SUPPORTING INFORMATION: PART A
 Hydroxy-directed iridium-catalyzed enantioselective formal $\beta-\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ allylic alkylation of α, β-unsaturated carbonyls

Sankash Mitra, Rahul Sarkar, Aditya Chakrabarty and Santanu Mukherjee*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA
*Corresponding author: E-mail: sm@iisc.ac.in

Table of Contents

A. General information S-2
B. Representative bioactive natural products containing 3-hydroxypyranone S-3
C. Procedure for the synthesis of 3-hydroxypyranone derivatives S-3
D. Procedure for the synthesis of allylic alcohols S-6
E. Preliminary studies on asymmetric allylic alkylation of kojic acid S-6
F. Promoter and reaction conditions optimization for asymmetric allylic alkylation of S-7 kojic acid
G. General procedure for the preparation of racemic products ($\mathrm{rac}-\mathbf{3}$) S-9
H. General procedure for the Ir-catalyzed asymmetric allylic alkylation of kojic acid S-10
I. Unsuccessful substrates for the asymmetric allylic alkylation reaction S-21
J. Large scale synthesis of 3aa and 3ba S-22
K. Procedure for the Staudinger reduction of 3da S-22
L. Procedure for the selective hydrogenation of the allylic olefin of 3aa S-23
M. Procedure for the double silylation and hydroboration of 3aa S-23
N. Procedure for the oxidation of 6 S-24
O. Procedure for the ozonolysis induced cyclization of 7 S-25
P. Procedure for the selective O-allylation of 3aa S-26
Q. Procedure for the ring closing metathesis of $\mathbf{9}$ S-26
R. Procedure for the triflyl protection of 3ba S-27
S. Procedure for the Suzuki cross coupling of $\mathbf{1 1}$ with phenyl boronic acid S-28
T. Attempted reductive removal of triflate in $\mathbf{1 1}$ S-28

A. General information:

Infrared (FT-IR) spectra were recorded on a Bruker Alfa FT-IR, $v_{\max }$ in cm^{-1} and the bands are characterized as broad (br), strong (s), medium (m), and weak (w). NMR spectra were recorded on Bruker Ultrashield spectrometer at 400 MHz (for ${ }^{1} \mathrm{H}-\mathrm{NMR}$) and 100 MHz (for ${ }^{13} \mathrm{C}-\mathrm{NMR}$). Chemical shifts are reported in ppm from tetramethylsilane with the solvent resonance as internal standard $\left[\mathrm{CDCl}_{3}: \delta 7.26, \mathrm{CD}_{3} \mathrm{OD}: \delta 3.31,\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta 2.50\right.$ for ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and $\mathrm{CDCl}_{3}: \delta 77.16, \mathrm{CD}_{3} \mathrm{OD}: \delta 49.00$, $\left(\mathrm{CD}_{3}\right)_{2} \mathrm{SO}: \delta 39.52$ for $\left.{ }^{13} \mathrm{C}-\mathrm{NMR}\right]$. For ${ }^{1} \mathrm{H}-\mathrm{NMR}$, data are reported as follows: chemical shift, multiplicity ($\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{dd}=$ double doublet, $\mathrm{ddd}=$ doublet of doublet of doublets, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{sep}=$ septet, $\mathrm{br}=$ broad, $\mathrm{m}=$ multiplet $)$, coupling constants (Hz) and integration. High resolution mass spectrometry was performed on Waters XEVO G2-XS QTof instrument. Optical rotations were measured on a JASCO P-2000 polarimeter. Melting points were measured in open glass capillary using Büchi M-560 melting point apparatus. Enantiomeric ratios were determined by Shimadzu LC-20AD HPLC instrument and SPD-20A Diode Array Detector using stationary phase chiral columns ($25 \mathrm{~cm} \times 0.46 \mathrm{~cm}$) in comparison with authentic racemic compounds.

Unless stated otherwise, all reactions were carried out with distilled and dried solvents under an atmosphere of nitrogen or argon in oven $\left(120{ }^{\circ} \mathrm{C}\right)$ dried glassware with standard vacuum-line techniques. Organic solvents used for carrying out reactions were dried using standard methods. $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}$, (S)-BINOL and rac-BINOL were purchased from Sigma-Aldrich, iminostilbene was purchased from Combi-Blocks and used as received. All work up and purification were carried out with reagent grade solvents in air. Thin-layer chromatography was performed using Merck silica gel $60 \mathrm{~F}_{254}$ pre-coated plates (0.25 mm). Column chromatography was performed using silica gel (230-400 or 100200 mesh). NMR yields were determined by using mesitylene as an internal standard. Unless otherwise noted, all reported yields of the Ir-catalyzed allylation reactions are isolated yields. Chiral ligands used in this work were prepared according to the literature procedure. ${ }^{1}$

[^0]
B. Representative bioactive natural products containing 3-hydroxypyranone:

C. Procedure for the synthesis of 3-hydroxypyranone derivatives:

Kojic acid (1a) and 2-hydroxynaphthaquinone (1g) were procured from Avra Synthesis Pvt. Ltd and Sigma-Aldrich respectively and used as received. The other 3-hydroxypyranone derivatives $\mathbf{1 b} \mathbf{- f}, \mathbf{1 h}$ were prepared according to the previously reported procedure and the spectral data are consistent with those described in the literature. ${ }^{2}$

General procedure A: S1 was prepared according to the reported literature procedure. ${ }^{3}$ Acyl chlorides were prepared according to the reported literature procedure. ${ }^{4}$ 3-Hydroxypyranone derivatives $\mathbf{1 i} \mathbf{i} \mathbf{j}$ and $\mathbf{1 1}$ were prepared according to the following modified literature procedure ${ }^{5}$

[^1]

In an oven-dried round-bottom flask, $\mathbf{S} 1$ (1.0 equiv.) was taken along with acyl chloride (1.1 equiv.) and DMAP (0.2 equiv.) under a positive argon pressure. Then $\mathrm{CH}_{2} \mathrm{Cl}_{2}(9 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{S 1}$) was added, followed by dropwise addition of NEt_{3} (4.0 equiv.) and the resulting mixture was stirred at $25^{\circ} \mathrm{C}$ for 24 h under argon until TLC ($30 \% \mathrm{EtOAc}$ in petroleum ether) revealed complete consumption of $\mathbf{S 1}$. The reaction mixture was quenched with saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layer was washed with brine, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography (20-25\% EtOAc in petroleum ether) to obtain $\mathbf{S 2}$.

In an oven-dried round-bottom flask equipped with a magnetic stir bar, $\mathbf{S 2}$ (1.0 equiv.) was taken in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL} / \mathrm{mmol}$ of $\mathbf{S 2})$ under a positive argon pressure, followed by addition of trifluoroacetic acid (TFA) (6.0 equiv.) dropwise at $0^{\circ} \mathrm{C}$. The resulting mixture was gradually allowed to attain ambient temperature and stirred for $4-8 \mathrm{~h}$ under argon until TLC ($30 \% \mathrm{EtOAc}$ in petroleum ether) revealed complete consumption of $\mathbf{S 2}$. The reaction mixture was quenched with saturated NaHCO_{3} solution and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Combined organic layer was washed with brine, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography to obtain kojic acid derivative 1.

Compound 1i: Prepared according to the general procedure A; Purified by silica-gel flash column
 chromatography ($1-4 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($205.0 \mathrm{mg}, 0.425 \mathrm{mmol}, 26 \%$ yield over 3 steps); m.p. $135-136{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3443 (br), 2956 (w), 2926 (m), 2840 (w), 1746 (s), 1681 (s), 1650 (s), 1593 (s), 1478 (m), 1457 (m), 1322 (m), 1215 (m), 1143 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R ~ (~} \mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.77$ ($\mathrm{s}, 1 \mathrm{H}$), 7.66 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.47 (d, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.93(\mathrm{~d}, J=2.3$
$\mathrm{Hz}, 1 \mathrm{H}), 6.85(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.67(\mathrm{dd}, J=9.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.39(\mathrm{~s}, 1 \mathrm{H}), 4.94(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}$, 3H), 3.76 (s, 2H), 2.39 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C - N M R ~ (1 0 0 ~ M H z , ~ C D C l ~} 3$): $\delta 173.9,169.9,168.4,162.6,156.2$,
$146.0,139.5,138.2,136.3,133.8,131.3,130.9,130.4,129.3,115.1,111.7,111.6,111.3,101.4,61.8$, 55.8, 30.1, 13.4; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{21} \mathrm{ClNO}_{7}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 482.1007$, Found: 482.1009.

Compound 1j: Prepared according to general procedure A; Purified by silica-gel flash column chromatography ($1-4 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid
 ($200.0 \mathrm{mg}, 0.570 \mathrm{mmol}, 29 \%$ yield over 3 steps); m.p. $142-143{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3350 (br), 2936 (w), 1741 (s), 1620 (m), 1454 (m), 1371 (m), 1260 (m), 1167 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}$ (400 MHz , CDCl $_{3}$): $\delta 7.73-7.69(\mathrm{~m}, 3 \mathrm{H}), 7.66(\mathrm{~s}, 1 \mathrm{H}), 7.39-7.37(\mathrm{~m}, 1 \mathrm{H}), 7.17-$ $7.12(\mathrm{~m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 4.95-4.86(\mathrm{~m}, 2 \mathrm{H}), 3.97-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{~s}, 3 \mathrm{H}), 1.62(\mathrm{~d}, J=7.1 \mathrm{~Hz}$, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}\right.$, CDCl3$\left._{3}\right): ~ \delta 173.9,173.7,162.9,157.9,145.9,137.8,134.7,134.0,129.4$, 129.0, 127.5, 126.2, 126.0, 119.4, 111.1, 105.8, 61.7, 55.5, 45.3, 18.5; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 355.1182$, Found: 355.1182.

Compound 11: Prepared according to general procedure A; Purified by silica-gel flash column chromatography ($35-42 \% \mathrm{EtOAc}$ in petroleum ether); Yellow liquid
 ($241.0 \mathrm{mg}, 0.781 \mathrm{mmol}, 24 \%$ yield over 3 steps); m.p. $82-83{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3424 (br), 2956 (m), 2923 (m), 2854 (m), 1743 (s), 1701 (s),
 $\delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.42-2.29(\mathrm{~m}$, 3H), 2.03-1.99 (m, 1H), $1.99(\mathrm{~s}, 3 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.26(\mathrm{~s}, 3 \mathrm{H}), 0.81(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): ~ \delta 207.4,174.2,171.7,162.7,146.1,138.7,111.7,61.3,54.1,43.2,37.8,34.7,30.2$, 23.0, 17.3; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 331.1158$, Found: 331.1159.

General procedure B: kojic acid derivative $\mathbf{1 k}$ was prepared according to the following procedure:

In an oven dried 25 mL round-bottom flask equipped with a magnetic stir bar, $\mathbf{1 c}$ ($200 \mathrm{mg}, 1.245$ mmol, 1.0 equiv.), sodium dehydrocholate ($634 \mathrm{mg}, 1.495 \mathrm{mmol}, 1.2$ equiv.) and $\mathrm{NaI}(37 \mathrm{mg}, 0.249$ mmol, 0.2 equiv.) were taken with 4 mL of dry DMF under a positive argon pressure. The resulting solution was then stirred at $25{ }^{\circ} \mathrm{C}$ for 16 h to obtain a grey-coloured heterogeneous solution. The resulting mixture was diluted with 10 mL of distilled water and 10 mL of diethyl ether. The organic layer was separated and washed with distilled water $(10 \mathrm{~mL} \times 3)$. The combined organic layer was
washed with brine (20 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain $\mathbf{1 k}$ as a yellow liquid ($420 \mathrm{mg}, 0.797 \mathrm{mmol}, 64 \%$ yield); m.p. $173-174{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3392 (br), 2947 (w), 2875 (w), 1703 (s), 1628 (m), 1372 (s), 1258 (m), 1166 (s) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$ NMR (400 MHz, CDCl3): $\delta 7.84(\mathrm{~s}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 2.94-2.81(\mathrm{~m}, 4 \mathrm{H}), 2.36-2.12(\mathrm{~m}$, $14 \mathrm{H}), 2.05-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.89-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.61(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.06(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=$ $6.5 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 212.1,209.3,208.8,177.8,174.0,173.1,163.2,146.0$, $138.1,111.3,61.3,57.0,51.9,49.1,47.0,45.7,45.1,42.9,38.8,36.6,36.1,35.6,35.4,31.2,30.4,27.8$, 25.2, 22.0, 18.7, 12.0; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{O}_{8}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 527.2645$, Found: 527.2642.

D. Procedure for the synthesis of allylic alcohols:

Allylic alcohols (2a-r) were prepared according to the previously reported procedure by the reaction of the corresponding aldehydes with vinyl magnesium bromide. ${ }^{6}$

E. Preliminary studies on asymmetric allylic alkylation of kojic acid:

Reaction with branched allylic carbonate:

$>$ Reaction with branched allylic alcohol:

[^2]
F. Promoter and reaction conditions optimization for asymmetric allylic alkylation of kojic acid:

Table S1. Promoter screening and reaction conditions optimization

entry	promoter	temp	time (h)	yield $(\%)^{a}$	er b
1	-	25	24	<5	n.d.
2	$\mathrm{Zn}(\mathrm{OTf})_{2}$	25	48	$52(50)$	$99.8: 0.2$
3	$\mathrm{Zn}(\mathrm{OTf})_{2}$	50	24	54	$99.9: 0.1$
4^{c}	$\mathrm{Zn}(\mathrm{OTf})_{2}$	25	36	73	$99.9: 0.1$
5	$\mathrm{Sc}(\mathrm{OTf})_{3}$	25	36	62	$99.9: 0.1$
6	$\mathrm{Fe}(\mathrm{OTf})_{2}$	25	24	81	$99.9: 0.1$
7	$\mathrm{La}(\mathrm{OTf})_{3}$	25	36	39	$99.9: 0.1$
8^{c}	$\mathrm{Fe}(\mathrm{OTf})_{2}$	25	24	$95(85)$	$99.9: 0.1$
9^{d}	$\mathrm{Fe}(\mathrm{OTf})_{2}$	25	22	(91)	$99.9: 0.1$

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy with mesitylene as the internal standard. Isolated yields are given in the parentheses. ${ }^{b}$ Enantiomeric ratio (er) was determined by HPLC analysis on a chiral stationary phase. ${ }^{c}$ Reaction with 2.0 equiv. of 2a. ${ }^{d}$ Reaction with 1.5 equiv. of $2 \mathbf{a}$ on a 0.2 mmol scale. $\mathrm{n} . \mathrm{d} .=$ not determined.

Table S2. Optimization of solvent

Table S3. Optimization of other reaction parameters

${ }^{a}$ Yields were determined by ${ }^{1} \mathrm{H}$-NMR spectroscopy with mesitylene as the internal standard. ${ }^{b}$ Enantiomeric ratio (er) was determined by HPLC analysis on a chiral stationary phase.

G. General procedure for the preparation of racemic products (rac-3):

In a glass-vial $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(0.003 \mathrm{mmol}, 3 \mathrm{~mol} \%)$ and ligand $\mathrm{rac}-\mathrm{L}(0.012 \mathrm{mmol}, 12 \mathrm{~mol} \%)$ were taken with 0.1 mL of dry THF, and the resulting solution was stirred at ambient temperature for 15 min . To this solution, rac-2 ($0.150 \mathrm{mmol}, 1.5$ equiv.) in 0.2 mL of dry THF was added followed by addition of 1 ($0.100 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{Fe}(\mathrm{OTf})_{2}(0.02 \mathrm{mmol}, 0.2$ equiv.) in 0.2 mL of dry THF. The resulting suspension was stirred at $25^{\circ} \mathrm{C}$ for $24-36 \mathrm{~h}$. The crude reaction mixture was purified by preparative TLC (Merck silica-gel $60 \mathrm{~F}_{254}$ pre-coated plates of 0.25 mm thickness) to obtain the racemic β-allylic kojic acid (rac-3) samples for HPLC analysis.

H. General procedure for the Ir-catalyzed asymmetric allylic alkylation of kojic acid:

In an oven and vacuum-dried reaction tube equipped with a magnetic stir bar, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(4$ $\mathrm{mg}, 0.006 \mathrm{mmol}, 3 \mathrm{~mol} \%$) and (S) $-\mathbf{L}(12.2 \mathrm{mg}, 0.024 \mathrm{mmol}, 12 \mathrm{~mol} \%$) were taken with 0.3 mL of dry THF under a positive argon pressure. The solution was then stirred vigorously at $25^{\circ} \mathrm{C}$ for 15 min to obtain a deep red solution. A solution of allylic alcohol rac-2 ($0.3 \mathrm{mmol}, 1.5$ equiv.) in 0.7 mL of dry THF was then added to this red solution and stirred at $25^{\circ} \mathrm{C}$ for 5 min . Subsequently, kojic acid $\mathbf{1}$ ($0.2 \mathrm{mmol}, 1.0$ equiv.) was added followed by $\mathrm{Fe}(\mathrm{OTf})_{2}(14.2 \mathrm{mg}, 0.04 \mathrm{mmol}, 0.2$ equiv.). The reaction tube was purged with argon, closed with a glass stopper, and stirred at $25^{\circ} \mathrm{C}$ until TLC (5% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) revealed complete consumption of $\mathbf{1}$. The reaction mixture was then diluted with 2 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 2 mL of $1(\mathrm{~N}) \mathrm{HCl}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL} \times 3)$. Combined organic layer was washed with brine (10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain β-allylic kojic acid 3 .

Compound 3aa: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); yellow sticky liquid ($47.0 \mathrm{mg}, 0.182$ mmol, 91% yield); FT-IR (Thin film): 3306 (w), 2923 (w), 2853 (w), 1651 (s), 1623
 7.34-7.28 (m, 4H), 7.26-7.24 (m, 1H), $6.52(\mathrm{~s}, 1 \mathrm{H}), 6.26$ (ddd, $J=17.3,10.1,7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H})$, 4.49-4.41 (m, 2H); ${ }^{\mathbf{1 3}} \mathbf{C - N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.8,150.6,141.5,139.0,135.2,128.8$, 128.2, 127.4, 118.4, 108.6, 61.1, 47.8; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 259.0970$, Found: 259.0968; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-104.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (85:15 n-Hexane $/ i$ - PrOH , flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=277 \mathrm{~nm}, \tau_{\text {minor }}=7.8$ $\min , \tau_{\text {major }}=9.1 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3aa was assigned in analogy with 8.

Compound 3ab: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow liquid ($51.0 \mathrm{mg}, 0.186 \mathrm{mmol}$, 93\% yield); FT-IR (Thin film): 3332 (br), 2958 (w), 2921 (w), 2850 (w), 1655 (s), 1622 (s), 1577 (s), 1511 (s), 1456 (m), 1204 (s$), 1091$ (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}$-NMR ($400 ~ M H z$, $\left.\mathbf{C D C l}_{3}\right): \delta 7.18(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.12(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.28-6.20$ (m, 1H), 5.27 (d, $J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=7.1 \mathrm{~Hz}$,

1H), 4.48-4.40 (m, 2H), $2.31(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.9,151.0,141.4$, 137.1, 136.0, 135.4, 129.5, 128.0, 118.2, 108.6, 61.0, 47.4, 21.1; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 273.1127$, Found: 273.1130; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-93.2\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AS-H column (90:10 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20$ $\left.{ }^{\circ} \mathrm{C}, \mathrm{I}=285 \mathrm{~nm}, \tau_{\text {major }}=19.9 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ab was assigned in analogy with 8 .

Compound 3ac: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow liquid ($56.0 \mathrm{mg}, 0.186 \mathrm{mmol}$, 93\% yield); FT-IR (Thin film): 3300 (br), 2961 (m), 2925 (w), 2868 (w), 1656 (s), 1623 (s), 1578 (s), 1511 (s), 1457 (m), 1202 (s), 1092 (m) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR (400 MHz , $\left.\mathbf{C D C l}_{3}\right): \delta 7.22(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.56(\mathrm{~s}, 1 \mathrm{H}), 6.29-6.21$ $(\mathrm{m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.07(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.49-4.41(\mathrm{~m}, 2 \mathrm{H}), 2.87(\mathrm{sep}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR ($100 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 174.6,168.0,151.1,148.0,141.4,136.3,135.4,128.1,126.9,118.2$, 108.6, 61.0, 47.5, 33.8, 24.0; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{21} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 301.1440$, Found: 301.1438; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-96.6\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 n-Hexane $/ i$-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=277 \mathrm{~nm}$, $\tau_{\text {major }}=13.8 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ac was assigned in analogy with 8.

Compound 3ad: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); yellow liquid ($41.0 \mathrm{mg}, 0.142 \mathrm{mmol}$, 71% yield); FT-IR (Thin film): 3288 (br), 2958 (s), 2919 (s), 2844 (m), 1654 (s), 1617 (s), 1579 (s), 1510 (s), 1458 (s), 1250 (s$), 1032$ (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ $\left.\mathbf{C D C l}_{3}\right): \delta 7.20(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.22$ (ddd, $J=17.3,10.1,7.4, \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (d, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ 174.4, 167.7, 158.9, 150.8, 141.3, 135.5, 131.1, 129.2, 118.1, 114.2, 108.6, 61.1, 55.4, 47.0; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{O}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 311.0895$, Found: 311.0899; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-$ 83.8 (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column ($85: 15 n$-Hexane $/ i$-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=279 \mathrm{~nm}, \tau_{\text {minor }}=22.5 \mathrm{~min}, \tau_{\text {major }}=27.2 \mathrm{~min}$, $)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ad was assigned in analogy with 8.

Compound 3ae: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($40.0 \mathrm{mg}, 0.122$ mmol, 61\% yield); FT-IR (Thin film): 3363 (br), 2962 (m), 2927 (w), 2870 (w), 1735 (m), 1657 (s), 1623 (s), 1582 (m), 1457 (m), 1327 (s), 1124 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.57(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, $6.54(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{ddd}, J=17.3,9.8,7.8, \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24$ (d, $J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.42(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0}$ $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 174.3,167.6,149.5,143.0,141.7,134.3,129.7(\mathrm{q}, J=32.5 \mathrm{~Hz}), 128.6,125.8(\mathrm{q}, J=$ $3.8 \mathrm{~Hz}), 124.1(\mathrm{q}, J=272.0 \mathrm{~Hz}), 119.3,108.8,61.1,47.6$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{O}_{4}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 327.0844$, Found: 327.0842; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-80.9$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (95:5 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $\mathrm{I}=275 \mathrm{~nm}, \tau_{\text {major }}=38.2 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ae was assigned in analogy with 8 .

Compound 3af: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography ($2-4 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); white sticky liquid ($23.0 \mathrm{mg}, 0.082 \mathrm{mmol}, 41 \%$ yield);

FT-IR (Thin film): 3426 (br), 3297 (br), 2922 (w), 2852 (w), 1657 (m), 1626 (s), 1582
 (s), 1455 (m), 1204 (m), 1091 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l 3): ~ \delta ~ 7.61(d, ~ J=~$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.22(\mathrm{ddd}, J=17.4,10.1,7.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.25(\mathrm{~d}, J=16.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.51-4.42 (m, 2H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 174.1,167.3,148.6,144.5,141.8$, 133.8, 132.7, 129.0, 119.8, 118.7, 111.4, 108.9, 61.2, 47.9; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{14} \mathrm{NO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 284.0923$, Found: 284.0921; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-68.1\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Amylose-2 column (75:25 n-Hexane/i-PrOH, flow rate $=1.0$ $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=254 \mathrm{~nm}$, $\tau_{\text {major }}=16.1 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3af was assigned in analogy with 8 .

Compound 3ag: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); pale yellow sticky liquid (48.0 mg , 0.174 mmol, 87% yield); FT-IR (Thin film): 3321 (br), 2921 (w), 2847 (w), 1656 (m), 1624 (s), 1579 (s), 1457 (m), 1220 (s), 1090 (m) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl3): $\delta 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 6.94-6.90(\mathrm{~m}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.18-6.09(\mathrm{~m}, 1 \mathrm{H})$, $5.22(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.42-4.33 (m, 2H); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.8,162.1(\mathrm{~d}, J=$ $254.8 \mathrm{~Hz}), 150.4,141.5,135.0,134.6(\mathrm{~d}, J=3.1 \mathrm{~Hz}), 129.75(\mathrm{~d}, J=8.0 \mathrm{~Hz}), 118.6,115.7(\mathrm{~d}, J=21.5$ Hz), 108.7, 61.1, 47.0; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{~F}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 277.0876$, Found: 277.0874; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-89.0\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H
column (85:15n-Hexane $/ i$-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=283 \mathrm{~nm}$, $\tau_{\text {major }}=12.1 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product $\mathbf{3 a g}$ was assigned in analogy with $\mathbf{8}$.

Compound 3ah: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); pale yellow sticky liquid ($51.0 \mathrm{mg}, 0.174 \mathrm{mmol}, 87 \%$
 yield); FT-IR (Thin film): 3307 (br), 2923 (w), 2852 (w), 1624 (s), 1583 (s), 1454 (s), 1202 (s), 1091 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.20(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), $7.14(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.17-6.08(\mathrm{~m}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.12(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.8,150.2,141.6,137.5,134.7,133.3,129.6,129.0,118.9$, 108.8, 61.0, 47.2; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Cl}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 293.0581$, Found: 293.0583; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{20}-109.3$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 n-Hexane $/ i$-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=282 \mathrm{~nm}, \tau_{\text {major }}=$ 13.0 min. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ah was assigned in analogy with $\mathbf{8}$.

Compound 3ai: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($59.0 \mathrm{mg}, 0.174$ mmol, 87\% yield); FT-IR (Thin film): 3300 (br), 2959 (m), 2924 (w), 2852 (w), 1656 (s), 1623 (s), 1580 (m), 1456 (m), 1204 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}$ (400 MHz , CDCl $_{3}$): $\delta 7.43(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.20$ (ddd, $J=17.3,10.0,7.5, \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.03$ (d, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.40(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.4$, 167.8, 150.0, 141.6, 138.0, 134.6, 131.9, 129.9, 121.4, 118.9, 108.8, 61.1, 47.2; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 337.0075$, Found: 337.0073; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-84.4$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with $98.5: 1.5$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=222 \mathrm{~nm}, \tau_{\text {minor }}=11.8 \mathrm{~min} \tau_{\text {major }}=13.7 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ai was assigned in analogy with 8.

Compound 3aj: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); pale yellow sticky liquid (50.0 mg , 0.183 mmol, 92% yield); FT-IR (Thin film): 3334 (br), 2920 (s), 2847 (w), 1655 (m), 1623 (s), 1579 (s), 1458 (m), 1223 (m), 1091 (w) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($400 ~ M H z$, $\left.\mathbf{C D C l}_{3}\right): \delta 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.10-7.05(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{ddd}, J=17.5$, $10.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.40(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.6,167.7,150.8$, 141.5, 139.0, 138.5, 135.3, 128.9, 128.7, 128.2, 125.1, 118.3, 108.6, 61.1, 47.8, 21.6; HRMS (ESI+):
m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$273.1127, Found: 273.1128; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}-86.0(c 1.0$, CHCl_{3}) for an enantiomerically enriched sample with $>99.9: 0.1$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 n-Hexane $/ i$-PrOH, flow rate $=$ $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=215 \mathrm{~nm}, \tau_{\text {major }}=10.9 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3aj was assigned in analogy with $\mathbf{8}$.

Compound 3ak: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); pale yellow sticky liquid ($54.0 \mathrm{mg}, 0.16 \mathrm{mmol}, 80 \%$
 yield); FT-IR (Thin film): 3419 (br), 2921 (w), 2849 (w), 1655 (m), 1623 (s), 1581 (s), 1458 (m), 1223 (m), 1093 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 7.36$ (s , $1 \mathrm{H}), 7.30(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.15-7.08(\mathrm{~m}, 2 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.13(\mathrm{ddd}, J=17.5$, $10.2,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.14(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43-4.34(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.9,150.0$, 141.3, 134.4, 131.2, 130.6, 130.4, 128.2, 126.9, 122.9, 119.1, 108.8, 61.0, 47.4; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{O}_{4} \mathrm{Br}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 337.0075, Found: 337.0078; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-77.0$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with $>99.9: 0.1$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 n-Hexane/i-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=276 \mathrm{~nm}, \tau_{\text {major }}=17.6 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ak was assigned in analogy with $\mathbf{8}$.

Compound 3al: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Light yellow liquid ($37.0 \mathrm{mg}, 0.110$ mmol, 55\% yield); m.p. $99-100{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3420 (br), 2922 (w), 1649 (s), 1619 (s), 1458 (m), 1219 (m), cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\left.\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l ~}\right)_{\text {) }} \delta 7.57$ (dd, J $=7.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.39(\mathrm{dd}, J=7.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 7.14(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}), 6.51(\mathrm{~s}, 1 \mathrm{H}), 6.17$ (ddd, $J=16.8,10.5,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.39(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 174.5,168.1,149.0,142.2,138.0,134.4,133.2,130.3,129.0,127.7,124.6,118.3,108.6$, 60.9, 47.4; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{BrO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 337.0075$, Found: 337.0075; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-22.0\left(c 4.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio of compound was determined by HPLC analysis using Daicel Chiralpak AD-H column ($85: 15 n$-Hexane $/ i$ - PrOH , flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=280 \mathrm{~nm}, \tau_{\text {minor }}=10.8 \mathrm{~min}, \tau_{\text {major }}=$ $13.0 \mathrm{~min})$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3al was assigned in analogy with 8.

Compound 3am: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($33.0 \mathrm{mg}, 0.100$
 $\mathrm{mmol}, 50 \%$ yield) [Note: compound 3am is unstable in silica]; FT-IR (Thin film): 3414 (br), 2923 (w), 2855 (w), 1625 (s), 1588 (m), 1468 (m), 1204 (m), $\mathrm{cm}^{-1} ;{ }^{1} \mathbf{H}-$ NMR (400 MHz, CDCl3): $\delta 7.43-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.33-7.31(\mathrm{~m}, 1 \mathrm{H}), 7.23-7.21(\mathrm{~m}$, $1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.12(\mathrm{ddd}, J=16.9,10.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.31(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42-4.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right)$: $\delta 174.3,167.8,148.3,142.2,135.0,134.8,134.0,133.8,130.9,129.7,127.4,118.8,108.7,61.0,44.4$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{Cl}_{2} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 327.0191$, Found: 327.0190; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-59.3\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using AD-H column (85:15 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=288 \mathrm{~nm}, \tau_{\text {major }}=12.4 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3am was assigned in analogy with 8.

Compound 3an: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); pale yellow sticky liquid (28.0 mg , $0.08 \mathrm{mmol}, 40 \%$ yield) [Note: compound 3an is unstable in silica]; FT-IR (Thin film): 3424 (br), 2923 (s), 2851 (m), 1653 (m), 1589 (s), 1461 (m), 1217 (m), 1081 (w) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.82(\mathrm{~s}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}), 6.20-6.11(\mathrm{~m}$, $1 \mathrm{H}), 5.46-5.38(\mathrm{~m}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.29(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0}$ MHz, CDCl3): δ 174.1, 173.6, 164.7, 163.8, 146.42, 146.40, 146.30, 146.27, 146.2, $145.9,143.9,143.85,143.81,143.78,143.7,142.8,142.7,142.0,140.22,140.16,139.2,139.1,138.96$, 137.8, 136.75, 136.69, 136.6, 136.4, 134.8, 133.8, 120.3, 119.7, 119.0, 110.9, 74.7, 66.6; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{9} \mathrm{O}_{4} \mathrm{~F}_{5} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 371.0319$, Found: 371.0321 ; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{21}$ -59.5 ($c 1.0, \mathrm{CHCl}_{3}$) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 n-Hexane/i-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $\mathrm{I}=241 \mathrm{~nm}, \tau_{\text {major }}=22.7 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3an was assigned in analogy with 8.

Compound 3ao: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); colourless sticky liquid (59.0 mg , 0.192 mmol, 96% yield); FT-IR (Thin film): 3407 (br), 2924 (m), 2853 (m), 1654 (s), 1622 (s), 1578 (s), 1455 (m), 1200 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right.$): δ $8.14(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.84(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.78(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-$ 7.43 (m, 4H), 6.45 (s, 1H), 6.35 (ddd, $J=16.8,10.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=15.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{~d}, J=$ $15.4 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.2,167.5,149.5,141.6,135.4,134.8,134.0,131.6$, 129.0, 128.3, 126.8, 126.4, 126.0, 125.4, 123.2, 118.0, 108.5, 61.1, 43.3; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 309.1127$, Found: 309.1127; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-113.4$ (c 2.0, $\left.\mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column ($85: 15 n$-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}$ $=281 \mathrm{~nm}, \tau_{\text {major }}=15.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ao was assigned in analogy with 8 .

Compound 3ap: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); colourless sticky liquid ($58.0 \mathrm{mg}, 0.188$ mmol, 94\% yield); FT-IR (Thin film): 3423 (br), 2922 (w), 2852 (w), 1656 (s), 1624 (s), 1586 (s), 1458 (w), 1259 (w), 1092 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($400 \mathbf{~ M H z , ~ C D C l} 3$): δ $7.78-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.45-7.40(\mathrm{~m}, 3 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.35(\mathrm{ddd}, J=17.2,10.1,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.29-5.24(\mathrm{~m}, 2 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.8,150.7,141.7,136.5,135.1,133.5,132.6,128.5$, 127.9, 127.7, 126.9, 126.4, 126.3, 126.1, 118.7, 108.7, 61.0, 47.9; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 309.1127$, Found: 309.1125; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-146.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $>99.9: 0.1$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}$ $=221 \mathrm{~nm}, \tau_{\text {major }}=17.8 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ap was assigned in analogy with 8.

Compound 3aq: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow liquid ($44.0 \mathrm{mg}, 0.114 \mathrm{mmol}$, 57% yield) [Note: compound 3aq is unstable in silica]; m.p. $114-115{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3394 (br), 2924 (m), 2853 (m), 1650 (s), 1622 (s), 1577 (s), 1457 (m), $1202(\mathrm{~m}) \mathrm{cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.32(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.80-7.76$ $(\mathrm{m}, 2 \mathrm{H}), 7.60-7.56(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.49(\mathrm{~m}, 2 \mathrm{H}), 6.52(\mathrm{~s}, 1 \mathrm{H}), 6.24$ (ddd, $J=16.7$, $10.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.86(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.34(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=$ $17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.3,167.7,148.8,142.3,136.1$, 134.6, 133.8, 132.6, 128.2, 128.0, 127.9, 127.8, 126.9, 126.8, 124.9, 118.4, 108.6, 61.1, 48.6; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{BrO}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 387.0232$, Found: 387.0230; Optical rotation: $\left.[\alpha]\right]_{\mathrm{D}}{ }^{22}$ $+9.5\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $>99.9: 0.1$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (90:10 n-Hexane/i-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, $\mathrm{I}=280 \mathrm{~nm}, \tau_{\text {minor }}=30.1 \mathrm{~min}, \tau_{\text {major }}=47.5 \mathrm{~min}$,). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3aq was assigned in analogy with 8.

Compound 3ar: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($46.0 \mathrm{mg}, 0.152$ mmol, 76\% yield); FT-IR (Thin film): 3332 (br), 2959 (m), 2924 (m), 2848 (m),
 $\delta 6.79$ (s, 1H), 6.73 (brs, 2H), 6.53 (s, 1H), 6.19 (ddd, $J=17.2,9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91$ $(\mathrm{s}, 2 \mathrm{H}), 5.25(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.45 ($\mathrm{s}, 2 \mathrm{H}$); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.5,167.9,150.7,148.0,146.8$, $141.3,135.3,132.8,121.4,118.3,108.6,108.5,101.2,61.0,47.4$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 303.0869$, Found: 303.0865; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-82.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99.5:0.5 er. The enantiomeric ratio of compound was
determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, 1.0 $\mathrm{mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=282 \mathrm{~nm}, \tau_{\text {minor }}=19.6 \mathrm{~min}, \tau_{\text {major }}=27.4 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ar was assigned in analogy with 8.

Compound 3as: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($35.0 \mathrm{mg}, 0.132$ mmol, 66\% yield); FT-IR (Thin film): 3288 (w), 2925 (w), 2853 (w), 1660 (s), 1628 (s), 1586 (s), 1417 (m), 1121 (m), 1018 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): δ $7.22(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.97-6.95(\mathrm{~m}, 1 \mathrm{H}), 6.93-6.92(\mathrm{~m}, 1 \mathrm{H}), 6.53(\mathrm{~s}, 1 \mathrm{H}), 6.22$ (ddd, $J=17.0,10.3,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.33-5.31(\mathrm{~m}, 2 \mathrm{H}), 5.27(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~s}$, 2H); ${ }^{13}$ C-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.3,167.2,148.9,141.5,141.1,134.9,127.1,125.8,125.1$, 118.5, 108.7, 61.3, 43.3; HRMS (ESI+): m / z calcd. For $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{O}_{4} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 265.0535$, Found: 265.0534; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-52.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99:1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column ($85: 15 n$-Hexane $/ i$ - $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=276 \mathrm{~nm}, \tau_{\text {minor }}=12.0 \mathrm{~min}, \tau_{\text {major }}=13.5 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3as was assigned in analogy with 8.

Compound 3ba: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($46.0 \mathrm{mg}, 0.190 \mathrm{mmol}, 95 \%$ yield); FT-IR (Thin film): 3458 (br), 2924 (m), 2853 (m), 1654 (s), 1621 (s), 1585 (s), 1452
 (m), 1344 (w), 1207 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.33-7.32(\mathrm{~m}, 4 \mathrm{H})$, $7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.28(\mathrm{ddd}, J=17.3,10.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=$ $10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}-$ NMR (100 MHz, CDCl3): $\delta 174.3,165.4,150.3,141.2,139.4,135.5,128.7,128.2,127.2,118.1$, 110.7, 47.6, 20.1; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$243.1021, Found: 243.1025; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-92.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with 99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-1 column (90:10 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=276 \mathrm{~nm}, \tau_{\text {minor }}=10.4 \mathrm{~min}, \tau_{\text {major }}=14.5$ $\mathrm{min})$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ba was assigned in analogy with 8 .

Compound 3ca: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($42.0 \mathrm{mg}, 0.152$ mmol, 76\% yield); FT-IR (Thin film): 3404 (br), 2923 (m), 2852 (m), 1632 (s), 1588 (s), 1449 (m), 1361 (w), 1208 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400 ~ M H z, ~ C D C l 3): ~ \delta 7.35-7.33(m$, $4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.48(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{ddd}, J=17.3,10.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.32(\mathrm{~d}, J$ $=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~s}, 2 \mathrm{H}),{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}$, $\left.\mathbf{C D C l}_{3}\right): \delta 173.9,161.8,151.0,141.8,139.0,135.1,128.9,128.3,127.5,118.5,111.4,47.8,41.3 ;$ HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{ClO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right):$277.0631, Found: 277.0630; Optical rotation:
$[\alpha]_{\mathrm{D}}{ }^{22}-60.3\left(c \quad 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $>99.5: 0.5 \mathrm{er}$. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (95:5 nHexane $/ i-\operatorname{PrOH}$, flow rate $\left.=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=305 \mathrm{~nm}, \tau_{\text {minor }}=27.7 \mathrm{~min}, \tau_{\text {major }}=32.2 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ca was assigned in analogy with 8.

Compound 3da: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($55.0 \mathrm{mg}, 0.194$ mmol, 97\% yield); FT-IR (Thin film): 3247 (br), 3060 (m), 2923 (m), 2852 (m), 2364 (m), 2105 (s), 1646 (s), 1628 (s), 1588 (s), 1448 (m), 1201 (m), 990 (m) cm ${ }^{-1} ;{ }^{1} \mathbf{H}-$ NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 7.36-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.29-7.26(\mathrm{~m}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 2 \mathrm{H}), 6.29$ (ddd, $J=17.3,9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.33(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.17-4.08(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 173.9,161.7,151.1,141.9,138.9,134.9$, $128.9,128.2,127.4,118.5,111.0,51.3,47.7$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{~N}_{3} \mathrm{O}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 284.1035, Found: 284.1036; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-80.6$ (c 2.5, CHCl_{3}) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 n-Hexane $/ i$ - PrOH , flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=282 \mathrm{~nm}, \tau_{\text {major }}$ $=24.5 \mathrm{~min})$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3da was assigned in analogy with 8.

Compound 3ea: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow sticky liquid ($55.0 \mathrm{mg}, 0.156$ mmol, 78\% yield); FT-IR (Thin film): 3420 (br), 2923 (w), 1621 (s), 1582 (s), 1441 (m), 1207 (m), 987 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}-N M R(400 ~ M H z, ~ C D C l 3): ~ \delta ~ 7.29-7.23 ~(m, ~ 10 H), ~$ $6.20-6.10(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79$ (s, 2H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(100 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 174.0,164.1,150.8,141.5,139.1,135.2$, 133.5, 131.6, 129.3, 128.7, 128.2, 127.9, 127.2, 118.2, 111.0, 47.6, 37.2; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{3} \mathrm{~S}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 351.1055$, Found: 351.1054; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}+66.0\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=0.5 \mathrm{~mL} / \mathrm{min}$, $20^{\circ} \mathrm{C}, \mathrm{I}=272 \mathrm{~nm}, \tau_{\text {major }}=48.4 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ea was assigned in analogy with $\mathbf{8}$.

Compound 3fa: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column chromatography ($5-6 \% \mathrm{EtOAc}$ in petroleum ether); Yellow sticky liquid (40.0 mg , $0.142 \mathrm{mmol}, 71 \%$ yield); m.p. $96-97{ }^{\circ} \mathrm{C}$; FT-IR (Thin film): 3276 (br), 2920 (m), 2850 (m), 1605 (s), 1420 (m), 1119 (m), 1033 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}$-NMR ($\mathbf{4 0 0} \mathbf{~ M H z , ~}$ CDCl $\left._{3}\right): \delta 8.22(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.61(\mathrm{~m}, 1 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.42-$ $7.40(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.32(\mathrm{~m}, 3 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 1 \mathrm{H}), 6.55(\mathrm{br}, 1 \mathrm{H}), 6.41(\mathrm{ddd}, J=17.3,9.6,7.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.35(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.28-5.19(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0} \mathrm{MHz}$, $\left.\mathbf{C D C l}_{3}\right): \delta 173.1,155.8,151.0,139.3,138.0,135.4,133.3,128.8,128.3,127.4,125.6,124.6,121.4$,
118.5, 118.4, 48.4; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{O}_{3}$ ([M+H] ${ }^{+}$): 279.1021, Found: 279.1024; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-24.7\left(c 1.5, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (95:5 n-Hexane $/ i$-PrOH, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=233 \mathrm{~nm}, \tau_{\text {minor }}=26.0 \mathrm{~min}, \tau_{\text {major }}=33.0 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3fa was assigned in analogy with 8.

Compound 3ga: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); bright yellow sticky liquid (60.0 mg , $0.2 \mathrm{mmol},>99 \%$ yield); FT-IR (Thin film): 3362 (br), 2922 (w), 2851 (w), 1661 (s), 1593 (m), 1456 (w), 1255 (s), 1076 (w) $\mathrm{cm}^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 8.12$ $(\mathrm{d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.77-7.73(\mathrm{~m}, 1 \mathrm{H}), 7.69-7.65(\mathrm{~m}, 1 \mathrm{H})$, $7.55(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.41-7.39(\mathrm{~m}, 2 \mathrm{H}), 7.31-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.18(\mathrm{~m}, 1 \mathrm{H}), 6.67-6.59(\mathrm{~m}, 1 \mathrm{H}), 5.29-5.23$ (m, 3H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 183.9,181.9,152.9,141.6,137.1,135.3,133.1,132.9$, 129.3, 128.4, 128.0, 127.2, 126.6, 126.2, 124.9, 117.3, 45.0; HRMS (ESI+): m/z calcd. for $\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Na}\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 313.0841$, Found: 313.0841; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-93.4\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (90:10 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}$, $20^{\circ} \mathrm{C}, \mathrm{I}=232 \mathrm{~nm}, \tau_{\text {major }}=14.9 \mathrm{~min}$. See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ga was assigned in analogy with $\mathbf{8}$.

Compound 3ha: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($5 \% \mathrm{EtOAc}$ in petroleum ether); Yellow sticky liquid (55.0 mg , $0.174 \mathrm{mmol}, 87 \%$ yield); FT-IR (Thin film): 3271 (br), 2924 (m), 2852 (m), 1728 (s), 1631 (s), 1593 (s), 1451 (m), 1265 (s), 1110 (m) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}$-NMR (400 $\mathbf{M H z}, \mathbf{C D C l}_{3}$): $\delta 8.03(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.49-7.45(\mathrm{~m}, 2 \mathrm{H})$, 7.33-7.28 (m, 3H), 7.26-7.22 (m, 2H), $6.53(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{ddd}, J=17.2,9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19-5.11(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 173.9$, $165.6,161.8,150.8,141.8,138.9,135.1,133.8,129.9,128.9,128.8,128.7,128.2,127.4,118.4,110.6$, 61.8, 47.6; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{22} \mathrm{H}_{19} \mathrm{O}_{5}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 363.1232$, Found: 363.1230; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-42.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (85:15 nHexane $/ i-\mathrm{PrOH}$, flow rate $=1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=298 \mathrm{~nm}, \tau_{\text {major }}=27.5 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ha was assigned in analogy with 8.

Compound 3ia: Reaction was performed on a 0.2 mmol scale; purified by silica-gel flash column
 chromatography ($30 \% \mathrm{EtOAc}$ in petroleum ether); Yellow sticky liquid ($75.0 \mathrm{mg}, 0.126 \mathrm{mmol}, 63 \%$ yield); FT-IR (Thin film): 3266 (br), 3079 (w), 2928 (m), 1746 (s), 1680 (s), 1636 (s), 1459 (s), 1453 (m), 1318 (m), 1222 (m), 1148 (m), 1078 (m) cm ${ }^{-1} ;{ }^{1} \mathbf{H}-$ NMR (400 MHz, CDCl 3): $\delta 7.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.47(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.25(\mathrm{~m}, 5 \mathrm{H}), 6.92(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.86(\mathrm{~d}$, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.35(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{ddd}, J=17.3,9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.27$ (d, $J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{~s}, 2 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.72$ ($\mathrm{s}, 2 \mathrm{H}$), 2.37 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 173.8,169.8,168.4,161.6,156.2,150.8,141.8$, $139.5,138.9,136.3,135.0,133.8,131.3,130.9,130.4,129.3,128.8,128.2,127.5,118.4,115.2,111.8$, $111.6,110.6,101.3,61.8,55.8,47.7,30.1,13.4$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{34} \mathrm{H}_{29} \mathrm{ClNO}_{7}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 598.1633$, Found: 598.1635; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-31.4$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IG column (40:60 n-Hexane/EtOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=$ 268 nm , $\tau_{\text {minor }}=37.6 \mathrm{~min} \tau_{\text {major }}=49.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product 3ia was assigned in analogy with $\mathbf{8}$.

Compound 3ja: Reaction was performed on a 0.2 mmol scale; $\mathbf{3 j a}$ was formed with $>20: 1 \mathrm{dr}$ as determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude product; purified by silica-gel

 flash column chromatography ($25-30 \%$ EtOAc in petroleum ether); Yellow sticky liquid ($86.0 \mathrm{mg}, 0.182 \mathrm{mmol}, 91 \%$ yield); FT-IR (Thin film): 3432 (br), 2978 (w), 2931 (w), 2851 (w), 1742 (m), 1632 (s), 1604 (s), 1452 (m), 1220 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}$ ($\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3$): $\delta 7.73-7.70(\mathrm{~m}, 2 \mathrm{H}), 7.67(\mathrm{~s}, 1 \mathrm{H}), 7.40-7.38(\mathrm{~m}, 1 \mathrm{H}), 7.31-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.18-7.13$ $(\mathrm{m}, 2 \mathrm{H}), 6.37(\mathrm{~s}, 1 \mathrm{H}), 6.14(\mathrm{ddd}, J=17.3,9.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.10(\mathrm{~d}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.93-4.83(\mathrm{~m}, 2 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.91(\mathrm{~s}, 3 \mathrm{H}), 1.61(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathrm{NMR}(\mathbf{1 0 0}$ $\left.\mathbf{M H z}, \mathbf{C D C l}_{3}\right): \delta 173.9,173.6,161.6,157.9,150.9,141.8,138.9,135.0,134.7,133.9,129.3,129.0$, 128.7, 128.1, 127.5, 127.3, 126.1, 126.0, 119.3, 118.3, 110.7, 105.7, 61.7, 55.4, 47.6, 45.3, 18.4; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{29} \mathrm{H}_{27} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 471.0808$, Found: 471.0844; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-35.5\left(c 2.0, \mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of the product $\mathbf{3 j a}$ was assigned in analogy with 8.

Compound 3ka: Reaction was performed on a 0.2 mmol scale; 3ka was formed with $>20: 1 \mathrm{dr}$ as
 determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude product; purified by silica-gel flash column chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Pale yellow sticky liquid (82.0 $\mathrm{mg}, 0.128 \mathrm{mmol}, 64 \%$ yield); FT-IR (Thin film): 3397 (br), 2962 (m), 2926 (m), 2876 (m), 1743 (m), 1710 (s$)$,
7.24-7.22 (m, 1H), $6.41(\mathrm{~s}, 1 \mathrm{H}), 6.23(\mathrm{ddd}, J=17.3,9.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21$ $(\mathrm{d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{~s}, 2 \mathrm{H}), 2.93-2.77(\mathrm{~m}, 4 \mathrm{H}), 2.53-2.15(\mathrm{~m}, 11 \mathrm{H})$, 2.15-2.00 (m, 6H), 1.94-1.84 (m, 4H), 1.64-1.56 (m, 1H), $1.38(\mathrm{~s}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl3 $_{3}$): $\delta 212.1,209.3,208.8,173.9,173.0,162.0,150.8,141.8$, $138.9,135.1,128.8,128.2,127.4,118.4,110.6,61.2,57.0,51.8,49.0,47.7,46.9,45.6,45.0,42.9,38.7$, $36.6,36.1,35.6,35.3,31.1,30.3,27.7,25.2,22.0,18.7,11.9$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{O}_{8}$ $\left([\mathrm{M}+\mathrm{H}]^{+}\right): 643.3271$, Found: 643.3270; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-13.7\left(c 2.0, \mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of the product 3ka was assigned in analogy with $\mathbf{8}$.

Compound 31a: Reaction was performed on a 0.2 mmol scale; 3la was formed with $>20: 1 \mathrm{dr}$ as
 determined by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of the crude product; purified by silica-gel flash column chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); Yellow liquid (52.0 $\mathrm{mg}, 0.124 \mathrm{mmol}, 62 \%$ yield); FT-IR (Thin film): 3272 (br), 2955 (w), 2924 (w), 2854 (w), 1744 (s), 1702 (s), 1633 (s), 1592 (s), 1451 (m), 1202 (m), 1157 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($\mathbf{4 0 0} \mathbf{~ M H z , ~} \mathbf{C D C l}_{3}$): $\delta 7.34-7.25$ $(\mathrm{m}, 5 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.24(\mathrm{ddd}, J=17.3,10.1,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=$ $17.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~s}, 2 \mathrm{H}), 2.88-2.83(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.27(\mathrm{~m}, 3 \mathrm{H}), 2.03(\mathrm{~s}$, 3H), 1.99-1.86 (m, 2H), $1.25(\mathrm{~s}, 3 \mathrm{H}), 0.84(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 207.3,173.8$, 171.7, 161.7, 150.6, 141.8, 139.0, 135.1, 128.8, 128.2, 127.4, 118.4, 110.7, 61.4, 54.2, 47.7, 43.2, 37.9, 34.7, 30.3, 29.8, 23.1, 17.5; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{25} \mathrm{H}_{29} \mathrm{O}_{6}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 425.1964$, Found: 425.1963; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-68.3\left(c 2.0, \mathrm{CHCl}_{3}\right)$. The absolute stereochemistry of the product 3la was assigned in analogy with 8.

I. Unsuccessful substrates for the asymmetric allylic alkylation reaction:

Unreactive electrophiles:

Unreactive nucleophiles:

J. Large scale synthesis of 3aa and 3ba:

In an oven and vacuum-dried 50 mL round-bottom flask equipped with a magnetic stir bar, $[\operatorname{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(27.0 \mathrm{mg}, 0.04 \mathrm{mmol}, 2 \mathrm{~mol} \%)$ and $(S)-\mathrm{L}(81.0 \mathrm{mg}, 0.16 \mathrm{mmol}, 8 \mathrm{~mol} \%)$ were taken with 2 mL of dry THF under a positive argon pressure. The solution was stirred vigorously at $25^{\circ} \mathrm{C}$ for 15 min to obtain a deep red solution. A solution of allylic alcohol rac-2a ($402.0 \mathrm{mg}, 3.0 \mathrm{mmol}, 1.5$ equiv.) in 7 mL of dry THF was then added to this red solution and stirred at $25^{\circ} \mathrm{C}$ for 5 min . Kojic acid derivative 1 ($2.0 \mathrm{mmol}, 1.0$ equiv.) was then added followed by $\mathrm{Fe}(\mathrm{OTf})_{2}$ ($142 \mathrm{mg}, 0.4 \mathrm{mmol}, 0.2$ equiv.). The reaction flask was purged with argon, closed with a glass stopper, and stirred at $25^{\circ} \mathrm{C}$ until TLC revealed complete consumption of $\mathbf{1}$. The reaction mixture was then allowed to attain ambient temperature, diluted with 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and 10 mL of $1(\mathrm{~N}) \mathrm{HCl}$. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL} \times 3)$. The combined organic layer was washed with brine (25 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography ($1-3 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain β-allylic kojic acid derivatives 3aa and 3ba as a yellow liquid in 98% and 93% yield respectively with $>99.5: 0.5$ er in both cases.

K. Procedure for the Staudinger reduction of 3da:

In an oven-dried 10 mL round-bottom flask, 3da ($50.0 \mathrm{mg}, 0.175 \mathrm{mmol}, 1.0$ equiv.) and PPh_{3} ($70 \mathrm{mg}, 0.2645 \mathrm{mmol}, 1.5$ equiv.) were taken in 3.5 mL THF followed by addition of $25 \mu \mathrm{l}$ distilled water and allowed to reflux at $75^{\circ} \mathrm{C}$ for 4 h . Then solvent was evaporated from the reaction mixture to obtain a dark yellow residue, which was purified by silica-gel flash column chromatography (3-5\% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford $\mathbf{4}$ as a yellow liquid ($36.0 \mathrm{mg}, 0.140 \mathrm{mmol}, 80 \%$ yield) [Note: compound 4 is unstable in silica]; FT-IR (Thin film): 3436 (w), 2923 (m), 2852 (w), 1590 (s$), 1417$ (m), 1122 (s) $\mathrm{cm}^{-1}{ }^{1}{ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.35-7.26(\mathrm{~m}, 5 \mathrm{H}), 6.40(\mathrm{~s}, 1 \mathrm{H}), 6.26$ (ddd, $J=17.2,9.6,7.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.30(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~s}, 2 \mathrm{H}), 1.42$ (br, 1H); ${ }^{13} \mathbf{C}-$ NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 174.3,168.8,149.9,141.4,139.2,135.3,128.8,128.2$, 127.4, 118.3, 108.4, 47.8, 43.9; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{NO}_{3}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 258.1130$, Found:
258.1129; Optical rotation: $[\alpha]_{\mathrm{D}}^{22}+67.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.9:0.1 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (70:30 n-Hexane $/ i$-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=280 \mathrm{~nm}$, $\tau_{\text {major }}=40.5 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

L. Procedure for the selective hydrogenation of the allylic olefin of 3aa:

In an oven and vacuum-dried 10 mL two-necked round-bottom flask, a solution of $\mathbf{3 a a}(21.0 \mathrm{mg}, 0.081$ mmol, 1.0 equiv.) in $\mathrm{EtOH}(2.0 \mathrm{~mL})$ along with $10 \% \mathrm{Pd} / \mathrm{C}(4.0 \mathrm{mg}, 0.004 \mathrm{mmol}, 0.05$ equiv.) were taken. The resulting mixture was degassed and stirred under H_{2} balloon pressure for 20 h at $25^{\circ} \mathrm{C}$. The reaction mixture was filtered over Celite ${ }^{\circledR}$ and washed with ethyl acetate. The filtrate was concentrated under reduced pressure and the residue was purified by silica-gel flash column chromatography (0.5$1 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain 5 as a colorless sticky liquid ($17.0 \mathrm{mg}, 0.065 \mathrm{mmol}, 81 \%$ yield); FTIR (Thin film): 3413 (br), 2925 (m), 2866 (w), 1628 (s), 1574 (s), 1456 (m), 1210 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ ($400 \mathrm{MHz}, \mathbf{C D C l}_{3}$): $\delta 7.35-7.21(\mathrm{~m}, 5 \mathrm{H}), 6.49(\mathrm{~s}, 1 \mathrm{H}), 4.51-4.43(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, 2.18-1.98 (m, 2H), $0.92(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 174.3,167.3,151.9$, 141.6, 140.4, 128.8, 128.1, 127.3, 108.5, 61.2, 45.9, 25.5, 12.4; HRMS (ESI+): m/z calcd. for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 261.1127$, Found: 261.1126; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-123.3\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20$ ${ }^{\circ} \mathrm{C}, \mathrm{I}=277 \mathrm{~nm}, \tau_{\text {minor }}=13.9 \mathrm{~min}, \tau_{\text {major }}=15.9 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

M. Procedure for the double silylation and hydroboration of 3aa:

In an oven-dried 25 mL round-bottom flask, 3aa ($235.0 \mathrm{mg}, 0.91 \mathrm{mmol}, 1.0$ equiv.) was taken along with DMAP ($22.2 \mathrm{mg}, 0.182 \mathrm{mmol}, 0.2$ equiv.) and imidazole ($186.0 \mathrm{mg}, 2.729 \mathrm{mmol}, 3.0$ equiv.) under a positive argon pressure. Then 1 mL of dry DMF was added, followed by addition of TBSCl ($343 \mathrm{mg}, 2.274 \mathrm{mmol}, 2.5$ equiv.) in 2 mL DMF and the resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 24 h under argon. Upon completion, the resulting mixture was diluted with 30 mL of distilled water
and 30 mL of diethyl ether. The organic layer was separated and washed with distilled water ($20 \mathrm{~mL} \times$ 3). The combined organic layer was washed with brine (25 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow liquid. This residue was purified by silica-gel flash column chromatography ($2-3 \%$ EtOAc in petroleum ether) to obtain I1 as a yellow liquid (358 $\mathrm{mg}, 0.736 \mathrm{mmol}, 81 \%$ yield). FT-IR (Thin film): 3315 (br), 2935 (w), 2860 (w), 1725 (m), 1628 (s), 1581 (m), 1454 (m), 1250 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(400 ~ M H z, ~ \mathbf{C D C l}_{3}\right): \delta 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.23(\mathrm{~m}$, $3 \mathrm{H}), 6.38(\mathrm{~s}, 1 \mathrm{H}), 6.19$ (ddd, $J=7.4,10.1,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=7.4 \mathrm{~Hz}$, $1 \mathrm{H}), 5.17(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43-4.33(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 0.31(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H})$, 0.07 ($\mathrm{s}, 3 \mathrm{H}$), 0.06 ($\mathrm{s}, 3 \mathrm{H}$); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z , ~ C D C l} 3$): $\delta 175.3,165.6,155.3,141.5,139.4,135.8$, $128.7,128.2,127.2,118.1,110.9,61.3,46.9,26.2,25.8,19.0,18.3,-3.3,-3.4,-3.6,-5.4$.

In an oven dried 25 mL round-bottom flask, $\mathbf{I 1}(60.0 \mathrm{mg}, 0.123 \mathrm{mmol}, 1.0$ equiv.) was taken along with $[\mathrm{Ir}(\mathrm{COD}) \mathrm{Cl}]_{2}(2.4 \mathrm{mg}, 0.0036 \mathrm{mmol}, 0.03$ equiv.) and bis(diphenylphosphino)methane (DPPM) ($2.8 \mathrm{mg}, 0.0072 \mathrm{mmol}, 0.06$ equiv.) under a positive argon pressure. Then 4 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added, followed by addition of HBpin ($36 \mu \mathrm{~L}, 0.246 \mathrm{mmol}, 2.0$ equiv.) and the resulting solution was stirred at $25^{\circ} \mathrm{C}$ for 20 h under argon. Upon completion, the reaction mixture was quenched with 0.5 mL methanol and diluted with 4 mL of distilled water. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a yellow oil, which was purified by silicagel flash column chromatography ($3-5 \%$ EtOAc in petroleum ether) to obtain 6 as a yellow oil (72.0 $\mathrm{mg}, 0.117 \mathrm{mmol}, 95 \%$ yield); FT-IR (Thin film): 3279 (w), 2935 (m), 2861 (w), 1633 (s), 1586 (m), 1373 (m), 1215 ($\mathrm{s} \mathrm{cm}^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.32-7.28(\mathrm{~m}, 4 \mathrm{H}), 7.23-7.19(\mathrm{~m}, 1 \mathrm{H}), 6.33$ $(\mathrm{s}, 1 \mathrm{H}), 4.49-4.38(\mathrm{~m}, 3 \mathrm{H}), 2.16-2.01(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~s}, 12 \mathrm{H}), 0.99(\mathrm{~s}, 9 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.78-0.71(\mathrm{~m}$, $2 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.26(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}): \delta 175.1$, $165.3,156.6,141.7,140.9,128.6,128.2,127.0,110.7,83.2,61.4,45.6,27.5,26.4,25.8,24.9,24.9$, 19.1, 18.3, $-3.1,-3.4,-5.3$; Optical rotation: $[\alpha]_{D}{ }^{22}-61.2\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample.

N. Procedure for the oxidation of 6:

In an oven dried 10 mL round-bottom flask, $\mathbf{6}(38.0 \mathrm{mg}, 0.062 \mathrm{mmol}, 1.0$ equiv.) was taken in a mixture of $\mathrm{THF} / \mathrm{H}_{2} \mathrm{O}$ (1:1) followed by addition of $\mathrm{NaBO}_{3} \cdot 4 \mathrm{H}_{2} \mathrm{O}(38.0 \mathrm{mg}, 0.247 \mathrm{mmol}, 4.0$ equiv.) and allowed to stir at $25^{\circ} \mathrm{C}$ for 4 h . Upon completion, the reaction mixture was diluted with 10 mL of distilled water and 10 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic layer was dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and
concentrated under reduced pressure to obtain a pale yellow residue, which was purified by silica-gel flash column chromatography ($1-2 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 7 as a yellow oil ($27.0 \mathrm{mg}, 0.053$ mmol, 87\% yield); FT-IR (Thin film): 3315 (br), 2935 (w), 2860 (w), 1725 (m), 1629 (s), 1582 (m), 1455 (m), 1251 (m) cm ${ }^{-1}$; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(400 ~ M H z, ~ C D C l 3): ~ \delta 7.34-7.29(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 1 \mathrm{H}), 6.34$ $(\mathrm{s}, 1 \mathrm{H}), 4.71(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.37(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.60(\mathrm{~m}, 2 \mathrm{H}), 2.28-2.23(\mathrm{~m}, 2 \mathrm{H}), 1.00(\mathrm{~s}, 9 \mathrm{H})$, $0.91(\mathrm{~s}, 9 \mathrm{H}), 0.30(\mathrm{~s}, 3 \mathrm{H}), 0.27(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{\mathbf{1 3}} \mathbf{C}-\mathrm{NMR}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta$ $175.1,165.4,156.1,141.5,140.1,128.8,128.1,127.3,110.9,61.4,60.7,39.4,35.5,26.3,25.8,19.1$, 18.3, $-3.2,-3.3,-5.3$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{27} \mathrm{H}_{45} \mathrm{O}_{5} \mathrm{Si}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 505.2806, Found: 505.2802; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-92.1\left(c 2.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Phenomenex Cellulose-2 column (90:10 n-Hexane $/ i$ - PrOH , flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=254 \mathrm{~nm}, \tau_{\text {minor }}=4.3 \mathrm{~min}, \tau_{\text {major }}=$ $6.7 \mathrm{~min})$. See Supporting Information: Part B for HPLC chromatograms.

O. Procedure for the ozonolysis induced cyclization of 7:

In an oven-dried 10 mL round-bottom flask, $7(100.0 \mathrm{mg}, 0.198 \mathrm{mmol}, 1.0$ equiv.) was taken in $3.5 \mathrm{~mL} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ and treated with oxygen-ozone stream for 15 min at $-78^{\circ} \mathrm{C}$. After full consumption of 7, the resulting mixture was treated with an excess of dimethyl sulfide ($58 \mu \mathrm{l}, 0.792 \mathrm{mmol}, 4.0$ equiv.), allowed to slowly warm to ambient temperature and stirred for 3 h . Then all the volatiles were removed under reduced pressure to obtain yellow residue, which was purified by silica-gel flash column chromatography ($11-13 \% \mathrm{EtOAc}$ in petroleum ether) to afford $\mathbf{8}$ as a yellow liquid ($10.0 \mathrm{mg}, 0.062$ mmol, 31\% yield); FT-IR (Thin film): 2958 (w), 2919 (m), 2851 (w), 1768 (s), 1597 (m), 1373 (m), 1150 (s), 1023 (s) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l} 3): \delta 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 3 \mathrm{H}), 4.48$ $(\mathrm{dt}, J=3.3,8.6 \mathrm{~Hz}, 1 \mathrm{H}) 4.39-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.82(\mathrm{t}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.76-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.40(\mathrm{~m}$, 1H); ${ }^{13} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}$, CDCl $_{3}$): $\delta 177.5$ 136.8, 129.1, 128.0, 127.8, 66.6, 45.6, 31.7; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 163.0759$, Found: 163.0760; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-4.7$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with 98:2 er $\left[\mathrm{Lit}^{7}[\alpha]_{\mathrm{D}}{ }^{22}+3.1\left(c 1.0, \mathrm{CHCl}_{3}\right)\right.$ for an enantiomerically enriched sample with 95:5 er]. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IC column (80:20 n-Hexane $/ i$-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}$ $=210 \mathrm{~nm}, \tau_{\text {major }}=23.7 \mathrm{~min}, \tau_{\text {minor }}=26.6 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms. The absolute stereochemistry of the product $\mathbf{8}$ was assigned by comparing its specific rotation with that reported in the literature. ${ }^{7}$

[^3]
P. Procedure for the selective \mathbf{O}-allylation of 3aa:

In an oven-dried 10 mL round-bottom flask, 3aa ($42.0 \mathrm{mg}, 0.163 \mathrm{mmol}, 1.0$ equiv.) and $\mathrm{K}_{2} \mathrm{CO}_{3}$ ($33.7 \mathrm{mg}, 0.243 \mathrm{mmol}, 1.5$ equiv.) were taken in 2 mL of dry DMF under argon atmosphere followed by addition of allyl bromide ($17 \mu 1,0.195 \mathrm{mmol}, 1.2$ equiv.) and allowed to stir at $25^{\circ} \mathrm{C}$ for 12 h . Upon completion, the reaction mixture was diluted with 20 mL of water and 20 mL of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic phase was separated, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic layer was washed with 20 mL brine, dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a pale yellow residue, which was purified by silica-gel flash column chromatography (1-2\% Methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to afford 9 as a yellow oil ($30.0 \mathrm{mg}, 0.100 \mathrm{mmol}, 62 \%$ yield); FT-IR (Thin film): 3345 (br), 3083 (w), 2922 (m), 1723 (m), 1652 (s), 1611 (s), 1424 (m), 1188 (m) cm ${ }^{-1}$; ${ }^{1} \mathbf{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathbf{C D C l}_{3}\right): \delta 7.33-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 6.46(\mathrm{~s}, 1 \mathrm{H}), 6.20(\mathrm{ddd}, J=$ $17.4,10.1,7.6, \mathrm{~Hz}, 1 \mathrm{H}), 5.98-5.88(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.27(\mathrm{~m}, 2 \mathrm{H}), 5.20-5.13(\mathrm{~m}, 3 \mathrm{H}), 4.59-4.48(\mathrm{~m}, 2 \mathrm{H})$, 4.41 ($\mathrm{s}, 2 \mathrm{H}$), 4.10 (br, 1H); ${ }^{\mathbf{1 3}} \mathbf{C}$-NMR ($\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}$): $\delta 176.6,167.3,161.1,142.6,139.0,135.5$, 133.5, 128.9, 128.2, 127.5, 119.1, 118.6, 112.3, 73.1, 60.7, 47.7; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{18} \mathrm{H}_{19} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 299.1283$, Found: 299.1281; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-100.9\left(c 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with $>99.5: 0.5$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (90:10 n-Hexane/ i-PrOH, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20$ ${ }^{\circ} \mathrm{C}, \mathrm{I}=257 \mathrm{~nm}, \tau_{\text {minor }}=8.5 \mathrm{~min}$, $\tau_{\text {major }}=11.6 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

Q. Procedure for the ring closing metathesis of 9:

In an oven dried 10 mL 2 -necked round-bottom flask, equipped with a reflux condenser, 9 (14.0 $\mathrm{mg}, 0.047 \mathrm{mmol}, 1.0$ equiv.) and Grubbs-II ($3.2 \mathrm{mg}, 0.00375 \mathrm{mmol}, 0.08$ equiv.) were taken in 2.5 mL of dry and degassed $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under argon. The resulting solution was heated to $45^{\circ} \mathrm{C}$ for 12 h at which time starting material was completely consumed. The reaction mixture was concentrated to obtain a yellow residue. Purification by silica-gel flash column chromatography ($3-4 \%$ methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) afforded $\mathbf{1 0}$ as a light brown sticky liquid ($11.0 \mathrm{mg}, 0.047 \mathrm{mmol}, 87 \%$ yield); FT-IR (Thin film): 3420 (br), 2923 (w), 2853 (w), 1653 (s), 1617 (s), 1595 (s), 1452 (m), 1272 (w) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}$ (400 MHz ,
$\left.\mathrm{CDCl}_{3}\right): \delta 7.44-7.42(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.24(\mathrm{~m}, 3 \mathrm{H}), 6.44(\mathrm{~s}, 1 \mathrm{H}), 5.87-5.78(\mathrm{~m}, 2 \mathrm{H}), 4.77-4.72(\mathrm{~m}, 1 \mathrm{H})$, 4.47-4.41 (m, 4H); $\left.{ }^{\mathbf{1 3}} \mathbf{C - N M R ~ (1 0 0 ~ M H z , ~ C D C l 3}\right): ~ \delta 176.6,166.9,161.3,144.7,138.9,129.1,128.4$, $128.4,127.9,125.4,112.4,69.0,60.9,49.9$; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{O}_{4}\left([\mathrm{M}+\mathrm{H}]^{+}\right)$: 271.0970, Found: 271.0968; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-75.1\left(c \quad 1.0, \mathrm{CHCl}_{3}\right)$ for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak AD-H column (85:15 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=259 \mathrm{~nm}$, $\left.\tau_{\text {major }}=9.9 \mathrm{~min}, \tau_{\text {minor }}=13.5 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

R. Procedure for the triflyl protection of 3ba:

In an oven and vacuum-dried 10 mL round-bottom flask equipped with a magnetic stir bar, 3ba ($40 \mathrm{mg}, 0.165 \mathrm{mmol}, 1.0$ equiv.) was dissolved in 1.0 mL of dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ under a positive argon pressure and cooled to $0{ }^{\circ} \mathrm{C}$. To this solution, pyridine ($36 \mu 1,0.445 \mathrm{mmol}, 2.7$ equiv.) was added followed by dropwise addition of $\mathrm{Tf}_{2} \mathrm{O}(36 \mu \mathrm{l}, 0.214 \mathrm{mmol}, 1.3$ equiv.) and the resulting mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 1 h . Upon completion, the reaction mixture was quenched with 5 mL of $1(\mathrm{~N}) \mathrm{HCl}$ solution. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL} \times$ 3). Combined organic layer was washed with brine (10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a dark red residue, which was purified by silica-gel flash column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ only) to obtain 11 as yellow liquid ($36.0 \mathrm{mg}, 0.096 \mathrm{mmol}, 58 \%$ yield); FT-IR (Thin film): 3072 (w), 2921 (m), 2708 (w), 1722 (m), 1667 (s), 1418 (s), 1213 (s), 1123 (s), 855 (m) cm^{-1}; ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.39-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.33-7.27(\mathrm{~m}, 3 \mathrm{H}), 6.25(\mathrm{~s}, 1 \mathrm{H}), 6.20$ (ddd, J $=7.4,10.1,17.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.27 (s, 3H); ${ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 171.2,166.1,166.1,162.4,137.1,137.0,133.6,129.1$, $128.1,120.0,118.5$ (q, $J=320.2 \mathrm{~Hz}$), 114.7, 48.0, 19.7; HRMS (ESI+): m/z calcd. for $\mathrm{C}_{16} \mathrm{H}_{13} \mathrm{~F}_{3} \mathrm{O}_{5} \mathrm{SNa}$ $\left([\mathrm{M}+\mathrm{Na}]^{+}\right): 397.0333$, Found: 397.0330; Optical rotation: $[\alpha]_{\mathrm{D}}{ }^{22}-57.8$ (c 2.0, CHCl_{3}) for an enantiomerically enriched sample with $>99.5: 0.5$ er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 n-Hexane $/ i-\mathrm{PrOH}$, flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$, I $\left.=221 \mathrm{~nm}, \tau_{\text {minor }}=12.5 \mathrm{~min}, \tau_{\text {major }}=20.3 \mathrm{~min}\right)$. See Supporting Information: Part B for HPLC chromatograms.

S. Procedure for the Suzuki cross-coupling of 11 with phenyl boronic acid:

In an oven and vacuum-dried 10 mL round-bottom flask equipped with a magnetic stir bar, 11 ($20 \mathrm{mg}, 0.053 \mathrm{mmol}, 1.0$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}\left(3.1 \mathrm{mg}, 0.00265 \mathrm{mmol}, 5.0 \mathrm{~mol} \%\right.$), $\mathrm{K}_{2} \mathrm{CO}_{3}$ (29.3 mg , $0.212 \mathrm{mmol}, 4.0$ equiv.) and phenyl boronic acid ($12.9 \mathrm{mg}, 0.106 \mathrm{mmol}, 2.0$ equiv.) were taken in 0.6 mL of dry 1,4-dioxane under a positive argon pressure, heated to $70^{\circ} \mathrm{C}$ and allowed to stir for 7 h . Upon completion, the reaction mixture was quenched with 3 mL of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and diluted with 3 mL of distilled water. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL} \times 3)$. Combined organic layer was washed with brine (10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a dark brown residue, which was purified by silica-gel flash column chromatography (1% methanol in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) to obtain $\mathbf{1 2}$ as a yellow liquid ($13.0 \mathrm{mg}, 0.043 \mathrm{mmol}, 85 \%$ yield); FT-IR (Thin film): 3446 (br), 2923 (w), 2853 (w), 1659 (s), 1623 (s), 1397 (m) cm ${ }^{-1} ;{ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.45-7.38(\mathrm{~m}, 4 \mathrm{H}), 7.33-7.28(\mathrm{~m}, 3 \mathrm{H}), 7.25-$ $7.23(\mathrm{~m}, 1 \mathrm{H}), 7.16-7.15(\mathrm{~m}, 2 \mathrm{H}), 6.21(\mathrm{~s}, 1 \mathrm{H}), 6.24-6.16(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J$ $=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.25(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 178.9,165.0$, $164.5,139.3,136.2,132.3,130.2,128.8,128.7,128.3,128.1,127.4,127.2,118.3,113.9,50.9,19.8 ;$ HRMS (ESI+): m / z calcd. for $\mathrm{C}_{21} \mathrm{H}_{19} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 303.1385$, Found: 303.1384; Optical rotation: $[\alpha]_{D}{ }^{22}-120.7$ (c 1.0, CHCl_{3}) for an enantiomerically enriched sample with >99.5:0.5 er. The enantiomeric ratio was determined by HPLC analysis using Daicel Chiralpak IH column (90:10 nHexane/ i - PrOH , flow rate $=1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}, \mathrm{I}=224 \mathrm{~nm}, \tau_{\text {minor }}=38.9 \mathrm{~min}, \tau_{\text {major }}=43.7 \mathrm{~min}$). See Supporting Information: Part B for HPLC chromatograms.

T. Attempted reductive removal of triflate in 11:

In an oven and vacuum-dried 10 mL round-bottom flask equipped with a magnetic stir bar, 11 $\left(15 \mathrm{mg}, 0.040 \mathrm{mmol}, 1.0\right.$ equiv.), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(9.2 \mathrm{mg}, 0.008 \mathrm{mmol}, 20.0 \mathrm{~mol} \%)$ and $\mathrm{LiCl}(15.0 \mathrm{mg}, 0.35$ mmol, 8.75 equiv.) were taken in 2 mL of dry DMF under a positive argon pressure. $\mathrm{Then}^{\mathrm{Et}} \mathrm{SiH}_{(0.13}$ $\mathrm{mL}, 0.816 \mathrm{mmol}, 20.0$ equiv.) was added into it and heated to $70^{\circ} \mathrm{C}$ and allowed to stir for 3 h . Upon completion, the reaction mixture was diluted with 5 mL of $\mathrm{Et}_{2} \mathrm{O}$ and 20 mL of distilled water. The organic layer was separated, and the aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(5 \mathrm{~mL} \times 3)$. Combined
organic layer was washed with brine (10 mL), dried over anh. $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated under reduced pressure to obtain a dark yellow residue, which was purified by silica-gel flash column chromatography (30-40\% EtOAc in Pet ether) to obtain mixture of isomerized product and hydrogenation product as an inseperable mixture (8.0 mg); ${ }^{\mathbf{1}} \mathbf{H}-\mathbf{N M R}\left(\mathbf{4 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 7.42-7.31(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.23(\mathrm{~m}, 4 \mathrm{H})$, $7.15-7.12(\mathrm{~m}, 2 \mathrm{H}), 6.81(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H})$ [for A], $6.18(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.07(\mathrm{~d}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.05(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.75(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$ [for B], $2.32(\mathrm{~s}, 3 \mathrm{H})$ [for A], $2.21(\mathrm{~s}, 3 \mathrm{H})$ [for \mathbf{B}], 2.13-2.07 (m, 1H), 1.99-1.90 (m, 1H) [for B], $1.71(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$ [for A], $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$ [for B]; ${ }^{\mathbf{1 3}} \mathbf{C}-\mathbf{N M R}\left(\mathbf{1 0 0} \mathbf{~ M H z}, \mathbf{C D C l}_{3}\right): \delta 180.9,180.6,170.5,165.9,165.2$, 164.1, 139.8, 135.4, 135.0, 131.4, 130.0, 128.9, 128.9, 128.2, 128.1, 127.5, 114.0, 113.8, 113.1, 113.0, 51.9, 26.2, 20.0, 19.9, 15.6, 12.3; HRMS (ESI+): m / z calcd. for $\mathrm{C}_{15} \mathrm{H}_{15} \mathrm{O}_{2}\left([\mathrm{M}+\mathrm{H}]^{+}\right): 227.1072$, Found: 227.1069.

SUPPORTING INFORMATION: PART B

Hydroxy-directed iridium-catalyzed enantioselective formal $\beta-\mathbf{C}\left(\mathbf{s p}^{2}\right)-\mathrm{H}$ allylic alkylation of α, β-unsaturated carbonyls

Sankash Mitra, Rahul Sarkar, Aditya Chakrabarty and Santanu Mukherjee*
Department of Organic Chemistry, Indian Institute of Science, Bangalore 560 012, INDIA
*Corresponding author: E-mail: sm@iisc.ac.in

11

SKM-IV-002-02

$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Phenomenex Cellulose- 1 column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 277 nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	7.829	12326	0.160
2	9.097	7715447	99.840
Total		7727773	100.000

PeakTable
PDA Ch1 285nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	20.255	392668	50.512
2	26.334	384715	49.488
Total		777383	100.000

Daicel Chiralpak AS-H column (90:10 n-Hexane $/ i$ - $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 285nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	19.943	31150645	100.000
Total		31150645	100.000

Daicel Chiralpak IH column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 277nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.794	17289900	100.000
Total		17289900	100.000

Daicel Chiralpak IG column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Enantioselective β－C（sp $\left.p^{2}\right)-H$ AA of α, β－unsaturated carbonyls，Mitra et al．，SI－Part B，Page S－14

が人ivi人

Daicel Chiralpak AD-H column (95:5 n-Hexane $/ i$ - $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 275nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	38.217	30361885	100.000
Total		30361885	100.000

Phenomenex Amylose-2 column (75:25 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 254nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	16.114	17964377	100.000
Total		17964377	100.000

PDA Ch1 283 nm 4 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.460	949262	48.929
2	12.107	990827	51.071
Total		1940089	100.000

icel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Chromatogram
D:\HPLC\Data\ADC\ADC-III-126-01.lcd

PeakTable
PDA Ch1 283 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	12.093	8457622	100.000
Total		8457622	100.000

ADC-III-124-01

Enantioselective $\beta-C\left(s p^{2}\right)-H A A$ of α, β-unsaturated carbonyls, Mitra et al., SI-Part B, Page S-21

Chromatogram
D: LHPLC Data\ADC\ADC-III-125-rac-ADH-01.lcd

PeakTable
PDA Ch1 282 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	10.828	710118	49.015
2	13.007	738662	50.985
Total		1448780	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 282nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	12.994	9983031	100.000
Total		9983031	100.000

PeakTable
PDA Ch1 222nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	11.575	1208357	50.125
2	13.814	1202307	49.875
Total		2410664	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Chromatogram
D:\HPLC\Data\ADC\ADC-III-135-RAC-IH-01.lcd

PeakTable
PDA Ch1 215 nm 4 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.914	5618243	49.850
2	12.556	5652037	50.150
Total		11270280	100.000

Daicel Chiralpak IH column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Chromatogram
D:\HPLC\Data\ADC\ADC-III-131-rac-ADH-01.lcd

PeakTable
PDA Ch1 276 nm 4 nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.570	1280722	48.752
2	17.646	1346295	51.248
Total		2627017	100.000

Daicel Chiralpak AD-H column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

SKM-III-174-01 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(

PeakTable
PDA Ch1 280 nm 4 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.592	2237312	49.770
2	13.025	2257984	50.230
Total		4495297	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)
mAU

PeakTable
PDA Ch1 280 nm 4 nm

Peak\#	Ret. Time	Area	Area $\%$
1	10.841	20520	0.076
2	13.035	26844750	99.924
Total		26865270	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane $/ i$ - $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

ADC-III-142-01
$400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

ADC-III-142-01 $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Chromatogram
D: \HPLC \backslash Data $\backslash A D C \backslash A D C-I V-143-I G-r a c-1 . l c d$

Daicel Chiralpak AD-H column (90:10 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 281nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	15.102	12043561	50.903
2	24.403	11616314	49.097
Total		23659874	100.000

Daicel Chiralpak IH column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& \text { ホi }
\end{aligned}
$$

3ap
ADC-III-149-01
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Daicel Chiralpak IH column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 280 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	29.435	5600391	51.069
2	50.025	5365901	48.931
Total		10966292	100.000

Daicel Chiralpak IC column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 280nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	30.074	8815	0.044
2	47.474	19841047	99.956
Total		19849862	100.000

PeakTable
PDA Ch1 282nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	18.714	2013359	50.194
2	26.595	1997831	49.806
Total		4011190	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane $/ i$ - $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PDA Ch1 276nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	11.858	1601446	49.606
2	13.441	1626908	50.394
Total		3228354	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Enantioselective β-C(sp $\left.p^{2}\right)-H A A$ of α, β-unsaturated carbonyls, Mitra et al., SI-Part B, Page S-44

SKM-III-096-01
$100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

PeakTable
PDA Ch1 276nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	9.849	1834843	50.987
2	14.842	1763816	49.013
Total		3598659	100.000

Phenomenex Cellulose-1 column (90:10 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Daicel Chiralpak IC column (95:5 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 305nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	27.667	115094	0.400
2	32.192	28681963	99.600
Total		28797057	100.000

PeakTable
PDA Ch1 282nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	21.861	444060	49.171
2	25.086	459030	50.829
Total		903090	100.000

Daicel Chiralpak IH column (85:15 n-Hexane $/ i-\mathrm{PrOH}, 1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 282nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	24.475	18302946	100.000
Total		18302946	100.000

PeakTable
PDA Ch1 272nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	44.228	2643491	49.769
2	49.577	2667996	50.231
Total		5311487	100.000

Daicel Chiralpak IH column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 0.5 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 272nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	48.362	40998998	100.000
Total		40998998	100.000

PeakTable
PDA Ch1 233 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	25.804	12421526	50.005
2	33.500	12418942	49.995
Total		24840468	100.000

Daicel Chiralpak IG column (95:5 n-Hexane $/ i$ - $\mathrm{PrOH}, 1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 233nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	25.989	132196	0.209
2	33.001	63141661	99.791
Total		63273857	100.000

${ }_{\infty}^{\infty} \times$		$\stackrel{\infty}{\infty}{ }_{\text {¢ }}^{\sim}$
${ }_{\infty}^{\infty}$		$\stackrel{\text { rio }}{ }$
$\stackrel{\sim}{-1}$		
$1 /$		

ADC-III-166-01 $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

Chromatogram
D: $\mathrm{H} P L C \backslash D a t a \backslash A D C \backslash A D C-I I I-167-r a c-I G-01 . l c d$

PeakTable
PDA Ch1 232 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	13.398	8806755	50.008
2	15.003	8803947	49.992
Total		17610702	100.000

Daicel Chiralpak IG column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Chromatogram
D: \HPLC\Data\ADC\ADC-III-166-01.lcd

PeakTable
PDA Ch1 232nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	14.888	9263135	100.000
Total		9263135	100.000


```
SKM-III-165-01 \(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\)
3ha
```


Daicel Chiralpak IH column (85:15 n-Hexane/i-PrOH, $1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Daicel Chiralpak IG column (40:60 n-Hexane/EtOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 268nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	37.584	15292	0.041
2	49.893	37000103	99.959
Total		37015395	100.000

ল゙ Ṇ

SKM-III-206-01 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$
(

SKM-IV-003-01 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

3la

SKM-IV-003-01 $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

SKM-III-176-01 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

PeakTable
PDA Ch1 280nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	27.759	5901396	50.050
2	40.559	5889578	49.950
Total		11790973	100.000

Phenomenex Cellulose-2 column (70:30 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 280nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	40.506	8762993	100.000
Total		8762993	100.000

Daicel Chiralpak AD-H column (90:10 n-Hexane/i-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch 1277 nm 4 nm

Peak\#	Ret. Time	Area	Area $\%$
1	13.966	29563	0.132
2	15.911	22298420	99.868
Total		22327983	100.000

の으NNㅇ
io i°

I1
SKM-III-116-01 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

SKM-III-116-01 $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$

11

Enantioselective β-C(sp $\left.{ }^{2}\right)-H$ AA of α, β-unsaturated carbonyls, Mitra et al., SI-Part B, Page S-69

Phenomenex Cellulose-2 column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

Daicel Chiralpak IC column (80:20 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)
D:\HPLC\Data\SKM\SKM-IV-049-OZONOLYSIS-IC-01.lcd

PDA Ch1 210nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	23.678	10699807	97.936
2	26.654	225476	2.064
Total		10925283	100.000

PeakTable
PDA Ch1 257 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	8.490	6054124	50.012
2	11.658	6051216	49.988
Total		12105340	100.000

Daicel Chiralpak AD-H column (90:10 n-Hexane $/ i$-PrOH, $1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

$$
\begin{aligned}
& \underbrace{\text { ririricirio }}
\end{aligned}
$$

PeakTable
PDA Ch1 259 nm 4 nm

Peak\#	Ret. Time	Area	Area \%
1	9.963	6078716	50.015
2	13.478	6074964	49.985
Total		12153680	100.000

Daicel Chiralpak AD-H column (85:15 n-Hexane $/ i$ - $\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 221 nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	12.388	4101190	50.301
2	21.028	4052139	49.699
Total		8153329	100.000

Daicel Chiralpak IH column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1.0 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

SKM-III-121-01 $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$

PeakTable
PDA Ch1 224 nm 4nm

Peak\#	Ret. Time	Area	Area $\%$
1	39.096	582139	50.828
2	42.874	563179	49.172
Total		1145317	100.000

Daicel Chiralpak IH column (90:10 n-Hexane $/ i-\mathrm{PrOH}, 1 \mathrm{~mL} / \mathrm{min}, 20^{\circ} \mathrm{C}$)

PeakTable
PDA Ch1 224nm 4nm

Peak\#	Ret. Time	Area	Area \%
1	38.884	51435075	99.604
2	43.672	204439	0.396
Total		51639513	100.000

[^0]: ${ }^{1}$ a) J. Y. Hamilton, D. Sarlah and E. M. Carreira, Org. Synth, 2015, 92, 1-12. b) J. Y. Hamilton, D. Sarlah and E. M. Carreira, Angew. Chem., Int. Ed., 2013, 52, 7532-7535.

[^1]: ${ }^{2}$ (a) C. V. Credille, B. L. Dick, C. N. Morrison, R. W. Stokes, R. N. Adamek, N. C. Wu, I. A. Wilson and S. M. Cohen, J. Med. Chem., 2018, 61, 10206-10217. (b) S. M. Meier, M. Novak, W. Kandioller, M. A. Jakupec, V. B. Arion, N. MetzlerNolte, B. K. Keppler and C. G. Hartinger, Chem. Eur. J., 2013, 19, 9297-9307. (c) H.-S. Rho, H.-S. Baek, S.-M. Ahn, M.-K. Kim, A. K. Ghimeray, D.-H. Cho and J.-S. Hwang, Bull. Korean Chem. Soc., 2010, 31, 2375-2378. (d) M. Spadafora, V. Y. Postupalenko, V. V. Shvadchak, A. S. Klymchenko, Y. Mély, A. Burger and R. Benhida, Tetrahedron, 2009, 65, 78097816. (e) N. S. Poonia, A. k. Arora and A. V. Bajaj, Bull. Chem. Soc. Jpn., 1980, 53, 569-570.
 ${ }^{3}$ H. Kaatz, K. Streffer, U. Wollenberger and M. G. Peter, Naturforsch. 1999, 54c, 70-74.
 ${ }^{4}$ S. K. Kariofillis, B. J. Shields, M. A. Tekle-Smith, M. J. Zacuto and A. G. Doyle, J. Am. Chem. Soc., 2020, 142, 76837689.
 ${ }^{5}$ S. L. Capim, G. M. Gonçalves, G. C. M. dos Santos, B. G. Marinho and M. L. A. A. Vasconcellos, Bioorg. Med. Chem., 2013, 21, 6003-6010.

[^2]: ${ }^{6}$ a) C. Defieber, M. A. Ariger, P. Moriel and E. M. Carreira, Angew. Chem., Int. Ed., 2007, 46, 3139-3143. b) M. Lafrance, M. Roggen and E. M. Carreira, Angew. Chem. Int. Ed., 2012, 51, 3470-3473. (c) M. Roggen and E. M. Carreira, Angew. Chem., Int. Ed., 2012, 51, 8652-8655.

[^3]: ${ }^{7}$ N. A. Paras and D. W. C. MacMillan, J. Am. Chem. Soc., 2001, 123, 4370-4371.

