Cardiolipin, and not monolysocardiolipin, preferentially binds to the interface of Complexes III and IV

Robin A. Corey, Noah Harrison, Phillip J. Stansfeld, Mark S.P. Sansom, Anna Duncan

Supplemetary Data

- 1. Coordinates of CL and MLCL binding sites, as identified by PyLipID, for yeast, mouse and human supercomplexes (6 files)
- 2. Itp file for CL > MLCL used for FEP

Supplemetary Figures

Figure S1. CL (top row) and MLCL (second row) headgroup density from yeast, mouse and human $CIII_2CIV_{1-2}$ CG MD simulations. CIII backbone is shown in grey and CIV in white, with CL headgroup densities in blue and MLCL densities in orange.

- Mouse and human
- All

Figure S3. Sequence alignment of the yeast, mouse and human subunits of Complex III that were engaged in MLCL or CL interactions during simulations, showing **A**) the Rieske subunit; **B**) subunit 4; **C**) subunit 8; and **D**) subunit 9. Residues identified as being in the interface interaction site with occupancy > 40 % (see also Table 2) are indicated on the sequence alignment by a black outline and arrow (arrow colour shows the species involved in the interaction)

- Mouse onlyHuman only
- Yeast and human
- Mouse and human
- ▼ All

Figure S4. Sequence alignment of the yeast, mouse and human **A)** COX1; **B)** COX5A subunits of CIV. Together with Figure S5, these comprise all the subunits of CIV that were engaged in MLCL or CL interactions during simulations. Residues identified as being in the interface interaction site with occupancy > 40 % (see also Table 2) are indicated on the sequence alignment by a black outline and arrow (arrow colour shows the species involved in the interaction)

- Yeast and human
- Mouse and human
- ▼ All

Figure S5. Sequence alignment of the yeast (*S. crevisiae*), mouse and human **A**) COX3; and mouse and human **B**) COX5B; **C**) COX6A; and **D**) COX7A2 subunits of CIV. Note that yeast CIV does not contain subunits COX5B, COOX6A, nor COX7A2. Together with Figure S4, these comprise all the subunits of CIV that were engaged in MLCL or CL interactions during simulations. Residues identified as being in the interface interaction site with occupancy > 40 % (see also Table 2) are indicated on the sequence alignment by a black outline and arrow (arrow colour shows the species involved in the interaction)

	Complex and			Res. t	ime	Occupancy		
Lipid	Subu	init	Residue		(µs)	(%)		
Yeast								
CL (Site	1)		Overall:	11.1	4	98.46		
	CIII	Rieske	K44	8.8	7	48.57		
			K51	1.9	1	73.51		
		Sub 8	K35	3.8	9	42.83		
		Sub 9	S2	0.6	9	84.99		
			F3	0.5	9	43.05		
			S4	0.6	3	53.20		
			S5	0.7	0	66.89		
	CIV	COX5A	S93	7.4	8	45.48		
			F94	3.9	2	43.49		
			К97	3.8	9	40.40		
CL (Site 2)		Overall:	12.0	5	100.00			
01 (0110	_, 	Rieske	К44	37	8	47.68		
	•		K51	12	5	74 17		
			W55	3 9	1	49.23		
		Sub 8	K35	9.5	0	4J.23 81 02		
		505 0	D26	9.0 8.5	5	55.85		
			127	0.0	5	33.83 47.02		
		Sub 0	L57	9.0		47.02		
		Sub 9	52	0.9	5	93.38		
			54	0.8	1	52.32		
			\$5	2.1	7	66.89		
	CIV	COX5A	\$93	7.7	1	49.45		
			K97	9.2	7	71.97		
MLCL (S	ite 1)		Overall:	10.2	1	93.84		
	CIII	Rieske	K44	4.3	6	76.91		
			N46	2.0	3	41.96		
			K51	1.6	6	68.77		
		Sub 8	K35	6.1	2	63.95		
	CIV	COX1	K408	2.3	6	46.13		
		COX5A	G90	1.9	8	41.71		
			F94	4.0	8	59.98		
			K97	6.4	9	61.52		
MLCL (S	ite 2)		Overall:	15.1	0	100.00		
	CIII	Rieske	K44	14.0	6	73.82		
			N46	14.3	6	49.40		
			K51	1.2	4	71.42		
			Y55	6.6	4	61.75		
		Sub 8	K35	13.3	0	94.28		
			P36	3.9	4	48.11		
			L37	3.6	8	46.74		
			Q38	8.9	4	45.42		
			H42	1.6	0	47.71		
	CIV	COX5A	G90	6.9	0	50 33		
		20.00	592	2.5 2 A	9	<u>48</u> 17		
			592	5.0 7 0	6	71 20		
			555 FQ/	7.0 7 0	7	72.20		
			, J , K07	12.0	1	72.03 07.01		
			1/5/	12.ŏ	т	07.01		

	Complex and			Res. time	Occupancy
Lipid	Subu	nit	Residue	(µs)	(%)
Mouse					
CL			Overall:	15.00	100.00
	CIII	Sub 8	R24	8.18	71.74
	-		F26	6 36	62 03
			528	6.33	65 56
			S20	2 71	56.05
	CIV	COV2	D1EC	2.71	10.35
	CIV	CONS		2.21	40.79
			N157	15.00	89.18
			H158	8.07	66.67
			Q161	7.71	60.93
			L223	14.43	59.16
		COX5B	S3	8.19	71.08
		COX6A2	R17	6.55	56.51
		COX7A2L	S54	2.59	75.94
			G55	2.71	62.69
			K56	1.97	96.47
MICI			Overall	8 48	99.12
IVILUE	CIII	Sub 8	R24	7 11	/1 72
	CIII	505 8	NZ4 C21	7.11	41.72 E0.22
	CIV	COVO	331 D1FC	15.00	30.33
	CIV	CUX3	R150	15.00	76.60
			N157	9.02	83.22
			H158	7.17	42.61
			N160	15.00	58.50
			L223	15.00	81.02
		COX5B	S3	7.10	41.50
		COX7A2L	Y53	2.29	9.27
			S54	15.00	90.51
			G55	15.00	80 57
			K56	10.53	96.69
Human			N30	10.55	50.05
			Quarally	15.00	100.00
CL	<u></u>	Diagles		15.00	100.00
	CIII	Rieske	R93	15.00	87.20
			F113	15.00	//./0
		Sub 4	T305	15.00	41.72
			H309	15.00	93.38
		Sub 8	R25	15.00	97.79
			A26	15.00	65.12
			Y27	15.00	63.36
			P28	2.29	49.67
			H29	3.13	56.73
			V30	1.71	43.27
			T32	2 37	59.16
	CIV	COX3	N157	3.02	75 94
	CIV	CONS	0150	15.02	93.54
		COVED	Q130	15.00	03.44
		COXSB	A3Z	15.00	83.22
		COX6A1	R36	15.00	81.24
			K39	15.00	95.81
MLCL			Overall:	15.00	100.00
	CIII	Rieske	R93	15.00	90.95
			F113	15.00	79.03
		Sub 4	T305	15.00	43.27
			H309	15.00	92.27
		Sub 8	R25	15.00	98.23
			A26	15.00	52.76
			V27	14 55	60 71
			D28	2 16	50.71
			г 20 Ц 20	5.40 1F 00	57.02
			П29 V20	15.00	09.32
			V3U	1.44	47.02
			T32	2.04	65.56
	CIV	COX3	N157	3.82	75.28
			Q158	15.00	80.57
			Q161	2.35	44.15
		COX5B	A32	15.00	89.40
		COX6A1	R36	15.00	87.20
			К39	15.00	95.14
			-		

Table S1. Residence time and occupancy for each interface site overall, andindividually for each residue within the site, as listed in Table 2