Supplementary Information

Palladium-catalysed C-H arylation of benzophospholes with aryl halides

Shibo Xu,[†] Kazutoshi Nishimura,[‡] Kosuke Saito,[‡] Koji Hirano^{*,†,‡} and Masahiro Miura^{*,†} [†]Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan [‡]Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan

k_hirano@chem.eng.osaka-u.ac.jp; miura@chem.eng.osaka-u.ac.jp

Contents

Instrumentation and Chemicals	S2–S3
Experimental Procedures	S4–S6
Detailed Optimization Studies	S7–S11
Hammett Studies	S12
Cyclic Voltammetry and Differential Pulse Voltammetry	S13–S18
Absorption and Fluorescence Spectra	S19
Theoretical Calculations	S20–S21
X-Ray Analysis	S22–S23
Characterization Data for Products	S24–S141
References	S142

Instrumentation and Chemicals

¹H, ¹³C{¹H}, ¹⁹F{¹H}, and ³¹P{¹H} NMR spectra were recorded at 400 MHz, 100 MHz, 376 MHz, and 162 MHz, respectively, for CDCl₃ solutions. HRMS data were obtained by APCI using TOF. GC analysis was carried out using a silicon OV-17 column (i. d. 2.6 mm x 1.5 m) or CBP capillary column (i. d. 0.5 mm x 25 m). TLC analyses were performed on commercial glass plates bearing 0.25-mm layer of Merck Silica gel 60F₂₅₄. Silica gel (Wakosil C-200, Wako Pure Chemical Co.) was used for column chromatography. Flash silica gel column chromatography was performed by Isolera One (Biotage). Gel permeation chromatography (GPC) was performed by LC-20AR (pump, SHIMADZU, 7.5 mL/min CHCl₃ or EtOAc) and SPD-20A (UV detector, SHIMADZU, 254 nm) with two in-line YMC-GPC T2000 (20 x 600 mm, particle size: 10 µm) (preparative columns, YMC). UV-vis spectra were acquired with JASCO V-750 spectrometer. Photoluminescence spectra and quantum yield measurements were conducted with JASCO FP-8500 spectrometer equipped with an integration sphere Cyclic voltammograms and differential pulse voltammograms were recorded on ALS system. Electrochemical Analyzer Model 600E equipped with SVC-3 Voltammetry cell. Counter and working electrodes were made of Pt, and the reference electrode was Ag/Ag⁺. The measurements were conducted in MeCN solvent containing tetrabutylammonium hexafluorophosphate as a supporting electrolyte at an indicated scan rate. All the potentials were calibrated with the standard ferrocene/ferrocenium (Fc/Fc⁺) redox couple measured in identical conditions. Microwave irradiation was conducted with Initiator⁺ (Biotage), and the reaction temperature was measured by an internal probe. The crystal measurement was performed with XtaLAB Synergy-S/Cu (Rigaku).

Unless otherwise noted, materials obtained from commercial suppliers were used without further purification. Toluene was dried on a Glass Contour Solvent dispensing system (Nikko Hansen & Co., Ltd.) prior to use. The 1,1-diarylethylene (1a) was commercially available from TCI, and others **1b-d** and **1f-j** were prepared from the commercially available corresponding benzophenones by the Wittig reaction with methyltriphenylphosphonium bromide. The **1e** was prepared according to the literature method.^{S1} 4-Bromo-3-chloro-*N*,*N*-diphenylaniline was synthesized from 1-bromo-2-chloro-4-iodobenzene and diphenylamine by the Buchwald-Hartwig amination reaction.^{S2} Unless otherwise noted, all reaction were performed under nitrogen atmosphere.

Experimental Procedures

1. Procedures for the synthesis of benzophosphole 2 (Scheme 3)

<u>A 0.1 mmol scale reaction of 1a</u>: In a Schlenk tube with pressure resistance, phenylphosphinic acid (0.20 mmol, 28.4 mg) was dissolved in toluene (1.5 mL), and 1,1-diphenylethylene (**1a**, 0.10 mmol, 18.0 mg) and 4-methylpyridine (0.48 mmol, 44.7 mg) were subsequently added under N₂. Tf₂O (0.48 mmol, 80 μ L) was then added, and the mixture was heated at 120 °C in an oil bath for 16 h. After cooling, the resulting mixture was quenched with aqueous HCl (1 M, 1 mL) and extracted with CHCl₃ (3 x 10 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by flash silica gel column chromatography with hexane/EtOAc (1:2, v/v) to give the desired product **2a** (98%, 29.6 mg).

<u>A 7.3 mmol scale reaction of 1a</u>: In a Schlenk tube with pressure resistance, phenylphosphinic acid (14.6 mmol, 2.073 g) was dissolved in toluene (15 mL), and 1,1-diphenylethylene (1a, 7.3 mmol, 1.314 g) and 4-methylpyridine (35.04 mmol, 3.263 g) were subsequently added under N₂. The tube was cooled to 0 °C with an ice bath, and Tf₂O (35.04 mmol, 5.8 mL) was added. The mixture was heated at 120 °C in an oil bath for 22 h. After cooling, the resulting mixture was quenched with aqueous HCl (1 M, 10 mL) and extracted with CHCl₃ (3 x 25 mL). The combined organic layer was dried over Na₂SO₄ and concentrated in vacuo. The residue was purified by silica gel column chromatography with hexane/EtOAc (1:2, v/v) and GPC (CHCl₃) subsequently to give the desired product **2a** (64%, 1.41 g).

2. Procedures for palladium-catalysed C-H arylation of benzophospholes

Procedure for the reaction with aryl iodides or bromides (Scheme 4)

<u>A 0.2 mmol scale reaction of 2a</u>: To a 10 mL microwave vessel were added 2a (0.20 mmol, 60.4 mg), 4-iodotoluene (3a, 0.30 mmol, 65.4 mg), and Pd(OAc)₂ (0.010 mmol, 2.3 mg). The vessel was moved to a glovebox filled with N₂, and NaOtBu (0.40 mmol, 38.4 mg) was added. The vessel was sealed and taken out from the glovebox. Toluene (2.0 mL) was then added by syringe, and the reaction mixture was irradiated under microwave reactor conditions at 90 °C for 1 hour. The reaction was allowed to cool to room temperature, and the mixture was filtered through a short plug of activated alumina (EtOAc as eluent) and concentrated in vacuo. The residue was purified by silica gel column chromatography with hexane/ethyl acetate (1:2, v/v) as eluent to give the desired product 4aa (79%, 61.9 mg).

<u>A 2.0 mmol scale reaction of 2a</u>: To a 30 mL microwave vessel were added 2a (2.0 mmol, 604.0 mg), 4-iodotoluene (3a, 3.0 mmol, 654.0 mg), and Pd(OAc)₂ (0.10 mmol, 22.5 mg). The vessel was moved to a glovebox filled with N₂, and NaOtBu (4.0 mmol, 384.0 mg) was added. The vessel was sealed and taken out from the glovebox. Toluene (15 mL) was then added by syringe, and the reaction mixture was irradiated under microwave reactor conditions at 90 °C for 1 hour. The reaction was allowed to cool to room temperature, and the mixture was filtered through a short plug of activated alumina (EtOAc as eluent) and concentrated in vacuo. The residue was purified by silica gel column chromatography with hexane/ethyl acetate (1:2, v/v) as eluent to give the desired product 4aa (65%, 510.0 mg).

Procedure for the reaction with aryl chlorides (Scheme 8a)

<u>A 0.1 mmol scale reaction of 2a</u>: To a 10 mL microwave vessel were added 2a (0.10 mmol, 30.2 mg) and 4-chlorotoluene (**3a-Cl**, 0.30 mmol, 38.0 mg). The vessel was moved to a glovebox filled with N₂, and Pd(Cy₃P)₂ (0.0050 mmol, 3.3 mg) and NaOtBu (0.20 mmol, 19.2 mg) were added. The vessel was sealed and taken out from the glovebox. Toluene (1.0 mL) was then added by

syringe, and the reaction mixture was stirred at 110 °C (oil bath) for 12 hour. The reaction was allowed to cool to room temperature, and the mixture was filtered through a short plug of activated alumina (EtOAc as eluent) and concentrated in vacuo. The residue was purified by silica gel column chromatography with hexane/ethyl acetate (1:2, v/v) as eluent to give the desired product **4aa** (69%, 27.1 mg).

Procedure for the synthesis of 5 (Scheme 8b)

Synthesis of **5aa**: To a 10 mL microwave vessel were added **2a** (0.20 mmol, 60.4 mg), 1bromo-2-chlorobenzene ($\mathbf{3}$, 0.30 mmol, 57.4 mg), and Pd(OAc)₂ (0.010 mmol, 2.3 mg). The vessel was moved to a glovebox filled with N₂, and NaOtBu (0.40 mmol, 38.4 mg) was added. The vessel was sealed and taken out from the glovebox. Toluene (2.0 mL) was then added by syringe, and the reaction mixture was irradiated under microwave reactor conditions at 90 °C for 1 hour. The reaction was allowed to cool to room temperature, and the mixture was filtered through a short plug of activated alumina (EtOAc as eluent) and concentrated in vacuo. The residue was transferred to a 20 mL two-neck round-bottom flask, and PdCl₂(PCy₃)₂ (0.040 mmol, 29.6 mg), Cs₂CO₃ (0.4 mmol, 130.4 mg), and DMAc (1.0 mL) were added. The mixture was stirred at 150 °C (oil bath) for 22 hour under N₂. The resulting mixture was then quenched with brine and extracted with ethyl acetate (3 x 10 mL). The combined organic layer was dried over sodium sulfate. Concentration in vacuo followed by silica gel column purification with hexane/ethyl acetate (1:1, v/v) gave the desired product 5aa (75%, 56.3 mg).

Detailed Optimization Studies

Table S1. Optimization Studies for the Synthesis of Starting Benzophosphole 2a from 1,1-Diphenylethylene 1a and Phenylphosphinic Acid^a

Entry	Activator (mmol)	Base (mmol) Solvent		Conditions	Yield of 2a (%) ^b
1	Tf ₂ O (0.48)	DMAP (0.48)	DCE	120 °C, 16 h	(69)
2	Tf ₂ O (0.48)	DMAP (0.48)	DCE	90 °C, 16 h	trace
3	PhNTf ₂ (0.48)	DMAP (0.48)	DCE	120 °C, 16 h	n.d.
4	TfOH (0.96)	none	DCE	120 °C, 16 h	n.d.
5	Tf ₂ O (0.48)	2,6-lutidine (0.48)	DCE	120 °C, 16 h	1
6	Tf ₂ O (0.48)	4-methylpyridine (0.48)	DCE	120 °C, 16 h	76
7	Tf ₂ O (0.48)	pyridine (0.48)	DCE	120 °C, 16 h	60
8	Tf ₂ O (0.48)	Et ₃ N (0.48)	DCE	120 °C, 16 h	1
9	Tf ₂ O (0.48)	K ₂ CO ₃ (0.48)	DCE	120 °C, 16 h	21
10	Tf ₂ O (0.48)	none	DCE	120 °C, 16 h	n.d.
11	Tf ₂ O (0.48)	4-methylpyridine (0.48)	touene	120 °C, 16 h	92(98)
12	Tf ₂ O (0.48)	4-methylpyridine (0.48)	toluene	110 °C, 16 h	81
13	Tf ₂ O (0.48)	4-methylpyridine (0.48)	PhCF ₃	120 °C, 16 h	78
14	Tf ₂ O (0.48)	4-methylpyridine (0.48)	dioxane	120 °C, 16 h	n.d.
15	Tf ₂ O (0.48)	4-methylpyridine (0.48)	HFIP	120 °C, 16 h	1

^{*a*}Reaction conditions: **1a** (0.10 mmol), phenylphosphinic acid (0.20 mmol), activator (0.48 mmol), base (0.48 mmol), solvent (1.5 mL), N₂. ^{*b*}Determined by ³¹P NMR using triethylphosphate as an internal standard. Isolated yield is in parentheses.

	Ph	Pd(O	Ac) ₂ (10 mol%) base, additives	Ph		Ph
	`P + I───́ ∠`O	Me	solvent conditions		Me or	
P 2	a	3a		4aa		4aa'
Entry	Ligand (mol%)	Base (equiv)	Additives (equiv)	Solvent (mL)	Conditions	Yield of 4aa or 4aa' (%) ^b
1		NaOtBu (2.0)		toluene (1.5)	90 °C, 16 h	66
2		NaOtBu (2.0)		toluene (1.5)	110 °C, 16 h	32
3^c		NaOtBu (2.0)		toluene (1.5)	90 °C, 22 h	60(66)
4 ^c		NaOtBu (2.0)		toluene (1.5)	90 °C, 11 h	42
5^{c}		NaOtBu (2.0)		toluene (1.5)	80 °C, 22 h	55
6^d		NaOtBu (2.0)		toluene (1.5)	90 °C, 16 h	n.d.
7	SPhos (20)	NaOtBu (2.0)		toluene (1.5)	90 °C,16 h	21
8	XPhos (20)	NaOtBu (2.0)		toluene (1.5)	90 °C,16 h	19
9	PPh ₂ Cy (20)	NaOtBu (2.0)		toluene (1.5)	90 °C,16 h	56
10	$PPh_3(20)$	NaOtBu (2.0)		toluene (1.5)	90 °C,16 h	39
11^e		NaOtBu (2.0)		toluene (1.5)	90 °C,16 h	49
12^{f}		NaOtBu (2.0)		toluene (1.5)	110 °C, 16 h	0
13^g		NaOtBu (2.0)		toluene (1.5)	90 °C, 16 h	trace
14		KOtBu (2.0)		toluene (1.5)	90 °C, 16 h	68
15		LiOtBu (2.0)		toluene (1.5)	110 °C, 16 h	21
16		LiOtBu (2.0)		DMF (1.5)	90 °C,18 h	13
17		NaOtAmyl (2.0)		toluene (1.5)	90 °C,16 h	28
18		$Cs_2CO_3(2.0)$		toluene (1.5)	110 °C, 16 h	0
19		NaOtBu (1.5)		toluene (1.5)	90 °C, 16 h	39
20		NaOtBu (1.0)		toluene (1.5)	110 °C, 16 h	23
21		NaOtBu (1.5)	DIPEA (1.0)	toluene (1.5)	90 °C,16 h	43
22		NaO <i>t</i> Bu (1.5)	DIPEA (1.0)	toluene (1.5)	100 °C,11 h	46
23		NaOtBu (2.0)		mesitylene (1.5)	90 °C,16 h	44
24		NaOtBu (2.0)		<i>o</i> -xylene (1.5)	90 °C,16 h	61
25		NaOtBu (2.0)		benzene (1.5)	90 °C,16 h	58
26 ^c		NaOtBu (2.0)		$PhCF_{3}(1.5)$	90 °C,18 h	61
27 ^c		NaOtBu (2.0)		MeCN (1.5)	90 °C, 16 h	complex
28 ^c		NaOtBu (2.0)		octane (1.5)	90 °C, 16 h	9

Table S2. Optimization Studies for Palladium-Catalysed C–H Arylation of Benzophosphole 2a with4-Iodotoluene $3a^a$

29	NaOtBu (2.0)	LiCl (1.0)	toluene (1.5)	90 °C,16 h	67
30	NaOtBu (2.0)	TBAI (1.0)	toluene (1.5)	90 °C, 16 h	59
31	NaOtBu (2.0)	TBAB (1.0)	toluene (1.5)	90 °C, 16 h	22
32	NaOtBu (2.0)	Ag ₂ CO ₃ (0.5)	toluene (1.5)	90 °C, 12 h	42
33	NaOtBu (1.5)	Ag ₂ CO ₃ (0.5)	toluene (1.5)	90 °C,18 h	32
34	NaOtBu (2.0)	AgOAc (1.0)	toluene (1.5)	90 °C, 12 h	54
35	NaOtBu (2.0)	AgTFA (1.0)	toluene (1.5)	90 °C,16 h	46
36	NaOtBu (2.0)	Cu(OAc) ₂ (2.0)	toluene (1.5)	90 °C,16 h	43
37	NaOtBu (2.0)	CuOAc (2.0)	toluene (1.5)	90 °C,16 h	51
38	NaOtBu (2.0)		toluene (2.0)	90 °C,16 h	73(76)
39	NaOtBu (2.0)		toluene (2.0)	100 °C,8 h	70
40	NaOtBu (2.0)		toluene (3.0)	90 °C,16 h	43
41	NaOtBu (2.0)		toluene (2.0)	µw, 100 °C, 2 h	71
42	NaOtBu (2.0)		toluene (1.5)	µw, 100 °C, 1 h	78
43	NaOtBu (2.0)		toluene (1.5)	μw, 90 °C, 2 h	78
44	NaOtBu (2.0)		toluene (1.5)	μw, 80 °C, 2 h	35
45	NaOtBu (2.0)		toluene (1.5)	μw, 90 °C, 1 h	72
46	NaOtBu (2.0)		toluene (1.0)	μw, 90 °C, 1 h	83
47	NaOtBu (2.0)		toluene (0.5)	μw, 90 °C, 1 h	76
48 ^h	NaOtBu (2.0)		toluene (2.0)	μw, 90 °C, 1 h	81(79)
49 ^e	NaOtBu (2.0)		toluene (1.0)	μw, 90 °C, 1 h	74
50^{i}	NaOtBu (2.0)		toluene (1.0)	μw, 90 °C, 1 h	n.d.
51^{j}	NaOtBu (2.0)		toluene (1.0)	μw, 90 °C, 1 h	trace

^{*a*}Reaction conditions: Pd(OAc)₂ (0.010 mmol), **2a** (0.10 mmol), **3a** (0.15 mmol), solvent (1.5 mL), N₂. ^{*b*}Determined by ¹H NMR using triethylphosphate as an internal standard. Isolated yields are in parentheses. ^{*c*}With 0.20 mmol of **2a**. ^{*d*}Without Pd(OAc)₂. ^{*e*}4-Bromotoluene was used instead of **3a**. ^{*f*}PhOTf was used instead of **3a**. The targeted product was **4aa'**. ^{*g*}Ph₂IOTf was used instead of **3a**. The targeted product was **4aa'**. ^{*h*}On a 0.20 mmol scale with Pd(OAc)₂ (0.010 mmol, 5 mol %). ^{*f*}PhOTs was used instead of **3a**. The targeted product was **4aa'**. ^{*j*}4-Chlorotoluene was used instead of **3a**.

Ph Ph Ph'O	+ CI	cat. Pd (10 mo ligand (20 m NaOtBu (2.0 d toluene (1.0 r conditions	I% Pd) ol%) equiv) nL) P Ph	h ————————————————————————————————————
2a		4aa		
Entry	Cat. Pd	Ligand (20 mol%)	Conditions	Yield of 4aa (%) ^b
1	$Pd_2(dba)_3$	XPhos	μw, 100 °C, 1 h	15
2	$Pd_2(dba)_3$	XPhos	μw, 140 °C, 1 h	11
3	$Pd_2(dba)_3$		μw, 100 °C, 1 h	trace
4 ^c	$PdCl_2(Cy_3P)_2$		μw, 110 °C, 1 h	11
5	$Pd_2(dba)_3$	XPhos	110 °C, 12 h	45
6^d	$Pd_2(dba)_3$	XPhos	90 °C, 20 h	42
7	$Pd_2(dba)_3$	XPhos	70 °C, 16 h	33
8	$Pd_2(dba)_3$	$PCy_3H \cdot BF_4$	90 °C, 16 h	complex
9	$Pd_2(dba)_3$	PCy ₃	100 °C, 16 h	32
10	$Pd(OAc)_2$	XPhos	110 °C, 12 h	6
11	$Pd(OAc)_2$	SPhos	110 °C, 12 h	complex
12^c	XPhos Pd G4		110 °C, 6 h	16
13 ^c	XPhos Pd G4		110 °C, 18 h	14
14 ^{c, e}	XPhos Pd G4		110 °C, 10 h	24
15^{c}	RuPhos Pd G3		110 °C, 10 h	trace
16	$CpPd(\pi-allyl)$	XPhos	110 °C, 17 h	n.d.
17	$(cod)Pd(CH_2TMS)_2$	XPhos	110 °C, 17 h	n.d.
18	Pd ₂ (dba) ₃ ·CHCl ₃	XPhos	110 °C, 12 h	n.d.
19 ^{c,d}	$Pd(tBu_3P)_2$		100 °C, 15 h	51
$20^{c,d}$	$Pd(Cy_3P)_2$		100 °C, 15 h	62
$21^{c,d}$	$Pd(Ph_3P)_4$		100 °C, 15 h	n.d.
$22^{c,d}$	$Pd(Cy_3P)_2$		μw, 100 °C, 1 h	33
23 ^{c,d}	$Pd(Cy_3P)_2$		110 °C, 12 h	69 (69)
24 ^f	Pd(Cy ₃ P) ₂		110 °C, 12 h	40
25 ^g	$Pd(Cy_3P)_2$		110 °C, 12 h	11

Table S3. Optimization Studies for Palladium-Catalysed C–H Arylation of Benzophosphole 2a with

 4-Chlorotoluene 3a-Cl^a

^{*a*}Reaction conditions: Pd catalyst (0.010 mmol, based on Pd), **2a** (0.10 mmol), **3a-Cl** (0.15 mmol), solvent (1.0 mL), N₂. ^{*b*}Determined by ¹H NMR using triethylphosphate as an internal standard. Isolated yield is in parentheses. ^{*c*}With 5 mol % Pd loading. ^{*d*}With 0.30 mmol of **3a-Cl**. ^{*e*}Dioxane

(1.0 mL) was used instead of toluene. /With 0.30 mmol of 4-iodotoluene. ^gWith 0.30 mmol of 4-bromotoluene.

Hammett Studies

Figure S1. Hammett plot with *para*-substituted aryl bromides 3.

Cyclic Voltammetry and Differential Pulse Voltammetry

Figure S2. Cyclic voltammograms of 4ab in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S3. Cyclic voltammograms of 4af in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S4. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **4ag** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.1 V/s.

Figure S5. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **4aq** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S6. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **4as** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S7. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **4at** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.03 V/s.

Figure S8. Cyclic voltammograms of 4au in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S9. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **4av** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S10. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **5aa** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.05 V/s.

Figure S11. Cyclic voltammograms of **5ab** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.03 V/s.

Figure S12. Cyclic voltammograms (blue line) and differential pulse voltammograms (orange line) of **5ac** in MeCN containing 0.1 M n-Bu₄NPF₆ at a scan rate of 0.03 V/s.

Absorption and Fluorescence Spectra

Figure S13. UV-vis absorption (solid line) and fluorescence spectra (dashed line; excited at the absorption maxima) of (a) **4af-ag**, and **4aq**, (b) **4as-av**, and **5aa-ac** in CH_2Cl_2 ($c = 10^{-5}$ M).

Theoretical Calculations

Figure S14. Kohn-Sham molecular orbitals of **4at** calculated at the PBE0/6-31 +G(d) level of theory, implemented in the Gaussian 16 program.

Figure S15. Kohn-Sham molecular orbitals of **4av** calculated at the PBE0/6-31 +G(d) level of theory, implemented in the Gaussian 16 program.

X-Ray Analysis

The single crystals of **2b** suitable for X-ray analysis were grown from CHCl₃/hexane. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S16. ORTEP drawing of 2b (CCDC 2174057, 50% thermal probability).

Table S4. Crystal Data for 2b

monoclinic
14
P 1 21/c 1
-P 2ybc
12.5743(3)
11.3680(2)
11.7601(2)
90
93.369(2)
90
1678.14(6)
4
0.0435
0.0403
0.1064
0.1094
1.064

The single crystals of **4av** suitable for X-ray analysis were grown from CHCl₃/EtOAc/hexane. The structure was refined by full-matrix least-squares method using SHELXL-2017/1.

Figure S17. ORTEP drawing of 4av (CCDC 2166424, 50% thermal probability).

Table S5. Crystal Data for 4av

Crystal system	triclinic
Space group IT number	2
Space group name H-M alt	P -1
Space group name Hall	-P 1
Cell length a	10.0941(3)
Cell length b	10.4249(3)
Cell length c	15.3161(3)
Cell angle alpha	73.955(2)
Cell angle beta	87.469(2)
Cell angle gamma	73.633(3)
Cell volume	1485.17(7)
Cell formula units Z	2
Refine ls R factor all	0.0877
Refine ls R factor gt	0.0633
Refine ls wR factor gt	0.1680
Refine ls wR factor ref	0.1847
Refine ls goodness of fit ref	1.113

Characterization Data for Substrates and Products

The characterization data for **2a** is consistent with that reported in our previous work.^{S3} ^{1}H , $^{13}C{^{1}H}$, $^{19}F{^{1}H}$, and $^{31}P{^{1}H}$ NMR spectra for all compounds are attached in the last part.

6-Methyl-1-phenyl-3-(*p*-tolyl)phosphindole 1-oxide (2b) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 28 mg (85%, 0.10 mmol scale); pale yellow solid; m.p. 157.6 – 158.7 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.82-7.76 (m, 2H), 7.55-7.42 (m, 6H), 7.37 (dd, *J* = 3.0, 7.8 Hz, 1H), 7.30 (d, *J* = 7.9 Hz, 2H), 7.27 (d, *J* = 10.4 Hz, 1H), 6.26 (d, *J* = 24.2 Hz, 1H), 2.43 (s, 3H), 2.36 (s, 3H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 158.3 (d, ²*J*_{CP} = 15.4 Hz, 1C), 140.0 (d, ³*J*_{CP} = 10.5 Hz, 1C), 139.8 (1C), 139.7 (d, ²*J*_{CP} = 27.0 Hz, 1C), 134.4 (d, ¹*J*_{CP} = 104.1 Hz, 1C), 133.0 (1C), 132.5 (d, ³*J*_{CP} = 16.4 Hz, 1C), 132.3 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 131.1 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.2 (d, ²*J*_{CP} = 9.8 Hz, 1C), 130.1 (d, ¹*J*_{CP} = 101.4 Hz, 1C), 129.6 (2C), 128.9 (d, ³*J*_{CP} = 12.4 Hz, 2C), 127.9 (2C), 124.0 (d, ³*J*_{CP} = 11.9 Hz, 1C), 121.3 (d, ¹*J*_{CP} = 99.9 Hz, 1C), 21.6 (1C), 21.4 (1C); ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 36.92; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₂H₂₀OP: 331.1246, found: 331.1224.

6-(*tert*-**Butyl**)-3-(4-(*tert*-**butyl**)**phenyl**)-1-**phenylphosphindole** 1-oxide (2c) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 29 mg (70%, 0.10 mmol scale); pale yellow solid; m.p. 180.4 – 181.6 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.82-7.72 (m, 3H), 7.52-7.49 (m, 6H), 7.47-7.42 (m, 3H), 6.29 (d, J = 24.2 Hz, 1H), 1.38 (s, 9H), 1.30 (s, 9H); ¹³C {¹H} NMR (CDCl₃, 100 MHz); δ 157.9 (d, ²*J*_{CP} = 15.3 Hz, 1C), 153.3 (d, ³*J*_{CP} = 9.7 Hz, 1C), 153.0 (1C), 139.7 (d, ²*J*_{CP} = 27.6 Hz, 1C), 134.1 (d, ¹*J*_{CP} = 104.3 Hz, 1C), 132.4 (d, ³*J*_{CP} = 16.1 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.6 Hz, 1C), 131.2 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.2 (d, ¹*J*_{CP} = 101.9 Hz, 1C), 129.5 (1C), 128.9 (d, ³*J*_{CP} = 12.3 Hz, 2C), 127.8 (2C), 126.6 (d, ²*J*_{CP} = 10.1 Hz, 1C), 125.8 (2C), 124.0 (d, ³*J*_{CP} = 11.9 Hz, 1C), 121.9 (d, ¹*J*_{CP} = 100.7 Hz, 1C), 35.2 (1C), 35.0 (1C), 31.4-31.3 (overlapped, 6C); ³¹P {¹H} NMR (CDCl₃, 162 MHz): δ 37.31; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₃₂OP: 415.2185, found: 415.2205.

6-Methoxy-3-(4-methoxyphenyl)-1-phenylphosphindole 1-oxide (2d) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 14 mg (40%, 0.10 mmol scale); pale yellow solid; m.p. 61.6 – 62.7 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.81-7.76 (m, 2H), 7.54-7.51 (m, 3H), 7.47-7.41 (m, 3H), 7.22 (dd, J = 2.5, 11.0 Hz, 1H), 7.02-7.00 (m, 2H), 6.95 (dd, J = 2.5, 8.5 Hz, 1H), 6.16 (d, J = 24.5 Hz, 1H), 3.88 (s, 3H), 3.81 (s, 3H); ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 161.1 (d, ³ $J_{CP} = 13.6$ Hz, 1C), 160.8 (1C), 158.0 (d, ² $J_{CP} = 15.2$ Hz, 1C), 136.5 (d, ¹ $J_{CP} = 103.0$ Hz, 1C), 134.7 (d, ² $J_{CP} = 26.9$ Hz, 1C), 132.3 (d, ⁴ $J_{CP} = 2.8$ Hz, 1C), 131.1 (d, ² $J_{CP} = 10.8$ Hz, 2C), 130.1 (d, ¹ $J_{CP} = 102.2$ Hz, 1C), 129.4 (2C), 129.0 (d, ³ $J_{CP} = 12.4$ Hz, 2C), 127.8 (d, ³ $J_{CP} = 17.0$ Hz, 1C), 125.4 (d, ³ $J_{CP} = 13.2$ Hz, 1C), 119.2 (d, ¹ $J_{CP} = 101.6$ Hz, 1C), 117.4 (d, ⁴ $J_{CP} = 1.6$ Hz, 1C), 115.2 (d, ² $J_{CP} = 10.9$ Hz, 1C), 114.3 (2C), 55.8 (1C), 55.6 (1C); ³¹P {¹H} NMR (CDCl₃, 162 MHz): δ 36.59; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₂H₂₀O₃P: 363.1145, found:363.1115.

1-Phenyl-6-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)phosphindole 1-oxide (2e): colorless solid (0.1 mmol scale, 17.9 mg, 41% yield; 1.0 mmol scale, 113.9 mg, 26% yield); m.p. 142.8-143.7 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (dd, J = 9.5, 0.5 Hz, 1H), 7.84-7.78 (m, 5H), 7.69 (d, J = 8.0 Hz, 2H), 7.64-7.59 (m, 1H), 7.56-7.49 (m, 3H), 6.61 (d, J = 23.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 155.5 (d, ² $J_{CP} = 14.3$ Hz, 1C), 142.1, 144.6 (d, ² $J_{CP} = 27.1$ Hz, 1C), 137.8 (d, ³ $J_{CP} = 16.0$ Hz, 1C), 135.6, 134.5, 133.0 (d, ⁴ $J_{CP} = 2.8$ Hz, 1C), 132.5, 132.4, 132.2, 132.1, 131.8, 131.7, 131.5, 131.4, 130.9 (d, ² $J_{CP} = 11.0$ Hz, 2C), 130.19, 130.18, 130.16, 129.2 (d, ³ $J_{CP} = 12.6$ Hz, 2C), 128.2, 128.1, 127.8, 127.5, 127.1, 126.5, 126.34, 126.31, 126.27, 126.23, 126.19, 126.17, 126.13, 126.10, 126.0, 125.1, 124.8, 124.79, 123.9 (d, ³ $J_{CP} = 11.0$ Hz, 1C), 122.3, 122.09, 122.07, 119.7, 119.4 (All observed signals are just shown because of complexity associated with C–F and C–P couplings.); ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ -62.7, -62.8. ³¹P{¹H}

NMR (CDCl₃, 162 MHz) δ 35.8; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₂H₁₄F₆OP: 439.0681, Found: 439.0667.

6-Fluoro-3-(4-fluorophenyl)-1-phenylphosphindole 1-oxide (2f) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 26 mg (78%, 0.10 mmol scale); pale yellow solid; m.p. 51.6 – 53.0 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.80-7.74 (m, 2H), 7.59-7.50 (m, 3H), 7.49-7.44 (m, 2H), 7.42-7.35 (m, 2H), 7.23-7.14 (m, 3H), 6.33 (d, J = 24.1 Hz, 1H); ¹³C{¹H} NMR $(CDCl_{3}, 100 \text{ MHz}): \delta 163.9 \text{ (dd, } {}^{3}J_{CP}/{}^{1}J_{CF} = 15.2, 252.3 \text{ Hz}, 1C), 163.7 \text{ (d, } {}^{1}J_{CF} = 248.7 \text{ Hz}, 1C), 156.6$ (d, ${}^{2}J_{CP} = 14.5$ Hz, 1C), 137.8 (dd, ${}^{4}J_{CF}/{}^{2}J_{CP} = 3.0$, 26.4 Hz, 1C), 137.1 (dd, ${}^{3}J_{CF}/{}^{1}J_{CP} = 7.0$, 103.1 Hz, 1C), 132.8 (d, ${}^{4}J_{CP}$ = 2.8 Hz, 1C), 131.0 (d, ${}^{2}J_{CP}$ = 10.9 Hz, 2C), 130.9 (dd, ${}^{4}J_{CF}/{}^{3}J_{CP}$ = 3.5, 16.8 Hz, 1C), 129.8 (d, ${}^{3}J_{CF} = 8.6$ Hz, 2C), 129.2 (d, ${}^{3}J_{CP} = 12.5$ Hz, 2C), 128.9 (d, ${}^{1}J_{CP} = 103.6$ Hz, 1C), 125.6 (dd, ${}^{3}J_{CF}/{}^{3}J_{CP} = 7.9$, 13.1 Hz, 1C), 122.8 (dd, ${}^{5}J_{CF}/{}^{1}J_{CP} = 3.7$, 100.0 Hz, 1C), 119.2 (dd, ${}^{4}J_{CP}/{}^{2}J_{CF} =$ 1.2, 22.5 Hz, 1C), 117.3 (dd, ${}^{2}J_{CP}/{}^{2}J_{CF} = 10.7$, 23.7 Hz, 1C), 116.2 (d, ${}^{2}J_{CF} = 21.7$ Hz, 2C); ${}^{19}F{}^{1}H{}$ NMR (376 MHz, CDCl₃) δ -110.3 (d, J = 5.4 Hz), -110.5; ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 35.44 (d, J = 4.6 Hz); HRMS (APCI) m/z (M+H)⁺ calcd for C₂₀H₁₄F₂OP: 339.0745, found: 339.0763.

6-Chloro-3-(4-chlorophenyl)-1-phenylphosphindole 1-oxide (**2g**) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 21 mg (55%, 0.10 mmol scale); pale yellow solid; m.p. 75.6 – 76.7 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.79-7.74 (m, 2H), 7.63 (dd, J = 1.7, 9.9 Hz, 1H), 7.60-7.55 (m, 1H), 7.50-7.45 (m, 7H), 7.34 (dd, J = 3.2, 8.2 Hz, 1H), 6.37 (d, J = 23.9 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 156.4 (d, ² $J_{CP} = 14.6$ Hz, 1C), 140.1 (d, ² $J_{CP} = 26.7$ Hz, 1C), 136.5 (d, ³ $J_{CP} = 13.9$ Hz, 1C), 136.3 (d, ¹ $J_{CP} = 102.3$ Hz, 1C), 136.1 (1C), 133.1 (d, ³ $J_{CP} = 16.5$ Hz, 1C), 132.9 (d, ⁴ $J_{CP} = 2.8$ Hz, 1C), 132.7 (d, ⁴ $J_{CP} = 1.4$ Hz, 1C), 131.0 (d, ² $J_{CP} = 10.8$ Hz, 2C), 129.8 (d, ² $J_{CP} = 10.5$ Hz, 1C), 129.4 (2C), 129.23 (d, ³ $J_{CP} = 12.5$ Hz, 2C), 129.23 (2C), 128.6 (d, ¹ $J_{CP} = 103.9$ Hz, 1C), 125.0 (d, ³ $J_{CP} = 12.2$ Hz, 1C), 123.6 (d, ¹ $J_{CP} = 98.9$ Hz, 1C); ³¹P{¹H} NMR (CDCl₃,

162 MHz): δ 35.84; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₀H₁₄Cl₂OP: 371.0154, found: 371.0142.

3-(Naphthalen-2-yl)-1-phenylbenzo[g]phosphindole 1-oxide (2h) : Purified bv flash chromatography with hexane/ethyl acetate (1/2, v/v): 25 mg (62%, 0.10 mmol scale); pale yellow solid; m.p. 125.7 - 126.7 °C; ¹H NMR (CDCl₃, 400 MHz): δ 8.11-8.09 (m, 2H), 8.05-7.99 (dd, J =8.5, 14.2 Hz, 2H), 7.95-7.85 (m, 5H), 7.69 (dd, J = 2.0, 8.5 Hz, 2H), 7.60-7.57 (m, 2H), 7.53-7.43 (m, 5H), 6.55 (d, J = 25.3 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 157.8 (d, ² $J_{CP} = 16.6$ Hz, 1C), 141.6 (d, ${}^{2}J_{CP} = 26.1 \text{ Hz}$, 1C), 133.9 (d, ${}^{3}J_{CP} = 8.6 \text{ Hz}$, 1C), 133.8 (1C), 133.7 (1C), 133.3 (1C), 132.7 (d, ${}^{3}J_{CP} = 16.7$ Hz, 1C), 132.4 (d, ${}^{4}J_{CP} = 2.8$ Hz, 1C), 132.2 (d, ${}^{2}J_{CP} = 9.2$ Hz, 1C), 131.1 (d, ${}^{2}J_{CP} = 16.7$ Hz, 1C), 131 10.9 Hz, 2C), 129.77 (d, ${}^{1}J_{CP} = 103.2$ Hz, 1C), 129.76 (d, ${}^{1}J_{CP} = 101.0$ Hz, 1C), 129.2 (d, ${}^{3}J_{CP} = 12.4$ Hz, 2C), 128.84 (d, ${}^{4}J_{CP}$ = 2.0 Hz, 1C), 128.79 (1C), 128.6 (1C), 128.5 (1C), 128.0 (1C), 127.5 (1C), 127.2 (2C), 127.0 (1C), 126.0 (d, ${}^{3}J_{CP} = 5.0$ Hz, 1C), 125.6 (1C), 124.0 (d, ${}^{1}J_{CP} = 99.1$ Hz, 1C), 121.5 (d, ${}^{3}J_{CP} = 12.8 \text{ Hz}, 1\text{C}$); ${}^{31}P{}^{1}H$ NMR (CDCl₃, 162 MHz): δ 38.09; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₈H₂₀OP: 403.1246, found: 403.1250.

6,6-Dimethyl-2-phenyl-6*H***-naphtho[1,2,3-***cd***]phosphindole 2-oxide (2i): pale yellow solid (0.1 mmol scale, 23.9 mg, 70% yield; 3.04 mmol scale, 488.8 mg, 47% yield); m.p. 194.8-195.8 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) \delta 7.91 (dd,** *J* **= 7.9, 1.3 Hz, 1H), 7.80-7.75 (m, 2H), 7.69-7.66 (m, 2H), 7.59-7.34 (m, 7H), 6.60 (d,** *J* **= 23.2 Hz, 1H), 1.75 (s, 3H), 1.70 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) \delta 148.2 (d, ²***J***_{CP} = 17.0 Hz, 1C), 146.3 (1C), 141.7 (d, ³***J***_{CP} = 11.3 Hz, 1C), 135.6 (d, ²***J***_{CP} = 29.5 Hz, 1C), 132.4 (d, ¹***J***_{CP} = 105.8 Hz, 1C), 132.1 (d, ⁴***J***_{CP} = 2.5 Hz, 1C), 131.4 (1C), 131.0 (d, ²***J***_{CP} = 10.8 Hz, 2C), 130.6 (d, ¹***J***_{CP} = 102.9 Hz, 1C), 130.4 (1C), 130.3 (d, ⁴***J***_{CP} = 1.9 Hz, 1C), 128.7 (d, ³***J***_{CP} = 12.2 Hz, 1C), 127.8 (1C), 127.1 (d, ²***J***_{CP} = 9.6 Hz, 1C), 126.8 (1C), 126.6 (d, ¹***J***_{CP} = 96.8 Hz, 1C), 126.0 (1C), 112.0 (d, ³***J***_{CP} = 9.7 Hz, 1C), 110.9 (d, ³***J***_{CP} = 9.1 Hz, 1C), 38.6 (d, ⁵***J***_{CP} = 1.0 Hz, 1C), 33.3 (d, ⁴***J***_{CP} = 3.4 Hz, 1C), 32.5 (d, ⁵***J***_{CP} = 1.9 Hz, 1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) \delta 40.6; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₃H₂₀OP:**

343.1247, Found: 343.1234.

6-Phenyl-10,11-dihydrobenzo[6,7]cyclohepta[1,2,3-*cd***]phosphindole 6-oxide (2j):** pale yellow solid (6.0 mmol scale, 905.6 mg, 46% yield); m.p. 157.8-158.8 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 7.78 (dd, *J* = 12.6, 7.4 Hz, 2H), 7.68 (bs, 1H), 7.54-7.50 (m, 2H), 7.43 (td, *J* = 7.7, 2.4 Hz, 2H), 7.37 (t, *J* = 7.4 Hz, 1H), 7.30-7.23 (m, 4H), 6.57 (d, *J* = 21.6 Hz, 1H), 3.12 (bs, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 158.4 (d, ²*J*_{CP} = 11.8 Hz, 1C), 142.1 (1C), 140.5 (d, ³*J*_{CP} = 10.6 Hz, 1C), 139.2 (d, ²*J*_{CP} = 26.9 Hz, 1C), 135.0 (d, ⁴*J*_{CP} = 1.8 Hz, 1C), 134.9 (d, ³*J*_{CP} = 16.1 Hz, 1C), 132.1 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.1 (d, ²*J*_{CP} = 10.7 Hz, 2C), 130.6 (1C), 129.9 (1C), 129.8 (d, ³*J*_{CP} = 12.5 Hz, 2C), 127.2 (d, ²*J*_{CP} = 9.8 Hz, 1C), 126.9 (1C), 122.9 (d, ¹*J*_{CP} = 98.2 Hz, 1C), 35.4 (1C), 34.9 (d, ⁴*J*_{CP} = 2.1 Hz, 1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 34.07; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₂H₁₈OP: 329.1090, Found: 329.1073.

3-Phenyl-1-(4-(trifluoromethyl)phenyl)phosphindole 1-oxide (2k) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 37 mg (99%, 0.10 mmol scale); pale yellow solid; m.p. 43.2 – 44.3 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.93-7.88 (m, 2H), 7.71-7.66 (m, 3H), 7.57-7.49 (m, 7H), 7.46-7.43 (m, 1H), 6.36 (d, *J* = 24.3 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 159.1 (d, ²*J*_{CP} = 15.8 Hz, 1C), 142.1 (d, ²*J*_{CP} = 27.7 Hz, 1C), 134.8 (d, ³*J*_{CP} = 16.6 Hz, 1C), 134.6 (d, ¹*J*_{CP} = 99.5 Hz, 1C), 134.2 (qd, ⁴*J*_{CP}/²*J*_{CF} = 3.0, 32.9 Hz, 1C), 133.3 (d, ¹*J*_{CP} = 105.6 Hz, 1C), 133.2 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 131.7 (d, ²*J*_{CP} = 11.1 Hz, 2C), 129.98 (1C), 129.97 (d, ²*J*_{CP} = 10.6 Hz, 1C), 129.5 (d, ³*J*_{CP} = 9.6 Hz, 1C), 129.0 (2C), 127.9 (2C), 125.8 (qd, ³*J*_{CF}/³*J*_{CP} = 3.7, 12.4 Hz, 2C), 124.5 (d, ³*J*_{CP} = 11.3 Hz, 1C), 123.7 (q, ¹*J*_{CF} = 273.2 Hz, 1C), 122.1 (d, ¹*J*_{CP} = 100.0 Hz, 1C); ¹⁹F{¹H} NMR (376 MHz, CDCl₃) δ -63.2; ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 35.38; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₁H₁₅F₃OP: 371.0807, found: 371.0783.

1-(4-Methoxyphenyl)-3-phenylphosphindole 1-oxide (2l) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 18 mg (55%, 0.10 mmol scale); pale yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 7.74-7.65 (m, 3H), 7.55-7.52 (m, 2H), 7.51-7.39 (m, 6H), 6.97-6.94 (m, 2H), 6.34 (d, *J* = 23.9 Hz, 1H), 3.83 (s, 3H); ¹³C {¹H} NMR (CDCl₃, 100 MHz): δ 163.1 (d, ⁴*J*_{CP} = 2.9 Hz, 1C), 157.7 (d, ²*J*_{CP} = 15.3 Hz, 1C), 142.1 (d, ²*J*_{CP} = 27.0 Hz, 1C), 135.3 (d, ³*J*_{CP} = 16.1 Hz, 1C), 134.4 (d, ¹*J*_{CP} = 104.6 Hz, 1C), 133.0 (d, ²*J*_{CP} = 12.0 Hz, 2C), 132.60 (d, ⁴*J*_{CP} = 1.7 Hz, 1C), 129.63 (1C), 129.5 (d, ²*J*_{CP} = 9.9 Hz, 1C), 129.3 (d, ³*J*_{CP} = 9.7 Hz, 1C), 128.9 (2C), 128.0 (2C), 124.1 (d, ³*J*_{CP} = 11.3 Hz, 1C), 123.5 (d, ¹*J*_{CP} = 99.3 Hz, 1C), 120.2 (d, ¹*J*_{CP} = 108.7 Hz, 1C), 114.7 (d, ³*J*_{CP} = 13.6 Hz, 2C), 55.5 (1C); ³¹P {¹H} NMR (CDCl₃, 162 MHz): δ 37.19; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₁H₁₈O₂P: 333.1039, found: 333.1022.

1-Phenyl-3-(thiophen-2-yl)phosphindole 1-oxide + **4,6-Diphenylphospholo**[**3,2-***b***]thiophene 4-oxide (2m** + **2m', 5:3 mixture)** : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 22 mg (70%, 0.10 mmol scale); pale yellow oil; ¹H NMR (CDCl₃, 400 MHz): δ 7.81-7.63 (m, 5.2H), 7.57-7.52 (1.6H), 7.49-7.40 (m, 4.2H), 7.35 (dd, *J* = 1.3, 5.0 Hz, 1H), 6.40 (d, *J* = 23.6 Hz, 0.6H), 6.29 (dd, *J* = 1.0, 26.2 Hz, 0.4H); ¹³C{¹H} NMR (CDCl₃, 100 MHz); δ 152.6, 142.2, 135.9, 135.7, 134.3, 133.3, 132.9, 132.5, 131.2, 131.1, 130.2, 129.9, 129.8, 129.6, 129.5, 129.2, 129.1, 129.02, 128.96, 127.6, 127.5, 126.8, 125.4, 124.1, 124.0, 122.2, 121.2 (All observed signals are just shown because of complexity associated with C–P couplings and structural isomers.); ³¹P{¹H} NMR (CDCl₃, 162 MHz) for mixture: δ 37.49, 28.99; HRMS (APCI) m/z (M+H)⁺ calcd for C₁₈H₁₄OPS:309.0497, found: 309.0475.

3-(Benzo[b]thiophen-3-yl)-1-phenylphosphindole 1-oxide (2n) : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 10 mg (28%, 0.10 mmol scale); pale yellow solid; m.p. 67.9 – 69.0 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.97-7.94 (m, 1H), 7.87-7.81 (m, 3H), 7.75-7.71 (m, 1H), 7.69 (s, 1H), 7.58-7.54 (m, 1H), 7.75-7.39 (m, 7H), 6.56 (d, *J* = 24.1 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): δ 151.7 (d, ²*J*_{CP} = 15.9 Hz, 1C), 142.4 (d, ²*J*_{CP} = 27.0 Hz, 1C), 140.5 (1C), 137.7 (1C), 133.6 (d, ¹*J*_{CP} = 104.4 Hz, 1C), 132.9 (d, ⁴*J*_{CP} = 1.6 Hz, 1C), 132.5 (d, ⁴*J*_{CP} = 2.9 Hz, 1C), 131.1 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.8 (d, ³*J*_{CP} = 17.3 Hz, 1C), 130.0 (d, ²*J*_{CP} = 10.6 Hz, 1C), 129.6 (d, ¹*J*_{CP} = 102.7 Hz, 1C), 129.4 (d, ³*J*_{CP} = 96.6 Hz, 1C), 129.1 (d, ³*J*_{CP} = 11.0 Hz, 1C), 123.3 (1C), 123.1 (1C); ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 37.42; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₂H₁₆OPS: 359.0654, found: 359.0631.

1,3-Diphenylbenzo[*b*]**phospholo**[**3,2-***d***]thiophene 1-oxide (2n')** : Purified by flash chromatography with hexane/ethyl acetate (1/2, v/v): 5 mg (14%, 0.10 mmol scale); pale yellow solid; m.p. 115.3 – 116.5 °C; ¹H NMR (CDCl₃, 400 MHz): δ 7.91-7.89 (m, 1H), 7.85-7.79 (m, 2H), 7.59-7.52 (m, 6H), 7.49-7.44 (m, 2H), 7.40-7.36 (m, 2H), 7.26 (dd, *J* = 1.1, 15.3 Hz, 1H), 6.24 (d, *J* = 26.8 Hz, 1H); ¹³C{¹H} NMR (CDCl₃, 100 MHz): The clear spectra was not obtained because of a small amount of the sample.; ³¹P{¹H} NMR (CDCl₃, 162 MHz): δ 29.76; HRMS (APCI) m/z (M+H)⁺ calcd for C₂₂H₁₆OPS: 359.0654, found: 359.0658.

1,3-Diphenyl-2-(*p***-tolyl)phosphindole 1-oxide (4aa):** pale yellow solid (0.2 mmol scale, 61.9 mg, 79% yield; 2.0 mmol scale, 510.0 mg, 65% yield); m.p. 159.7-161.0 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.80-7.75 (m, 2H), 7.71-7.67 (m, 1H), 7.48-7.32

(m, 10H), 7.18 (dd, J = 7.6, 2.9 Hz, 1H), 7.14 (d, J = 7.6 Hz, 2H), 6.89 (d, J = 8.2 Hz, 2H), 2.18 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 149.3 (d, ² $J_{CP} = 21.8$ Hz, 1C), 143.9 (d, ² $J_{CP} = 27.2$ Hz, 1C), 137.8 (1C), 134.5 (d, ³ $J_{CP} = 15.4$ Hz, 1C), 134.1 (d, ¹ $J_{CP} = 95.7$ Hz, 1C), 132.9 (d, ⁴ $J_{CP} = 1.8$ Hz, 1C), 132.1 (d, ⁴ $J_{CP} = 2.5$ Hz, 1C), 132.1 (d, ¹ $J_{CP} = 105.6$ Hz, 1C), 131.0 (d, ² $J_{CP} = 10.7$ Hz, 2C), 130.1 (d, ¹ $J_{CP} = 99.6$ Hz, 1C), 129.7 (d, ² $J_{CP} = 10.1$ Hz, 1C), 129.1 (4C), 129.0 (2C), 128.9 (2C), 128.89 (2C), 128.85 (d, ³ $J_{CP} = 12.2$ Hz, 2C), 128.6 (1C), 123.9 (d, ² $J_{CP} = 10.9$ Hz, 1C), 21.2 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.2; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₂₂OP: 393.1408, Found: 393.1407.

2-(4-(Diphenylamino)phenyl)-1,3-diphenylphosphindole 1-oxide (4ab): yellow solid (0.2 mmol scale, 94.8 mg, 87% yield; 1.0 mmol scale, 430.7 mg, 79% yield); TLC R_f 0.20 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.85-7.80 (m, 2H), 7.68-7.64 (m, 1H), 7.52-7.29 (m, 10H), 7.21-7.17 (m, 4H), 7.10 (dd, *J* = 7.5, 2.8 Hz, 1H), 7.07-6.97 (m, 8H), 6.72 (d, *J* = 8.8 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 147.8 (d, ²*J*_{CP} = 21.8 Hz, 1C), 147.4 (1C), 147.1 (2C), 144.3 (d, ²*J*_{CP} = 27.2 Hz, 1C), 135.0 (d, ³*J*_{CP} = 15.4 Hz, 1C), 133.5 (d, ¹*J*_{CP} = 95.7 Hz, 1C), 132.9 (d, ⁴*J*_{CP} = 1.8 Hz, 1C), 132.1 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.8 (d, ¹*J*_{CP} = 106.1 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.5 Hz, 2C), 130.7 (d, ¹*J*_{CP} = 98.6 Hz, 1C), 129.9 (d, ³*J*_{CP} = 6.4 Hz, 2C), 129.3 (4C), 129.1 (2C), 128.95 (2C), 128.93 (d, ³*J*_{CP} = 12.0 Hz, 2C), 128.91 (1C), 128.8 (d, ³*J*_{CP} = 10.5 Hz, 1C), 128.6 (1C), 125.7 (d, ²*J*_{CP} = 10.3 Hz, 1C), 125.1 (4C), 123.6 (d, ²*J*_{CP} = 10.9 Hz, 1C), 123.4 (2C), 121.6 (2C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.3; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₈H₂₉NOP: 546.1982, Found: 546.2011.

2-(4-Methoxyphenyl)-1,3-diphenylphosphindole 1-oxide (4ac): pale yellow solid (0.2 mmol, 60.6 mg, 74% yield); TLC R_f 0.24 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.80-7.75 (m, 2H), 7.70-7.66 (m, 1H), 7.48-7.30 (m, 10H), 7.21-7.19 (m, 2H), 7.15 (dd, *J* = 7.6, 2.9 Hz, 1H), 6.62 (d, *J* = 8.8 Hz, 2H), 3.67 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 159.2 (1C), 148.3 (d, ²*J*_{CP} = 21.9 Hz, 1C), 144.1 (d, ²*J*_{CP} = 27.2 Hz, 1C), 134.7 (d, ³*J*_{CP} = 15.4 Hz, 1C), 133.6 (d, ¹*J*_{CP} = 96.0 Hz, 1C), 132.9 (d, ⁴*J*_{CP} = 1.5 Hz, 1C), 132.1 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.8 (d, ¹*J*_{CP} = 105.6 Hz, 1C), 130.9 (d, ²*J*_{CP} = 10.5 Hz, 2C), 130.4 (d, ³*J*_{CP} = 6.0 Hz, 2C), 130.3 (d, ¹*J*_{CP} = 99.2 Hz, 1C), 129.09 (2C), 129.06 (2C), 128.9 (d, ³*J*_{CP} = 9.8 Hz, 1C), 128.8 (d, ³*J*_{CP} = 12.0 Hz, 2C), 128.7 (d, ³*J*_{CP} = 10.4 Hz, 1C), 128.6 (1C),

125.1 (d, ${}^{2}J_{CP} = 10.3$ Hz, 1C), 123.7 (d, ${}^{2}J_{CP} = 10.9$ Hz, 1C), 113.8 (2C), 55.1 (1C). ${}^{31}P{}^{1}H$ NMR (CDCl₃, 162 MHz) δ 39.2; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₂₂O₂P: 409.1352, Found: 409.1367.

2-(4-Chlorophenyl)-1,3-diphenylphosphindole 1-oxide (4ad): colorless solid (0.2 mmol, 66.7 mg, 81% yield); m.p. 104.6-105.9 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.77-7.69 (m, 3H), 7.51-7.36 (m, 8H), 7.32-7.30 (m, 2H), 7.21 (dd, *J* = 7.5, 2.9 Hz, 1H), 7.19-7.16 (m, 2H), 7.07-7.05 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 150.5 (d, ²*J*_{CP} = 21.1 Hz, 1C), 143.6 (d, ²*J*_{CP} = 26.7 Hz, 1C), 133.9 (d, ³*J*_{CP} = 14.7 Hz, 1C), 133.8 (1C), 133.1 (d, ¹*J*_{CP} = 95.7 Hz, 1C), 133.0 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 132.4 (1C), 132.3 (d, ⁴*J*_{CP} = 2.9 Hz, 1C), 131.9 (d, ¹*J*_{CP} = 105.3 Hz, 1C), 131.3 (1C), 130.9 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.6 (d, ¹*J*_{CP} = 112.6 Hz, 1C), 130.3 (d, ³*J*_{CP} = 5.7 Hz, 2C), 129.3 (d, ²*J*_{CP} = 10.7 Hz, 1C), 129.15 (d, ³*J*_{CP} = 9.7 Hz, 1C), 129.14 (2C), 128.96 (d, ³*J*_{CP} = 12.2 Hz, 2C), 128.93 (2C), 128.6 (2C), 124.2 (d, ²*J*_{CP} = 10.7 Hz, 1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.0; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₆H₁₉ClOP: 413.0857, Found: 413.0878.

1,3-Diphenyl-2-(4-(trifluoromethyl)phenyl)phosphindole 1-oxide (4ae): colorless solid (0.2 mmol, 45.5 mg, 51% yield); m.p. 94.3-95.6 °C (from hexane); TLC R_{*f*} 0.23 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.78-7.71 (m, 3H), 7.53-7.39 (m, 8H), 7.34-7.31 (m, 6H), 7.25 (dd, J = 6.5, 1.8 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 151.8 (d, ² $J_{CP} = 20.9$ Hz, 1C), 143.3 (d, ² $J_{CP} = 26.4$ Hz, 1C), 136.5 (d, ² $J_{CP} = 10.2$ Hz, 1C), 133.6 (d, ³ $J_{CP} = 14.5$ Hz, 1C), 133.1 (d, ⁴ $J_{CP} = 1.8$ Hz, 1C), 133.0 (d, ¹ $J_{CP} = 95.8$ Hz, 1C), 132.5 (d, ⁴ $J_{CP} = 2.9$ Hz, 1C), 132.0 (d, ¹ $J_{CP} = 106.3$ Hz, 1C), 130.9 (d, ² $J_{CP} = 10.7$ Hz, 2C), 129.6 (d, ³ $J_{CP} = 10.8$ Hz, 1C), 129.5 (q, ² $J_{CF} = 32.2$ Hz, 1C), 129.4 (1C), 129.3 (d, ¹ $J_{CP} = 99.9$ Hz, 1C), 129.2 (2C), 129.18 (2C), 129.10 (2C), 128.93 (d, ³ $J_{CP} = 12.4$ Hz, 2C), 128.90 (1C), 125.2 (q, ³ $J_{CF} = 3.8$ Hz, 2C), 124.5 (d, ² $J_{CP} = 10.9$ Hz, 1C), 124.0 (q, ¹ $J_{CF} = 272.1$ Hz, 1C). ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ -62.8. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.0; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₁₉F₃OP: 447.1121, Found: 447.1131.

2-(4-(Di([1,1'-biphenyl]-4-yl)amino)phenyl)-1,3-diphenylphosphindole 1-oxide (4af): orange solid (0.2 mmol, 92.1 mg, 66% yield); m.p. 151.7-153.0 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.87-7.82 (m, 2H), 7.66 (dd, J = 9.2, 7.3 Hz, 1H), 7.54-7.52 (m, 4H), 7.50-7.37 (m, 17H), 7.33-7.27 (m, 3H), 7.13-7.08 (m, 7H), 6.83 (d, J = 8.8 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 148.1 (d, ²*J*_{CP} = 22.0 Hz, 1C), 147.4 (1C), 146.2 (2C), 144.3 (d, ²*J*_{CP} = 27.1 Hz, 1C), 140.5 (2C), 136.2 (2C), 135.0 (d, ³*J*_{CP} = 15.2 Hz, 1C), 133.4 (d, ¹*J*_{CP} = 95.7 Hz, 1C), 133.0 (d, ⁴*J*_{CP} = 1.6 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.5 Hz, 1C), 131.9 (d, ¹*J*_{CP} = 106.2 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.7 Hz, 2C), 128.97 (2C), 128.92 (d, ³*J*_{CP} = 10.3 Hz, 1C), 128.79 (4C), 128.78 (1C), 128.73 (d, ³*J*_{CP} = 5.5 Hz, 1C), 127.9 (4C), 127.0 (2C), 126.8 (4C), 126.3 (d, ²*J*_{CP} = 10.0 Hz, 1C), 125.1 (4C), 123.7 (d, ²*J*_{CP} = 10.7 Hz, 1C), 122.2 (2C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.3; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₅₀H₃₇NOP: 698.2608, Found: 698.2635.

2-(4-(9*H***-Carbazol-9-yl)phenyl)-1,3-diphenylphosphindole 1-oxide (4ag):** yellow solid (0.2 mmol, 76.0 mg, 70% yield); m.p. 135.7-137.0 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.07 (d, *J* = 7.7 Hz, 2H), 7.90-7.84 (m, 2H), 7.74 (dd, *J* = 9.4, 7.2 Hz, 1H), 7.56-7.38 (m, 12H), 7.37-7.30 (m, 6H), 7.25-7.21 (m, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 150.6 (d, ²*J*_{CP} = 21.2 Hz, 1C), 143.7 (d, ²*J*_{CP} = 26.7 Hz, 1C), 140.4 (2C), 137.2 (1C), 134.2 (d, ³*J*_{CP} = 14.8 Hz, 1C), 133.4 (d, ¹*J*_{CP} = 96.2 Hz, 1C), 133.1 (d, ⁴*J*_{CP} = 1.7 Hz, 1C), 132.4 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 132.1 (d, ¹*J*_{CP} = 106.1 Hz, 1C), 131.6 (d, ²*J*_{CP} = 10.0 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.5 (d, ³*J*_{CP} = 6.0 Hz, 2C), 130.0 (d, ¹*J*_{CP} = 98.5 Hz, 1C), 129.4 (d, ³*J*_{CP} = 10.8 Hz, 1C), 129.2 (2C), 129.1 (d, ³*J*_{CP} = 12.7 Hz, 2C), 129.09 (1C), 129.03 (3C), 126.5 (2C), 125.9 (2C), 124.3 (d, ²*J*_{CP} = 10.8 Hz, 1C), 123.5 (2C), 120.1 (2C), 109.9 (2C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₈H₂₇NOP: 544.1825, Found: 544.1850.

2-(Naphthalen-2-yl)-1,3-diphenylphosphindole 1-oxide (4ah): colorless solid (0.2 mmol, 69.3 mg, 81% yield); m.p. 92.7-94.3 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.97 (bs, 1H), 7.83-7.72 (m, 3H), 7.66-7.63 (m, 2H), 7.50-7.34 (m, 13H), 7.26 (dd, J = 7.6, 2.9 Hz, 1H), 7.14 (dd, J = 8.6, 0.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 150.3 (d, ² $J_{CP} =$ 21.1 Hz, 1C), 143.7 (d, ² $J_{CP} =$ 26.8 Hz, 1C), 134.3 (d, ³ $J_{CP} =$ 14.8 Hz, 1C), 134.1 (d, ¹ $J_{CP} =$ 96.2 Hz, 1C), 133.1 (1C), 133.0 (d, ⁴ $J_{CP} =$ 10.9 Hz, 1C), 132.6 (1C), 132.2 (d, ⁴ $J_{CP} =$ 2.8 Hz, 1C), 132.1 (d, ¹ $J_{CP} =$ 106.0 Hz, 1C), 130.9 (d, ² $J_{CP} =$ 10.3 Hz, 2C), 130.4 (1C), 129.9 (d, ¹ $J_{CP} =$ 90.1 Hz, 1C), 129.19 (2C), 129.18 (d, ² $J_{CP} =$ 10.5 Hz, 1C), 129.10 (1C), 129.05 (2C), 128.9 (d, ³ $J_{CP} =$ 12.5 Hz, 2C), 128.8 (1C), 128.7 (d, ³ $J_{CP} =$ 5.4 Hz, 1C), 128.5 (1C), 127.7 (1C), 127.4 (1C), 126.6 (d, ³ $J_{CP} =$ 6.2 Hz, 1C), 126.4 (1C), 126.0 (1C), 124.1 (d, ² $J_{CP} =$ 11.0 Hz, 1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.2; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₀H₂₂OP: 429.1403, Found: 429.1419.

2-(Benzo[*d*][1,3]dioxol-5-yl)-1,3-diphenylphosphindole 1-oxide (4ai): pale yellow solid (0.2 mmol, 57.4 mg, 68% yield); m.p. 209.1-210.5 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.79-7.74 (m, 2H), 7.70-7-66 (m, 1H), 7.51-7.38 (m, 7H), 7.35-7.32 (m, 3H), 7.16 (dd, *J* = 7.5, 2.9 Hz, 1H), 6.91 (dt, *J* = 8.2, 1.6 Hz, 1H), 6.61 (dd, *J* = 1.3, 1.0 Hz, 1H), 6.57 (d, *J* = 8.2 Hz, 1H), 5.81 (d, *J* = 1.5 Hz, 1H), 5.80 (d, *J* = 1.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 148.9 (d, ²*J*_{CP} = 21.6 Hz, 1C), 147.4 (1C), 147.3 (1C), 143.9 (d, ²*J*_{CP} = 26.7 Hz, 1C), 134.4 (d, ³*J*_{CP} = 14.9 Hz, 1C), 133.8 (d, ¹*J*_{CP} = 96.4 Hz, 1C), 132.9 (d, ⁴*J*_{CP} = 1.8 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.8 (d, ¹*J*_{CP} = 106.0 Hz, 1C), 128.95 (2C), 128.90 (1C), 128.8 (d, ³*J*_{CP} = 10.1 Hz, 2C), 126.5 (d, ²*J*_{CP} = 10.4 Hz, 1C), 123.8 (d, ²*J*_{CP} = 11.0 Hz, 1C), 123.5 (d, ³*J*_{CP} = 5.8 Hz, 1C), 109.2 (d, ³*J*_{CP} = 6.3 Hz, 1C), 108.3 (1C), 100.9 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₂₀O₃P: 423.1145, Found: 423.1155.

1,3-Diphenyl-2-(3,4,5-trimethoxyphenyl)phosphindole 1-oxide (4aj): pale yellow solid (0.2 mmol, 64.6 mg, 69% yield); m.p. 197.1-198.4 °C (from hexane); TLC R/0.20 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.85-7.80 (m, 2H), 7.69 (dd, J = 9.2, 7.1 Hz, 1H), 7.54-7.40 (m, 7H), 7.39-7.34 (m, 3H), 7.17 (dd, J = 7.5, 2.9 Hz, 1H), 6.45 (d, J = 0.7 Hz, 2H), 3.74 (s, 3H), 3.44 (s, 6H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 152.7 (2C), 149.2 (d, ² $_{JCP} = 21.5$ Hz, 1C), 144.0 (d, ² $_{JCP} = 26.8$ Hz, 1C), 137.7 (1C), 134.8 (d, ³ $_{JCP} = 14.8$ Hz, 1C), 134.0 (d, ¹ $_{JCP} = 96.5$ Hz, 1C), 133.0 (d, ⁴ $_{JCP} = 1.5$ Hz, 1C), 132.2 (d, ⁴ $_{JCP} = 2.6$ Hz, 1C), 131.7 (d, ¹ $_{JCP} = 106.3$ Hz, 1C), 131.0 (d, ² $_{JCP} = 10.7$ Hz, 2C), 130.4 (d, ¹ $_{JCP} = 99.0$ Hz, 1C), 129.2 (2C), 129.1 (d, ³ $_{JCP} = 10.1$ Hz, 1C), 129.0 (1C), 128.97 (2C), 128.95 (d, ³ $_{JCP} = 12.2$ Hz, 2C), 128.6 (1C), 127.8 (d, ² $_{JCP} = 10.4$ Hz, 1C), 123.9 (d, ² $_{JCP} = 10.9$ Hz, 1C), 106.4 (d, ³ $_{JCP} = 6.4$ Hz, 2C), 60.7 (1C), 55.5 (2C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 38.7; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₆O₄P: 469.1564, Found: 469.1543.

1,3-Diphenyl-2-(quinolin-6-yl)phosphindole 1-oxide (4ak): orange solid (0.2 mmol, 53.2 mg, 62% yield); m.p. 111.4-112.7 °C (from hexane); TLC R_f 0.24 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 8.80 (dd, *J* = 4.1, 1.5 Hz, 1H), 8.03 (s, 1H), 7.99 (d, *J* = 8.4 Hz, 1H), 7.82-7.72 (m, 4H), 7.52-7.36 (m, 10H), 7.32-7.28 (m, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 151.0 (d, ²*J*_{CP} = 20.8 Hz, 1C), 150.7 (1C), 147.5 (1C), 143.5 (d, ²*J*_{CP} = 26.7 Hz, 1C), 136.4 (1C), 133.9 (d, ³*J*_{CP} = 14.5 Hz, 1C), 133.5 (d, ¹*J*_{CP} = 95.7 Hz, 1C), 133.1 (d, ⁴*J*_{CP} = 1.6 Hz, 1C), 132.4 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 132.0 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 132.0 (d, ¹*J*_{CP} = 106.2 Hz, 1C), 131.3 (1C), 130.9 (d, ²*J*_{CP} = 10.5 Hz, 2C), 130.7 (d, ¹*J*_{CP} = 108.4 Hz, 1C), 130.3 (d, ³*J*_{CP} = 6.1 Hz, 1C), 129.4 (d, ²*J*_{CP} = 10.8 Hz, 1C), 129.3 (1C), 129.2 (2C), 129.1 (1C), 129.0 (1C), 128.9 (d, ³*J*_{CP} = 12.3 Hz, 2C), 128.3 (d, ³*J*_{CP} = 5.2 Hz, 1C), 128.1 (1C), 124.3 (d, ²*J*_{CP} = 10.8 Hz, 1C), 121.3 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₁NOP: 430.1356, Found: 430.1362.

2-(Dibenzo[*b,d*]**furan-2-yl)-1,3-diphenylphosphindole 1-oxide (4al):** pale yellow solid (0.2 mmol, 67.4 mg, 72% yield); m.p. 108.9-109.6 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.89 (s, 1H), 7.83-7.70 (m, 4H), 7.50-7.36 (m, 12H), 7.31-7.24 (m, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 156.4 (1C), 155.6 (1C), 149.6 (d, ²*J*_{CP} = 21.7 Hz, 1C), 143.8 (d, ²*J*_{CP} = 26.8 Hz, 1C), 134.3 (d, ³*J*_{CP} = 14.9 Hz, 1C), 134.2 (d, ¹*J*_{CP} = 96.2 Hz, 1C), 133.0 (d, ⁴*J*_{CP} = 1.9 Hz,

1C), 132.2 (d, ${}^{4}J_{CP} = 2.8$ Hz, 1C), 131.9 (d, ${}^{1}J_{CP} = 106.1$ Hz, 1C), 131.0 (d, ${}^{2}J_{CP} = 10.6$ Hz, 2C), 129.9 (d, ${}^{1}J_{CP} = 99.8$ Hz, 1C), 129.18 (2C), 129.17 (d, ${}^{3}J_{CP} = 9.6$ Hz, 1C), 129.09 (2C), 129.06 (1C), 128.9 (d, ${}^{3}J_{CP} = 12.3$ Hz, 2C), 128.7 (1C), 128.5 (d, ${}^{3}J_{CP} = 5.9$ Hz, 1C), 127.5 (d, ${}^{2}J_{CP} = 10.0$ Hz, 1C), 127.3 (1C), 124.0 (d, ${}^{2}J_{CP} = 10.7$ Hz, 1C), 123.9 (1C), 122.8 (1C), 121.3 (d, ${}^{4}J_{CP} = 5.6$ Hz, 1C), 120.8 (1C), 111.6 (2C). ${}^{31}P{}^{1}H$ NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₂H₂₂O₂P: 469.1352, Found: 469.1366.

2-(Dibenzo[*b,d*]**thiophen-2-yl)-1,3-diphenylphosphindole 1-oxide (4am):** yellow solid (0.2 mmol, 66.8 mg, 69% yield); m.p. 108.0-109.3 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.03 (s, 1H), 7.86-7.81 (m, 2H), 7.78-7.74 (m, 3H), 7.55 (d, *J* = 8.4 Hz, 1H), 7.51-7.34 (m, 13H), 7.27 (dd, *J* = 7.5, 3.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 149.9 (d, ²*J*_{CP} = 21.7 Hz, 1C), 143.9 (d, ²*J*_{CP} = 26.9 Hz, 1C), 139.5 (1C), 139.1 (1C), 135.5 (1C), 135.3 (1C), 134.4 (d, ³*J*_{CP} = 14.9 Hz, 1C), 134.1 (d, ¹*J*_{CP} = 96.0 Hz, 1C), 133.0 (d, ⁴*J*_{CP} = 1.8 Hz, 1C), 132.3 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 132.0 (d, ¹*J*_{CP} = 106.3 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.6 Hz, 2C), 130.0 (d, ¹*J*_{CP} = 99.6 Hz, 1C), 129.2 (2C), 129.16 (d, ²*J*_{CP} = 10.8 Hz, 1C), 129.11 (d, ³*J*_{CP} = 9.7 Hz, 1C), 129.10 (3C), 128.9 (d, ³*J*_{CP} = 12.3 Hz, 2C), 128.8 (1C), 127.6 (d, ³*J*_{CP} = 5.6 Hz, 1C), 126.8 (1C), 124.4 (1C), 124.1 (d, ²*J*_{CP} = 10.7 Hz, 1C), 122.7 (1C), 122.6 (1C), 122.1 (d, ³*J*_{CP} = 6.2 Hz, 1C), 121.6 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₂H₂₂OPS: 485.1124, Found: 485.1130.

2-(1-Methyl-1*H***-indol-5-yl)-1,3-diphenylphosphindole 1-oxide (4an):** yellow solid (0.2 mmol, 56.0 mg, 65% yield); m.p. 121.4-122.7 °C (from hexane); TLC R_f 0.24 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.82-7.77 (m, 2H), 7.72-7.68 (m, 2H), 7.44-7.30 (m, 10H), 7.19 (dd, *J* = 7.6, 2.8 Hz, 1H), 7.06 (d, *J* = 8.5 Hz, 1H), 6.99 (d, *J* = 8.5 Hz, 1H), 6.91 (d, *J* = 3.0 Hz, 1H), 6.31 (d, *J* = 3.0 Hz, 1H), 3.63 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 147.8 (d, ²*J*_{CP} = 22.2 Hz, 1C), 144.2 (d, ²*J*_{CP} = 27.6 Hz, 1C), 136.1 (1C), 135.1 (d, ¹*J*_{CP} = 95.6 Hz, 1C), 135.0 (d, ³*J*_{CP} = 15.1 Hz, 1C), 132.8 (d, ⁴*J*_{CP} = 1.3 Hz, 1C), 132.1 (d, ¹*J*_{CP} = 105.4 Hz, 1C), 131.9 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.6 Hz, 2C), 130.5 (d, ¹*J*_{CP} = 99.7 Hz, 1C), 129.3 (2C), 129.1 (1C), 129.0 (2C), 128.9 (d, ³*J*_{CP} = 9.5 Hz, 1C), 128.7 (d, ³*J*_{CP} = 12.2 Hz, 2C), 128.5 (d, ²*J*_{CP} = 10.4 Hz, 1C), 128.4 (1C), 128.2 (1C),
123.8 (d, ${}^{3}J_{CP} = 10.2$ Hz, 1C), 123.6 (d, ${}^{2}J_{CP} = 11.0$ Hz, 1C), 123.1 (d, ${}^{3}J_{CP} = 6.3$ Hz, 1C), 122.1 (d, ${}^{3}J_{CP} = 5.9$ Hz, 1C), 109.1 (1C), 101.7 (1C), 32.8 (1C). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 39.3; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₃NOP: 432.1512, Found: 432.1534.

2-(Benzofuran-5-yl)-1,3-diphenylphosphindole 1-oxide (4ao): pale yellow solid (0.2 mmol, 46.8 mg, 56% yield); m.p. 202.8-204.1 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.80-7.70 (m, 3H), 7.66 (s, 1H), 7.49 (d, *J* = 2.3 Hz, 1H), 7.47-7.33 (m, 10H), 7.23 (dd, *J* = 7.5, 2.9 Hz, 1H), 7.18 (dd, *J* = 8.7, 0.6 Hz, 1H), 7.07 (dt, *J* = 8.7, 1.4 Hz, 1H), 6.59 (dd, *J* = 2.2, 0.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 154.4 (1C), 149.4 (d, ²*J*_{CP} = 21.6 Hz, 1C), 145.2 (1C), 143.8 (d, ²*J*_{CP} = 27.1 Hz, 1C), 134.4 (d, ¹*J*_{CP} = 95.6 Hz, 1C), 134.3 (d, ³*J*_{CP} = 15.4 Hz, 1C), 132.9 (d, ⁴*J*_{CP} = 1.7 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 132.0 (d, ¹*J*_{CP} = 105.5 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.6 Hz, 2C), 129.9 (d, ¹*J*_{CP} = 99.5 Hz, 1C), 129.2 (2C), 129.1 (1C), 129.05 (1C), 129.01 (2C), 128.9 (1C), 128.8 (d, ³*J*_{CP} = 10.9 Hz, 1C), 122.1 (d, ³*J*_{CP} = 5.3 Hz, 1C), 111.3 (1C), 106.9 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₈H₂₀O₂P: 419.1196, Found: 419.1197.

2-(Benzo[*b***]thiophen-5-yl)-1,3-diphenylphosphindole 1-oxide (4ap):** pale yellow solid (0.2 mmol, 53.8 mg, 62% yield); m.p. 200.1-201.5 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.91 (s, 1H), 7.81-7.71 (m, 3H), 7.54 (dd, *J* = 8.5, 0.6 Hz, 1H), 7.49-7.34 (m, 10H), 7.32 (d, *J* = 5.5 Hz, 1H), 7.24 (dd, *J* = 7.5, 2.9 Hz, 1H), 7.16 (dd, *J* = 5.5, 0.6 Hz, 1H), 7.08 (d, *J* = 8.5 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 149.8 (d, ²*J*_{CP} = 21.5 Hz, 1C), 143.8 (d, ²*J*_{CP} = 27.0 Hz, 1C), 139.6 (1C), 139.2 (1C), 134.3 (d, ³*J*_{CP} = 15.2 Hz, 1C), 134.2 (d, ¹*J*_{CP} = 95.7 Hz, 1C), 132.9 (d, ⁴*J*_{CP} = 1.7 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 132.1 (d, ¹*J*_{CP} = 105.7 Hz, 1C), 130.9 (d, ²*J*_{CP} = 10.8 Hz, 2C), 129.8 (d, ¹*J*_{CP} = 100.2 Hz, 1C), 129.2 (3C), 129.0 (3C), 128.93 (d, ²*J*_{CP} = 10.6 Hz, 1C), 124.2 (d, ³*J*_{CP} = 5.3 Hz, 1C), 124.0 (d, ²*J*_{CP} = 10.8 Hz, 1C), 122.2 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.2; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₈H₂₀OPS: 435.0967, Found: 435.0970.

2-(Benzo[*b***]thiophen-2-yl)-1,3-diphenylphosphindole 1-oxide (4aq):** yellow solid (0.2 mmol, 41.6 mg, 48% yield); m.p. 125.4-126.7 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.91-7.85 (m, 2H), 7.74 (s, 1H), 7.73-7.69 (m, 1H), 7.64-7.58 (m, 4H), 7.52-7.48 (m, 2H), 7.46-7.41 (m, 5H), 7.38-7.33 (m, 1H), 7.23-7.15 (m, 2H), 7.02 (dd, *J* = 7.5, 2.9 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 148.8 (d, ²*J*_{CP} = 20.2 Hz, 1C), 144.2 (d, ²*J*_{CP} = 26.1 Hz, 1C), 140.4 (1C), 138.8 (1C), 135.3 (d, ³*J*_{CP} = 14.8 Hz, 1C), 133.7 (1C), 133.5 (1C), 133.2 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 132.4 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 131.5 (d, ¹*J*_{CP} = 107.3 Hz, 1C), 130.8 (d, ²*J*_{CP} = 10.6 Hz, 2C), 130.1 (d, ¹*J*_{CP} = 100.5 Hz, 1C), 129.5 (1C), 129.4 (1C), 129.3 (2C), 129.2 (1C), 129.1 (d, ³*J*_{CP} = 12.6 Hz, 2C), 128.96 (d, ¹*J*_{CP} = 95.7 Hz, 1C), 128.91 (d, ²*J*_{CP} = 10.1 Hz, 1C), 126.6 (d, ³*J*_{CP} = 4.6 Hz, 1C), 125.1 (1C), 124.3 (1C), 124.2 (d, ²*J*_{CP} = 10.4 Hz, 1C), 124.1 (1C), 121.7 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 38.7; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₈H₂₀OPS: 435.0967, Found: 435.0968.

2-(5-Chlorothiophen-2-yl)-1,3-diphenylphosphindole 1-oxide (4ar): pale yellow solid (0.2 mmol, 35.9 mg, 43% yield); m.p. 175.8-177.1 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.85-7.80 (m, 2H), 7.68-7.64 (m, 1H), 7.60-7.51 (m, 4H), 7.48-7.42 (m, 3H), 7.40-7.30 (m, 3H), 7.20 (dd, *J* = 4.0, 1.0 Hz, 1H), 6.96 (dd, *J* = 7.5, 2.9 Hz, 1H), 6.65 (d, *J* = 4.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 146.5 (d, ²*J*_{CP} = 20.3 Hz, 1C), 144.2 (d, ²*J*_{CP} = 25.8 Hz, 1C), 134.2 (d, ³*J*_{CP} = 15.7 Hz, 1C), 133.6 (1C), 133.3 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 132.9 (d, ¹*J*_{CP} = 98.3 Hz, 1C), 132.5 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 129.8 (1C), 129.6 (1C), 129.1 (d, ³*J*_{CP} = 10.6 Hz, 2C), 129.0 (d, ³*J*_{CP} = 10.6 Hz, 1C), 129.0 (1C), 128.9 (1C), 128.88 (2C), 128.85 (d, ²*J*_{CP} = 10.3 Hz, 1C), 126.0 (1C), 123.9 (d, ²*J*_{CP} = 10.9 Hz, 1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 38.5; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₄H₁₇ClOPS: 419.0421, Found: 419.0437.

2,2'-(1,4-Phenylene)bis(1,3-diphenylphosphindole 1-oxide) (4as, syn + anti, ca. 1:1 mixture):

yellow solid (0.08 mmol scale, 28.7 mg, 53% yield); m.p. 267.6-268.6 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 7.71-7.62 (m, 6H), 7.51-7.45 (m, 2H), 7.43-7.31 (m, 14H), 7.23-7.19 (m, 4H), 7.15 (dd, J = 7.5, 2.9 Hz, 2H), 6.93 (d, J = 10.7 Hz, 4H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 150.2 (d, ² $J_{CP} = 21.5$ Hz, 1C), 150.1 (d, ² $J_{CP} = 21.3$ Hz, 1C), 143.7 (d, ² $J_{CP} = 27.0$ Hz, 1C), 143.6 (d, ² $J_{CP} = 27.0$ Hz, 1C), 134.1 (d, ³ $J_{CP} = 14.8$ Hz, 1C), 134.0 (d, ³ $J_{CP} = 14.8$ Hz, 1C), 133.6 (d, ¹ $J_{CP} = 95.6$ Hz, 1C), 134.1 (d, ³ $J_{CP} = 14.8$ Hz, 1C), 132.3 (d, ³ $J_{CP} = 4.7$ Hz, 1C), 132.2 (d, ³ $J_{CP} = 4.7$ Hz, 1C), 132.1 (d, ⁴ $J_{CP} = 2.7$ Hz, 2C), 132.0 (d, ¹ $J_{CP} = 106.4$ Hz, 1C), 131.9 (d, ¹ $J_{CP} = 106.4$ Hz, 1C), 130.9 (d, ² $J_{CP} = 10.8$ Hz, 2C), 130.8 (d, ² $J_{CP} = 10.8$ Hz, 2C), 129.97 (d, ¹ $J_{CP} = 99.3$ Hz, 1C), 129.95 (d, ¹ $J_{CP} = 99.3$ Hz, 1C), 129.2, 129.07, 129.05, 129.01, 128.9, 128.8, 128.79, 128.74, 124.1 (d, ² $J_{CP} = 10.9$ Hz, 2C) (All observed signals are just shown because of complexity associated with C–P couplings and diastereomers.); ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.04, 38.97; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₄₆H₃₃O₂P₂: 679.1951, Found: 679.1956.

2,2'-([1,1'-Biphenyl]-4,4'-diyl)bis(1,3-diphenylphosphindole 1-oxide) (4at, *syn* + *anti*, ca. 1:1 mixture): yellow solid (0.08 mmol scale, 29.6 mg, 49% yield); m.p. 190.5-191.8 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 7.78-7.73 (m, 4H), 7.72-7.68 (m, 2H), 7.48-7.31 (m, 20H), 7.26-7.18 (m, 10H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 149.93 (d, ²*J*_{CP} = 21.5 Hz, 1C), 149.91 (d, ²*J*_{CP} = 21.5 Hz, 1C), 143.8 (d, ²*J*_{CP} = 26.8 Hz, 2C), 139.4, 134.3 (d, ³*J*_{CP} = 15.1 Hz, 2C), 133.71 (d, ¹*J*_{CP} = 98.7 Hz, 1C), 133.74 (d, ¹*J*_{CP} = 93.8 Hz, 1C), 132.9, 132.2, 132.0 (d, ¹*J*_{CP} = 106.2 Hz, 2C), 131.9 (d, ²*J*_{CP} = 9.9 Hz, 2C), 130.9 (d, ²*J*_{CP} = 10.8 Hz, 4C), 129.9 (d, ¹*J*_{CP} = 99.8 Hz, 2C), 129.4, 129.07, 129.01, 128.8, 128.7, 126.5, 124.1, 124.0, 123.99 (All observed signals are just shown because of complexity associated with C–P couplings and diastereomers.); ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.18, 39.15; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₅₂H₃₇O₂P₂: 755.2264, Found: 755.2282.

2,2'-([2,2'-Bithiophene]-5,5'-diyl)bis(1,3-diphenylphosphindole 1-oxide) (4au, *syn* + *anti*, ca. 1:1 **mixture):** dark orange solid (0.08 mmol scale, 42.2 mg, 69% yield); m.p. 179.8-181.1 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 7.82-7.77 (m, 4H), 7.64

(dd, J = 9.9, 7.1 Hz, 2H), 7.56-7.54 (m, 6H), 7.52-7.47 (m, 2H), 7.44-7.27 (m, 12H), 7.21-7.19 (m, 2H), 6.95 (dt, J = 7.7, 1.4 Hz, 2H), 6.65 (d, J = 4.0 Hz, 1H), 6.63 (d, J = 4.0 Hz, 1H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 146.4, 146.2, 144.6, 144.3, 138.7, 135.0, 134.8, 133.9, 133.7, 133.2, 132.4, 132.3, 131.7, 130.9, 130.8, 130.7, 130.65, 130.62, 130.5, 130.4, 129.7, 129.6, 129.4, 129.1, 129.0, 128.95, 128.90, 128.79, 128.07, 128.04, 123.85, 123.80, 123.7 (All observed signals are just shown because of complexity associated with C–P couplings and diastereomers.); ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 38.47, 38.41; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₄₈H₃₃O₂P₂S₂: 767.1392, Found: 767.1388.

2,2'-(Pyrene-1,6-diyl)bis(1,3-diphenylphosphindole 1-oxide) (4av, *syn* + *anti*, the ratio was not determined): yellow solid (0.08 mmol scale, 23.1 mg, 36% yield); m.p. over 270 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:3). ¹H NMR (CDCl₃, 400 MHz) δ 8.51 (bs, 2H), 7.86-7.30 (m, 23H), 7.20 (bs, 4H), 7.10 (bs, 7H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 152.5, 143.8, 143.6, 133.7, 133.5, 133.1, 132.7, 132.3, 131.7, 131.3, 131.2, 129.8, 129.7, 129.5, 129.4, 129.3, 128.8, 128.7, 128.6, 128.5, 128.4, 128.3, 127.7, 127.6, 127.5, 124.7, 124.4, 124.3 (All observed signals are just shown because of complexity associated with C–P couplings and diastereomers.); ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.1; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₅₆H₃₇O₂P₂: 803.2264, Found: 803.2275.

6-Methyl-1-phenyl-2,3-di-*p*-tolylphosphindole 1-oxide (4ba): colorless solid (0.2 mmol scale, 65.5 mg, 78% yield); m.p. 84.9-86.3 °C (from hexane); TLC R_f 0.24 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.81-7.75 (m, 2H), 7.50-7.43 (m, 2H), 7.40-7.35 (m, 2H), 7.24-7.20 (m, 5H), 7.14 (d, *J* = 7.5 Hz, 2H), 7.08 (dd, *J* = 7.8, 3.1 Hz, 1H), 6.88 (d, *J* = 8.3 Hz, 2H), 2.40 (s, 3H), 2.33 (s, 3H), 2.18 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 149.6 (d, ²*J*_{CP} = 22.0 Hz, 1C), 141.4 (d, ²*J*_{CP} = 27.2 Hz, 1C), 139.2 (d, ³*J*_{CP} = 10.4 Hz, 1C), 138.4 (1C), 137.5 (1C), 133.2 (d, ⁴*J*_{CP} = 1.5 Hz, 1C), 132.6 (d, ¹*J*_{CP} = 96.9 Hz, 1C), 132.2 (d, ¹*J*_{CP} = 105.4 Hz, 1C), 132.0 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.5 Hz, 2C), 130.5 (d, ¹*J*_{CP} = 98.0 Hz, 1C), 130.1 (1C), 129.7

(d, ${}^{2}J_{CP} = 9.7$ Hz, 1C), 129.6 (2C), 129.0 (2C), 128.9 (2C), 128.89 (d, ${}^{3}J_{CP} = 6.0$ Hz, 2C), 128.80 (d, ${}^{3}J_{CP} = 12.1$ Hz, 2C), 123.8 (d, ${}^{2}J_{CP} = 11.6$ Hz, 1C), 21.5 (1C), 21.26 (1C), 21.24 (1C). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 39.2; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₆OP: 421.1716, Found: 421.1720.

6-Methoxy-3-(4-methoxyphenyl)-1-phenyl-2-(*p*-tolyl)phosphindole 1-oxide (4da): colorless solid (0.2 mmol scale, 69.6 mg, 77% yield); m.p. 89.9-91.2 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.80-7.75 (m, 2H), 7.48-7.44 (m, 1H), 7.41-7.36 (m, 2H), 7.27-7.22 (m, 3H), 7.16 (dd, *J* = 8.5, 3.6 Hz, 1H), 7.11 (d, *J* = 7.4 Hz, 2H), 6.96-6.88 (m, 5H), 3.85 (s, 3H), 3.79 (s, 3H), 2.19 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 160.5 (d, ³*J*_{CP} = 13.4 Hz, 1C), 159.7 (1C), 149.3 (d, ²*J*_{CP} = 21.3 Hz, 1C), 137.2 (1C), 136.4 (d, ²*J*_{CP} = 27.0 Hz, 1C), 134.2 (d, ¹*J*_{CP} = 104.5 Hz, 1C), 132.0 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.2 (d, ¹*J*_{CP} = 98.1 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.7 Hz, 2C), 130.4 (2C), 130.3 (d, ¹*J*_{CP} = 5.9 Hz, 2C), 126.7 (d, ³*J*_{CP} = 15.6 Hz, 1C), 125.1 (d, ³*J*_{CP} = 12.8 Hz, 1C), 117.8 (1C), 114.5 (d, ²*J*_{CP} = 10.6 Hz, 1C), 114.3 (2C), 55.7 (1C), 55.3 (1C), 21.2 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 38.7; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₆O₃P: 453.1615, Found: 453.1613.

1-Phenyl-2-(*p*-tolyl)-6-(trifluoromethyl)-3-(4-(trifluoromethyl)phenyl)phosphindole **1-oxide** (4ea): colorless solid (0.2 mmol scale, 53.8 mg, 51% yield); m.p. 151.3-152.6 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.95 (d, *J* = 9.7 Hz, 1H), 7.79-7.70 (m, 5H), 7.56-7.42 (m, 5H), 7.23 (dd, *J* = 8.0, 2.7 Hz, 1H), 7.13 (d, *J* = 8.2 Hz, 2H), 6.94 (d, *J* = 8.2 Hz, 2H), 2.22 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 146.6, 146.4, 146.3, 146.1, 139.1, 138.7, 137.8, 137.7, 133.6, 132.84, 132.81, 132.5, 131.2, 131.1, 131.0, 130.95, 130.93, 130.8, 130.34, 130.32, 130.30, 129.5, 129.4, 129.3, 129.1, 128.9, 128.8, 128.6, 128.5, 127.8, 126.33, 126.30, 126.2, 126.1, 126.06, 126.03, 125.2, 124.9, 123.7, 123.6, 122.5, 21.3. (All observed signals are just shown because of complexity associated with C–F and C–P couplings.); ${}^{19}F{}^{1}H{}$ NMR (CDCl₃, 376 MHz) δ -62.6, -62.7. ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 37.9; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₀F₆OP: 529.1151, Found: 529.1154.

6-Fluoro-3-(4-fluorophenyl)-1-phenyl-2-(*p*-tolyl)phosphindole 1-oxide (4fa): pale yellow solid (0.2 mmol scale, 60.7 mg, 71% yield); m.p. 218.1-219.4 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.78-7.73 (m, 2H), 7.53-7.48 (m, 1H), 7.43-7.37 (m, 3H), 7.33-7.29 (m, 2H), 7.17-7.09 (m, 6H), 6.92 (d, J = 8.5 Hz, 2H), 2.21 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 164.6, 164.5, 164.1, 162.1, 162.0, 161.6, 147.66, 147.65, 147.45, 147.44, 139.64, 139.62, 139.38, 139.35, 138.1, 135.38, 135.31, 134.9, 134.3, 134.27, 133.9, 132.5, 132.48, 131.3, 131.2, 131.0, 130.9, 130.89, 130.84, 130.6, 130.2, 130.17, 130.05, 130.01, 129.7, 129.4, 129.3, 129.2, 129.1, 129.0, 128.8, 128.7, 128.6, 128.4, 125.4, 125.3, 125.2, 125.1, 119.5, 119.3, 117.0, 116.9, 116.7, 116.6, 116.5, 116.2, 21.2 (All observed signals are just shown because of complexity associated with C–F and C–P couplings.); ¹⁹F{¹H} NMR (CDCl₃, 376 MHz) δ -111.1 (d, $J_{FP} = 5.3$ Hz, 1F), -111.7. ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 37.7 (d, $J_{PF} = 5.3$ Hz); HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₂₀F₂OP: 429.1215, Found: 429.1229.

6-Chloro-3-(4-chlorophenyl)-1-phenyl-2-(*p***-tolyl)phosphindole 1-oxide (4ga): pale yellow solid (0.2 mmol scale, 60.7 mg, 66% yield); m.p. 107.2-108.6 °C (from hexane); TLC R_f 0.25 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) \delta 7.77-7.72 (m, 2H), 7.64 (dd,** *J* **= 9.8, 2.0 Hz, 1H), 7.53-7.48 (m, 1H), 7.44-7.39 (m, 5H), 7.26 (d,** *J* **= 8.1 Hz, 2H), 7.11 (d,** *J* **= 7.8 Hz, 2H), 7.09 (dd,** *J* **= 8.1, 3.3 Hz, 1H), 6.92 (d,** *J* **= 8.1 Hz, 2H), 2.21 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) \delta 147.1 (d, ²***J***_{CP} = 21.1 Hz, 1C), 141.7 (d, ²***J***_{CP} = 26.5 Hz, 1C), 138.4 (1C), 135.5 (d, ³***J***_{CP} = 13.6 Hz, 1C), 135.0 (d, ¹***J***_{CP} = 95.6 Hz, 1C), 134.9 (1C), 134.2 (d, ¹***J***_{CP} = 103.3 Hz, 1C), 132.8 (d, ⁴***J***_{CP} = 1.2**

Hz, 1C), 132.6 (d, ${}^{4}J_{CP} = 2.5$ Hz, 1C), 132.4 (1C), 130.9 (d, ${}^{2}J_{CP} = 10.7$ Hz, 2C), 130.4 (2C), 129.5 (2C), 129.4 (d, ${}^{2}J_{CP} = 10.0$ Hz, 1C), 129.3 (2C), 129.2 (d, ${}^{3}J_{CP} = 15.3$ Hz, 1C), 129.1 (d, ${}^{3}J_{CP} = 12.2$ Hz, 2C), 128.9 (d, ${}^{1}J_{CP} = 100.8$ Hz, 1C), 128.8 (d, ${}^{3}J_{CP} = 5.9$ Hz, 2C), 124.7 (d, ${}^{2}J_{CP} = 11.7$ Hz, 1C), 21.3 (1C). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 38.0; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₂₀Cl₂OP: 461.0629, Found: 461.0657.

3-(Naphthalen-2-yl)-1-phenyl-2-(*p***-tolyl)benzo[g]phosphindole 1-oxide (4ha):** yellow solid (0.2 mmol scale, 64.9 mg, 66% yield); m.p. 135.3-136.6 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.13 (dd, *J* = 8.2, 0.5 Hz, 1H), 7.93-7.85 (m, 7H), 7.81 (d, *J* = 7.9 Hz, 1H), 7.58-7.51 (m, 2H), 7.50-7.33 (m, 7H), 7.23 (d, *J* = 7.9 Hz, 2H), 6.86 (d, *J* = 8.4 Hz, 2H), 2.16 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 148.5 (d, ²*J*_{CP} = 23.2 Hz, 1C), 143.3 (d, ²*J*_{CP} = 26.2 Hz, 1C), 137.9 (1C), 135.0 (d, ¹*J*_{CP} = 95.6 Hz, 1C), 133.6 (d, ⁴*J*_{CP} = 2.1 Hz, 1C), 133.5 (d, ³*J*_{CP} = 7.9 Hz, 1C), 133.4 (1C), 133.2 (1C), 132.3 (d, ³*J*_{CP} = 15.7 Hz, 1C), 132.1 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.8 (d, ²*J*_{CP} = 9.2 Hz, 1C), 130.9 (d, ²*J*_{CP} = 10.4 Hz, 2C), 129.6 (d, ²*J*_{CP} = 10.6 Hz, 1C), 129.4 (d, ¹*J*_{CP} = 95.1 Hz, 1C), 128.7 (d, ⁴*J*_{CP} = 1.5 Hz, 1C), 128.5 (1C), 128.3 (1C), 128.2 (1C), 128.0 (1C), 127.4 (d, ¹*J*_{CP} = 102.2 Hz, 1C), 126.9 (1C), 126.76 (1C), 126.75 (1C), 126.6 (1C), 125.7 (d, ³*J*_{CP} = 4.9 Hz, 1C), 121.3 (d, ³*J*_{CP} = 12.5 Hz, 1C), 21.3 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 39.9; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₅H₂₆OP: 493.1716, Found: 493.1723.

6,6-Dimethyl-2-phenyl-1-(*p*-tolyl)-6*H*-naphtho[1,2,3-*cd*]phosphindole 2-oxide (4ia): colorless solid (0.2 mmol scale, 54.4 mg, 63% yield); m.p. 131.3-132.6 °C (from hexane); TLC R_f 0.22 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.71 (d, *J* = 8.0 Hz, 1H), 7.67-7.57 (m, 5H), 7.48-7.42 (m, 2H), 7.39-7.33 (m, 3H), 7.12 (bs, 4H), 6.96 (td, *J* = 7.5, 1.2 Hz, 1H), 2.33 (d, *J* = 1.1 Hz, 3H), 1.77 (s, 3H), 1.72 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 146.9 (1C), 141.5 (d, ³*J*_{CP} = 11.6 Hz, 1C), 139.0 (d, ²*J*_{CP} = 23.2 Hz, 1C), 137.7 (d, ⁴*J*_{CP} = 2.1 Hz, 1C), 137.4 (d, ²*J*_{CP} = 29.3 Hz, 1C), 132.0 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 131.3 (d, ²*J*_{CP} = 10.8 Hz, 2C), 131.28 (1C), 130.8 (d, ¹*J*_{CP} = 98.9

Hz, 1C), 130.5 (d, ${}^{4}J_{CP} = 1.6$ Hz, 1C), 130.4 (1C), 130.3 (d, ${}^{1}J_{CP} = 103.9$ Hz, 1C), 130.0 (2C), 128.9 (d, ${}^{1}J_{CP} = 100.7$ Hz, 1C), 129.5 (d, ${}^{3}J_{CP} = 11.1$ Hz, 1C), 128.6 (d, ${}^{3}J_{CP} = 12.2$ Hz, 2C), 128.5 (1C), 128.4 (1C), 128.3 (1C), 127.5 (1C), 127.4 (d, ${}^{2}J_{CP} = 9.0$ Hz, 1C), 127.2 (d, ${}^{2}J_{CP} = 17.0$ Hz, 1C), 125.9 (1C), 38.6 (d, ${}^{4}J_{CP} = 1.1$ Hz, 1C), 33.4 (1C), 33.0 (1C), 21.4 (1C). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 39.8; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₀H₂₆OP: 433.1716, Found: 433.1738.

6-Phenyl-5-(*p*-tolyl)-10,11-dihydrobenzo[6,7]cyclohepta[1,2,3-*cd*]phosphindole 6-oxide (4ja): colorless solid (0.2 mmol scale, 46.0 mg, 55% yield); m.p. 126.4-127.7 °C (from hexane); TLC R_f 0.24 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 7.72 (bs, 2H), 7.53 (ddd, *J* = 10.2, 6.4, 1.7 Hz, 1H), 7.43-7.36 (m, 3H), 7.25-7.18 (m, 7H), 6.93-6.87 (m, 3H), 3.20-3.07 (m, 4H), 2.21 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 150.1 (d, ²*J*_{CP} = 19.5 Hz, 1C), 143.3 (1C), 140.2 (d, ²*J*_{CP} = 28.2 Hz, 1C), 139.5 (d, ³*J*_{CP} = 10.6 Hz, 1C), 137.6 (1C), 135.6 (d, ⁴*J*_{CP} = 1.5 Hz, 1C), 134.1 (d, ³*J*_{CP} = 15.0 Hz, 1C), 133.2 (1C), 131.9 (d, ⁴*J*_{CP} = 2.5 Hz, 1C), 131.4 (d, ¹*J*_{CP} = 93.9 Hz, 1C), 131.3 (d, ²*J*_{CP} = 8.7 Hz, 1C), 131.0 (d, ²*J*_{CP} = 10.3 Hz, 2C), 130.3 (d, ¹*J*_{CP} = 102.5 Hz, 1C), 129.8 (1C), 129.3 (d, ³*J*_{CP} = 5.4 Hz, 2C), 129.2 (2C), 128.8 (d, ³*J*_{CP} = 11.9 Hz, 2C), 128.3 (1C), 128.1 (d, ³*J*_{CP} = 11.5 Hz, 1C), 127.5 (d, ¹*J*_{CP} = 98.5 Hz, 1C), 126.9 (d, ²*J*_{CP} = 9.6 Hz, 1C), 125.8 (1C), 35.4 (1C), 34.7 (1C), 21.3 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 35.5; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₉H₂₄OP: 419.1560, Found: 419.1562.

9-Phenyltribenzo[*b,e,g*]**phosphindole 9-oxide (5aa):** colorless solid (0.2 mmol scale, 56.3 mg, 75% yield); TLC R_f 0.28 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.97-8.95 (m, 1H), 8.80-8.78 (m, 1H), 8.64 (d, *J* = 8.5 Hz, 1H), 8.51 (dd, *J* = 8.0, 3.5 Hz, 1H), 8.31 (d, *J* = 8.0 Hz, 1H), 7.85-7.72 (m, 5H), 7.68-7.60 (m, 2H), 7.56-7.52 (m, 1H), 7.46-7.40 (m, 2H), 7.36-7.32 (m, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 142.5 (d, ²*J*_{CP} = 23.4 Hz, 1C), 139.5 (d, ²*J*_{CP} = 20.0 Hz, 1C), 134.6 (d, ¹*J*_{CP} = 106.5 Hz, 1C), 133.9 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 133.1 (d, ⁴*J*_{CP} = 2.0 Hz, 1C), 132.2 (d, ⁴*J*_{CP} = 2.8 Hz, 1C), 131.1 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.8 (d, ¹*J*_{CP} = 102.1 Hz, 1C), 130.6 (d, ³*J*_{CP} = 14.4 Hz, 1C), 130.09 (d, ³*J*_{CP} = 9.9 Hz, 1C), 130.05 (d, ¹*J*_{CP} = 108.8 Hz, 1C), 129.3 (d, ²*J*_{CP} = 8.9 Hz, 1C), 128.9 (d,

 ${}^{3}J_{CP} = 11.4 \text{ Hz}, 1\text{C}$), 128.8 (d, ${}^{3}J_{CP} = 12.5 \text{ Hz}, 2\text{C}$), 128.6 (1C), 128.0 (1C), 127.9 (d, ${}^{3}J_{CP} = 13.9 \text{ Hz}, 1\text{C}$), 127.8 (1C), 127.4 (1C), 127.0 (d, ${}^{3}J_{CP} = 5.4 \text{ Hz}, 1\text{C}$), 125.9 (1C), 125.6 (d, ${}^{2}J_{CP} = 10.9 \text{ Hz}, 1\text{C}$), 124.1 (1C), 123.1 (1C). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 34.0; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₆H₁₈OP: 377.1089, Found: 377.1091.

6-(Diphenylamino)-9-phenyltribenzo[*b,e,g*]**phosphindole 9-oxide (5ab):** yellow solid (0.2 mmol scale, 64.1 mg, 59% yield); m.p. 225.9-226.9 °C (from hexane); TLC R_f 0.20 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.93 (d, J = 7.8 Hz, 1H), 8.48 (dd, J = 8.0, 3.4 Hz, 1H), 8.41 (d, J = 7.8 Hz, 1H), 8.25 (s, 1H), 8.12 (d, J = 8.8 Hz, 1H), 7.82-7.70 (m, 4H), 7.68-7.63 (m, 2H), 7.48-7.34 (m, 4H), 7.30-7.25 (m, 5H), 7.17-7.15 (m, 4H), 7.08 (t, J = 7.3 Hz, 2H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 147.6 (1C), 147.3 (2C), 142.9 (d, ²*J*_{CP} = 23.5 Hz, 1C), 137.1 (d, ²*J*_{CP} = 20.0 Hz, 1C), 134.4 (d, ¹*J*_{CP} = 106.5 Hz, 1C), 133.1 (d, ⁴*J*_{CP} = 2.5 Hz, 1C), 132.1 (d, ⁴*J*_{CP} = 2.9 Hz, 1C), 132.0 (d, ³*J*_{CP} = 9.5 Hz, 1C), 131.1 (d, ²*J*_{CP} = 10.8 Hz, 2C), 130.9 (d, ¹*J*_{CP} = 102.0 Hz, 1C), 130.1 (d, ³*J*_{CP} = 9.7 Hz, 1C), 130.0 (d, ¹*J*_{CP} = 102.2 Hz, 1C), 129.5 (4C), 128.8 (d, ³*J*_{CP} = 11.4 Hz, 1C), 128.8 (d, ³*J*_{CP} = 12.5 Hz, 2C), 128.5 (1C), 128.4 (d, ⁴*J*_{CP} = 2.7 Hz, 1C), 128.1 (1C), 127.8 (d, ³*J*_{CP} = 5.6 Hz, 1C), 127.4 (1C), 125.6 (1C), 125.2 (d, ²*J*_{CP} = 10.9 Hz, 1C), 125.0 (4C), 124.7 (d, ²*J*_{CP} = 8.9 Hz, 1C), 124.6 (1C), 124.2 (1C), 123.7 (2C), 115.2 (1C). ³¹P{¹H} NMR (CDCl₃, 162 MHz) δ 34.0; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₃₈H₂₇NOP: 544.1825, Found: 544.1853.

6-Methoxy-9-phenyltribenzo[*b,e,g*]**phosphindole 9-oxide (5ac):** yellow solid (0.2 mmol scale, 53.6 mg, 66% yield); m.p. 215.3-216.3 °C (from hexane); TLC R_f 0.24 (hexane/EtOAc, 1:2). ¹H NMR (CDCl₃, 400 MHz) δ 8.94 (dd, *J* = 5.2, 4.1 Hz, 1H), 8.70 (dd, *J* = 5.2, 4.1 Hz, 1H), 8.47 (dd, *J* = 7.8, 3.4 Hz, 1H), 8.23 (d, *J* = 8.9 Hz, 1H), 8.00 (s, 1H), 7.83-7.70 (m, 5H), 7.64 (t, *J* = 7.8 Hz, 1H), 7.46-7.32 (m, 4H), 7.19 (dd, *J* = 8.9, 2.4 Hz, 1H), 3.96 (s, 3H). ¹³C{¹H} NMR (CDCl₃, 100 MHz) δ 159.3 (1C), 142.8 (d, ²*J*_{CP} = 22.9 Hz, 1C), 136.8 (d, ²*J*_{CP} = 20.0 Hz, 1C), 134.3 (d, ¹*J*_{CP} = 106.5 Hz, 1C), 133.2 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 133.1 (d, ⁴*J*_{CP} = 1.9 Hz, 1C), 132.4 (d, ²*J*_{CP} = 8.6 Hz, 1C), 132.1 (d, ⁴*J*_{CP} = 9.7 Hz, 1C), 131.05 (d, ²*J*_{CP} = 10.9 Hz, 2C), 131.03 (d, ¹*J*_{CP} = 102.1 Hz, 1C), 130.02 (d, ³*J*_{CP} = 9.7

Hz, 1C), 130.0 (d, ${}^{1}J_{CP} = 102.8$ Hz, 1C), 128.8 (d, ${}^{3}J_{CP} = 12.5$ Hz, 2C), 128.5 (d, ${}^{3}J_{CP} = 5.6$ Hz, 1C), 128.4 (d, ${}^{3}J_{CP} = 10.8$ Hz, 1C), 128.3 (d, ${}^{3}J_{CP} = 12.1$ Hz, 1C), 128.1 (1C), 127.5 (1C), 125.7 (1C), 125.2 (d, ${}^{2}J_{CP} = 10.9$ Hz, 1C), 124.1 (1C), 123.9 (d, ${}^{3}J_{CP} = 9.2$ Hz, 1C), 117.9 (1C), 104.7 (1C), 55.5 (1C). ${}^{31}P{}^{1}H{}$ NMR (CDCl₃, 162 MHz) δ 34.0; HRMS (APCI) m/z ([M+H]⁺) Calcd for C₂₇H₂₀O₂P: 407.1196, Found: 407.1182.

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2a]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2b]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2c]

 $[^1H,\,^{13}C\{^1H\},\,^{19}F\{^1H\},\,and\,\,^{31}P\{^1H\}$ NMR Spectra of $\mathbf{2f}]$

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2g]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2h]

 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 2i]$

³¹P{¹H} NMR (CDCl₃, 162 MHz)

$[^{1}H, ^{13}C{^{1}H}, ^{19}F{^{1}H}, and ^{31}P{^{1}H} NMR$ Spectra of **2k**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **2**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2m + 2m']

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 2n]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 4aa]

$[{}^{1}\text{H}, {}^{13}\text{C}\{{}^{1}\text{H}\}, \text{and} {}^{31}\text{P}\{{}^{1}\text{H}\} \text{ NMR Spectra of } \textbf{4ab}]$

³¹P{¹H} NMR (CDCl₃, 162 MHz)

m m

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 4ac]$

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 4ad]$

$[{}^{1}H, {}^{13}C\{{}^{1}H\}, {}^{19}F\{{}^{1}H\}, and {}^{31}P\{{}^{1}H\}$ NMR Spectra of **4ae**]

120 110 100 90 80 70 60 50 40 30 20 10 0 -10 -20 -30 -40 -50 -60 -70 -80 ppm

 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR$ Spectra of **4af**]

 $[^{1}H, ^{13}C\{^{1}H\}, and ^{31}P\{^{1}H\} NMR Spectra of 4ag]$

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR$ Spectra of **4ah**]

¹H NMR (CDCl₃, 400 MHz)

S94

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of$ **4ak**]

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of$ **4al**]

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR$ Spectra of **4am**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 4an]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **4ao**]

¹H NMR (CDCl₃, 400 MHz)

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 4ap]$

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR$ Spectra of **4aq**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 4ar]

 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 4as]$

 $[{}^{1}\text{H}, {}^{13}\text{C}\{{}^{1}\text{H}\},$ and ${}^{31}\text{P}\{{}^{1}\text{H}\}$ NMR Spectra of **4at**]

 $[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of 4au]$

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of 4av]

 $[{}^{1}\text{H}, {}^{13}\text{C}\{{}^{1}\text{H}\}, \text{and} {}^{31}\text{P}\{{}^{1}\text{H}\} \text{ NMR Spectra of 4da}]$

¹H NMR (CDCl₃, 400 MHz)

 $[{}^{1}H, {}^{13}C\{{}^{1}H\}, {}^{19}F\{{}^{1}H\}, and {}^{31}P\{{}^{1}H\}$ NMR Spectra of **4ea**]

$[{}^{1}H, {}^{13}C\{{}^{1}H\}, {}^{19}F\{{}^{1}H\}, and {}^{31}P\{{}^{1}H\}$ NMR Spectra of **4fa**]

 $[{}^{1}\text{H}, {}^{13}\text{C}\{{}^{1}\text{H}\}, \text{ and } {}^{31}\text{P}\{{}^{1}\text{H}\} \text{ NMR Spectra of 4ha}]$

 $[^{1}H, ^{13}C{^{1}H}, \text{ and } ^{31}P{^{1}H} \text{ NMR Spectra of 4ja}]$

³¹P{¹H} NMR (CDCl₃, 162 MHz)

philipposition pairs		too ila ini da Garanda ta	lan da				und hielden Versienen	and hilling			erti desti da est Perrola Perrola	lited and a sector to the				hadded didd	
	80	70	60	50	40	30	20	10	0	-10	-20	-30	-40	-50	-60	-70	ppm

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **5aa**]

$[^{1}H, ^{13}C{^{1}H}, and ^{31}P{^{1}H} NMR Spectra of$ **5ab**]

[¹H, ¹³C{¹H}, and ³¹P{¹H} NMR Spectra of **5ac**]

References

- (S1) T. H.H. Hsieh and V. M. Dong, *Tetrahedron*, 2009, **65**, 3062–3068.
- (S2) Y. Kanazawa, T. Yokota, H. Ogasa, H. Watanabe, T. Hanakawa, S. Soga and M. Kawatsura, *Tetrahedron*, 2015, **71**, 1395–1402.
- (S3) K. Nishimura, K. Hirano and M. Miura, Org. Lett., 2020, 22, 3185–3189.