokes, R. N. Adamek, N. C. Wu, I. A. Wilson and S. M. Cohen, J. *Med. Chem.*, 2018, **61**, 10206-10217. (b) S. M. Meier, M. Novak, W. Kandioller, M. A. Jakupec, V. B. Arion, N. Metzler-Nolte, B. K. Keppler and C. G. Hartinger, *Chem. Eur. J.*, 2013, **19**, 9297-9307. (c) H.-S. Rho, H.-S. Baek, S.-M. Ahn, M.-K. Kim, A. K. Ghimeray, D.-H. Cho and J.-S. Hwang, *Bull. Korean Chem. Soc.*, 2010, **31**, 2375-2378. (d) M. Spadafora, V. Y. Postupalenko, V. V. Shvadchak, A. S. Klymchenko, Y. Mély, A. Burger and R. Benhida, *Tetrahedron*, 2009, **65**, 7809-7816. (e) N. S. Poonia, A. k. Arora and A. V. Bajaj, *Bull. Chem. Soc. Jpn.*, 1980, **53**, 569-570.

³ H. Kaatz, K. Streffer, U. Wollenberger and M. G. Peter, *Naturforsch.* **1999**, *54c*, 70-74.

⁴ S. K. Kariofillis, B. J. Shields, M. A. Tekle-Smith, M. J. Zacuto and A. G. Doyle, *J. Am. Chem. Soc.*, 2020, **142**, 7683-7689.

⁵ S. L. Capim, G. M. Gonçalves, G. C. M. dos Santos, B. G. Marinho and M. L. A. A. Vasconcellos, *Bioorg. Med. Chem.*, 2013, **21**, 6003-6010.

In an oven-dried round-bottom flask, **S1** (1.0 equiv.) was taken along with acyl chloride (1.1 equiv.) and DMAP (0.2 equiv.) under a positive argon pressure. Then CH_2Cl_2 (9 mL/mmol of **S1**) was added, followed by dropwise addition of NEt₃ (4.0 equiv.) and the resulting mixture was stirred at 25 °C for 24 h under argon until TLC (30% EtOAc in petroleum ether) revealed complete consumption of **S1**. The reaction mixture was quenched with saturated NH₄Cl solution and diluted with CH₂Cl₂. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. Combined organic layer was washed with brine, dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography (20-25% EtOAc in petroleum ether) to obtain **S2**.

In an oven-dried round-bottom flask equipped with a magnetic stir bar, **S2** (1.0 equiv.) was taken in dry CH₂Cl₂ (6 mL/mmol of **S2**) under a positive argon pressure, followed by addition of trifluoroacetic acid (TFA) (6.0 equiv.) dropwise at 0 °C. The resulting mixture was gradually allowed to attain ambient temperature and stirred for 4-8 h under argon until TLC (30% EtOAc in petroleum ether) revealed complete consumption of **S2**. The reaction mixture was quenched with saturated NaHCO₃ solution and diluted with CH₂Cl₂. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂. Combined organic layer was washed with brine, dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography to obtain kojic acid derivative **1**.

Compound 1i: Prepared according to the general procedure A; Purified by silica-gel flash column

chromatography (1-4% methanol in CH₂Cl₂); Yellow sticky liquid (205.0 mg, 0.425 mmol, 26% yield over 3 steps); **m.p.** 135-136 °C; **FT-IR (Thin film):** 3443 (br), 2956 (w), 2926 (m), 2840 (w), 1746 (s), 1681 (s), 1650 (s), 1593 (s), 1478 (m), 1457 (m), 1322 (m), 1215 (m), 1143 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.77 (s, 1H), 7.66 (d, *J* = 8.3 Hz, 2H), 7.47 (d, *J* = 8.3 Hz, 2H), 6.93 (d, *J* = 2.3

Hz, 1H), 6.85 (d, J = 9.0 Hz, 1H), 6.67 (dd, J = 9.0, 2.3 Hz, 1H), 6.39 (s, 1H), 4.94 (s, 2H), 3.81 (s, 3H), 3.76 (s, 2H), 2.39 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 169.9, 168.4, 162.6, 156.2,

146.0, 139.5, 138.2, 136.3, 133.8, 131.3, 130.9, 130.4, 129.3, 115.1, 111.7, 111.6, 111.3, 101.4, 61.8, 55.8, 30.1, 13.4; **HRMS (ESI+):** *m*/*z* calcd. for C₂₅H₂₁ClNO₇ ([M+H]⁺): 482.1007, Found: 482.1009.

Compound 1j: Prepared according to general procedure A; Purified by silica-gel flash column

chromatography (1-4% methanol in CH₂Cl₂); Yellow sticky liquid (200.0 mg, 0.570 mmol, 29% yield over 3 steps); **m.p.** 142-143 °C; **FT-IR (Thin film):** 3350 (br), 2936 (w), 1741 (s), 1620 (m), 1454 (m), 1371 (m), 1260 (m), 1167 (m) cm⁻¹; ¹H-NMR (400 MHz, **CDCl₃):** δ 7.73-7.69 (m, 3H), 7.66 (s, 1H), 7.39-7.37 (m, 1H), 7.17-

7.12 (m, 2H), 6.37 (s, 1H), 4.95-4.86 (m, 2H), 3.97-3.92 (m, 1H), 3.92 (s, 3H), 1.62 (d, J = 7.1 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 173.7, 162.9, 157.9, 145.9, 137.8, 134.7, 134.0, 129.4, 129.0, 127.5, 126.2, 126.0, 119.4, 111.1, 105.8, 61.7, 55.5, 45.3, 18.5; HRMS (ESI+): m/z calcd. for C₂₀H₁₉O₆ ([M+H]⁺): 355.1182, Found: 355.1182.

Compound 11: Prepared according to general procedure A; Purified by silica-gel flash column chromatography (35-42% EtOAc in petroleum ether); Yellow liquid (241.0 mg, 0.781 mmol, 24% yield over 3 steps); **m.p.** 82-83 °C; **FT-IR** (**Thin film):** 3424 (br), 2956 (m), 2923 (m), 2854 (m), 1743 (s), 1701 (s), 1651 (s), 1456 (m), 1211 (s), 1163 (s) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 6.45 (s, 1H), 4.86 (s, 2H), 2.93-2.82 (m, 1H), 2.42-2.29 (m,

3H), 2.03-1.99 (m, 1H), 1.99 (s, 3H), 1.90-1.86 (m, 1H), 1.26 (s, 3H), 0.81 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 207.4, 174.2, 171.7, 162.7, 146.1, 138.7, 111.7, 61.3, 54.1, 43.2, 37.8, 34.7, 30.2, 23.0, 17.3; HRMS (ESI+): *m*/*z* calcd. for C₁₆H₂₀O₆Na ([M+Na]⁺): 331.1158, Found: 331.1159.

General procedure B: kojic acid derivative 1k was prepared according to the following procedure:

In an oven dried 25 mL round-bottom flask equipped with a magnetic stir bar, **1c** (200 mg, 1.245 mmol, 1.0 equiv.), sodium dehydrocholate (634 mg, 1.495 mmol, 1.2 equiv.) and NaI (37 mg, 0.249 mmol, 0.2 equiv.) were taken with 4 mL of dry DMF under a positive argon pressure. The resulting solution was then stirred at 25 °C for 16 h to obtain a grey-coloured heterogeneous solution. The resulting mixture was diluted with 10 mL of distilled water and 10 mL of diethyl ether. The organic layer was separated and washed with distilled water (10 mL \times 3). The combined organic layer was

washed with brine (20 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography (1-2% methanol in CH₂Cl₂) to obtain **1k** as a yellow liquid (420 mg, 0.797 mmol, 64% yield); **m.p.** 173-174 °C; **FT-IR** (**Thin film**): 3392 (br), 2947 (w), 2875 (w), 1703 (s), 1628 (m), 1372 (s), 1258 (m), 1166 (s) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.84 (s, 1H), 6.48 (s, 1H), 4.92 (s, 2H), 2.94-2.81 (m, 4H), 2.36-2.12 (m, 14H), 2.05-2.01 (m, 5H), 1.89-1.81 (m, 3H), 1.66-1.61 (m, 2H), 1.40 (s, 3H), 1.06 (s, 3H), 0.86 (d, *J* = 6.5 Hz, 3H); ¹³**C-NMR (100 MHz, CDCl₃):** δ 212.1, 209.3, 208.8, 177.8, 174.0, 173.1, 163.2, 146.0, 138.1, 111.3, 61.3, 57.0, 51.9, 49.1, 47.0, 45.7, 45.1, 42.9, 38.8, 36.6, 36.1, 35.6, 35.4, 31.2, 30.4, 27.8, 25.2, 22.0, 18.7, 12.0; **HRMS (ESI+):** *m/z* calcd. for C₃₀H₃₉O₈ ([M+H]⁺): 527.2645, Found: 527.2642.

D. Procedure for the synthesis of allylic alcohols:

Allylic alcohols (**2a-r**) were prepared according to the previously reported procedure by the reaction of the corresponding aldehydes with vinyl magnesium bromide.⁶

E. Preliminary studies on asymmetric allylic alkylation of kojic acid:

Reaction with branched allylic carbonate:

> Reaction with branched allylic alcohol:

⁶ a) C. Defieber, M. A. Ariger, P. Moriel and E. M. Carreira, *Angew. Chem., Int. Ed.*, 2007, 46, 3139-3143. b) M. Lafrance, M. Roggen and E. M. Carreira, *Angew. Chem. Int. Ed.*, 2012, 51, 3470-3473. (c) M. Roggen and E. M. Carreira, *Angew. Chem., Int. Ed.*, 2012, 51, 8652-8655.

F. Promoter and reaction conditions optimization for asymmetric allylic alkylation of kojic acid:

10, 0 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0	OH P	OH [Ir(COI Prome Th t (1.2 equiv.)	D)Cl] ₂ (3 mol% -L (12 mol%) oter (20 mol%) HF (0.2 M) emp, time mmol scale	HO HO Ph >20:1 b 3aa	С	(S)-L
	entry	promoter	temp	time (h)	yield (%) ^{<i>a</i>}	\mathbf{er}^b
	1	-	25	24	<5	n.d.
	2	Zn(OTf) ₂	25	48	52 (50)	99.8:0.2
	3	Zn(OTf) ₂	50	24	54	99.9:0.1
	4^c	Zn(OTf) ₂	25	36	73	99.9:0.1
	5	Sc(OTf) ₃	25	36	62	99.9:0.1
	6	Fe(OTf) ₂	25	24	81	99.9:0.1
	7	La(OTf) ₃	25	36	39	99.9:0.1
	8^c	Fe(OTf) ₂	25	24	95 (85)	99.9:0.1
	9^d	Fe(OTf) ₂	25	22	(91)	99.9:0.1

Table S1. Promoter screening and reaction conditions optimization

^{*a*}Yields were determined by ¹H-NMR spectroscopy with mesitylene as the internal standard. Isolated yields are given in the parentheses. ^{*b*}Enantiomeric ratio (er) was determined by HPLC analysis on a chiral stationary phase. ^{*c*}Reaction with 2.0 equiv. of **2a**. ^{*d*}Reaction with 1.5 equiv. of **2a** on a 0.2 mmol scale. n.d. = not determined.

 Table S2. Optimization of solvent

^{*a*}Yields were determined by ¹H-NMR spectroscopy with mesitylene as the internal standard. Isolated yields are given in the parentheses. ^{*b*}Enantiomeric ratio (er) was determined by HPLC analysis on a chiral stationary phase. n.d. = not determined.

Table S3. Optimization of other reaction parameters

^{*a*}Yields were determined by ¹H-NMR spectroscopy with mesitylene as the internal standard. ^{*b*}Enantiomeric ratio (er) was determined by HPLC analysis on a chiral stationary phase.

G. General procedure for the preparation of racemic products (rac-3):

In a glass-vial [Ir(COD)Cl]₂ (0.003 mmol, 3 mol%) and ligand *rac*-L (0.012 mmol, 12 mol%) were taken with 0.1 mL of dry THF, and the resulting solution was stirred at ambient temperature for 15 min. To this solution, *rac*-2 (0.150 mmol, 1.5 equiv.) in 0.2 mL of dry THF was added followed by addition of 1 (0.100 mmol, 1.0 equiv.) and Fe(OTf)₂ (0.02 mmol, 0.2 equiv.) in 0.2 mL of dry THF. The resulting suspension was stirred at 25 °C for 24-36 h. The crude reaction mixture was purified by preparative TLC (Merck silica-gel 60 F_{254} pre-coated plates of 0.25 mm thickness) to obtain the racemic β-allylic kojic acid (*rac*-3) samples for HPLC analysis.

H. General procedure for the Ir-catalyzed asymmetric allylic alkylation of kojic acid:

In an oven and vacuum-dried reaction tube equipped with a magnetic stir bar, $[Ir(COD)Cl]_2$ (4 mg, 0.006 mmol, 3 mol%) and (*S*)-L (12.2 mg, 0.024 mmol, 12 mol%) were taken with 0.3 mL of dry THF under a positive argon pressure. The solution was then stirred vigorously at 25 °C for 15 min to obtain a deep red solution. A solution of allylic alcohol *rac-2* (0.3 mmol, 1.5 equiv.) in 0.7 mL of dry THF was then added to this red solution and stirred at 25 °C for 5 min. Subsequently, kojic acid 1 (0.2 mmol, 1.0 equiv.) was added followed by Fe(OTf)₂ (14.2 mg, 0.04 mmol, 0.2 equiv.). The reaction tube was purged with argon, closed with a glass stopper, and stirred at 25 °C until TLC (5% methanol in CH₂Cl₂) revealed complete consumption of **1**. The reaction mixture was then diluted with 2 mL of CH₂Cl₂ and 2 mL of 1(N) HCl. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (4 mL × 3). Combined organic layer was washed with brine (10 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography (1-3% methanol in CH₂Cl₂) to obtain β -allylic kojic acid **3**.

Compound 3aa: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1-2% methanol in CH₂Cl₂); yellow sticky liquid (47.0 mg, 0.182 mmol, 91% yield); **FT-IR (Thin film):** 3306 (w), 2923 (w), 2853 (w), 1651 (s), 1623 (s), 1580 (s), 1455 (s), 1204 (s), 1092 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.34-7.28 (m, 4H), 7.26-7.24 (m, 1H), 6.52 (s, 1H), 6.26 (ddd, *J* = 17.3, 10.1, 7.5 Hz,

1H), 5.30 (d, J = 10.1 Hz, 1H), 5.22 (d, J = 17.1 Hz, 1H), 5.08 (d, J = 7.3 Hz, 1H), 4.49-4.41 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.5, 167.8, 150.6, 141.5, 139.0, 135.2, 128.8, 128.2, 127.4, 118.4, 108.6, 61.1, 47.8; HRMS (ESI+): m/z calcd. for C₁₅H₁₅O₄ ([M+H]⁺): 259.0970, Found: 259.0968; Optical rotation: $[\alpha]_D^{22}$ –104.6 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with 99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 277 nm, $\tau_{minor} = 7.8$ min, $\tau_{major} = 9.1$ min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3aa** was assigned in analogy with **8**.

Compound 3ab: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-3% methanol in CH₂Cl₂); Yellow liquid (51.0 mg, 0.186 mmol, 93% yield); **FT-IR (Thin film):** 3332 (br), 2958 (w), 2921 (w), 2850 (w), 1655 (s), 1622 (s), 1577 (s), 1511 (s), 1456 (m), 1204 (s), 1091 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.18 (d, *J* = 7.5 Hz, 2H), 7.12 (d, *J* = 7.6 Hz, 2H), 6.54 (s, 1H), 6.28-6.20 (m, 1H), 5.27 (d, *J* = 10.0 Hz, 1H), 5.19 (d, *J* = 17.1 Hz, 1H), 5.06 (d, *J* = 7.1 Hz,

1H), 4.48-4.40 (m, 2H), 2.31 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.5, 167.9, 151.0, 141.4, 137.1, 136.0, 135.4, 129.5, 128.0, 118.2, 108.6, 61.0, 47.4, 21.1; HRMS (ESI+): *m/z* calcd. for C₁₆H₁₇O₄ ([M+H]⁺): 273.1127, Found: 273.1130; **Optical rotation:** [α]_D²² –93.2 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AS-H column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 285 nm, τ_{major} = 19.9 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ab** was assigned in analogy with **8**.

Compound 3ac: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1-3% methanol in CH₂Cl₂); Yellow liquid (56.0 mg, 0.186 mmol,

chromatography (1-3% methanol in CH₂Cl₂); Yellow liquid (56.0 mg, 0.186 mmol, 93% yield); **FT-IR (Thin film):** 3300 (br), 2961 (m), 2925 (w), 2868 (w), 1656 (s), 1623 (s), 1578 (s), 1511 (s), 1457 (m), 1202 (s), 1092 (m) cm⁻¹; ¹H-NMR (400 MHz, **CDCl₃):** δ 7.22 (d, J = 7.7 Hz, 2H), 7.17 (d, J = 7.8 Hz, 2H), 6.56 (s, 1H), 6.29-6.21 (m, 1H), 5.26 (d, J = 10.1 Hz, 1H), 5.20 (d, J = 17.0 Hz, 1H), 5.07 (d, J = 7.4 Hz, 1H), 4.49-4.41 (m, 2H), 2.87 (sep, J = 6.8 Hz, 1H), 1.22 (d, J = 6.8 Hz, 6H); ¹³C-

NMR (100 MHz, CDCl₃): δ 174.6, 168.0, 151.1, 148.0, 141.4, 136.3, 135.4, 128.1, 126.9, 118.2, 108.6, 61.0, 47.5, 33.8, 24.0; **HRMS** (ESI+): *m*/*z* calcd. for C₁₈H₂₁O₄ ([M+H]⁺): 301.1440, Found: 301.1438; **Optical rotation**: $[\alpha]_D^{21}$ –96.6 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 277 nm, τ_{major} = 13.8 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ac** was assigned in analogy with **8**.

Compound 3ad: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); yellow liquid (41.0 mg, 0.142 mmol, 71% yield); **FT-IR (Thin film):** 3288 (br), 2958 (s), 2919 (s), 2844 (m), 1654 (s), 1617 (s), 1579 (s), 1510 (s), 1458 (s), 1250 (s), 1032 (m) cm⁻¹; ¹H-NMR (400 MHz, **CDCl₃):** δ 7.20 (d, *J* = 8.5 Hz, 2H), 6.84 (d, *J* = 8.5 Hz, 2H), 6.52 (s, 1H), 6.22 (ddd, *J* = 17.3, 10.1, 7.4, Hz, 1H), 5.26 (d, *J* = 10.1 Hz, 1H), 5.17 (d, *J* = 17.1 Hz, 1H), 5.03 (d, *J* = 7.2 Hz, 1H), 4.48-4.39 (m, 2H), 3.77 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ

174.4, 167.7, 158.9, 150.8, 141.3, 135.5, 131.1, 129.2, 118.1, 114.2, 108.6, 61.1, 55.4, 47.0; **HRMS** (**ESI+**): m/z calcd. for C₁₆H₁₆O₅Na ([M+Na]⁺): 311.0895, Found: 311.0899; **Optical rotation:** $[\alpha]_D^{22} - 83.8$ (c 2.0, CHCl₃) for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 279 nm, $\tau_{minor} = 22.5$ min, $\tau_{major} = 27.2$ min,). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ad** was assigned in analogy with **8**.

Compound 3ae: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); Yellow sticky liquid (40.0 mg, 0.122) mmol, 61% yield); FT-IR (Thin film): 3363 (br), 2962 (m), 2927 (w), 2870 (w), 1735 (m), 1657 (s), 1623 (s), 1582 (m), 1457 (m), 1327 (s), 1124 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.57 (d, J = 7.8 Hz, 2H), 7.41 (d, J = 7.9 Hz, 2H), 6.54 (s, 1H), 6.23 (ddd, J = 17.3, 9.8, 7.8, Hz, 1H), 5.34 (d, J = 10.1 Hz, 1H), 5.24 (d, J = 17.0 Hz, 1H), 5.13 (d, J = 7.3 Hz, 1H), 4.50-4.42 (m, 2H); ¹³C-NMR (100)

MHz, CDCl₃): δ 174.3, 167.6, 149.5, 143.0, 141.7, 134.3, 129.7 (q, J = 32.5 Hz), 128.6, 125.8 (q, J = 3.8 Hz), 124.1 (q, J = 272.0 Hz), 119.3, 108.8, 61.1, 47.6; **HRMS (ESI+)**: m/z calcd. for C₁₆H₁₄F₃O₄ $([M+H]^+)$: 327.0844, Found: 327.0842; **Optical rotation:** $[\alpha]_D^{22}$ -80.9 (c 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (95:5 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 275 nm, τ_{major} = 38.2 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ae** was assigned in analogy with **8**.

Compound 3af: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (2-4% methanol in CH₂Cl₂); white sticky liquid (23.0 mg, 0.082 mmol, 41% yield);

FT-IR (Thin film): 3426 (br), 3297 (br), 2922 (w), 2852 (w), 1657 (m), 1626 (s), 1582 (s), 1455 (m), 1204 (m), 1091 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.61 (d, J = 8.2 Hz, 2H), 7.41 (d, J = 8.2 Hz, 2H), 6.53 (s, 1H), 6.22 (ddd, J = 17.4, 10.1, 7.6 Hz, 1H), 5.37 (d, J = 10.6 Hz, 1H), 5.25 (d, J = 16.7 Hz, 1H), 5.11 (d, J = 7.6 Hz, 1H), 4.51-4.42 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.1, 167.3, 148.6, 144.5, 141.8, 133.8, 132.7, 129.0, 119.8, 118.7, 111.4, 108.9, 61.2, 47.9; HRMS (ESI+): m/z calcd. for C₁₆H₁₄NO₄ ($[M+H]^+$): 284.0923, Found: 284.0921; **Optical rotation:** $[\alpha]_D^{21}$ –68.1 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Amylose-2 column (75:25 *n*-Hexane/*i*-PrOH, flow rate = 1.0mL/min, 20 °C, I = 254 nm, τ_{major} = 16.1 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3af** was assigned in analogy with **8**.

Compound 3ag: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); pale yellow sticky liquid (48.0 mg, 0.174 mmol, 87% yield); FT-IR (Thin film): 3321 (br), 2921 (w), 2847 (w), 1656 (m), 1624 (s), 1579 (s), 1457 (m), 1220 (s), 1090 (m) cm⁻¹; ¹H-NMR (400 MHz, **CDCl**₃): δ 7.19-7.16 (m, 2H), 6.94-6.90 (m, 2H), 6.46 (s, 1H), 6.18-6.09 (m, 1H), 5.22 (d, J = 10.1 Hz, 1H), 5.12 (d, J = 17.3 Hz, 1H), 4.99 (d, J = 7.2 Hz, 1H), 4.42-4.33 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.5, 167.8, 162.1 (d, J =

254.8 Hz), 150.4, 141.5, 135.0, 134.6 (d, J = 3.1 Hz), 129.75 (d, J = 8.0 Hz), 118.6, 115.7 (d, J = 21.5 Hz), 108.7, 61.1, 47.0; **HRMS** (**ESI**+): m/z calcd. for C₁₅H₁₄O₄F ([M+H]⁺): 277.0876, Found: 277.0874; **Optical rotation:** $[\alpha]_D^{21}$ –89.0 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 283 nm, τ_{major} = 12.1 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ag** was assigned in analogy with **8**.

Compound 3ah: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1-2% methanol in CH₂Cl₂); pale yellow sticky liquid (51.0 mg, 0.174 mmol, 87%

yield); **FT-IR** (**Thin film**): 3307 (br), 2923 (w), 2852 (w), 1624 (s), 1583 (s), 1454 (s), 1202 (s), 1091 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl3)**: δ 7.20 (d, J = 8.0 Hz, 2H), 7.14 (d, J = 8.2 Hz, 2H), 6.46 (s, 1H), 6.17-6.08 (m, 1H), 5.23 (d, J = 8.1 Hz, 1H), 5.12 (d, J = 17.1 Hz, 1H), 4.98 (d, J = 7.4 Hz, 1H), 4.41-4.32 (m, 2H); ¹³**C-NMR (100 MHz, CDCl3**): δ 174.5, 167.8, 150.2, 141.6, 137.5, 134.7, 133.3, 129.6, 129.0, 118.9, 108.8, 61.0, 47.2; **HRMS (ESI+)**: m/z calcd. for C₁₅H₁₄O₄Cl ([M+H]⁺): 293.0581,

Found: 293.0583; **Optical rotation:** $[\alpha]_D^{20}$ –109.3 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 282 nm, τ_{major} = 13.0 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ah** was assigned in analogy with **8**.

Compound 3ai: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-3% methanol in CH₂Cl₂); Yellow sticky liquid (59.0 mg, 0.174 mmol, 87% yield); **FT-IR (Thin film):** 3300 (br), 2959 (m), 2924 (w), 2852 (w), 1656 (s), 1623 (s), 1580 (m), 1456 (m), 1204 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.43 (d, J = 8.1 Hz, 2H), 7.15 (d, J = 8.1 Hz, 2H), 6.53 (s, 1H), 6.20 (ddd, J = 17.3, 10.0, 7.5, Hz, 1H), 5.30 (d, J = 10.1 Hz, 1H), 5.20 (d, J = 17.1 Hz, 1H), 5.03 (d, J = 7.3 Hz, 1H), 4.48-4.40 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.4,

167.8, 150.0, 141.6, 138.0, 134.6, 131.9, 129.9, 121.4, 118.9, 108.8, 61.1, 47.2; **HRMS (ESI+):** m/z calcd. for C₁₅H₁₄BrO₄ ([M+H]⁺): 337.0075, Found: 337.0073; **Optical rotation:** $[\alpha]_D^{22}$ –84.4 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with 98.5:1.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 222 nm, τ_{minor} = 11.8 min τ_{major} = 13.7 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ai** was assigned in analogy with **8**.

Compound 3aj: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); pale yellow sticky liquid (50.0 mg, 0.183 mmol, 92% yield); **FT-IR (Thin film):** 3334 (br), 2920 (s), 2847 (w), 1655 (m), 1623 (s), 1579 (s), 1458 (m), 1223 (m), 1091 (w) cm⁻¹; ¹H-NMR (400 MHz, **CDCl₃):** δ 7.22-7.18 (m, 1H), 7.10-7.05 (m, 3H), 6.53 (s, 1H), 6.25 (ddd, *J* = 17.5, 10.1, 7.5 Hz, 1H), 5.28 (d, *J* = 10.1 Hz, 1H), 5.21 (d, *J* = 17.2 Hz, 1H), 5.05 (d, *J* =

7.5 Hz, 1H), 4.49-4.40 (m, 2H), 2.32 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.6, 167.7, 150.8, 141.5, 139.0, 138.5, 135.3, 128.9, 128.7, 128.2, 125.1, 118.3, 108.6, 61.1, 47.8, 21.6; HRMS (ESI+):

m/*z* calcd. for C₁₆H₁₇O₄ ([M+H]⁺): 273.1127, Found: 273.1128; **Optical rotation:** $[\alpha]_D^{21}$ –86.0 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 215 nm, τ_{major} = 10.9 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3aj** was assigned in analogy with **8**.

Compound 3ak: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1-2% methanol in CH_2Cl_2); pale yellow sticky liquid (54.0 mg, 0.16 mmol, 80%)

yield); **FT-IR (Thin film):** 3419 (br), 2921 (w), 2849 (w), 1655 (m), 1623 (s), 1581 (s), 1458 (m), 1223 (m), 1093 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.36 (s, 1H), 7.30 (d, J = 7.5 Hz, 1H), 7.15-7.08 (m, 2H), 6.48 (s, 1H), 6.13 (ddd, J = 17.5, 10.2, 7.5 Hz, 1H), 5.24 (d, J = 9.8 Hz, 1H), 5.14 (d, J = 17.6 Hz, 1H), 4.98 (d, J = 6.8 Hz, 1H), 4.43-4.34 (m, 2H); ¹³**C-NMR (100 MHz, CDCl₃):** δ 174.5, 167.9, 150.0,

141.3, 134.4, 131.2, 130.6, 130.4, 128.2, 126.9, 122.9, 119.1, 108.8, 61.0, 47.4; **HRMS (ESI+):** m/z calcd. for C₁₅H₁₄O₄Br ([M+H]⁺): 337.0075, Found: 337.0078; **Optical rotation:** $[\alpha]_D^{22}$ –77.0 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 276 nm, τ_{major} = 17.6 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ak** was assigned in analogy with **8**.

Compound 3al: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1-3% methanol in CH_2Cl_2); Light yellow liquid (37.0 mg, 0.110 но mmol, 55% yield); m.p. 99-100 °C; FT-IR (Thin film): 3420 (br), 2922 (w), 1649 (s), 1619 (s), 1458 (m), 1219 (m), cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.57 (dd, J όн = 7.9, 0.9 Hz, 1H), 7.39 (dd, J = 7.7, 1.3 Hz, 1H), 7.32-7.29 (m, 1H), 7.14 (t, J = 7.5 Hz, 1H), 6.51 (s, 1H), 6.17 (ddd, J = 16.8, 10.5, 6.6 Hz, 1H), 5.47 (d, J = 6.2 Hz, 1H), 5.33 (d, J = 10.3 Hz, 1H), 5.12 (d, J = 17.1 Hz, 1H), 4.47-4.39 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.5, 168.1, 149.0, 142.2, 138.0, 134.4, 133.2, 130.3, 129.0, 127.7, 124.6, 118.3, 108.6, 60.9, 47.4; **HRMS (ESI+):** *m/z* calcd. for C₁₅H₁₄BrO₄ ([M+H]⁺): 337.0075, Found: 337.0075; **Optical** rotation: $[\alpha]_D^{22}$ –22.0 (c 4.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio of compound was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 280 nm, $\tau_{\text{minor}} = 10.8 \text{ min}$, $\tau_{\text{major}} = 10.8 \text{ min}$, τ_{major} 13.0 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3al** was assigned in analogy with **8**.

Compound 3am: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-3% methanol in CH₂Cl₂); Yellow sticky liquid (33.0 mg, 0.100 mmol, 50% yield) [*Note*: compound **3am** is unstable in silica]; **FT-IR (Thin film):** 3414 (br), 2923 (w), 2855 (w), 1625 (s), 1588 (m), 1468 (m), 1204 (m), cm⁻¹; ¹H-**NMR (400 MHz, CDCl₃):** δ 7.43-7.38 (m, 1H), 7.33-7.31 (m, 1H), 7.23-7.21 (m, 1H), 6.54 (s, 1H), 6.12 (ddd, *J* = 16.9, 10.4, 6.7 Hz, 1H), 5.43 (d, *J* = 6.4 Hz, 1H),

5.31 (d, J = 10.1 Hz, 1H), 5.10 (d, J = 17.1 Hz, 1H), 4.42-4.32 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.3, 167.8, 148.3, 142.2, 135.0, 134.8, 134.0, 133.8, 130.9, 129.7, 127.4, 118.8, 108.7, 61.0, 44.4; HRMS (ESI+): m/z calcd. for C₁₅H₁₃Cl₂O₄ ([M+H]⁺): 327.0191, Found: 327.0190; Optical rotation: $[\alpha]_D^{22}$ –59.3 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using AD-H column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 288 nm, τ_{major} = 12.4 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3am** was assigned in analogy with **8**.

Compound 3an: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); pale yellow sticky liquid (28.0 mg, 0.08 mmol, 40% yield) [*Note*: compound **3an** is unstable in silica]; **FT-IR** (**Thin film**): 3424 (br), 2923 (s), 2851 (m), 1653 (m), 1589 (s), 1461 (m), 1217 (m), 1081 (w) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.82 (s, 1H), 6.54 (s, 1H), 6.20-6.11 (m, 1H), 5.46-5.38 (m, 2H), 5.23 (d, *J* = 8.1 Hz, 1H), 4.41-4.29 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.1, 173.6, 164.7, 163.8, 146.42, 146.40, 146.30, 146.27, 146.2,

145.9, 143.9, 143.85, 143.81, 143.78, 143.7, 142.8, 142.7, 142.0, 140.22, 140.16, 139.2, 139.1, 138.96, 137.8, 136.75, 136.69, 136.6, 136.4, 134.8, 133.8, 120.3, 119.7, 119.0, 110.9, 74.7, 66.6; **HRMS** (**ESI+**): m/z calcd. for C₁₅H₉O₄F₅Na ([M+Na]⁺): 371.0319, Found: 371.0321; **Optical rotation**: $[\alpha]_D^{21}$ –59.5 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 241 nm, τ_{major} = 22.7 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3an** was assigned in analogy with **8**.

Compound 3ao: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-3% methanol in CH₂Cl₂); colourless sticky liquid (59.0 mg, 0.192 mmol, 96% yield); **FT-IR (Thin film):** 3407 (br), 2924 (m), 2853 (m), 1654 (s), 1622 (s), 1578 (s), 1455 (m), 1200 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 8.14 (d, J = 8.3 Hz, 1H), 7.84 (d, J = 7.6 Hz, 1H), 7.78 (d, J = 8.0 Hz, 1H), 7.53-7.43 (m, 4H), 6.45 (s, 1H), 6.35 (ddd, J = 16.8, 10.2, 6.2 Hz, 1H), 5.85 (d, J = 6.0

Hz, 1H), 5.36 (d, J = 10.2 Hz, 1H), 5.16 (d, J = 17.2 Hz, 1H), 4.36 (d, J = 15.4 Hz, 1H), 4.27 (d, J = 15.4 Hz, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.2, 167.5, 149.5, 141.6, 135.4, 134.8, 134.0, 131.6, 129.0, 128.3, 126.8, 126.4, 126.0, 125.4, 123.2, 118.0, 108.5, 61.1, 43.3; HRMS (ESI+): m/z calcd. for C₁₉H₁₇O₄ ([M+H]⁺): 309.1127, Found: 309.1127; Optical rotation: $[\alpha]_D^{22} -113.4$ (c 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 281 nm, $\tau_{major} = 15.0$ min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ao** was assigned in analogy with **8**.

Compound 3ap: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); colourless sticky liquid (58.0 mg, 0.188 mmol, 94% yield); **FT-IR (Thin film):** 3423 (br), 2922 (w), 2852 (w), 1656 (s), 1624 (s), 1586 (s), 1458 (w), 1259 (w), 1092 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.78-7.73 (m, 4H), 7.45-7.40 (m, 3H), 6.53 (s, 1H), 6.35 (ddd, *J* = 17.2, 10.1, 7.1 Hz, 1H), 5.34 (d, *J* = 10.1 Hz, 1H), 5.29-5.24 (m, 2H), 4.45-4.35 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.5, 167.8, 150.7, 141.7, 136.5, 135.1, 133.5, 132.6, 128.5,

127.9, 127.7, 126.9, 126.4, 126.3, 126.1, 118.7, 108.7, 61.0, 47.9; **HRMS** (**ESI**+): m/z calcd. for C₁₉H₁₇O₄ ([M+H]⁺): 309.1127, Found: 309.1125; **Optical rotation:** $[\alpha]_D^{22}$ –146.3 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 221 nm, τ_{major} = 17.8 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ap** was assigned in analogy with **8**.

Compound 3aq: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1.3% methanol in CH₂Cl₂); Vellow liquid (44.0 mg, 0.114 mmol

chromatography (1-3% methanol in CH₂Cl₂); Yellow liquid (44.0 mg, 0.114 mmol, 57% yield) [*Note*: compound **3aq** is unstable in silica]; **m.p.** 114-115 °C; **FT-IR** (**Thin film):** 3394 (br), 2924 (m), 2853 (m), 1650 (s), 1622 (s), 1577 (s), 1457 (m), 1202 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.32 (d, J = 8.7 Hz, 1H), 7.80-7.76 (m, 2H), 7.60-7.56 (m, 1H), 7.52-7.49 (m, 2H), 6.52 (s, 1H), 6.24 (ddd, J = 16.7, 10.6, 6.6 Hz, 1H), 5.86 (d, J = 5.9 Hz, 1H), 5.34 (d, J = 10.1 Hz, 1H), 5.13 (d, J =

17.0 Hz, 1H), 4.45-4.35 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.3, 167.7, 148.8, 142.3, 136.1, 134.6, 133.8, 132.6, 128.2, 128.0, 127.9, 127.8, 126.9, 126.8, 124.9, 118.4, 108.6, 61.1, 48.6; HRMS (ESI+): m/z calcd. for C₁₉H₁₆BrO₄ ([M+H]⁺): 387.0232, Found: 387.0230; Optical rotation: $[\alpha]_D^{22}$ +9.5 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 280 nm, τ_{minor} = 30.1 min, τ_{major} = 47.5 min,). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3aq** was assigned in analogy with **8**.

Compound 3ar: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-3% methanol in CH₂Cl₂); Yellow sticky liquid (46.0 mg, 0.152 mmol, 76% yield); **FT-IR (Thin film):** 3332 (br), 2959 (m), 2924 (m), 2848 (m), 1656 (s), 1623 (s), 1580 (m), 1456 (m), 1251 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 6.79 (s, 1H), 6.73 (brs, 2H), 6.53 (s, 1H), 6.19 (ddd, J = 17.2, 9.9, 7.5 Hz, 1H), 5.91 (s, 2H), 5.25 (d, J = 10.0 Hz, 1H), 5.17 (d, J = 17.1 Hz, 1H), 4.99 (d, J = 7.2 Hz, 1H), 4.45 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.5, 167.9, 150.7, 148.0, 146.8,

141.3, 135.3, 132.8, 121.4, 118.3, 108.6, 108.5, 101.2, 61.0, 47.4; **HRMS** (**ESI**+): m/z calcd. for C₁₆H₁₅O₆ ([M+H]⁺): 303.0869, Found: 303.0865; **Optical rotation:** [α]_D²² –82.1 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio of compound was

determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C, I = 282 nm, τ_{minor} = 19.6 min, τ_{major} = 27.4 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ar** was assigned in analogy with 8.

Compound 3as: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); Yellow sticky liquid (35.0 mg, 0.132) mmol, 66% yield); FT-IR (Thin film): 3288 (w), 2925 (w), 2853 (w), 1660 (s), 1628 (s), 1586 (s), 1417 (m), 1121 (m), 1018 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.22 (d, J = 5.0 Hz, 1H), 6.97-6.95 (m, 1H), 6.93-6.92 (m, 1H), 6.53 (s, 1H), 6.22 (ddd. J = 17.0, 10.3, 7.5 Hz, 1H), 5.33-5.31 (m, 2H), 5.27 (d, J = 7.5 Hz, 1H), 4.49 (s,

2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.3, 167.2, 148.9, 141.5, 141.1, 134.9, 127.1, 125.8, 125.1, 118.5, 108.7, 61.3, 43.3; **HRMS (ESI+):** m/z calcd. For C₁₃H₁₃O₄S ([M+H]⁺): 265.0535, Found: 265.0534; **Optical rotation:** $[\alpha]_{D}^{22}$ –52.9 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with 99:1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 *n*-Hexane/*i*-PrOH, 1.0 mL/min, 20 °C, I = 276 nm, τ_{minor} = 12.0 min, τ_{major} = 13.5 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3as** was assigned in analogy with **8**.

Compound 3ba: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1% methanol in CH₂Cl₂); Yellow sticky liquid (46.0 mg, 0.190 mmol, 95% yield);

FT-IR (Thin film): 3458 (br), 2924 (m), 2853 (m), 1654 (s), 1621 (s), 1585 (s), 1452 (m), 1344 (w), 1207 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.33-7.32 (m, 4H), 7.29-7.25 (m, 1H), 6.28 (ddd, J = 17.3, 10.1, 7.6 Hz, 1H), 6.21 (s, 1H), 5.30 (d, J =10.2 Hz, 1H), 5.23 (d, J = 17.1 Hz, 1H), 5.11 (d, J = 7.5 Hz, 1H), 2.25 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.3, 165.4, 150.3, 141.2, 139.4, 135.5, 128.7, 128.2, 127.2, 118.1, 110.7, 47.6, 20.1; **HRMS (ESI+):** m/z calcd. for C₁₅H₁₅O₃ ([M+H]⁺): 243.1021, Found: 243.1025; **Optical rotation:** $[\alpha]_D^{22}$ –92.0 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with 99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 276 nm, $\tau_{minor} = 10.4 \text{ min}, \tau_{major} = 14.5$ min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ba** was assigned in analogy with **8**.

Compound 3ca: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1% methanol in CH₂Cl₂); Yellow sticky liquid (42.0 mg, 0.152 mmol, 76% yield); FT-IR (Thin film): 3404 (br), 2923 (m), 2852 (m), 1632 (s), 1588 (s), 1449 (m), 1361 (w), 1208 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.35-7.33 (m, ċι 4H), 7.29-7.26 (m, 1H), 6.48 (s, 1H), 6.28 (ddd, J = 17.3, 10.1, 7.5 Hz, 1H), 5.32 (d, J = 10.2 Hz, 1H), 5.24 (d, J = 17.1 Hz, 1H), 5.13 (d, J = 7.3 Hz, 1H), 4.30 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 161.8, 151.0, 141.8, 139.0, 135.1, 128.9, 128.3, 127.5, 118.5, 111.4, 47.8, 41.3: **HRMS (ESI+):** m/z calcd. for C₁₅H₁₄ClO₃ ([M+H]⁺): 277.0631, Found: 277.0630; Optical rotation:

 $\left[\alpha\right]_{D}^{22}$ -60.3 (c 2.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (95:5 n-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 305 nm, τ_{minor} = 27.7 min, τ_{major} = 32.2 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ca** was assigned in analogy with **8**.

Compound 3da: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1% methanol in CH₂Cl₂); Yellow sticky liquid (55.0 mg, 0.194 mmol, 97% yield); FT-IR (Thin film): 3247 (br), 3060 (m), 2923 (m), 2852 (m), 2364 (m), 2105 (s), 1646 (s), 1628 (s), 1588 (s), 1448 (m), 1201 (m), 990 (m) cm⁻¹; ¹H-**NMR** (400 MHz, CDCl₃): δ 7.36-7.33 (m, 4H), 7.29-7.26 (m, 1H), 6.41 (s, 2H), 6.29 (ddd, J = 17.3, 9.9, 7.2 Hz, 1H), 5.33 (d, J = 10.1 Hz, 1H), 5.24 (d, J = 17.0 Hz, 1H), 5.16 (d, J = 7.4 Hz), 5.16 (d, JHz, 1H), 4.17-4.08 (m, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 161.7, 151.1, 141.9, 138.9, 134.9, 128.9, 128.2, 127.4, 118.5, 111.0, 51.3, 47.7; **HRMS (ESI+):** m/z calcd. for C₁₅H₁₄N₃O₃ ([M+H]⁺): 284.1035, Found: 284.1036; **Optical rotation:** $[\alpha]_D^{22}$ -80.6 (*c* 2.5, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1 mL/min, 20 °C, I = 282 nm, τ_{major} = 24.5 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3da** was assigned in analogy with **8**.

Compound 3ea: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1% methanol in CH₂Cl₂); Yellow sticky liquid (55.0 mg, 0.156 mmol, 78% yield); FT-IR (Thin film): 3420 (br), 2923 (w), 1621 (s), 1582 (s), 1441 (m), 1207 (m), 987 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.29-7.23 (m, 10H), ^{sph} 6.20-6.10 (m, 2H), 5.24 (d, J = 10.0 Hz, 1H), 5.17 (d, J = 17.0 Hz, 1H), 5.04 (d, J = 10.0 H Ph. 6.9 Hz, 1H), 3.79 (s, 2H); ¹³C-NMR (100 MHz, CDCl₃): δ 174.0, 164.1, 150.8, 141.5, 139.1, 135.2, 133.5, 131.6, 129.3, 128.7, 128.2, 127.9, 127.2, 118.2, 111.0, 47.6, 37.2; HRMS (ESI+): m/z calcd. for $C_{21}H_{19}O_{3}S$ ([M+H]⁺): 351.1055, Found: 351.1054; **Optical rotation:** $[\alpha]_{D}^{22}$ +66.0 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 0.5 mL/min, 20 °C, I = 272 nm, τ_{major} = 48.4 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ea** was assigned in analogy with **8**.

Compound 3fa: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (5-6% EtOAc in petroleum ether); Yellow sticky liquid (40.0 mg, 0.142 mmol, 71% yield); m.p. 96-97 °C; FT-IR (Thin film): 3276 (br), 2920 (m), 2850 (m), 1605 (s), 1420 (m), 1119 (m), 1033 (m) cm⁻¹; ¹H-NMR (400 MHz, **CDCl₃**): δ 8.22 (d, J = 8.0 Hz, 1H), 7.65-7.61 (m, 1H), 7.46 (d, J = 8.5 Hz, 1H), 7.42-7.40 (m, 2H), 7.37-7.32 (m, 3H), 7.29-7.25 (m, 1H), 6.55 (br, 1H), 6.41 (ddd, J = 17.3, 9.6, 7.1 Hz, 1H), 5.35 (d, J = 10.2 Hz, 1H), 5.30 (d, J = 17.3 Hz, 1H), 5.28-5.19 (m, 1H); ¹³C-NMR (100 MHz, CDCl₃): § 173.1, 155.8, 151.0, 139.3, 138.0, 135.4, 133.3, 128.8, 128.3, 127.4, 125.6, 124.6, 121.4,

118.5, 118.4, 48.4; **HRMS** (**ESI**+): m/z calcd. for C₁₈H₁₅O₃ ([M+H]⁺): 279.1021, Found: 279.1024; **Optical rotation:** [α]_D²² –24.7 (*c* 1.5, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (95:5 *n*-Hexane/*i*-PrOH, flow rate = 1 mL/min, 20 °C, I = 233 nm, τ_{minor} = 26.0 min, τ_{major} = 33.0 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3fa** was assigned in analogy with **8**.

Compound 3ga: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (1-2% methanol in CH₂Cl₂); bright yellow sticky liquid (60.0 mg, 0.2 mmol, >99% yield); **FT-IR (Thin film):** 3362 (br), 2922 (w), 2851 (w), 1661 (s), 1593 (m), 1456 (w), 1255 (s), 1076 (w) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 8.12 (d, *J* = 7.2 Hz, 1H), 8.07 (d, *J* = 7.7 Hz, 1H), 7.77-7.73 (m, 1H), 7.69-7.65 (m, 1H),

7.55 (br s, 1H), 7.41-7.39 (m, 2H), 7.31-7.28 (m, 2H), 7.22-7.18 (m, 1H), 6.67-6.59 (m, 1H), 5.29-5.23 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 183.9, 181.9, 152.9, 141.6, 137.1, 135.3, 133.1, 132.9, 129.3, 128.4, 128.0, 127.2, 126.6, 126.2, 124.9, 117.3, 45.0; HRMS (ESI+): *m/z* calcd. for C₁₉H₁₄O₃Na([M+Na]⁺): 313.0841, Found: 313.0841; **Optical rotation**: $[\alpha]_D^{22}$ –93.4 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 232 nm, τ_{major} = 14.9 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ga** was assigned in analogy with **8**.

Compound 3ha: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (5% EtOAc in petroleum ether); Yellow sticky liquid (55.0 mg, 0.174 mmol, 87% yield); **FT-IR** (**Thin film**): 3271 (br), 2924 (m), 2852 (m), 1728 (s), 1631 (s), 1593 (s), 1451 (m), 1265 (s), 1110 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 8.03 (d, J = 7.4 Hz, 2H), 7.64-7.60 (m, 1H), 7.49-7.45 (m, 2H), 7.33-7.28 (m, 3H), 7.26-7.22 (m, 2H), 6.53 (s, 1H), 6.25 (ddd, J = 17.2, 9.9, 7.2 Hz, 1H), 5.28 (d, J = 10.1 Hz, 1H), 5.22 (d, J = 17.1 Hz, 1H), 5.19-5.11 (m, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 165.6, 161.8, 150.8, 141.8, 138.9, 135.1, 133.8, 129.9, 128.9, 128.8, 128.7, 128.2, 127.4, 118.4, 110.6, 61.8, 47.6; HRMS (ESI+): m/z calcd. for C₂₂H₁₉O₅ ([M+H]⁺): 363.1232, Found: 363.1230; Optical rotation: $[\alpha]_D^{22} - 42.1$ (c 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1 mL/min, 20 °C, I = 298 nm, $\tau_{major} = 27.5$ min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ha** was assigned in analogy with **8**.

Compound 3ia: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column

chromatography (30% EtOAc in petroleum ether); Yellow sticky liquid (75.0 mg, 0.126 mmol, 63% yield); FT-IR (Thin film): 3266 (br), 3079 (w), 2928 (m), 1746 (s), 1680 (s), 1636 (s), 1459 (s), 1453 (m), 1318 (m), 1222 (m), 1148 (m), 1078 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.66 (d, *J* = 8.5 Hz, 2H), 7.47 (d, *J* = 8.4 Hz, 2H), 7.34-7.25 (m, 5H), 6.92 (d, *J* = 2.4 Hz, 1H), 6.86 (d, *J*)

J = 9.0 Hz, 1H), 6.68 (dd, J = 9.0, 2.5 Hz, 1H), 6.35 (s, 1H), 6.20 (ddd, J = 17.3, 9.9, 7.2 Hz, 1H), 5.27 (d, J = 10.1 Hz, 1H), 5.20 (d, J = 17.2 Hz, 1H), 5.09 (d, J = 7.5 Hz, 1H), 4.92 (s, 2H), 3.81 (s, 3H), 3.72 (s, 2H), 2.37 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.8, 169.8, 168.4, 161.6, 156.2, 150.8, 141.8, 139.5, 138.9, 136.3, 135.0, 133.8, 131.3, 130.9, 130.4, 129.3, 128.8, 128.2, 127.5, 118.4, 115.2, 111.8, 111.6, 110.6, 101.3, 61.8, 55.8, 47.7, 30.1, 13.4; HRMS (ESI+): m/z calcd. for C₃₄H₂₉ClNO₇ ([M+H]⁺): 598.1633, Found: 598.1635; **Optical rotation:** $[\alpha]_D^{22}$ –31.4 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (40:60 *n*-Hexane/EtOH, flow rate = 1.0 mL/min, 20 °C, I = 268 nm, $\tau_{minor} = 37.6$ min $\tau_{major} = 49.9$ min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product **3ia** was assigned in analogy with **8**.

Compound 3ja: Reaction was performed on a 0.2 mmol scale; 3ja was formed with >20:1 dr as

determined by ¹H-NMR of the crude product; purified by silica-gel flash column chromatography (25-30% EtOAc in petroleum ether); Yellow sticky liquid (86.0 mg, 0.182 mmol, 91% yield); **FT-IR (Thin film):** 3432 (br), 2978 (w), 2931 (w), 2851 (w), 1742 (m), 1632 (s), 1604 (s), 1452 (m), 1220 (m) cm⁻¹; ¹H-NMR

(400 MHz, CDCl₃): δ 7.73-7.70 (m, 2H), 7.67 (s, 1H), 7.40-7.38 (m, 1H), 7.31-7.26 (m, 6H), 7.18-7.13 (m, 2H), 6.37 (s, 1H), 6.14 (ddd, *J* = 17.3, 9.8, 7.3 Hz, 1H), 5.22-5.16 (m, 2H), 5.10 (d, *J* = 7.5 Hz, 1H), 4.93-4.83 (m, 2H), 3.93-3.88 (m, 1H), 3.91 (s, 3H), 1.61 (d, *J* = 7.2 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 173.9, 173.6, 161.6, 157.9, 150.9, 141.8, 138.9, 135.0, 134.7, 133.9, 129.3, 129.0, 128.7, 128.1, 127.5, 127.3, 126.1, 126.0, 119.3, 118.3, 110.7, 105.7, 61.7, 55.4, 47.6, 45.3, 18.4; HRMS (ESI+): *m*/*z* calcd. for C₂₉H₂₇O₆ ([M+H]⁺): 471.0808, Found: 471.0844; Optical rotation: [α]_D²² –35.5 (*c* 2.0, CHCl₃). The absolute stereochemistry of the product **3ja** was assigned in analogy with **8**.

Compound 3ka: Reaction was performed on a 0.2 mmol scale; 3ka was formed with >20:1 dr as

determined by ¹H-NMR of the crude product; purified by silica-gel flash column chromatography (1% methanol in CH₂Cl₂); Pale yellow sticky liquid (82.0 mg, 0.128 mmol, 64% yield); **FT-IR (Thin film):** 3397 (br), 2962 (m), 2926 (m), 2876 (m), 1743 (m), 1710 (s),

1633 (s), 1591 (m), 1451 (m), 1205 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.34-7.26 (m, 4H),

7.24-7.22 (m, 1H), 6.41 (s, 1H), 6.23 (ddd, J = 17.3, 9.8, 7.2 Hz, 1H), 5.29 (d, J = 10.2 Hz, 1H), 5.21 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 7.6 Hz, 1H), 4.88 (s, 2H), 2.93-2.77 (m, 4H), 2.53-2.15 (m, 11H), 2.15-2.00 (m, 6H), 1.94-1.84 (m, 4H), 1.64-1.56 (m, 1H), 1.38 (s, 3H), 1.05 (s, 3H), 0.84 (d, J = 6.5 Hz, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 212.1, 209.3, 208.8, 173.9, 173.0, 162.0, 150.8, 141.8, 138.9, 135.1, 128.8, 128.2, 127.4, 118.4, 110.6, 61.2, 57.0, 51.8, 49.0, 47.7, 46.9, 45.6, 45.0, 42.9, 38.7, 36.6, 36.1, 35.6, 35.3, 31.1, 30.3, 27.7, 25.2, 22.0, 18.7, 11.9; HRMS (ESI+): *m*/*z* calcd. for C₃₉H₄₇O₈ ([M+H]⁺): 643.3271, Found: 643.3270; **Optical rotation:** [α]D²² –13.7 (*c* 2.0, CHCl₃). The absolute stereochemistry of the product **3ka** was assigned in analogy with **8**.

Compound 3la: Reaction was performed on a 0.2 mmol scale; 3la was formed with >20:1 dr as

determined by ¹H-NMR of the crude product; purified by silica-gel flash column chromatography (1% methanol in CH₂Cl₂); Yellow liquid (52.0 mg, 0.124 mmol, 62% yield); **FT-IR (Thin film):** 3272 (br), 2955 (w), 2924 (w), 2854 (w), 1744 (s), 1702 (s), 1633 (s), 1592 (s), 1451 (m), 1202 (m), 1157 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.34-7.25

(m, 5H), 6.41 (s, 1H), 6.24 (ddd, J = 17.3, 10.1, 7.5 Hz, 1H), 5.30 (d, J = 10.1 Hz, 1H), 5.21 (d, J = 17.2 Hz, 1H), 5.10 (d, J = 7.4 Hz, 1H), 4.86 (s, 2H), 2.88-2.83 (m, 1H), 2.40-2.27 (m, 3H), 2.03 (s, 3H), 1.99-1.86 (m, 2H), 1.25 (s, 3H), 0.84 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 207.3, 173.8, 171.7, 161.7, 150.6, 141.8, 139.0, 135.1, 128.8, 128.2, 127.4, 118.4, 110.7, 61.4, 54.2, 47.7, 43.2, 37.9, 34.7, 30.3, 29.8, 23.1, 17.5; **HRMS (ESI+):** m/z calcd. for C₂₅H₂₉O₆ ([M+H]⁺): 425.1964, Found: 425.1963; **Optical rotation:** $[\alpha]_D^{22}$ –68.3 (*c* 2.0, CHCl₃). The absolute stereochemistry of the product **3la** was assigned in analogy with **8**.

I. Unsuccessful substrates for the asymmetric allylic alkylation reaction:

J. Large scale synthesis of 3aa and 3ba:

In an oven and vacuum-dried 50 mL round-bottom flask equipped with a magnetic stir bar, $[Ir(COD)CI]_2$ (27.0 mg, 0.04 mmol, 2 mol%) and (*S*)-L (81.0 mg, 0.16 mmol, 8 mol%) were taken with 2 mL of dry THF under a positive argon pressure. The solution was stirred vigorously at 25 °C for 15 min to obtain a deep red solution. A solution of allylic alcohol *rac*-2a (402.0 mg, 3.0 mmol, 1.5 equiv.) in 7 mL of dry THF was then added to this red solution and stirred at 25 °C for 5 min. Kojic acid derivative 1 (2.0 mmol, 1.0 equiv.) was then added followed by Fe(OTf)₂ (142 mg, 0.4 mmol, 0.2 equiv.). The reaction flask was purged with argon, closed with a glass stopper, and stirred at 25 °C until TLC revealed complete consumption of 1. The reaction mixture was then allowed to attain ambient temperature, diluted with 10 mL of CH₂Cl₂ and 10 mL of 1(N) HCl. The organic layer was separated, and the aqueous layer was extracted with CH₂Cl₂ (10 mL × 3). The combined organic layer was washed with brine (25 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography (1-3% methanol in CH₂Cl₂) to obtain β-allylic kojic acid derivatives **3aa** and **3ba** as a yellow liquid in 98% and 93% yield respectively with >99.5:0.5 er in both cases.

K. Procedure for the Staudinger reduction of 3da:

In an oven-dried 10 mL round-bottom flask, **3da** (50.0 mg, 0.175 mmol, 1.0 equiv.) and PPh₃ (70 mg, 0.2645 mmol, 1.5 equiv.) were taken in 3.5 mL THF followed by addition of 25 µl distilled water and allowed to reflux at 75 °C for 4 h. Then solvent was evaporated from the reaction mixture to obtain a dark yellow residue, which was purified by silica-gel flash column chromatography (3-5% methanol in CH₂Cl₂) to afford **4** as a yellow liquid (36.0 mg, 0.140 mmol, 80% yield) [*Note*: compound **4** is unstable in silica]; **FT-IR (Thin film):** 3436 (w), 2923 (m), 2852 (w), 1590 (s), 1417 (m), 1122 (s) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.35-7.26 (m, 5H), 6.40 (s, 1H), 6.26 (ddd, *J* = 17.2, 9.6, 7.2 Hz, 1H), 5.30 (d, *J* = 10.0 Hz, 1H), 5.21 (d, *J* = 16.9 Hz, 1H), 5.10 (d, *J* = 7.2 Hz, 1H), 3.69 (s, 2H), 1.42 (br, 1H); ¹³**C-NMR (100 MHz, CDCl₃):** δ 174.3, 168.8, 149.9, 141.4, 139.2, 135.3, 128.8, 128.2, 127.4, 118.3, 108.4, 47.8, 43.9; **HRMS (ESI+):** *m/z* calcd. for C₁₅H₁₆NO₃ ([M+H]⁺): 258.1130, Found:

258.1129; **Optical rotation:** $[\alpha]_D^{22}$ +67.3 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (70:30 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 280 nm, τ_{major} = 40.5 min). See Supporting Information: Part B for HPLC chromatograms.

L. Procedure for the selective hydrogenation of the allylic olefin of 3aa:

In an oven and vacuum-dried 10 mL two-necked round-bottom flask, a solution of **3aa** (21.0 mg, 0.081 mmol, 1.0 equiv.) in EtOH (2.0 mL) along with 10% Pd/C (4.0 mg, 0.004 mmol, 0.05 equiv.) were taken. The resulting mixture was degassed and stirred under H₂ balloon pressure for 20 h at 25 °C. The reaction mixture was filtered over Celite[®] and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified by silica-gel flash column chromatography (0.5-1% methanol in CH₂Cl₂) to obtain **5** as a colorless sticky liquid (17.0 mg, 0.065 mmol, 81% yield); **FT-IR** (**Thin film**): 3413 (br), 2925 (m), 2866 (w), 1628 (s), 1574 (s), 1456 (m), 1210 (m) cm⁻¹; ¹**H-NMR** (**400 MHz, CDCl₃**): δ 7.35-7.21 (m, 5H), 6.49 (s, 1H), 4.51-4.43 (m, 2H), 4.22 (t, *J* = 7.9 Hz, 1H), 2.18-1.98 (m, 2H), 0.92 (t, *J* = 7.3 Hz, 3H); ¹³C-NMR (**100 MHz, CDCl₃**): δ 174.3, 167.3, 151.9, 141.6, 140.4, 128.8, 128.1, 127.3, 108.5, 61.2, 45.9, 25.5, 12.4; **HRMS (ESI+)**: m/z calcd. for C₁₅H₁₇O₄ ([M+H]⁺): 261.1127, Found: 261.1126; **Optical rotation**: [α]_D²² –123.3 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 277 nm, $\tau_{minor} = 13.9$ min, $\tau_{major} = 15.9$ min). See Supporting Information: Part B for HPLC chromatograms.

M. Procedure for the double silylation and hydroboration of 3aa:

In an oven-dried 25 mL round-bottom flask, **3aa** (235.0 mg, 0.91 mmol, 1.0 equiv.) was taken along with DMAP (22.2 mg, 0.182 mmol, 0.2 equiv.) and imidazole (186.0 mg, 2.729 mmol, 3.0 equiv.) under a positive argon pressure. Then 1 mL of dry DMF was added, followed by addition of TBSCl (343 mg, 2.274 mmol, 2.5 equiv.) in 2 mL DMF and the resulting solution was stirred at 25 °C for 24 h under argon. Upon completion, the resulting mixture was diluted with 30 mL of distilled water

and 30 mL of diethyl ether. The organic layer was separated and washed with distilled water (20 mL × 3). The combined organic layer was washed with brine (25 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography (2-3% EtOAc in petroleum ether) to obtain **I1** as a yellow liquid (358 mg, 0.736 mmol, 81% yield). **FT-IR (Thin film):** 3315 (br), 2935 (w), 2860 (w), 1725 (m), 1628 (s), 1581 (m), 1454 (m), 1250 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl**₃): δ 7.34-7.30 (m, 2H), 7.27-7.23 (m, 3H), 6.38 (s, 1H), 6.19 (ddd, *J* = 7.4, 10.1, 17.3 Hz, 1H), 5.29 (d, *J* = 10.1 Hz, 1H), 5.24 (d, *J* = 7.4 Hz, 1H), 5.17 (d, *J* = 17.2 Hz, 1H), 4.43-4.33 (m, 2H), 0.96 (s, 9H), 0.90 (s, 9H), 0.31 (s, 3H), 0.27 (s, 3H), 0.07 (s, 3H), 0.06 (s, 3H); ¹³**C-NMR (100 MHz, CDCl**₃): δ 175.3, 165.6, 155.3, 141.5, 139.4, 135.8, 128.7, 128.2, 127.2, 118.1, 110.9, 61.3, 46.9, 26.2, 25.8, 19.0, 18.3, -3.3, -3.4, -3.6, -5.4.

In an oven dried 25 mL round-bottom flask, I1 (60.0 mg, 0.123 mmol, 1.0 equiv.) was taken along with [Ir(COD)Cl]₂ (2.4 mg, 0.0036 mmol, 0.03 equiv.) and bis(diphenylphosphino)methane (DPPM) (2.8 mg, 0.0072 mmol, 0.06 equiv.) under a positive argon pressure. Then 4 mL of dry CH₂Cl₂ was added, followed by addition of HBpin (36 µL, 0.246 mmol, 2.0 equiv.) and the resulting solution was stirred at 25 °C for 20 h under argon. Upon completion, the reaction mixture was quenched with 0.5 mL methanol and diluted with 4 mL of distilled water. The organic phase was separated, and the aqueous phase was extracted with CH_2Cl_2 (3 × 5 mL). The combined organic layer was dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a yellow oil, which was purified by silicagel flash column chromatography (3-5% EtOAc in petroleum ether) to obtain 6 as a yellow oil (72.0 mg, 0.117 mmol, 95% yield); FT-IR (Thin film): 3279 (w), 2935 (m), 2861 (w), 1633 (s), 1586 (m), 1373 (m), 1215 (s) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.32-7.28 (m, 4H), 7.23-7.19 (m, 1H), 6.33 (s, 1H), 4.49-4.38 (m, 3H), 2.16-2.01 (m, 2H), 1.22 (s, 12H), 0.99 (s, 9H), 0.92 (s, 9H), 0.78-0.71 (m, 2H), 0.27 (s, 3H), 0.26 (s, 3H), 0.10 (s, 3H), 0.09 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 175.1, 165.3, 156.6, 141.7, 140.9, 128.6, 128.2, 127.0, 110.7, 83.2, 61.4, 45.6, 27.5, 26.4, 25.8, 24.9, 24.9, 19.1, 18.3, -3.1, -3.4, -5.3; **Optical rotation:** $[\alpha]_D^{22}$ -61.2 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample.

N. Procedure for the oxidation of 6:

In an oven dried 10 mL round-bottom flask, **6** (38.0 mg, 0.062 mmol, 1.0 equiv.) was taken in a mixture of THF/H₂O (1:1) followed by addition of NaBO₃·4H₂O (38.0 mg, 0.247 mmol, 4.0 equiv.) and allowed to stir at 25 °C for 4 h. Upon completion, the reaction mixture was diluted with 10 mL of distilled water and 10 mL of CH₂Cl₂. The organic phase was separated, and the aqueous phase was extracted with CH₂Cl₂ (3 × 5 mL). The combined organic layer was dried over anh. Na₂SO₄ and

concentrated under reduced pressure to obtain a pale yellow residue, which was purified by silica-gel flash column chromatography (1-2% methanol in CH₂Cl₂) to afford **7** as a yellow oil (27.0 mg, 0.053 mmol, 87% yield); **FT-IR (Thin film):** 3315 (br), 2935 (w), 2860 (w), 1725 (m), 1629 (s), 1582 (m), 1455 (m), 1251 (m) cm⁻¹; ¹**H-NMR (400 MHz, CDCl₃):** δ 7.34-7.29 (m, 4H), 7.26-7.23 (m, 1H), 6.34 (s, 1H), 4.71 (t, *J* = 7.9 Hz, 1H), 4.46-4.37 (m, 2H), 3.63-3.60 (m, 2H), 2.28-2.23 (m, 2H), 1.00 (s, 9H), 0.91 (s, 9H), 0.30 (s, 3H), 0.27 (s, 3H), 0.09 (s, 3H), 0.09 (s, 3H); ¹³**C-NMR (100 MHz, CDCl₃):** δ 175.1, 165.4, 156.1, 141.5, 140.1, 128.8, 128.1, 127.3, 110.9, 61.4, 60.7, 39.4, 35.5, 26.3, 25.8, 19.1, 18.3, -3.2, -3.3, -5.3; **HRMS (ESI+):** *m/z* calcd. for C₂₇H₄₅O₅Si₂ ([M+H]⁺): 505.2806, Found: 505.2802; **Optical rotation:** [α]_D²² –92.1 (*c* 2.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (90:10 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 254 nm, τ_{minor} = 4.3 min, τ_{major} = 6.7 min). See Supporting Information: Part B for HPLC chromatograms.

O. Procedure for the ozonolysis induced cyclization of 7:

In an oven-dried 10 mL round-bottom flask, 7 (100.0 mg, 0.198 mmol, 1.0 equiv.) was taken in 3.5 mL CH₂Cl₂ and treated with oxygen-ozone stream for 15 min at -78 °C. After full consumption of 7, the resulting mixture was treated with an excess of dimethyl sulfide (58 µl, 0.792 mmol, 4.0 equiv.), allowed to slowly warm to ambient temperature and stirred for 3 h. Then all the volatiles were removed under reduced pressure to obtain yellow residue, which was purified by silica-gel flash column chromatography (11-13% EtOAc in petroleum ether) to afford 8 as a yellow liquid (10.0 mg, 0.062 mmol, 31% yield); FT-IR (Thin film): 2958 (w), 2919 (m), 2851 (w), 1768 (s), 1597 (m), 1373 (m), 1150 (s), 1023 (s) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.39-7.36 (m, 2H), 7.32-7.28 (m, 3H), 4.48 $(dt, J = 3.3, 8.6 \text{ Hz}, 1\text{H}) 4.39-4.32 \text{ (m, 1H)}, 3.82 \text{ (t, } J = 9.5 \text{ Hz}, 1\text{H}), 2.76-2.68 \text{ (m, 1H)}, 2.50-2.40 \text{ (m, 1$ 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 177.5 136.8, 129.1, 128.0, 127.8, 66.6, 45.6, 31.7; HRMS (ESI+): m/z calcd. for C₁₀H₁₁O₂ ([M+H]⁺): 163.0759, Found: 163.0760; Optical rotation: $[\alpha]_D^{22}$ -4.7 (c 1.0, CHCl₃) for an enantiomerically enriched sample with 98:2 er [Lit⁷ $\left[\alpha\right]_{D}^{22}$ +3.1 (c 1.0, CHCl₃) for an enantiomerically enriched sample with 95:5 er]. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (80:20 n-Hexane/i-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 210 nm, τ_{major} = 23.7 min, τ_{minor} = 26.6 min). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 8 was assigned by comparing its specific rotation with that reported in the literature.⁷

⁷ N. A. Paras and D. W. C. MacMillan, J. Am. Chem. Soc., 2001, **123**, 4370-4371.

P. Procedure for the selective O-allylation of 3aa:

In an oven-dried 10 mL round-bottom flask, **3aa** (42.0 mg, 0.163 mmol, 1.0 equiv.) and K₂CO₃ (33.7 mg, 0.243 mmol, 1.5 equiv.) were taken in 2 mL of dry DMF under argon atmosphere followed by addition of allyl bromide (17 µl, 0.195 mmol, 1.2 equiv.) and allowed to stir at 25 °C for 12 h. Upon completion, the reaction mixture was diluted with 20 mL of water and 20 mL of CH₂Cl₂. The organic phase was separated, and the aqueous phase was extracted with CH_2Cl_2 (3 × 10 mL). The combined organic layer was washed with 20 mL brine, dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a pale yellow residue, which was purified by silica-gel flash column chromatography (1-2% Methanol in CH₂Cl₂) to afford 9 as a yellow oil (30.0 mg, 0.100 mmol, 62% yield); FT-IR (Thin film): 3345 (br), 3083 (w), 2922 (m), 1723 (m), 1652 (s), 1611 (s), 1424 (m), 1188 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.33-7.29 (m, 2H), 7.26-7.22 (m, 3H), 6.46 (s, 1H), 6.20 (ddd, J = 17.4, 10.1, 7.6, Hz, 1H), 5.98-5.88 (m, 1H), 5.31-5.27 (m, 2H), 5.20-5.13 (m, 3H), 4.59-4.48 (m, 2H), 4.41 (s, 2H), 4.10 (br, 1H); ¹³C-NMR (100 MHz, CDCl₃): δ 176.6, 167.3, 161.1, 142.6, 139.0, 135.5, 133.5, 128.9, 128.2, 127.5, 119.1, 118.6, 112.3, 73.1, 60.7, 47.7; HRMS (ESI+): m/z calcd. for $C_{18}H_{19}O_4$ ([M+H]⁺): 299.1283, Found: 299.1281; **Optical rotation:** $[\alpha]_D^{22}$ –100.9 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 *n*-Hexane/ *i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 257 nm, τ_{minor} = 8.5 min, τ_{major} = 11.6 min). See Supporting Information: Part B for HPLC chromatograms.

Q. Procedure for the ring closing metathesis of 9:

In an oven dried 10 mL 2-necked round-bottom flask, equipped with a reflux condenser, **9** (14.0 mg, 0.047 mmol, 1.0 equiv.) and Grubbs-II (3.2 mg, 0.00375 mmol, 0.08 equiv.) were taken in 2.5 mL of dry and degassed CH_2Cl_2 under argon. The resulting solution was heated to 45 °C for 12 h at which time starting material was completely consumed. The reaction mixture was concentrated to obtain a yellow residue. Purification by silica-gel flash column chromatography (3-4% methanol in CH_2Cl_2) afforded **10** as a light brown sticky liquid (11.0 mg, 0.047 mmol, 87% yield); **FT-IR (Thin film):** 3420 (br), 2923 (w), 2853 (w), 1653 (s), 1617 (s), 1595 (s), 1452 (m), 1272 (w) cm⁻¹; ¹**H-NMR (400 MHz,**

CDCl₃): δ 7.44-7.42 (m, 2H), 7.33-7.24 (m, 3H), 6.44 (s, 1H), 5.87-5.78 (m, 2H), 4.77-4.72 (m, 1H), 4.47-4.41 (m, 4H); ¹³**C-NMR (100 MHz, CDCl₃):** δ 176.6, 166.9, 161.3, 144.7, 138.9, 129.1, 128.4, 128.4, 127.9, 125.4, 112.4, 69.0, 60.9, 49.9; **HRMS (ESI+):** *m*/*z* calcd. for C₁₆H₁₅O₄ ([M+H]⁺): 271.0970, Found: 271.0968; **Optical rotation:** [α]_D²² –75.1 (*c* 1.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 *n*-Hexane/*i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 259 nm, τ major = 9.9 min, τ minor = 13.5 min). See Supporting Information: Part B for HPLC chromatograms.

R. Procedure for the triflyl protection of 3ba:

In an oven and vacuum-dried 10 mL round-bottom flask equipped with a magnetic stir bar, 3ba (40 mg, 0.165 mmol, 1.0 equiv.) was dissolved in 1.0 mL of dry CH₂Cl₂ under a positive argon pressure and cooled to 0 °C. To this solution, pyridine (36 µl, 0.445 mmol, 2.7 equiv.) was added followed by dropwise addition of Tf_2O (36 µl, 0.214 mmol, 1.3 equiv.) and the resulting mixture was stirred at 0 °C for 1 h. Upon completion, the reaction mixture was quenched with 5 mL of 1(N) HCl solution. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (5 mL \times 3). Combined organic layer was washed with brine (10 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a dark red residue, which was purified by silica-gel flash column chromatography (CH₂Cl₂ only) to obtain **11** as yellow liquid (36.0 mg, 0.096 mmol, 58% yield); **FT-IR** (Thin film): 3072 (w), 2921 (m), 2708 (w), 1722 (m), 1667 (s), 1418 (s), 1213 (s), 1123 (s), 855 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.39-7.35 (m, 2H), 7.33-7.27 (m, 3H), 6.25 (s, 1H), 6.20 (ddd, J = 7.4, 10.1, 17.3 Hz, 1H), 5.41 (d, J = 10.2 Hz, 1H), 5.28 (d, J = 17.1 Hz, 1H), 5.00 (d, J = 7.4 Hz, 1H), 2.27 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 171.2, 166.1, 166.1, 162.4, 137.1, 137.0, 133.6, 129.1, 128.1, 120.0, 118.5 (q, J = 320.2 Hz), 114.7, 48.0, 19.7; **HRMS (ESI+)**: m/z calcd. for C₁₆H₁₃F₃O₅SNa $([M+Na]^+)$: 397.0333, Found: 397.0330; **Optical rotation:** $[\alpha]_D^{22}$ -57.8 (c 2.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 n-Hexane/i-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 221 nm, τ_{minor} = 12.5 min, τ_{maior} = 20.3 min). See Supporting Information: Part B for HPLC chromatograms.

S. Procedure for the Suzuki cross-coupling of 11 with phenyl boronic acid:

In an oven and vacuum-dried 10 mL round-bottom flask equipped with a magnetic stir bar, 11 (20 mg, 0.053 mmol, 1.0 equiv.), Pd(PPh₃)₄ (3.1 mg, 0.00265 mmol, 5.0 mol%), K₂CO₃ (29.3 mg, 0.212 mmol, 4.0 equiv.) and phenyl boronic acid (12.9 mg, 0.106 mmol, 2.0 equiv.) were taken in 0.6 mL of dry 1,4-dioxane under a positive argon pressure, heated to 70 °C and allowed to stir for 7 h. Upon completion, the reaction mixture was guenched with 3 mL of saturated NH₄Cl solution and diluted with 3 mL of distilled water. The organic layer was separated, and the aqueous layer was extracted with CH_2Cl_2 (3 mL \times 3). Combined organic layer was washed with brine (10 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a dark brown residue, which was purified by silica-gel flash column chromatography (1% methanol in CH_2Cl_2) to obtain 12 as a yellow liquid (13.0 mg, 0.043 mmol, 85% yield); FT-IR (Thin film): 3446 (br), 2923 (w), 2853 (w), 1659 (s), 1623 (s), 1397 (m) cm⁻¹; ¹H-NMR (400 MHz, CDCl₃): δ 7.45-7.38 (m, 4H), 7.33-7.28 (m, 3H), 7.25-7.23 (m, 1H), 7.16-7.15 (m, 2H), 6.21 (s, 1H), 6.24-6.16 (m, 1H), 5.29 (d, J = 10.1 Hz, 1H), 5.09 (d = 17.0 Hz, 1H), 4.60 (d, J = 7.4 Hz, 1H), 2.25 (s, 3H); ¹³C-NMR (100 MHz, CDCl₃): δ 178.9, 165.0, 164.5, 139.3, 136.2, 132.3, 130.2, 128.8, 128.7, 128.3, 128.1, 127.4, 127.2, 118.3, 113.9, 50.9, 19.8; **HRMS (ESI+):** m/z calcd. for C₂₁H₁₉O₂ ([M+H]⁺): 303.1385, Found: 303.1384; **Optical rotation:** $\left[\alpha\right]_{D}^{22}$ -120.7 (c 1.0, CHCl₃) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 n-Hexane/ *i*-PrOH, flow rate = 1.0 mL/min, 20 °C, I = 224 nm, τ_{minor} = 38.9 min, τ_{major} = 43.7 min). See Supporting Information: Part B for HPLC chromatograms.

T. Attempted reductive removal of triflate in 11:

In an oven and vacuum-dried 10 mL round-bottom flask equipped with a magnetic stir bar, **11** (15 mg, 0.040 mmol, 1.0 equiv.), Pd(PPh₃)₄ (9.2 mg, 0.008 mmol, 20.0 mol%) and LiCl (15.0 mg, 0.35 mmol, 8.75 equiv.) were taken in 2 mL of dry DMF under a positive argon pressure. Then Et₃SiH (0.13 mL, 0.816 mmol, 20.0 equiv.) was added into it and heated to 70 °C and allowed to stir for 3 h. Upon completion, the reaction mixture was diluted with 5 mL of Et₂O and 20 mL of distilled water. The organic layer was separated, and the aqueous layer was extracted with Et₂O (5 mL × 3). Combined

organic layer was washed with brine (10 mL), dried over anh. Na₂SO₄ and concentrated under reduced pressure to obtain a dark yellow residue, which was purified by silica-gel flash column chromatography (30-40% EtOAc in Pet ether) to obtain mixture of isomerized product and hydrogenation product as an inseperable mixture (8.0 mg); ¹H-NMR (400 MHz, CDCl₃): δ 7.42-7.31 (m, 6H), 7.26-7.23 (m, 4H), 7.15-7.12 (m, 2H), 6.81 (q, *J* = 7.1 Hz, 1H) [for **A**], 6.18 (d, *J* = 2.2 Hz, 1H), 6.07 (d, *J* = 1.5 Hz, 1H), 6.05 (d, *J* = 1.4 Hz, 1H), 5.75 (d, *J* = 2.1 Hz, 1H), 3.56 (t, *J* = 7.7 Hz, 1H) [for **B**], 2.32 (s, 3H) [for **A**], 2.21 (s, 3H) [for **B**], 2.13-2.07 (m, 1H), 1.99-1.90 (m, 1H) [for **B**], 1.71 (d, *J* = 7.2 Hz, 3H) [for **A**], 0.92 (t, *J* = 7.4 Hz, 3H) [for **B**]; ¹³C-NMR (100 MHz, CDCl₃): δ 180.9, 180.6, 170.5, 165.9, 165.2, 164.1, 139.8, 135.4, 135.0, 131.4, 130.0, 128.9, 128.9, 128.2, 128.1, 127.5, 114.0, 113.8, 113.1, 113.0, 51.9, 26.2, 20.0, 19.9, 15.6, 12.3; HRMS (ESI+): *m*/*z* calcd. for C₁₅H₁₅O₂ ([M+H]⁺): 227.1072, Found: 227.1069.

SUPPORTING INFORMATION: PART B

Hydroxy-directed iridium-catalyzed enantioselective formal β -C(sp²)–H allylic alkylation of α , β -unsaturated carbonyls

Sankash Mitra, Rahul Sarkar, Aditya Chakrabarty and Santanu Mukherjee*

Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA

*Corresponding author: E-mail: sm@iisc.ac.in

PDA Ch1 277nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	7.728	181481	49.623		
2	9.236	184241	50.377		
Total		365722	100.000		

Phenomenex Cellulose-1 column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

D 1			1 1	
Peal	21	2	hI	ρ
I Ca	N 1	a		•

	PDA Ch1 277nm 4nm					
	Peak#	Ret. Time	Area	Area %		
	1	7.829	12326	0.160		
ĺ	2	9.097	7715447	99.840		
	Total		7727773	100.000		

PDA Ch1 285nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	20.255	392668	50.512	
2	26.334	384715	49.488	
Total		777383	100.000	

Daicel Chiralpak AS-H column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

		P
PDA Ch1	285nm 4nm	

Peak#	Ret. Time	Area	Area %
1	19.943	31150645	100.000
Total		31150645	100.000

PDA Ch1 277nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	14.105	1408829	49.574	
2	17.487	1433019	50.426	
Total		2841847	100.000	

Daicel Chiralpak IH column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PDA Ch1 277nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	13.794	17289900	100.000	
Total		17289900	100.000	

10141	394727	100.000

Daicel Chiralpak IG column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

D		1 1 1	
Paa	Z 1	ab	
ICa	N I.	avı	LC.

]	PDA Ch1 279nm 4nm				
	Peak#	Ret. Time	Area	Area %	
ſ	1	22.473	100159	0.566	
ſ	2	27.258	17597829	99.434	
ſ	Total		17697988	100.000	

Peak#	Ret. Time	Area	Area %
1	32.287	1921425	50.558
2	38.669	1878982	49.442
Total		3800407	100.000

Daicel Chiralpak AD-H column (95:5 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PDA Ch1 275nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	38.217	30361885	100.000	
Total		30361885	100.000	

Phenomenex Amylose-2 column (75:25 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

Chromatogram

PeakTable PDA Ch1 254nm 4nm

Peak#	Ret. Time	Area	Area %	
1	16.114	17964377	100.000	
Total		17964377	100.000	

icel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

Chromatogram

ł	PDA Ch1 283nm 4nm				
	Peak#	Ret. Time	Area	Area %	
	1	12.093	8457622	100.000	
	Total		8457622	100.000	

PeakTable

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

100.000

1448780

PDA Ch1 282nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	12.994	9983031	100.000	
Total		9983031	100.000	

Total

Peak#	Ret. Time	Area	Area %
1	11.575	1208357	50.125
2	13.814	1202307	49.875
Total		2410664	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

P	PDA Ch1 222nm 4nm					
Γ	Peak#	Ret. Time	Area	Area %		
Γ	1	11.768	1242475	1.301		
Γ	2	13.705	94281879	98.699		
	Total		95524354	100.000		

Daicel Chiralpak IH column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PDA Ch1 215nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	10.856	14000208	100.000		
Total		14000208	100.000		

Daicel Chiralpak AD-H column (90:10 *n*-Hexane/*i*-PrOH, 1.0 mL/min, 20 °C)

PDA Ch1 276nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	17.579	8950689	100.000	
Total		8950689	100.000	

Peak#	Ret. Time	Area	Area %
1	10.592	2237312	49.770
2	13.025	2257984	50.230
Total		4495297	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

D	1 7	- 1	1	
Pea	L- I	2	hI	ρ
I Ca	Γı	a	\mathbf{u}	Ľ

1 cultitudie					
PDA Ch1 280nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	10.841	20520	0.076		
2	13.035	26844750	99.924		
Total		26865270	100.000		

Daicel Chiralpak AD-H column	(85:15 n-Hexane/i-PrOH,	1.0 mL/min, 20	°C)
------------------------------	-------------------------	----------------	-----

PDA Ch1 288nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	12.404	20547043	100.000	
Total		20547043	100.000	

Daicel Chiralpak AD-H column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

Chromatogram D:\HPLC\Data\ADC\ADC-IV-142-01.lcd

PeakTable				
PDA Ch1 241nm 4nm				
Peak# Ret. Time Area Area %				
1	22.727	19376672	100.000	
Total		19376672	100.000	

Peak#	Ret. Time	Area	Area %	
1	15.102	12043561	50.903	
2	24.403	11616314	49.097	
Total		23659874	100.000	

Daicel Chiralpak IH column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

A	Ch1	281nm 4nm
	<u>un</u>	2011111111111

PDA Ch1 281nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	14.993	29763637	100.000	
Total		29763637	100.000	

2 20.	081 29716098	50.925
Total	58353016	100.000

Daicel Chiralpak IH column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

Chromatogram D:\HPLC\Data\ADC\ADC-III-149-01.lcd

1	PDA Ch1 221nm 4nm			
ĺ	Peak#	Ret. Time	Area	Area %
ľ	1	17.750	104515516	100.000
	Total		104515516	100.000

DoolrTable

Daicel Chiralpak IC column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)


```
PeakTable
```

PDA Ch1 280nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	30.074	8815	0.044	
2	47.474	19841047	99.956	
Total		19849862	100.000	

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PeakTable

PDA Ch1 282nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	19.569	130860	0.521	
2	27.360	24983661	99.479	
Total		25114520	100.000	

Peak#	Ret. Time	Area	Area %	
1	11.858	1601446	49.606	
2	13.441	1626908	50.394	
Total		3228354	100.000	

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PeakTable	2
-----------	---

PDA Ch1 276nm 4nm				
Peak	#	Ret. Time	Area	Area %
	1	12.040	65842	0.704
	2	13.483	9288585	99.296
Г	`otal		9354427	100.000

Phenomenex Cellulose-1 column (90:10 <i>n</i> -Hexane/ <i>i</i> -PrOH,	1.0 mL/min,	20 °C)

100.000

3598659

Total

D		D 1	. 1	
Pea	ΖI	2	h	P
I Ca	N 1	ւս	U.	

P	DA Ch1 2	76nm 4nm		
Γ	Peak#	Ret. Time	Area	Area %
	1	10.426	9511	0.081
	2	14.501	11693298	99.919
	Total		11702809	100.000

Daicel Chiralpak IC column (95:5 *n*-Hexane/*i*-PrOH, 1.0 mL/min, 20 °C)

P	DA Ch1 3	05nm 4nm		
	Peak#	Ret. Time	Area	Area %
	1	27.667	115094	0.400
	2	32.192	28681963	99.600
	Total		28797057	100.000

PDA Chi 2			
Peak#	Ret. Time	Area	Area %
1	21.861	444060	49.171
2	25.086	459030	50.829
Total		903090	100.000

Daicel Chiralpak IH column (85:15 n-Hexane/i-PrOH, 1mL/min, 20 °C)

PDA Ch1 2	82nm 4nm		
Peak#	Ret. Time	Area	Area %
1	24.475	18302946	100.000
Total		18302946	100.000

Peak#	Ret. Time	Area	Area %
1	44.228	2643491	49.769
2	49.577	2667996	50.231
Total		5311487	100.000

Daicel Chiralpak IH column (90:10 *n*-Hexane/*i*-PrOH, 0.5 mL/min, 20 °C)

n 1		- 1	1 1	
Pegi	21	2	nı	ρ
I Ca	V 1	a	UJ	

PDA Ch1 2	272nm 4nm		
Peak#	Ret. Time	Area	Area %
1	48.362	40998998	100.000
Total		40998998	100.000

D 1		1	1
Pea	κI	at	ble

	PDA Ch1 2	33nm 4nm		
[Peak#	Ret. Time	Area	Area %
	1	25.804	12421526	50.005
	2	33.500	12418942	49.995
	Total		24840468	100.000

Daicel Chiralpak IG column (95:5 n-Hexane/i-PrOH, 1 mL/min, 20 °C)

PeakTable					
PDA Ch1 233nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	25.989	132196	0.209		
2	33.001	63141661	99.791		
Total		63273857	100.000		

Daicel Chiralpak IG column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

Chromatogram

PDA Chi 2	32nm 4nm		
Peak#	Ret. Time	Area	Area %
1	14.888	9263135	100.000
Total		9263135	100.000

Daicel Chiralpak IH column (85:15 n-Hexane/i-PrOH, 1 mL/min, 20 °C)

D	1.1	T 1	1
P	eak	Tab	le

PDA Ch1 298nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	27.494	16145576	100.000		
Total		16145576	100.000		

PDA Ch1 268nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	37.294	2349354	50.040		
2	50.825	2345638	49.960		
Total		4694992	100.000		

Daicel Chiralpak IG column (40:60 n-Hexane/EtOH, 1.0 mL/min, 20 °C)

PeakTable					
PDA Ch1 268nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	37.584	15292	0.041		
2	49.893	37000103	99.959		
Total		37015395	100.000		

PDA Ch1 280nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	27.759	5901396	50.050		
2	40.559	5889578	49.950		
Total		11790973	100.000		
·					

Phenomenex Cellulose-2 column (70:30 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PeakTable

PDA Ch1 280nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	40.506	8762993	100.000		
Total		8762993	100.000		

Peak#	Ret. Time	Area	Area %	
1	13.628	1220477	49.572	
2	16.639	1241534	50.428	
Total		2462011	100.000	

Daicel Chiralpak AD-H column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

D 1			1 1	
Peal	2	2	hl	ρ
1 0 a	r 7	ւս	\mathbf{v}	

Р	PDA Ch1 277nm 4nm				
	Peak#	Ret. Time	Area	Area %	
Γ	1	13.966	29563	0.132	
	2	15.911	22298420	99.868	
	Total		22327983	100.000	

PDA Ch1 254nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	4.278	4105388	50.124		
2	6.774	4085006	49.876		
Total		8190394	100.000		

Phenomenex Cellulose-2 column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PeakTable

Peak#	Ret. Time	Area	Area %
1	4.284	50508	0.399
2	6.731	12601482	99.601
Total		12651990	100.000

PDA Ch1 2	10nm 4nm		
Peak#	Ret. Time	Area	Area %
1	23.235	30815757	49.504
2	26.133	31433433	50.496
Total		62249190	100.000

Daicel Chiralpak IC column (80:20 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

1 can raoic

P	DA Ch1 2	210nm 4nm		
	Peak#	Ret. Time	Area	Area %
	1	23.678	10699807	97.936
	2	26.654	225476	2.064
	Total		10925283	100.000

\mathcal{D}	Daicel Chiralpak AD-H column	(90:10 n-Hexane/i-PrOH.	, 1.0 mL/min,	, 20 °C
---------------	------------------------------	-------------------------	---------------	---------

D 1	1 77		1 1	
Pea	61	a	hl	ρ
I Ca	r 1	a	\mathbf{v}	· •

		_		
]	PDA Ch1 2	57nm 4nm		
	Peak#	Ret. Time	Area	Area %
ſ	1	8.488	105566	0.396
ſ	2	11.631	26577259	99.604
	Total		26682824	100.000

Peak#	Ret. Time	Area	Area %
1	9.963	6078716	50.015
2	13.478	6074964	49.985
Total		12153680	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PeakTable

PDA Ch1 2	59nm 4nm		
Peak#	Ret. Time	Area	Area %
1	9.931	16347226	99.635
2	13.484	59866	0.365
Total		16407092	100.000

	1	Carlable	
PDA Ch1 2	21nm 4nm		
Peak#	Ret. Time	Area	Area %
1	12.388	4101190	50.301
2	21.028	4052139	49.699
Total		8153329	100.000

Daicel Chiralpak IH column (90:10 n-Hexane/i-PrOH, 1.0 mL/min, 20 °C)

PeakTable					
	PDA Ch1 221nm 4nm				
	Peak#	Ret. Time	Area	Area %	
	1	12.498	93484	0.227	
	2	20.356	41076107	99.773	
	Total		41169591	100.000	

PDA Ch1 224nm 4nm				
Peak#	Ret. Time	Area	Area %	
1	39.096	582139	50.828	
2	42.874	563179	49.172	
Total		1145317	100.000	

Daicel Chiralpak IH column (90:10 n-Hexane/i-PrOH, 1 mL/min, 20 °C)

PeakTable					
PDA Ch1 224nm 4nm					
Peak#	Ret. Time	Area	Area %		
1	38.884	51435075	99.604		
2	43.672	204439	0.396		
Total		51639513	100.000		

