## **Supporting Information**

## Discovery of pentaene polyols by activation of an enediyne gene cluster: biosynthetic implications for 9membered enediyne core structures

Jian Pan, <sup>†</sup> Qingwen Tan, <sup>†</sup> Saibin Zhu, <sup>†</sup> Xiaohui Yan,<sup>&</sup> Yu Li, <sup>†</sup> Zhoukang Zhuang,<sup>†</sup> Xiangcheng Zhu,<sup>†⊥</sup> Yanwen Duan, <sup>†⊥ Δ</sup> and Yong Huang<sup>\*†Δ</sup>

<sup>†</sup>Xiangya International Academy of Translational Medicine at Central South University, Changsha, 410013, Hunan, China;

<sup>&</sup>State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, 10 Poyanghu Road, West Area, Tuanbo New Town, Jinghai District, Tianjin, China.

<sup>⊥</sup>Hunan Engineering Research Center of Combinatorial Biosynthesis and Natural Product Drug Discovery, Changsha, 410011, Hunan, China;

<sup>A</sup>National Engineering Research Center of Combinatorial Biosynthesis for Drug Discovery, 410011, Changsha, Hunan, China.

Correspondence:

\*Email: Prof. <u>Yong Huang</u>, jonghuang@csu.edu.cn

### Table of Content

| General Experimental Procedures                                                                                                                        | 7    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| Table S1. List of genes in wls BGC and their proposed functions                                                                                        | . 13 |
| Table S2. List of primers used in this study                                                                                                           | . 15 |
| Table S3. List of bacterial strains and plasmids used in this study                                                                                    | . 18 |
| Table S4.1H and 13C{1H} NMR data of compounds 5–7.                                                                                                     | . 20 |
| <b>Table S5.</b> Distribution of the 67 WIsPDH homologous proteins from GenBank and<br>the respective co-localized PKSE gene.                          | . 21 |
| <b>Table S6</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Nonomuraea sp. PA05.                            | . 24 |
| <b>Table S7</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Planobispora longispora</i> NBRC 13918       | . 26 |
| <b>Table S8</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Actinomadura livida strain JCM 3387             | . 27 |
| <b>Table S9</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Microbispora corallina strain</i> NBRC 16416 | . 28 |
| <b>Table S10</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Microbispora</i> sp. H13382                 | . 30 |
| <b>Table S11</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Nonomuraea sp. WAC 01424                       | . 32 |
| <b>Table S12</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Planomonospora</i> sp. ID67723              | . 33 |
| <b>Table S13</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Sphaerisporangium melleum NBRC 107356          | . 35 |
| <b>Table S14</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Sphaerisporangium rubeum DSM 44936             | . 36 |
| <b>Table S15</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Streptomyces boluensis YC537                   | . 37 |
| <b>Table S16</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Streptomyces jumonjinensis NRRL 5741           | . 38 |
| <b>Table S17</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Streptomyces</i> sp. DH5                    | . 39 |
| <b>Table S18</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Streptomyces</i> sp. NK15101                | . 40 |
| <b>Table S19</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Streptosporangium canum CGMCC 4.2126           | . 41 |
| <b>Table S20</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Streptosporangium sandarakinum DSM 45763       | . 43 |

| <b>Table S21</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from <i>Streptosporangium</i> sp. KLBMP 9127    | 4          |
|----------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| <b>Table S22</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Planobispora siamensis strain NBRC 1075684            | -6         |
| <b>Table S23</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Streptomyces sp. SM134                                | -8         |
| <b>Table S24</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Sphaerisporangium siamense strain NBRC 107570         | 0          |
| <b>Table S25</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Sphaerisporangium sp. H85895                          | 51         |
| <b>Table S26</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Streptomyces bungoensis DSM 417815                    | 2          |
| <b>Table S27</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Streptomyces lateritius Z1-265                        | 4          |
| <b>Table S28</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster         from Streptomyces sp. CWH03         5             | 6          |
| <b>Table S29</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster         from Streptomyces sp. Mg1                         | 7          |
| <b>Table S30</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Streptomyces sp. NE5-106                              | 60         |
| <b>Table S31</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster         from Streptomyces sp. TSRI0281                    | 51         |
| <b>Table S32</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Streptomyces spongiicola 531S6                        | 4          |
| <b>Table S33.</b> Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Streptomyces taklimakanensis TRM43335                  | 5          |
| <b>Table S34</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Streptomyces viridosporus T7A              | 6          |
| <b>Table S35</b> . Predicted functions of ORFs in the enediyne biosynthetic gene clusterfrom Thermostaphylospora chromogena DSM 437946             | 8          |
| <b>Table S36</b> . Predicted functions of ORFs in the enediyne biosynthetic gene cluster           from Streptomyces tirandamycinicus HNM0039      | '0         |
| <b>Figure S1.</b> Structures of known 9-membered enediynes and isolated natural products as potential aromatized products from 9-membered endiynes | <u>'</u> 2 |
| Figure S2. The GNN analysis of putative enediyne BGCs                                                                                              | 3          |
| Figure S3. Production of heptaene (1) in <i>E. coli</i> and S. sp. CB021307                                                                        | '4         |
| <b>Figure S4.</b> Confirmation of gene replacement mutants in <i>S</i> . sp. CB02130 and $\Delta w ls R3$ (YX4001)                                 | 5          |

| Figure S5. HPLC profiles of S. sp. CB02130 wild-type strain and its mutants 80                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Figure S6. HR-ESI-MS spectra of 5, 6, 8, 9 and APCI-HR-MS and APCI-HR-MS/MS spectra of 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Figure S7. CD spectra of 5 and 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Figure S8. UV spectra of 5–9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| <b>Figure S9.</b> The time course analysis of crude extracts in <i>S.</i> sp. CB02130 wild-type and YX4001 ( $\Delta w$ /sR3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Figure S10. Characterization of WIsC4 as an ammonia lyase                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Figure S11.</b> L-phenylalanine or L-tyrosine as the sole nitrogen source in its production medium for YX4001 ( $\Delta w/s$ R3)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Figure S12. L-Phenylalanine contributes to the production of polyene polyols 5–7 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>Figure S13.</b> Gene inactivation of <i>wls</i> ORF8, <i>wls</i> ORF24, <i>wls</i> L, <i>wls</i> E7, and <i>wls</i> E9 in $\Delta wls$ R3 had no effects towards the production of <b>5–7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Figure S14.</b> Overexpression of putative positive regulators <i>wls</i> R1 and <i>wls</i> R6 under the control of <i>ermEp</i> <sup>*</sup> in $\Delta wls$ R3 had no effects towards the production of <b>5</b> – <b>7</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>Figure S15.</b> Yield increasement of heptaene <b>1</b> in $\Delta w/s$ R3 and $\Delta w/s$ PDH/ $\Delta w/s$ R3, while further overexpression of putative positive regulators $w/s$ R1 and $w/s$ R6 under the control of <i>ermEp</i> <sup>*</sup> in <i>w/s</i> R3 had no effects towards the production of <b>1</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>Figure S16.</b> <sup>1</sup> H NMR spectrum of <b>5</b> in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub> (600 MH <sub>z</sub> )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>Figure S17.</b> Expanded <sup>1</sup> H NMR spectrum of <b>5</b> in CD <sub>3</sub> OD- $d_4$ (600 MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>Figure S18.</b> Expanded <sup>1</sup> H NMR spectrum of <b>5</b> (5.70–5.77 ppm) in CD <sub>3</sub> OD- $d_4$ (600                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| MHz)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <ul> <li>MHz)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <ul> <li>MHz)</li></ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| MHz).       94         Figure S19. <sup>13</sup> C NMR spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       95         Figure S20. Expanded <sup>13</sup> C NMR expand spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       96         Figure S21. DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       97         Figure S22. Expanded DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       98                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| MHz).       94         Figure S19. <sup>13</sup> C NMR spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       95         Figure S20. Expanded <sup>13</sup> C NMR expand spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       96         Figure S21. DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       97         Figure S22. Expanded DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       98         Figure S23. HSQC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       99                                                                                                                                                                                                                                                                                                                                                          |
| MHz).       94         Figure S19. $^{13}$ C NMR spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       95         Figure S20. Expanded $^{13}$ C NMR expand spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       96         Figure S21. DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       97         Figure S22. Expanded DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       98         Figure S23. HSQC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       99         Figure S24. HMBC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       100                                                                                                                                                                                                                                                                                      |
| MHz).       94         Figure S19. $^{13}$ C NMR spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       95         Figure S20. Expanded $^{13}$ C NMR expand spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       96         Figure S21. DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       97         Figure S22. Expanded DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       98         Figure S23. HSQC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       99         Figure S24. HMBC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       100         Figure S25. $^1$ H- $^1$ H COSY spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       101                                                                                                                                                                                       |
| MHz).       94         Figure S19. $^{13}$ C NMR spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       95         Figure S20. Expanded $^{13}$ C NMR expand spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       96         Figure S21. DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       97         Figure S22. Expanded DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       98         Figure S23. HSQC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       99         Figure S24. HMBC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       100         Figure S25. $^1$ H- $^1$ H COSY spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       101         Figure S26. NOESY spectrum of 5.       102                                                                                                                                    |
| MHz).       94         Figure S19. <sup>13</sup> C NMR spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       95         Figure S20. Expanded <sup>13</sup> C NMR expand spectrum of 5 in CD <sub>3</sub> OD- $d_4$ (150 MHz).       96         Figure S21. DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       97         Figure S22. Expanded DEPT135 spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       98         Figure S23. HSQC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       99         Figure S24. HMBC spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       100         Figure S25. <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 5 in CD <sub>3</sub> OD- $d_4$ .       101         Figure S26. NOESY spectrum of 5.       102         Figure S27. <sup>1</sup> H NMR spectrum of 6 in CD <sub>3</sub> OD- $d_4$ (600 MHz).       103 |

| <b>Figure S29.</b> Expanded <sup>1</sup> H NMR spectrum of <b>6</b> (5.69–5.85 ppm) in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub> (MHz) | (600<br>105 |
|----------------------------------------------------------------------------------------------------------------------------------------|-------------|
| Figure S30. <sup>13</sup> C NMR spectrum of 6 in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub> (150 MHz)                                   | 106         |
| Figure S31. Expanded <sup>13</sup> C NMR spectrum of 6 in CD <sub>3</sub> OD- $d_4$ (150 MHz)                                          | 107         |
| <b>Figure S32.</b> DEPT135 spectrum of <b>6</b> in $CD_3OD$ - $d_4$                                                                    | 108         |
| Figure S33. DEPT90 spectrum of 6 in CD <sub>3</sub> OD-d <sub>4</sub>                                                                  | 109         |
| <b>Figure S34.</b> Expanded DEPT90 spectrum of <b>6</b> in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub>                                   | 110         |
| Figure S35. The homonuclear decoupling experiment for 6 using Homodec                                                                  | 111         |
| Figure S36. HSQC spectrum of 6 in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub>                                                            | 112         |
| Figure S37. HMBC spectrum of 6 in CD <sub>3</sub> OD-d <sub>4</sub>                                                                    | 113         |
| Figure S38. <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 6 in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub>                             | 114         |
| Figure S39. NOESY spectrum of 6                                                                                                        | 115         |
| <b>Figure S40.</b> <sup>1</sup> H NMR spectrum of <b>7</b> in CD <sub>3</sub> OD- $d_4$ (600 MHz).                                     | 116         |
| Figure S41. Expanded <sup>1</sup> H NMR spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub> (600 MHz)                                   | 117         |
| <b>Figure S42.</b> Expanded <sup>1</sup> H NMR spectrum of <b>7</b> (5.69–5.85 ppm) in CD <sub>3</sub> OD- $d_4$ MHz)                  | (600<br>118 |
| <b>Figure S43.</b> <sup>13</sup> C NMR spectrum of <b>7</b> in CD <sub>3</sub> OD- $d_4$ (150 MHz)                                     | 119         |
| Figure S44. Expanded <sup>13</sup> C NMR spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub> (150 MHz)                                  | 120         |
| Figure S45. DEPT 135 spectrum of 7 in $CD_3OD-d_4$                                                                                     | 121         |
| Figure S46. Expanded DEPT135 spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub>                                                        | 122         |
| <b>Figure S47.</b> <sup>1</sup> H- <sup>1</sup> H COSY spectrum of <b>7</b> in CD <sub>3</sub> OD- <i>d</i> <sub>4</sub>               | 123         |
| Figure S48. Expanded <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub>                            | 124         |
| Figure S49. HSQC spectrum of 7 in CD <sub>3</sub> OD-d <sub>4.</sub>                                                                   | 125         |
| Figure S50. Expanded HSQC spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub>                                                           | 126         |
| Figure S51. HMBC spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub>                                                                    | 127         |
| Figure S52. Expanded HMBC spectrum of 7 in CD <sub>3</sub> OD-d <sub>4</sub>                                                           | 128         |
| Figure S53. NOESY spectrum of 7.                                                                                                       | 129         |
| Figure S54. <sup>1</sup> H NMR (500 MHz) spectrum of 8 in DMSO- <i>d</i> <sub>6</sub>                                                  | 130         |
| Figure S55. <sup>13</sup> C NMR (125 MHz) spectrum of 8 in DMSO- $d_6$                                                                 | 131         |
| Figure S56. DEPT135 spectrum of 8 in DMSO-d <sub>6</sub> .                                                                             | 132         |
| Figure S57. <sup>1</sup> H- <sup>1</sup> H COSY spectrum of 8 in DMSO- <i>d</i> <sub>6</sub>                                           | 133         |

| Figure S58. HSQC spectrum of 8 in DMSO-d <sub>6</sub>                                 | 134  |
|---------------------------------------------------------------------------------------|------|
| Figure S59. HMBC spectrum of 8 in DMSO-d <sub>6</sub> .                               | 135  |
| Figure S60. <sup>1</sup> H NMR (500 MHz) spectrum of 9 in DMSO- <i>d</i> <sub>6</sub> | 136  |
| Figure S61. <sup>13</sup> C NMR (125 MHz) spectrum of 9 in DMSO-d <sub>6</sub>        | 137  |
| References.                                                                           | .138 |

#### **General Experimental Procedures**

All chemical and biological regents used in this study were from commercial sources, unless otherwise specified. High-resolution electrospray ionization mass data (HR-ESI-MS) were recorded on an LTQ-ORBITRAP-ETD instrument. HR-APCI-MS/MS were recorded on TOF-x500r-AB SCIEX. UV spectra were measured on a Waters 2998 photo-diode array (PDA) Detector. CD spectra were recorded on J-815 from JASCO. NMR spectra were acquired using 500 or 600 MHz Bruker spectrometers. The chemical shifts in <sup>1</sup>H NMR and <sup>13</sup>C NMR spectra were referenced to the solvents for methanol- $d_4$  ( $\delta_{\rm H}$  3.31 and  $\delta_{\rm C}$  49.0), and DMSO- $d_6$  ( $\delta_{\rm H}$  2.50 and  $\delta_{\rm C}$  39.6).

Column chromatography was performed using silica gel (200–300 mesh, Yantai Jiangyou Silica Gel Development Co., Ltd., Yantai, China), RP-C18 (AAG12S50, YMC Co., Ltd.), and Sephadex LH-20 (GE Healthcare). Fermentation crude extracts of *Streptomyces* sp. CB02130 and its mutants and purified natural products were analyzed on the ACQUITY UPLC (Ultra Performance Liquid Chromatography) system (Waters), equipped with a PDA detector and a C-18 column ( $1.7 \ \mu$ m,  $2.1 \times 100 \ m$ m, ACQUITY UPLC BEH C18). The flow rate was applied at 0.3 mL min<sup>-1</sup>. Alternatively, the Waters E2695 HPLC (High Performance Liquid Chromatography) system, equipped with a PDA detector and a Welch AQ-C18 column ( $5 \ \mu$ m, 250 × 4.6 mm). The flow rate was applied at 1.0 mL min<sup>-1</sup>. The mobile phase consisted of buffer A (ultrapure H<sub>2</sub>O containing 0.1 % HCO<sub>2</sub>H) and buffer B (chromatographic grade CH<sub>3</sub>CN containing 0.1 % HCO<sub>2</sub>H). Semipreparative reversed phase-HPLC (RP-HPLC) was performed using a Waters 1525 binary HPLC pump equipped with a Waters 2489 UV/visible detector and a Welch Ultimate AQ-C18 column (250 × 10 mm, 5 \mum).

Oligonucleotide primer synthesis and DNA sequencing were performed by Tsingke (Changsha, China). Trelief<sup>™</sup> SoSoo cloning kit and Taq polymerase (Tsingke), restriction endonucleases, T4 DNA ligase (NEB), DNA gel extraction kit, and plasmid preparation kit (Sangon Biotech, Shanghai, China) were from commercial sources.

#### Strains and culture conditions.

The S. sp. CB02130 strain was previously isolated from Wuliang Mountain, at an altitude of 1900–2700 m in Yunnan province, China.<sup>1</sup> *Escherichia coli* DH5a was used for cloning and *E. coli* S17-1 was used for conjugation. (see **Table S3** for all plasmids and strains used). *E. coli* carrying plasmids were grown in Luria-Bertani (LB) medium at 37 °C for general cloning, and were selected with appropriate antibiotics.

S. sp. CB02130 and its mutants were cultured in 250-mL baffled flasks containing 50 mL tryptic soy broth (TSB) liquid medium for 48 h (30 °C, 220 rpm. Then the seed culture (3 mL) was transferred to the production medium (50 mL) containing (per liter) glucose 40 g, casamino acids 5 g, NaCl 5 g, MgSO<sub>4</sub> 2.5 g, K<sub>2</sub>HPO<sub>3</sub> 1 g, CaCO<sub>3</sub> 2 g. After fermentation for 7 days, the resulting culture supernatants were extracted by ethyl acetate (EtOAc) (50 mL × 3). The EtOAc fractions were concentrated to 2 mL in vacuum and analyzed by HPLC using a linear gradient of CH<sub>3</sub>CN in H<sub>2</sub>O with 0.1% formic acid (0–1 min, 20%; 1–20 min, 20%–60%; 20–26 min, 60%–80%; 26–30 min,80%; 30–35 min, 80%-20%; 35–38 min, 20%). Alternatively, 2% of macroporous resins (XAD-16N) was added in the production medium to absorb expected metabolites; the resins were subsequently extracted with MeOH (50 mL × 2) and concentrated to 2 mL. A aliquot of ~20 µL analyte was injected for HPLC analysis.

# Genome neighborhood network (GNN) analysis of biosynthetic gene clusters (BGCs) homologous to neocarzinostatin BGC and annotation of *wls* BGC

A total of 15 known enediyne BGCs, including, calicheamicin (*cal*), dynemycin (*dyn*), esperamicin (*esp*), sungeidine (*sgd*), tiancimycin (*tnm*), uncialamycin (*ucm*), yangpumicin (*ypm*), kedarcidin (*ked*), maduropeptin (*mdp*), C-1027 (*sgc*), neocarzinosatin (*ncs*), amycolamycin (*acm*), cyanosporaside C (*cya*), cyanosporaside F (*cyn*), sporolides (*spo*), and seven putative enediyne BGCs from CB02130, CB02261, CB00455, CB03578, CB02400, CB02009, and CB01883, which are homologous to neocarzinostatin BGC, were analyzed by GNN.<sup>1</sup> The resulting proteins (1172) were all used in an *all versus all* BLAST search by BLAST<sup>+</sup> with an *E*-value limit of 10<sup>-6</sup>. The determination of the *E*-value limit was based on the lowest similarity between apoproteins for 9-membered enediyne biosynthessi. Next, self-loops and undirected duplicates were deleted. Cytoscape v3.0 was then used for GNN generation,

visualization, and analysis. All GNNs were displayed using the "organic" layout with edge widths corresponding to the *E*-value between proteins.

The proteins belonging to *wls* BGC from *S*. sp. CB02130 were also identified based the comparison with the known enediyne BGCs and GNN analysis. If no homologous proteins were identified, a BlastP search against GenBank was then performed to deduce the putative function.

#### **Distribution of the WIsPDH homologs**

We performed a Blastp search against the nonredundant protein sequence database from NCBI (March 2, 2022) using WIsPDH as an in silico probe. A total of 67 proteins with over 50% sequence identity were identified, encoding putative prephenate dehydrogenases. Further antiSMASH 5.0 analyses of neighboring genes of these putative prephenate dehydrogenases led to the discovery of 67 putative enediyne BGCs. Since many of these 67 putative enediyne BGCs are highly homologous, we next used PKSE sequence identity cutoff ( $\geq$  93.86%) to filter them to 31 representative BGCs using CD-HIT. The 93.86% PKSE sequence identity threshold was selected by the same sequence identity between two PKSEs from previously identified C-1027 producers: *Streptomyces globisporus* and *Streptomyces* sp. CB02366.<sup>2</sup> Finally, all the proteins in the remaining 31 BGCs were used in an *all versus all* BLAST search using BLAST<sup>+</sup> and an *E*-value limit of 10<sup>-6</sup>. Cytoscape v3.4 was used for GNN visualization and analysis.

#### Gene replacement

For gene replacement of *wls*R3, two 2-kb fragments of the up-stream and down-stream of *wls*R3 were amplified from the genomic DNA of CB02130, with the primers wlsR3 UpF and wlsR3 UpR, or wlsR3 DnF and wlsR3 DnR. The resulting DNA fragments and a 919-bp thiostrepton-resistant gene (*tsr*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4001. The plasmid pYX4001 was next conjugated to C02130 from *E. coli* S17-1 to obtain thiostrepton-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and thiostrepton or thiostrepton only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and thiostrepton-resistance phenotype were obtained, yielding YX4001 ( $\Delta w/s$ R3). The gene replacement of *wlsR3* was further confirmed by PCR using primers wlsR3\_KOtest\_F and wlsR3\_KOtest\_R.

For gene replacement of *wls*R2, two 2-kb fragments of the up-stream and down-stream of *wls*R3 were amplified from the genomic DNA of CB02130, with the primers wlsR2 UpF and wlsR2 UpR, or wlsR2 DnF and wlsR2 DnR. The resulting DNA fragments and a 919-bp thiostrepton-resistant gene (*tsr*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4010. The plasmid pYX4001 was next conjugated to C02130 from *E. coli* S17-1 to obtain thiostrepton-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and thiostrepton or thiostrepton only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and thiostrepton-resistance phenotype were obtained, yielding YX4011 ( $\Delta w/s$ R2). The gene replacement of *wlsR2* was further confirmed by PCR using primers wlsR2\_KOtest\_F and wlsR2\_KOtest\_R.

For gene replacement of *wls*E, two 2-kb fragments of the up-stream and down-stream of *wls*E were amplified from the genomic DNA of CB02130, with the primers wlsE UpF and wlsE UpR, or wlsE DnF and wlsE DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4010. The plasmid pYX4001 was next conjugated toYX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4003 ( $\Delta wls$ R3/ $\Delta wls$ E). The gene replacement of *wlsE* was further confirmed by PCR using primers wlsE\_KOtest\_F and wlsE\_KOtest\_R.

For gene replacement of *wls*C4, two 2-kb fragments of the up-stream and down-stream of *wls*C4 were amplified from the genomic DNA of CB02130, with the primers wlsC4 UpF and wlsC4 UpR, or wlsC4 DnF and wlsC4 DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>™</sup> SoSoo cloning kit to obtain pYX4005. The plasmid pYX4005 was next conjugated to YX4001 from *E. coli* 

S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4005 ( $\Delta w/sR3/\Delta w/sC4$ ). The gene replacement of *w/sC4* was further confirmed by PCR using primers wlsC4\_KOtest\_F and wlsC4\_KOtest\_R.

For gene replacement of *wls*ORF3, two 2-kb fragments of the up-stream and down-stream of *wls*ORF3 were amplified from the genomic DNA of CB02130, with the primers *wls*ORF3 UpF and *wls*ORF3 UpR, or *wls*ORF3 DnF and *wls*ORF3 DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4006. The plasmid pYX4006 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4006 ( $\Delta wls$ R3/ $\Delta wls$ ORF3). The gene replacement of *wls*orf3 was further confirmed by PCR using primers wlsprf3\_KOtest\_F and wlsorf3\_KOtest\_R.

For gene replacement of *wls*ORF30, two 2-kb fragments of the up-stream and down-stream of *wlsORF30* were amplified from the genomic DNA of CB02130, with the primers wlsORF30 UpF and wlsORF30 UpR, or wlsORF30 DnF and wlsORF30 DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4007. The plasmid pYX4007 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin-resistance phenotype were obtained, yielding YX4007 ( $\Delta wls$ R3/ $\Delta wls$ ORF30). The gene replacement of *wls*ORF30 was further confirmed by PCR using primers wlsorf30\_KOtest\_F and wlsorf30\_KOtest\_R.

For gene replacement of *wls*PDH, two 2-kb fragments of the up-stream and down-stream of *wls*PDH were amplified from the genomic DNA of CB02130, with the primers wlsPDH UpF and wlsPDH UpR, or wlsPDH DnF and wlsPDH DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4008. The plasmid pYX4008 was next conjugated to YX4001 or CB02130 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants, yielding YX4008 ( $\Delta wls$ R3/ $\Delta wls$ PDH) or YX4009 ( $\Delta wls$ PDH). The gene replacement of *wls*PDH was further confirmed by PCR using primers wlsPDH\_KOtest\_F and wlsPDH\_KOtest\_R.

For gene replacement of *wls*F, two 2-kb fragments of the up-stream and down-stream of *wls*F were amplified from the genomic DNA of CB02130, with the primers wlsF UpF and wlsF UpR, or wlsF DnF and wlsF DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4009. The plasmid pYX4009 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4010 ( $\Delta wlsF/\Delta wlsR3$ ). The gene replacement of *wls*F was further confirmed by PCR using primers wlsF\_KOtest\_F and wlsF\_KOtest\_R.

For gene replacement of *wls*ORF8, two 2-kb fragments of the up-stream and down-stream of *wls*ORF8 were amplified from the genomic DNA of CB02130, with the primers wlsorf8\_UpF and wlsorf8\_UpR, or wlsorf8\_ DnF and wlsorf8\_DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4018. The plasmid pYX4018 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4018 (*Δwls*R3/*Δwls*ORF8). The gene replacement of

*wls*ORF8 was further confirmed by PCR using primers wlsorf8\_KOtest\_F and wlsorf8\_KOtest\_R.

For gene replacement of *wls*ORF24, two 2-kb fragments of the up-stream and down-stream of *wls*ORF24 were amplified from the genomic DNA of CB02130, with the primers wlsorf24\_UpF and wlsorf24\_UpR, or wlsorf24\_DnF and wlsorf24\_DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4019. The plasmid pYX4019 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin-resistance phenotype were obtained, yielding YX4019 ( $\Delta wls$ R3/ $\Delta wls$ ORF24). The gene replacement of *wls*ORF24 was further confirmed by PCR using primers wlsorf24\_KOtest\_F and wlsorf24\_KOtest\_R.

For gene replacement of *wlsL*, two 2-kb fragments of the up-stream and down-stream of *wlsL* were amplified from the genomic DNA of CB02130, with the primers wlsL\_UpF and wlsL\_UpR, or wlsL\_DnF and wlsL\_DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief TM SoSoo cloning kit to obtain pYX4020. The plasmid pYX4020 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4020 ( $\Delta w/sR3/\Delta w/sL$ ). The gene replacement of *wlsL* was further confirmed by PCR using primers wlsL\_KOtest\_F and wlsL\_KOtest\_R.

For gene replacement of *wls*E7, two 2-kb fragments of the up-stream and down-stream of *wls*E7 were amplified from the genomic DNA of CB02130, with the primers wlsE7\_UpF and wlsE7\_UpR, or wlsE7\_DnF and wlsE7\_DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief  $\mathbb{M}$  SoSoo cloning kit to obtain pYX4021. The plasmid pYX4021 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4021 ( $\Delta w/sR3/\Delta w/sE7$ ). The gene replacement of *wls*E7 was further confirmed by PCR using primers wlsE7\_KOtest\_F and wlsE7\_KOtest\_R.

For gene replacement of *wls*E9, two 2-kb fragments of the up-stream and down-stream of *wls*E9 were amplified from the genomic DNA of CB02130, with the primers wlsE9 UpF and wlsE9\_UpR, or wlsE9\_DnF and wlsE9\_DnR. The resulting DNA fragments and a 1490-bp kanamycin-resistant gene (*kana*) were cloned into pOJ260 using the Trelief<sup>TM</sup> SoSoo cloning kit to obtain pYX4022. The plasmid pYX4022 was next conjugated to YX4001 from *E. coli* S17-1 to obtain kanamycin-resistant ex-conjugants. The exconjugants were picked onto two types of MS plates containing apramycin and kanamycin or kanamycin only. After 4–5 days of growth at 30 °C, ex-conjugants with apramycin-sensitive and kanamycin-resistance phenotype were obtained, yielding YX4022 ( $\Delta w/sR3/\Delta w/sE9$ ). The gene replacement of *w/sE9* was further confirmed by PCR using primers wlsE9\_KOtest\_F and wlsE9\_KOtest\_R.

#### Overexpression of genes belonging to w/s BGC in CB02130

The putative regulatory genes, *wls*R1, *wls*R3, *wls*R5, *wls*R6, *wls*R7 were amplified from the genomic DNA of CB02130, using primers wlsR1\_F/R, wlsR3\_F/R, wlsR5\_ F/R, wlsR6\_F/R, wlsR7\_F/R. The resulting DNA fragments were purified and ligated to a modified plasmid-based on pSET152 to place them under the control of *ermE* promoter, <sup>3</sup> resulting in gene overexpressing plasmids pYX4011, pYX4002, pYX4012, pYX4013, and pYX4014. These plasmids were similarly conjugated to CB02130 to result in strains YX4012, YX4013, YX4014, YX4015. In addition, pYX4002 was also introduced to YX4001 ( $\Delta wls$ R3) to afford YX4002. For investigation of regulator genes in combination to produce the mature enediyne product, pYX4013 and pYX4011 were also introduced to YX4001 ( $\Delta wls$ R3) to afford YX4023 and YX4024, respectively.

# Co-expression of wIsE/wIsE10 and $PKSE_{CB02366}/WIsE10$ for complementation of $\Delta wIsE/\Delta wIsR3$

WIsE and WIsE10 were amplified by PCR from the genomic DNA of CB02130 with the primers C-wlsEE10\_F and C-wlsEE10\_R. The resulting DNA fragments were purified and ligated to a pSET152 plasmid containing an ermE\* promoter, digested with Xbal and HindIII to yield pYX4015. PKSE<sub>CB02366</sub> was amplified by PCR from genomic DNA of CB02366 with the primers C-2366E F and C-2366E R.The PCR product was purified and ligated directly into pSET152, yielding pYX4016. The DNA fragment of ermE\*-PKSE<sub>CB02366</sub> was subcloned from pYX4016 with the primers C-2366EwlsE10\_F and C-2366EwlsE10\_R. W/sE10 was amplified by PCR from genomic DNA of CB02130 with the primers C-wlsE10\_F and C-wlsE10\_R. The two DNA fragments ermE\*-PKSE<sub>CB02366</sub> and w/sE10 were cloned into pSET152 using the Trelief<sup>™</sup> SoSoo cloning kit to obtain pYX4017.The plasmids pYX4015 and pYX4017 were conjugated to  $\Delta w ls E / \Delta w ls R3$ to result strains YX4016 separately in (w/sEw/sE10/\Deltaw/sE/\Deltaw/sR3) and YX4017 (PKSECB02366 w/sE10/\Deltaw/sE/\Deltaw/sR3).

#### Large-scale fermentation, isolation of 5-9

To isolate compounds **8** – **9**, YX4001( $\Delta w$ /sR3) was cultured in two 1.5-L flasks containing 500 mL of TSB. After growth at 30 °C for 2 days, 50 mL of seed culture were inoculated into fifty 2.5-L baffled flasks containing 500 mL of production medium. After fermentation for 7 days (30 °C, 220 rpm), The resulting fermentation supernatant was acidified by addition of HCl to pH = 4 and extracted with EtOAc (25 L x 3). The extract (15 g) was fractionated by silica-gel column chromatography eluted with petroleum ether (PE)/EtOAC (v/v, 10:1, 6:1, 4:1, 2:1, 1:1, 1:2) to give 18 fractions (Fr1–Fr18). Further isolation was guided by HPLC analysis, which showed that 9 was mainly in Fr13 (3.3 g) and 8 was mainly in Fr16 (1.66 g). Fr13 was further fractionated by silica-gel column chromatography eluted with CH<sub>2</sub>Cl<sub>2</sub>/MeOH (v/v, 100:1, 100:2, 100:3, 100:4, 100:5, 100:6, 100:7, 100:8) to give 24 fractions (C1–C24). Fraction C22 (237 mg) was subjected to a Sephadex LH-20 chromatography and eluted by methanol to yield 12 fractions (M1-M12). The fractions of M8 and M9 were pooled and further purified by semi-preparative RP-HPLC, using a linear gradient of CH<sub>3</sub>CN in H<sub>2</sub>O with 0.1% formic acid (0-2 min, 20%; 2-12 min, 20%-30%; 12-14 min, 30%; 14-16min, 30%-70%; 16-20 min, 70%-20%; 20-22 min, 20%) at a flow rate of 3.0 mL/min flow rate to give 9 (5 mg). Fr16 (1.66 g) were similarly purified from Fr13 to afford 8 (9 mg).

To isolate compounds **5** – **7**, YX4008 ( $\Delta w/s$ PDH/ $\Delta w/s$ R3) was cultured in 60 2.5-L baffled flask containing 500 mL production medium and 10 g (wet) XAD-16N resin. After fermentation for 7 days, the resins containing **5** – **7** were separated by filtering through a metal sieve (60 mesh), washed with H<sub>2</sub>O, and dried in air at room temperature. The resins were then extracted by PE (2 × 2 L) and MeOH (4 × 2 L). The methanol extract was concentrated in vacuum under 37 °C. The crude extract (33.55 g) was dissolved EtOAC : H<sub>2</sub>O (1 : 1) (2 L) and further extracted with EtOAC (1 L × 3). Next, the organic phase was dried in vacuum (8.9 g) and subjected to ODS column to give 21 fractions (O1–O21) by stepwise elution with 20%, 25%, 30%, 35%, 40%, 45%, 50% MeOH in H<sub>2</sub>O. Fraction O15 (105 mg) containing **5** was next subjected to a Sephadex LH-20 chromatography eluted by methanol to yield 16 fractions (Y1–Y16). Fraction Y9 (15 mg) was further purified for two times by semi-preparative RP-HPLC to give **5** (1.8 mg), using a gradient of CH<sub>3</sub>CN in H<sub>2</sub>O (0–14 min, 25%–30%; 14–18 min, 30%–70%; 18–23 min, 70%–25%; 23–25 min, 25%) at a flow rate of 3.0 mL/min.

Fraction O14 (56 mg) containing **6** and **7** were similarly purified by Sephadex LH-20 chromatography and semi-preparative RP-HPLC to afford **6** (0.3 mg) and **7** (0.5 mg), using a gradient of CH<sub>3</sub>CN in H<sub>2</sub>O (0–18 min, 20%; 18–20 min, 20%–50%; 20–25 min, 50%; 25–30 min, 50%–20%; 30–33 min, 20%) at a flow rate of 3.0 mL/min flow rate

Compound **5**: white amorphous powder.  $[\alpha]_D^{25}$  0 (c 0.09, MeOH); UV (MeOH):  $\lambda_{max}$  = 302.1, 316.5, 331.4, 348.2 nm. HR-ESI-MS m/z: 289.1416 [M + Na]<sup>+</sup>. *Calcd* for C<sub>15</sub>H<sub>22</sub>NaO<sub>4</sub>; Found 289.1403.

Compound **6**: white amorphous powder.  $[\alpha]_{D^{25}}$  +149 (c 0.0428, MeOH); UV (MeOH):  $\lambda_{max}$  =301.9, 316.2, 331.1, 348.2 nm. HR-ESI-MS m/z: 289.1416 [M + Na]<sup>+</sup>. *Calcd* for C<sub>15</sub>H<sub>22</sub>NaO<sub>4</sub>; Found 289.1407.

Compound **7**: white amorphous powder. UV (MeOH):  $\lambda_{max} = 302.1$ , 316.2, 331.4, 348.2. APCI-HR-MS m/z: 249.1491 [M - C<sub>3</sub>H<sub>6</sub>O<sub>2</sub> + H]<sup>+</sup>. *Calcd* for C<sub>15</sub>H<sub>20</sub>O<sub>3</sub>; Found 249.1474. Please refer to a mechanistic proposal for the fragment ion in **Figure S6**.

Compound **8**: white amorphous powder. UV (MeOH): λ max =219.7, 241.0, 295.5, 323.0 nm. HR-ESI-MS m/z: 181.0493 [M + H]<sup>+</sup>. *Calcd* for C<sub>9</sub>H<sub>9</sub>O<sub>4</sub>; Found 181.0501.

Compound **9**: white amorphous powder. UV (MeOH): λ max =219.7, 237.5, 296.35, 323.0 nm. HR-ESI-MS m/z: 195.0650 [M + H]<sup>+</sup>. *Calcd* for C<sub>10</sub>H<sub>11</sub>O<sub>4</sub>; Found 195.0657.

#### Co-expression of WIsE/WIsE10 for heptaene production in E. coli.

The genes for *Wls*E and *Wls*E10 were amplified by PCR from genomic DNA of CB02130 with the primers wlsEE10\_F and wlsEE10\_R. The resulting DNA fragments were purified and ligated to a pET28a plasmid digested with *Ndel* and *Hind*III, yielding pET28a-*wls*EE10. pET28a-*wls*E/E10 was introduced into *E. coli* BL21(DE3) to result in a strain expression WlsE/E10. This strain was grown in LB media supplemented with kanamycin (50  $\mu$ g/mL) at 37 °C to OD<sub>600</sub> = 0.6. Protein expression was induced with isopropyl thiogalactoside (IPTG) at a final concentration of 0.1 mM. After 6 hours at 16 °C, cells were pelleted (4 000 rpm, 10 min) and extracted with MeOH (50 mL × 2). The obtained extract was concentrated to 2 mL and subjected to HPLC analysis.

#### Expression and purification of WIsC4 from *E. coli* BL21 (DE3).

The *wls*C4 gene was amplified by PCR from genomic DNA of CB02130 with the primers wlsC4\_F and wlsC4\_R. The 1633-bp PCR product was digested with *Ndel* and *Hind*III, and ligated directly into pET28a (Novagen) expression vector cleaved with the same enzymes. The resultant ligation product was transferred into *E. coli* DH5a and plated onto LB plates containing 50  $\mu$ g/mL kanamycin. After overnight incubation at 37 °C, positive white colonies were picked for isolation of recombinant expression plasmid and confirmed by DNA sequencing, which was subsequently introduced into *E. coli* BL21(DE3) to express the target protein.

*E. coli* BL21(DE3) harboring pET28b-*wls*C4 was cultivated in 500 mL LB supplemented with 50 µg/mL kanamycin (37 °C, 220 rpm). After the optical density of the fermentation culture reached to  $OD_{600} = 0.4 \sim 0.6$ , it was first placed at a shaker under 16 °C for 30 min. Next, IPTG was added to the final concentration of 0.1 mM and the culture was futher cultivated for 22 hrs at 16 °C. The resulting *E. coli* cells were collected by centrifugation, resuspended in phosphate buffered saline (PBS) (100 mM, pH = 7.4), and lysed by sonication on ice. The cellular debris were removed through centrifugation for 10 min (4 000 rpm, 4 °C). WIsC4 was then purified from the resulting supernatant using Ni-NTA agarose resin-based chromatography, and the recombinant His<sub>6</sub>-tagged WIsC4 was obtained by elution with the elution buffer (PBS, pH = 7.4, 250 mM imidazole). WIsC4 was then desalted by dialysis with PBS (pH = 7.4) on ice for 8 hours and concentrated using protein ultrafiltration tube (Millipore, 10000 MWCO). The purity of the isolated protein was determined by SDS-PAGE, and its concentration was determined by BCA Protein quantification kit (Beijing Dingguo Changsheng Biotechnology Co., Ltd).

#### In vitro enzyme assay of WIsC4.

The purified His<sub>6</sub>-tagged WIsC4 (40 µM) was incubated with L-phenylalanine (2 mM) or Ltyrosine (2 mM) as a substrate to test its enzymatic activity in Tris-HCI (100 mM, pH 8.8) at 25 °C for 4 h. The reaction was terminated by addition of HCI to pH < 2. The quenched mixture (100 µL) was centrifuged for 15 min (15 000 rpm, 4 °C) and the supernatant was analyzed by LC-MS (1.7 µm, 2.1 × 100 mm, Waters) using a linear gradient of CH<sub>3</sub>CN in H<sub>2</sub>O with 0.1% formic acid (0–5 min, 1%–5%; 5–15 min, 5%–25%; 15–18 min, 25%; 18–24 min, 25%–1%; 24–27 min, 1%) at a flow rate of 0.4 mL/min. **Table S1**. List of genes in *wls* BGC and their proposed functions. The genes that are not found in known enediyne BGCs are shaded in light blue, whereas the genes from the minimal enediyne PKS gene cassette are shaded in light green.

| Gene         | AA<br>a | Putative Function                             | Protein homologs <sup>a</sup> | Identity (%) | Proposed roles in <i>wls</i> |
|--------------|---------|-----------------------------------------------|-------------------------------|--------------|------------------------------|
| w/sorf1      | 495     | Transmembrane efflux protein                  | SgcB (AAL06672)               | 32.42        | Resistance                   |
| w/sorf2      | 431     | Cytochrome P450 hydroxylase                   | SgcD3 (AAL06684)              | 33.41        | Unknown                      |
| w/sorf3      | 344     | Chorismatase                                  | FkbO (Q9KID9.1)               | 45.43        | Unknown                      |
| w/sC1        | 494     | A-domain type II peptide synthetase           | SgcC1 (AAL06681)              | 30.19        | β-tyrosine biosynthesis      |
| w/sC4        | 537     | Ammonia lyases                                | SgcC4 (AAL06680)              | 80.45        | β-tyrosine biosynthesis      |
| w/sB         | 538     | Transmembrane efflux protein                  | SgcB (AAL06672)               | 46.56        | Resistance                   |
| wlsApo       | 147     | Apoprotein                                    | CagA (AAL06658)               | 37.67        | Apoprotein                   |
| w/sorf8      | 466     | Monooxygenase                                 | SpoT4 (ABP55175)              | 31.71        | Unknown                      |
| w/sorf9      | 510     | C-methyltransferase                           | SpoT6 (ABP55177)              | 48.62        | Unknown                      |
| <i>wls</i> F | 389     | Epoxide hydrolase                             | SgcF (AAL06662)               | 69.09        | Core biosynthesis            |
| w/sB1        | 469     | Glycerol phosphate ABC transporter            | SgcB1 (AAL06653)              | 49.66        | Resistance                   |
| w/sH         | 459     | Coenzyme F390 synthase-like protein           | SgcH (AAL06673)               | 81.99        | Naphthoic acid biosynthesis  |
| w/sD1        | 211     | Anthranilate synthase II                      | SgcD1 (AAL06663)              | 77.08        | Naphthoic acid biosynthesis  |
| wlsD         | 493     | 2-Amino-4-deoxychorismate synthase            | SgcD (AAL06664)               | 71.46        | Naphthoic acid biosynthesis  |
| wlsD5        | 478     | Phenylacetyl-CoA ligase                       | SgcD5 (AAL06665)              | 77.27        | Naphthoic acid biosynthesis  |
| w/sG         | 223     | 2-Amino-4-deoxychorismate dehydrogenase       | SgcG (AAL06666)               | 85.59        | Naphthoic acid biosynthesis  |
| w/sD3        | 412     | Cytochrome P450 hydroxylase                   | SgcD3 (AAL06684)              | 70.66        | Naphthoic acid biosynthesis  |
| w/sD4        | 335     | O-methyltransferase                           | SgcD4 (AAL06683)              | 74.32        | Naphthoic acid biosynthesis  |
| w/sB4        | 702     | Antibiotic transporter                        | SgcB4 (AAL06682)              | 68.09        | Unknown                      |
| wlsl         | 262     | Hydrolase                                     | Sgcl (AAL06675)               | 45.86        | Naphthoic acid biosynthesis  |
| wlsD6        | 432     | 3-O-Acyltransferase                           | SgcD6 (AAL06667)              | 40.24        | Naphthoic acid coupling      |
| wlsT2        | 605     | NRPS A-PCP didomain                           | SpoT2 (ABP55169.1)            | 59.05        | Unknown                      |
| wlsC5        | 456     | C-domain type II peptide synthetase           | SgcC5 (AAL06678)              | 43.60        | β-tyrosine coupling          |
| wlsorf24     | 411     | Hydroxylase                                   | Spoorf17                      | 68.41        | Unknown                      |
| wlsorf25     | 416     | Cytochrome P450 hydroxylase                   | NcsB3 (AAM77997)              | 52.49        | Naphthoic acid biosynthesis  |
| w/sD2        | 448     | FAD-binding monooxygenase                     | SgcD2 (AAL06669)              | 58.44        | Naphthoic acid biosynthesis  |
| wlsJ         | 140     | NTF2-Like Superfamily Protein                 | SgcJ (AAL06676)               | 62.28        | Core biosynthesis            |
| w/sL         | 416     | Oxidoreductase                                | SgcL (AAL06685)               | 65.74        | Unknown                      |
| wlsC         | 526     | Chlorophenol-4-monooxygenase                  | SgcC (AAL06674)               | 74.56        | β-tyrosine biosynthesis      |
| wlsORF30     | 553     | 2-hydroxyacyl-CoA lyase 2                     | llvbl (Q6DDK5.1)              | 35.96        | Unknown                      |
| w/sorf31     | 332     | O-Methyltransferase domain-containing protein | NcsB1 (AAM77984)              | 27.04        | β-tyrosine biosynthesis      |
| w/sPDH       | 298     | Probable prephenate dehydrogenase NovF        | NovF(Q9L9G2.1)                | 39.22        | Unknown                      |
| w/sE11       | 265     | Unknown                                       | NcsE11 (AAM78004)             | 69.08        | Core biosynthesis            |
| w/sM         | 344     | Unknown                                       | SgcM (AAL06686)               | 56.01        | Core biosynthesis            |
| wlsE9        | 555     | Oxidoreductase                                | NcsE9 (AAM78005)              | 80.99        | Core biosynthesis            |
| wlsE8        | 195     | Unknown                                       | NcsE8 (AAM78006)              | 74.87        | Core biosynthesis            |
| w/sR6        | 357     | Regulatory protein                            | NcsR6 (AAM78007)              | 57.27        | Regulation                   |
| wlsR5        | 260     | AraC family transcriptional regulator         | NcsR5 (AAM78008)              | 66.29        | Regulation                   |
| w/sE7        | 447     | Cytochrome P450                               | NcsE7 (AAM78009)              | 77.70        | Core biosynthesis            |
| w/sE6        | 182     | Flavin reductase                              | NcsE6 (AAM78010)              | 70.56        | β-tyrosine biosynthesis      |

| wlsE10 | 152  | Type II thioesterase                  | NcsE10 (AAM78011) | 84.31 | Core biosynthesis |
|--------|------|---------------------------------------|-------------------|-------|-------------------|
| w/sE   | 1957 | Enediyne polyketide synthase          | NcsE (AAM78012)   | 74.89 | Core biosynthesis |
| wlsE5  | 350  | Unknown                               | NcsE5 (AAM78013)  | 75.56 | Core biosynthesis |
| wlsE4  | 616  | Unknown                               | NcsE4 (AAM78014)  | 77.60 | Core biosynthesis |
| wlsE3  | 307  | Unknown                               | NcsE3 (AAM78015)  | 72.64 | Core biosynthesis |
| wlsE2  | 325  | Unknown                               | NcsE2 (AAM78016)  | 64.83 | Core biosynthesis |
| w/sE1  | 147  | HxIR family transcriptional regulator | NcsE1 (AAM78017)  | 71.43 | Regulation        |
| wlsR7  | 404  | Transcriptional regulator             | NcsR7 (AAM78019)  | 58.90 | Regulation        |
| wlsR3  | 216  | TetR-like transcriptional regulator   | NcsR3 (AAM78020)  | 47.57 | Regulation        |
| wlsC2  | 316  | Autoregulator biosynthesis protein    | NcsC2 (AAM78021)  | 54.38 | Regulation        |
| wlsR2  | 208  | γ-Butyrolactone receptor protein      | NcsR2 (AAM78022)  | 61.58 | Regulation        |
| wlsR1  | 293  | γ-Butyrolactone biosynthesis enzyme   | NcsR1 (AAM78023)  | 61.30 | Regulation        |

<sup>a</sup>Given in parentheses are NCBI accession numbers. Homologue proteins from the C-1027 and neocarzinostatin pathway were selected for comparison. If no homologue protein was found within the C-1027 and neocarzinostatin gene clusters, homologues from other known enediyne gene clusters, including calicheamicin (*cal*), dynemycin (*dyn*), esperamicin (*esp*), sungeidine (*sgd*), tiancimycin (*tnm*), uncialamycin (*ucm*), yangpumicin (*ypm*), kedarcidin (*ked*), maduropeptin (*mdp*), amycolamycin (*acm*), cyanosporaside C (*cya*), cyanosporaside F (*cyn*), sporolides (*spo*), were firstly selected over others genes in GenBank.

| Primer name       | Sequence (5'–3 ')                          | Function                                             |  |
|-------------------|--------------------------------------------|------------------------------------------------------|--|
| wlsR2 UpF         | cgaatgtgaacagttccatgatcttgctgatgctgg       | Amplifying upstream DNA fragment of WeB2             |  |
| wlsR2 UpR         | gcggccgcggatcctctagagcaggacgtcgttttgttct   | Ampinying upsiream DNA hagment of wisk2              |  |
| wlsR2 DnF         | acgacggccagtgccaagcttagcatggtgagacaggagagg | Amplifying downstream DNA fragment of wlsR2          |  |
| wlsR2 DnR         | caaccgataatcgatgtggcggatcatgc              | Ampinying downstream DNA hagment of wishz            |  |
| wlsR2_tsrF        | ccgccacatcgattatcggttggccgcga              | Amplifying this strenton resistance gene for pYX/010 |  |
| wlsR2_tsrR        | tcatggaactgttcacattcgaacggtctctg           |                                                      |  |
| wlsR2_KOtest_F    | agagcgttcaacagttctgc                       | Comfirming w/sP2 deletion in CR02130                 |  |
| wlsR2_KOtest_R    | cctggggtgagatcgagtac                       |                                                      |  |
| wlsR3 UpF         | cgaatgtgaacagctgtctcctgaagagcgc            | Amplifying upstream DNA fragment of w/sP3            |  |
| wlsR3 UpR         | gcggccgcggatcctctagaagcgcagctcgacgtg       |                                                      |  |
| wlsR3 DnF         | gacggccagtgccaagcttatctccgcaggggagctg      | Amplifying downstream DNA fragment of w/sR3          |  |
| wlsR3 DnR         | caaccgataaagtgcctccgcgtcag                 | Ampinying downstream DNA hagment of wisks            |  |
| wlsR3_tsrF        | cgcggaggcactttatcggttggccgcgagattc         | Amplifying this stranton resistance gone for pY4001  |  |
| wlsR3_tsrR        | caggagacagctgttcacattcgaacggtctctgc        | Amplifying mostrepton resistance gene for px4001     |  |
| wlsR3_KOtest_F    | agcctggcagtggaagg                          | Comfirming w/sP2 deletion in CR02130                 |  |
| wlsR3_KOtest_R    | gacttctggtacgacagccg                       |                                                      |  |
| wlsE UpF          | cacattccacagggtgaagggcacctcgg              | Amplifying upstroom DNIA fragment of w/sE            |  |
| wlsE UpR          | gcggccgcggatcctctagaggcttcgccaagaccg       |                                                      |  |
| wlsE DnF          | cgacggccagtgccaagcttctcctcgaagccgaccg      | Amplifying downstream DNA fragment of w/sE           |  |
| wlsE DnR          | acgagttcttctgacgcctcatcgaggatccg           |                                                      |  |
| wlsE_kanaF        | cgatgaggcgtcagaagaactcgtcaagaaggcg         | Amplifying kanamycin resistance gone for pYX4002     |  |
| wlsE_kanaR        | gtgcccttcaccctgtggaatgtgtcagttagggt        |                                                      |  |
| wlsE_KOtest_F     | caggttgccgtcgagcagatg                      | Confirming w/sE dolotion in Aw/sP3                   |  |
| wlsE_KOtest_R     | catcgccggtctctccgtc                        |                                                      |  |
| wlsorf3_UpF       | cgacggccagtgccaagcttccggtgctcccggatttctg   | Amplifying unstream DNA fragment of w/sorf3          |  |
| wlsorf3_UpR       | acgagttcttctgagccgctatggccgtacgtc          | Ampinying upstream DNA hagment of wisons             |  |
| wlsorf3_DnF       | cacattccacaggtggagatcgaaggagtctgcc         | Amplifying downstream DNA fragment of w/sorf3        |  |
| wlsorf3_DnR       | gcggccgcggatcctctagacagctcctccagcatggcc    |                                                      |  |
| wlsorf3_kanaF     | ccatagcggctcagaagaactcgtcaagaaggcg         | Amplifying kanamycin resistance gong for pYX4006     |  |
| wlsorf3_kanaR     | cttcgatctccacctgtggaatgtgtcagttagggt       | Ampinying kanamycin resistance gene for prix4000     |  |
| wlsorf3_KOtest_F  | caccetggaetgeetetteg                       | Confirming w/corf3 dolotion in A w/cP3               |  |
| wlsorf3_KOtest_R  | cgaggaaggcccagacgaac                       |                                                      |  |
| wlsORF30 UpF      | cgacggccagtgccaagcttacccaccggttcttcaccacac | Amplifying upstream DNA fragment of w/sORE30         |  |
| wlsORF30 UpR      | acgagttcttctgacggtcgaaacgtccggc            | Amplifying upstream DNA magnetic of WisoN1 30        |  |
| wlsORF30 DnF      | cacattccacagcgtcacgaggatgttcccgc           | Amplifying downstroom of w/sOPE20                    |  |
| wlsORF30 DnR      | gcggccgcggatcctctagaccggaactgagcgacaccg    | Ampiliying downstream of <i>WisolAl</i> 30           |  |
| wlsORF30_kanaF    | gtttcgaccgtcagaagaactcgtcaagaaggcg         | Amplifying kanamycin resistance gone for pYX4007     |  |
| wlsORF30_kanaR    | atcctcgtgacgctgtggaatgtgtgtcagttagggt      |                                                      |  |
| wlsORF30_KOtest_F | tgtcggcgaaggacatggtcg                      | Confirming w/sORE30 deletion in Aw/sR3               |  |
| wlsORF30_KOtest_R | cgaagccgtgggcaggac                         |                                                      |  |
| wlsPDH UpF        | cgacggccagtgccaagcttgccgatcaggtctcccggtag  | Amplifying unstream DNA fragment of w/sPDH           |  |
| wlsPDH UpR        | acgagttcttctgaacggtgcgagatgcgtgc           | Anipinying upstean DIVA nayinen of wish DIT          |  |

| wlsPDH DnF       | cacattccacagcagagccacttcgacgctcg              | Amplifying downstream DNA fragment of <i>wls</i> PDH  |  |
|------------------|-----------------------------------------------|-------------------------------------------------------|--|
| wlsPDH DnR       | gcggccgcggatcctctagaaagctcgccaccctgacc        |                                                       |  |
| wlsPDH _kanaF    | ctcgcaccgttcagaagaactcgtcaagaaggcg            | Amplifying kanamycin resistance cassette for pVX4008  |  |
| wlsPDH _kanaR    | gaagtggctctgctgtggaatgtgtgtcagttagggt         | Amplifying kanamycin resistance cassette for prix4000 |  |
| wlsPDH _KOtest_F | acccagccgaagtcggagag                          | Confirming w/sPDH deletion in Aw/sP3                  |  |
| wlsPDH _KOtest_R | gacctcgctcaggcctaccg                          |                                                       |  |
| wlsC4 UpF        | cgacggccagtgccaagcttacttcgccaggaagctggc       | Amplifying upstream DNA fragment of w/sC4             |  |
| wlsC4 UpR        | acgagttcttctgagacgccgtagatgggaacgt            |                                                       |  |
| wlsC4 DnF        | cacattccacaggcctccaaggccacgtacg               | Amplifying downstream DNA fragment of w/sC4           |  |
| wlsC4 DnR        | gcggccgcggatcctctagaacagcaaccagcagctgtgg      |                                                       |  |
| wlsC4 _kanaF     | ctacggcgtctcagaagaactcgtcaagaaggcg            | Amplifying kanamycin resistance gene for pYX/005      |  |
| wlsC4_kanaR      | gccttggaggcctgtggaatgtgtcagttagggt            |                                                       |  |
| wlsC4 _KOtest_F  | tcacctcctgccgcacg                             | Confirming w/sC4 deletion in Aw/sR3                   |  |
| wlsC4 _KOtest_R  | tcgacgtcggtgtacctggc                          |                                                       |  |
| wlsF UpF         | cgacggccagtgccaagcttacatcgtggtgattcatggcgg    | Amplifying upstream DNA fragment of wlsF              |  |
| wlsF UpR         | gttcttctgaacgccagtcgaacgaggtg                 | Amplifying upstream DNA hagment of wish               |  |
| wlsF DnF         | cacattccacagatcgtccactggacggagttcg            | Amplifying downstream DNA fragment of w/sE            |  |
| wlsF DnR         | gcggccgcggatcctctagaatcgccgaggacttcaagcgc     | Amplifying downstream DIVA hagment of wish            |  |
| wlsF_kanaF       | ctcgttcgactggcgttcagaagaactcgtcaagaaggcg      | Amplifying kanamycin resistance gene for pXX/009      |  |
| wlsF_kanaR       | gtccagtggacgatctgtggaatgtgtgtcagttagggt       |                                                       |  |
| wlsF_KOtest_F    | agagcggcggacgatacg                            | Confirming w/sE deletion in Aw/sB3                    |  |
| wlsF_KOtest_R    | accgcgaagtagtactccgc                          |                                                       |  |
| wlsR1_F          | cttgggctgcaggtcgactctagagcggtgtgtcggttcg      | Amplifying w/sR1 gene                                 |  |
| wlsR1_R          | tcgtgccggttggtaggatccccacaccactgataggtccg     |                                                       |  |
| wlsR5_F          | tcgtgccggttggtaggatccactggccctgcattgttc       | Amplifying w/sP5 gene                                 |  |
| wlsR5_R          | tgggctgcaggtcgactctagaagggaaggaaggagggc       |                                                       |  |
| wlsR6_F          | tgggctgcaggtcgactctagatgtctttgagatcatgctccagg | Amplifying w/sP6 gene                                 |  |
| wlsR6_R          | tcgtgccggttggtaggatcccctgtgaagcaactagccg      |                                                       |  |
| wlsR7_F          | tgggctgcaggtcgactctagaagtcgtcccgggttcc        | Amplifying w/sP7 gene                                 |  |
| wlsR7_R          | tcgtgccggttggtaggatccacttggcgaagtgcatacg      |                                                       |  |
| wlsR3_F          | cttgggctgcaggtcgactctagaacgcggaggcactcccg     | Amplifying w/sR3 gene                                 |  |
| wlsR3_R          | aatcgtgccggttggtaggatccaactcgcccttgccatcgg    |                                                       |  |
| wlsC4_F          | aataagctttcagcgcaactcgacgtc                   | Amplifying w/sC4 gene for pET28a-w/sC4                |  |
| wlsC4_R          | tgaattccatatgacctcagtcgagaccacc               |                                                       |  |
| wlsEE10_F        | tcgagtgcggccgcaagcttagggtgctcacgccgc          | Amplifying w/sEE10 gene for pET28a-w/sE/E10           |  |
| wlsEE10_R        | gtgccgcggcagccatatgagcgaagagaccgtgaccgac      | Autphlying Wallero general perzoa Wallero             |  |
| C-wlsEE10_F      | cttgggctgcaggtcgactctagaagggtgctcacgccgc      | Amplifying w/sEE10 gene for pYX4015                   |  |
| C-wlsEE10_R      | aatcgtgccggttggtaggatccagcgaagagaccgtgaccgac  |                                                       |  |
| C-2366E_F        | cttgggctgcaggtcgactctagacgtgctcatgtgcgggc     | Amplifying 2366F gene for pYX4016                     |  |
| C-2366E_R        | aatcgtgccggttggtaggatccacgagccacgaagaacaaggc  |                                                       |  |
| C-wlsE10_F       | ggtaccgagcagggtgctcacgccgc                    | Amplifying w/sE10 gene for pYX4017                    |  |
| C-wlsE10_R       | atcgtgccggttggtaggatccttcgccttcctcactcgcga    |                                                       |  |
| C-2366EwlsE10_F  | cttgggctgcaggtcgactctagacgtgctcatgtgcgggc     | Amplifying 2366E gene for pYX4017                     |  |
| C-2366EwlsE10_R  | gtgagcaccctgctcggtaccagcccgag                 |                                                       |  |
| wlsorf8_UpF      | cgacggccagtgccaagcttaggcgctgaagcgggc          | Amplifying upstream DNA fragment of wlsorf8           |  |

| wlsorf8_UpR       | gagttcttctgagaacgccactgcgccgtg               |                                                     |  |
|-------------------|----------------------------------------------|-----------------------------------------------------|--|
| wlsorf8_DnF       | cacattccacagggaggcggaagcgtgtccg              | Amplifying downstream DNA fragment of w/sorf8       |  |
| wlsorf8_DnR       | gcggccgcggatcctctagaagttccgcacgttggtgg       |                                                     |  |
| wlsorf8_KanaF     | cgcagtggcgttctcagaagaactcgtcaagaaggcg        | Amplifying kanamycin resistance gene for pYX/018    |  |
| wlsorf8_kanaR     | cttccgcctccctgtggaatgtgtgtcagttagggt         |                                                     |  |
| wlsorf8_KOtest_F  | aggcggtcacgttcaagtagc                        | Confirming w/sorf9 dolotion in Aw/sP3               |  |
| wlsorf8_KOtest_R  | aggaggcgaccgaggtct                           |                                                     |  |
| Wlsorf24_UpF      | cgacggccagtgccaagcttacggtggccgatgtgctcaac    | Amplifying upstroom DNA fragment of w/sorf24        |  |
| Wlsorf24_UpR      | gagttcttctgatccgccgtacctgcgc                 | Amplifying upstream DNA hagment of wison24          |  |
| Wlsorf24_DnF      | attccacaggcacgccacgcagtg                     | Amplifying downstream DNIA fragment of w/sorf24     |  |
| Wlsorf24_DnR      | gcggccgcggatcctctagaacgacggcacggtgttcc       | Amplifying downstream DNA hagment of wison24        |  |
| Wlsorf24_KanaF    | gcaggtacggcggatcagaagaactcgtcaagaaggcg       | Amplifying kanomyoin registence gone for pVX4010    |  |
| Wlsorf24_kanaR    | ctgcgtggcgtgcctgtggaatgtgtgtcagttagggt       | Amplifying kanamycin resistance gene for p174019    |  |
| Wlsorf24_KOtest_F | accgcttcgacgagtccac                          | Confirming whereful deletion in Awher               |  |
| WIsorf24_KOtest_R | acctcgccgttgacgaagg                          |                                                     |  |
| wlsL_UpF          | cgacggccagtgccaagcttagggtgtcgctcggttctagg    | Amplifying upstroom DNA fragment of wish            |  |
| wlsL_UpR          | gagttcttctgaaccaacaacgagctgtacggcc           |                                                     |  |
| wlsL_DnF          | cacattccacagacgcgtggggatgtcgg                | Amplifying downstream DNA fragment of <i>wls</i> L  |  |
| wlsL_DnR          | gcggccgcggatcctctagaacggcttcgaggagcacatgtacg |                                                     |  |
| wlsL_KanaF        | acagctcgttgttggttcagaagaactcgtcaagaaggcg     | Amplifying kanomycin registance gone for pXX4020    |  |
| wlsL_kanaR        | atccccacgcgtctgtggaatgtgtgtcagttagggt        |                                                     |  |
| wlsL_KOtest_F     | aggcctgggccatgaagg                           | Confirming w/sl. dolotion in Aw/sP3                 |  |
| wlsL_KOtest_R     | atgcgcctcatcgtggca                           |                                                     |  |
| wlsE7_UpF         | cgacggccagtgccaagcttaggtcgttcgctatcgtcgttg   | Amplifying unstream DNA fragment of w/sE7           |  |
| wlsE7_UpR         | agttcttctgaatggaggcggtcttcgtcac              |                                                     |  |
| wlsE7_DnF         | acacattccacagaccgagcaccttgcggga              | Amplifying downstroom DNIA fragment of w/sE7        |  |
| wlsE7_DnR         | gcggccgcggatcctctagaaaccaggtctgtgtgccggac    |                                                     |  |
| wlsE7_KanaF       | agaccgcctccattcagaagaactcgtcaagaaggcg        | Amplifying kanomycin registance gone for pVX/021    |  |
| wlsE7_kanaR       | aggtgctcggtctgtggaatgtgtcagttagggt           | Ampinying kanamych resistance gene for p1/4021      |  |
| wlsE7_KOtest_F    | actgcttcgtcggtctcttcc                        | Confirming w/sE7 deletion in Aw/sB3                 |  |
| wlsE7_KOtest_R    | acgagggaggtgaccacacg                         |                                                     |  |
| wlsE9_UpF         | cgacggccagtgccaagcttactgctggagagcggagttg     | Amplifying unstream DNA fragment of w/sEQ           |  |
| wlsE9_UpR         | cgagttcttctgaacgattctggcccaggcac             |                                                     |  |
| wlsE9_DnF         | cacattccacagacgctccaggacggtcac               | Amplifying downstroom DNA fragment of w/sEQ         |  |
| wlsE9_DnR         | gcggccgcggatcctctagaacgctgctgtatccgacctgg    |                                                     |  |
| wlsE9_KanaF       | ggccagaatcgttcagaagaactcgtcaagaaggcg         | Amplifying kanamyoin resistance gone for pYX4022    |  |
| wlsE9_kanaR       | gtcctggagcgtctgtggaatgtgtgtcagttagggt        | Aniphitying kananiyoni lesistance gene ior p1 A4022 |  |
| wlsE9_KOtest_F    | acgtgccgtatctgccgg                           | Confirming w/sEQ deletion in Aw/sP3                 |  |
| wlsE9_KOtest_R    | acgttctcgtcatcgggagc                         | Community wises deletion in Awises                  |  |

**Table S3.** List of bacterial strains and plasmids used in this study.

| Name                   | Description                                                                                                       | Reference or<br>Sources |
|------------------------|-------------------------------------------------------------------------------------------------------------------|-------------------------|
| <i>E. coli</i> DH5α    | General cloning host                                                                                              | Invitrogen              |
| E. coli S17-1          | Donor strain for conjugation                                                                                      | Invitrogen              |
| E. coli BL21 (DE3)     | Host strain for protein expression                                                                                | Invitrogen              |
| S. sp. CB02130         | wild-type strain isolated from Wuliangshan Mountain.                                                              | 1                       |
| YX4001                 | a mutant where w/sR3 was replaced by thiostrepton resistance cassette ( $\Delta$ w/sR3)                           | This study              |
| YX4002                 | YX4001 derivative where w/sR3 was overexpressed using pYX4002 (w/sR3/ $\Delta$ w/sR3)                             | This study              |
| YX4003                 | YX4001 derivative where w/sE was replaced by kanamycin resistance cassette (Δw/sE/Δw/sR3)                         | This study              |
| YX4004                 | YX4001 derivative where w/sE10 was replaced by kanamycin resistance cassette ( $\Delta$ w/sE10/ $\Delta$ w/sR3)   | This study              |
| YX4005                 | YX4001 derivative where w/sC4 was replaced by kanamycin resistance cassette (Δw/sC4/Δw/sR3)                       | This study              |
| YX4006                 | YX4001 derivative where w/sorf3 was replaced by kanamycin resistance cassette (Δw/sorf3/Δw/sR3)                   | This study              |
| YX4007                 | YX4001 derivative where w/sORF30 was replaced by kanamycin resistance cassette (Δw/sorf3/Δw/sR3)                  | This study              |
| YX4008                 | YX4001 derivative where w/sPDH was replaced by kanamycin resistance cassette (Δw/sPDH/Δw/sR3)                     | This study              |
| YX4009                 | a mutant where w/sPDH was disrupted by kanamycin resistance cassette ( $\Delta$ w/sPDH)                           | This study              |
| YX4010                 | YX4001 derivative where w/sF was replaced by kanamycin resistance cassette (Δw/sF/Δw/sR3)                         | This study              |
| YX4011                 | a mutant where w/sR2 was replaced by thiostrepton resistance cassette ( $\Delta$ w/sR2)                           | This study              |
| YX4012                 | a mutant where w/sR1 was overexpressed using pYX4011 (w/sR1)                                                      | This study              |
| YX4013                 | a mutant where w/sR5 was overexpressed using pYX4012 (w/sR5)                                                      | This study              |
| YX4014                 | a mutant where w/sR6 was overexpressed using pYX4013 (w/sR6)                                                      | This study              |
| YX4015                 | a mutant where w/sR7 was overexpressed using pYX4014 (w/sR7)                                                      | This study              |
| YX4016                 | YX4003 derivative where w/sE and w/sE10 was overexpressed using pYX4015 (w/sE/Δw/sR3)                             | This study              |
| YX4017                 | YX4003 derivative where PKSE <sub>CB02366</sub> and w/sE10 was overexpressed using pYX4016 (2366E/Δw/sR3)         | This study              |
| YX4018                 | YX4001 derivative where w/sORF8 was replaced by kanamycin resistance cassette ( $\Delta$ w/sORF8/ $\Delta$ w/sR3) | This study              |
| YX4019                 | YX4001 derivative where w/sORF24 was replaced by kanamycin resistance cassette (Δw/sORF24/Δw/sR3)                 | This study              |
| YX4020                 | YX4001 derivative where w/sL was replaced by kanamycin resistance cassette (Δw/LΔw/sR3)                           | This study              |
| YX4021                 | YX4001 derivative where w/sE7 was replaced by kanamycin resistance cassette ( $\Delta w/s$ E7/ $\Delta w/s$ R3)   | This study              |
| YX4022                 | YX4001 derivative where w/sE9 was replaced by kanamycin resistance cassette ( $\Delta w/sE9/\Delta w/sR3$ )       | This study              |
| YX4023                 | YX4001 derivative where w/sR6 was overexpressed using pYX4013 ( $\Delta$ w/sR6/ $\Delta$ w/sR3)                   | This study              |
| YX4024                 | YX4001 derivative where w/sR1 was overexpressed using pYX4011 (Δw/sR1/Δw/sR3)                                     | This study              |
| WIsC4-BL21(DE3)        | Expressing WIsC4 in E. coli BL21(DE3) for in vitro assay                                                          | This study              |
| WlsE/E10-<br>BL21(DE3) | Co-expression of WIsE/WIsE10 in E. coli BL21(DE3) for heptaene production in E. coli.                             | This study              |

| pOJ260          | E. coli-Streptomyces shuttle vector, oriT, Apra <sup>r</sup>                                                         | Commercial |
|-----------------|----------------------------------------------------------------------------------------------------------------------|------------|
| pSET152         | E. coli-Streptomyces shuttle vector, attB, lacZa, Apra', oriT                                                        | Commercial |
| pET28a          | Protein expression in E. coli.                                                                                       | Commercial |
| pYX4001         | pOJ260 plasmid derivative for generating $\Delta w$ /sR3, Th <sup>r</sup>                                            | This study |
| pYX4002         | pSET152 plasmid derivative with w/sR3 under control of constitutive promoter ermE*, Aprar                            | This study |
| pYX4003         | pOJ260 plasmid derivative for generating $\Delta w$ /sE/ $\Delta w$ /sR3, Kana'                                      | This study |
| pYX4004         | pOJ260 plasmid derivative for generating $\Delta w$ /sE10/ $\Delta w$ /sR3, Kana <sup>r</sup>                        | This study |
| pYX4005         | pOJ260 plasmid derivative for generating $\Delta w$ /sC4/ $\Delta w$ /sR3, Kana'                                     | This study |
| pYX4006         | pOJ260 plasmid derivative for generating $\Delta w$ /sorf3/ $\Delta w$ /sR3, Kana <sup>r</sup>                       | This study |
| pYX4007         | pOJ260 plasmid derivative for generating $\Delta w$ /sORF30/ $\Delta w$ /sR3, Kana <sup>r</sup>                      | This study |
| pYX4008         | pOJ260 plasmid derivative for generating $\Delta w$ /sPDH and $\Delta w$ /sPDH/ $\Delta w$ /sR3, Kana'               | This study |
| pYX4009         | pOJ260 plasmid derivative for generating $\Delta w$ /sF/ $\Delta w$ /sR3, Kana'                                      | This study |
| pYX4010         | pOJ260 plasmid derivative for generating $\Delta w$ /sR2, Th <sup>r</sup>                                            | This study |
| pYX4011         | pSET152 plasmid derivative with wlsR1 under control of constitutive promoter ermE*, Aprar                            | This study |
| pYX4012         | pSET152 plasmid derivative with w/sR5 under control of constitutive promoter ermE*, Aprar                            | This study |
| pYX4013         | pSET152 plasmid derivative with w/sR6 under control of constitutive promoter ermE*, Aprar                            | This study |
| pYX4014         | pSET152 plasmid derivative with w/sR7 under control of constitutive promoter ermE* Apra                              | This study |
| pYX4015         | pSET152 plasmid derivative with w/sE and w/sE10 under control of constitutive promoter ermE* Aprar r                 | This study |
| pYX4016         | pSET152 plasmid derivative with 2366E under control of constitutive promoter ermE* Apra <sup>r</sup>                 | This study |
| pYX4017         | pSET152 plasmid derivative with PKSE <sub>CB02366</sub> and wlsE10 under control of constitutive promoter ermE* Apra | This study |
| pET28a-w/sC4    | The overexpression plasmid for wlsC4 in BL21(DE3)                                                                    | This study |
| pET28a-w/sE/E10 | The overexpression plasmid for heptaene in BL21(DE3)                                                                 | This study |
| pYX4018         | pOJ260 plasmid derivative for generating $\Delta w$ /sORF8/ $\Delta w$ /sR3, Kana <sup>r</sup>                       | This study |
| pYX4019         | pOJ260 plasmid derivative for generating $\Delta w$ /sORF24/ $\Delta w$ /sR3, Kana <sup>r</sup>                      | This study |
| pYX4020         | pOJ260 plasmid derivative for generating $\Delta wlsL/\Delta wlsR3$ , Kana'                                          | This study |
| pYX4021         | pOJ260 plasmid derivative for generating $\Delta wls$ E7/ $\Delta wls$ R3, Kana <sup>r</sup>                         | This study |
| pYX4022         | pOJ260 plasmid derivative for generating $\Delta w/s$ E9/ $\Delta w/s$ R3, Kana <sup>r</sup>                         | This study |

\*Abbreviations: Apra<sup>r</sup>, apramycin resistance; Th<sup>r</sup>, thiostrepton resistance; Kana<sup>r</sup>, kanamycin resistance

|          | 5                       |                                       | 6                      |                                        | 7                      |                                        |
|----------|-------------------------|---------------------------------------|------------------------|----------------------------------------|------------------------|----------------------------------------|
| Position | $\delta_{\rm C}$ , type | $\delta_{H}$ ( <i>J</i> in Hz)        | $\delta_{ m C}$ , type | $\delta_{H}$ ( <i>J</i> in Hz)         | $\delta_{ m C}$ , type | $\delta_{H}$ ( $J$ in Hz)              |
| 1        | 67.12, CH <sub>2</sub>  | 3.49 (m, 2H)                          | 67.20, CH <sub>2</sub> | 3.49 (m, 2H)                           | 67.11, CH <sub>2</sub> | 3.48 (m, 2H)                           |
| 2        | 77.90, CH               | 4.17 (m, 1H)                          | 77.56, CH              | 4.16 (m, 1H)                           | 77.56, CH              | 4.16 (m, 1H)                           |
| 3        | 132.90~134.40, CH       | 5.73(dd, <i>J</i> = 15.0, 2.4 Hz, 1H) | 132.90~134.40, CH      | 5.73 (dd, <i>J</i> = 15, 6.6 Hz, 1H)   | 132.91~134.41, CH      | 5.73 (dd, <i>J</i> = 15, 6.6 Hz, 1H)   |
| 4        | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 5        | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 6        | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 7        | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 8        | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 9        | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 10       | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
| 11       | 132.90~134.40, CH       | 6.30~6.39 (m, 1H)                     | 132.90~134.40, CH      | 6.30~6.39 (m, 1H)                      | 132.91~134.41, CH      | 6.28~6.39 (m, 1H)                      |
|          |                         |                                       |                        |                                        |                        |                                        |
| 12       | 132.90~134.40, CH       | 5.74 (dd, <i>J</i> = 15.0, 3 Hz, 1H)  | 132.90~134.40, CH      | 5.80 (dd, <i>J</i> = 13.8, 6.6 Hz, 1H) | 132.91~134.41, CH      | 5.80 (dd, <i>J</i> = 14.4, 6.6 Hz, 1H) |
| 13       | 71.74, CH               | 3.62 (t, <i>J</i> = 6.6 Hz, 1H)       | 71.68, CH              | 3.67 (t, <i>J</i> = 6.6 Hz, 1H)        | 71.67, CH              | 3.68, (m, 1H)                          |
| 14       | 74.04, CH               | 3.90 (m, 1H)                          | 74.05,CH               | 3.94 (m, 1H)                           | 73.86, CH              | 3.65 (m, 1H)                           |
| 15       | 18.86, CH <sub>3</sub>  | 1.10 (d, <i>J</i> = 6.6 Hz, 3H)       | 18.70, CH <sub>3</sub> | 1.14 (d, <i>J</i> = 5.4 Hz, 3H)        | 18.71, CH <sub>3</sub> | 1.14 (d, <i>J</i> = 6.4 Hz, 3H)        |
| 1'       |                         |                                       |                        |                                        | 64.38, CH <sub>2</sub> | 3.59, (m,2H)                           |
| 2'       |                         |                                       |                        |                                        | 74.05, CH              | 3.65 (m, 1H)                           |
| 3'       |                         |                                       |                        |                                        | 64.38, CH <sub>2</sub> | 3.48, (m, 2H)                          |
|          |                         |                                       |                        |                                        |                        |                                        |

### **Table S4**.<sup>1</sup>H and <sup>13</sup>C{<sup>1</sup>H} NMR data of compounds **5**-**7**. (**5**-**7** in CD<sub>3</sub>OD-*d*<sub>4</sub>, <sup>1</sup>H NMR at 600 MHz, <sup>13</sup>C{<sup>1</sup>H} NMR at 125 MHz)

**Table S5.** Distribution of the 67 WIsPDH homologous proteins from GenBank and the respective co-localized PKSE gene. The sequence identity and similarity of each WIsPDH homolog with WIsPDH was obtained by Blastp.

| Accession      | e-value | Organism                              |      | Positives | PKSE           |
|----------------|---------|---------------------------------------|------|-----------|----------------|
|                |         |                                       | (70) | (%)       |                |
| WP_103513060.1 | 1e-154  | Streptomyces sp. SM13                 | 91   | 94        | WP_103513069.1 |
| WP_123459559.1 | 3e-128  | Streptomyces sp. PanSC19              | 81   | 85        | WP_123459568.1 |
| WP_221747881.1 | 3e-133  | Streptomyces lateritius Z1-26         | 81   | 84        | WP_221747872.1 |
| WP_073918736.1 | 8e-132  | Streptomyces sp. CB02009              | 78   | 82        | WP_073918718.1 |
| WP_105870312.1 | 2e-101  | Streptomyces sp. ST5x                 | 75   | 82        | WP_105867409.1 |
| PKW00348.1     | 6e-126  | Streptomyces sp. 5112.2               | 75   | 82        | PKW00358.1     |
| WP_093699552.1 | 3e-126  | Streptomyces sp. 2231.1               | 74   | 82        | WP_093699548.1 |
| OKJ71875.1     | 3e-125  | Streptomyces sp. CB01883              | 74   | 81        | WP_073901596.1 |
| AWI32822.1     | 2e-125  | Streptomyces tirandamycinicus HNM0039 | 74   | 82        | AWI33274.1     |
| WP_189835466.1 | 5e-124  | Streptomyces zaomyceticus JCM 4864    | 73   | 81        | WP_189835917.1 |
| WP_073819485.1 | 1e-123  | Streptomyces sp. CB02261              | 73   | 81        | WP_073819478.1 |
| GGY73077.1     | 9e-122  | Streptomyces omiyaensis JCM 4806      | 72   | 81        | GGY73156.1     |
| WP_229883849.1 | 1e-110  | Streptomyces omiyaensis JCM 4806      | 72   | 80        | WP_189852606.1 |
| WP_200428877.1 | 5e-118  | Streptomyces sp. NE5-10               | 71   | 80        | WP_200428886.1 |
| WP_061929045.1 | 1e-117  | Streptomyces bungoensis DSM 41781     | 71   | 79        | WP_061929060.1 |
| WP_093804280.1 | 2e-117  | Streptomyces sp. Wb2n-11              | 70   | 79        | WP_093804271.1 |
| WP_155074227.1 | 6e-93   | Streptomyces taklimakanensis TRM43335 | 67   | 76        | WP_155074302.1 |
| WP_109541238.1 | 1e-95   | Streptomyces sp. NWU49                | 66   | 74        | WP_109541294.1 |
| WP_004994139.1 | 3e-95   | Streptomyces viridosporus T7A         | 66   | 74        | WP_026085636.1 |
| WP_123083521.1 | 3e-92   | Streptomyces sp. ADI95-16             | 64   | 74        | WP_123083512.1 |
| WP_073797075.1 | 2e-81   | Streptomyces sp. CB03578              | 64   | 72        | WP_073797070.1 |
| WP_073776212.1 | 7e-79   | Streptomyces sp. MJM1172              | 64   | 72        | WP_073776205.1 |
| WP_209520460.1 | 8e-79   | Streptomyces sp. KCTC 0041BP          | 64   | 72        | WP_209520461.1 |
| WP_190032669.1 | 8e-79   | Streptomyces goshikiensis JCM 4640    | 64   | 72        | WP_190032671.1 |
| WP_037800482.1 | 1e-78   | Streptomyces sp. Mg1                  | 63   | 71        | WP_047961333.1 |
| WP_073936185.1 | 3e-83   | Streptomyces sp. CB02400              | 62   | 71        | WP_073937997.1 |
| WP_081241542.1 | 1e-70   | Streptomyces viridosporus NRRL 2414   | 62   | 70        | WP_081237698.1 |
| WP_228969408.1 | 1e-81   | Streptomyces sp. DH5                  | 61   | 70        | WP_228969415.1 |
| WP_190099772.1 | 3e-81   | Streptomyces griseoflavus JCM 4479    | 61   | 70        | WP_190099780.1 |

| WP_182904357.1 | 3e-57 | Microbispora sp. H13382                  | 57 | 63 | WP_182904364.1 |
|----------------|-------|------------------------------------------|----|----|----------------|
| WP_169979400.1 | 4e-57 | Microbispora sp. H10836                  | 57 | 63 | WP_169979379.1 |
| WP_225800890.1 | 2e-59 | Streptomyces sp. NK15101                 | 57 | 65 | WP_225800882.1 |
| WP_153526004.1 | 8e-77 | Streptomyces jumonjinensis NRRL 5741     | 56 | 65 | WP_153526009.1 |
| WP_169944057.1 | 4e-56 | Microbispora sp. H11081                  | 56 | 63 | WP_169944073.1 |
| WP_153480251.1 | 3e-72 | Streptomyces katsurahamanus T-272        | 56 | 65 | WP_153480900.1 |
| GIH75461.1     | 5e-62 | Planobispora longispora NBRC 13918       | 56 | 64 | GIH75452.1     |
| WP_239316055.1 | 7e-55 | Planobispora longispora NBRC 13918       | 55 | 64 | WP_203890119.1 |
| WP_196441346.1 | 1e-64 | Planomonospora sp. ID67723               | 55 | 65 | WP_196441279.1 |
| WP_223178679.1 | 4e-75 | Streptomyces boluensis YC537             | 55 | 66 | WP_161696329.1 |
| WP_073721047.1 | 9e-73 | Streptomyces sp. TSRI0281                | 55 | 64 | WP_073721055.1 |
| WP_204057437.1 | 1e-64 | Microbispora corallina NBRC 16416        | 54 | 62 | WP_204057426.1 |
| WP_051457722.1 | 2e-64 | Microbispora sp. ATCC PTA-5024           | 54 | 62 | WP_063794622.1 |
| WP_173267136.1 | 5e-65 | Streptomyces sp. CWH03                   | 54 | 63 | WP_173267119.1 |
| WP_184879857.1 | 2e-62 | Actinomadura livida JCM 3387 sequence12  | 53 | 62 | WP_184879841.1 |
| WP_073753614.1 | 4e-65 | Streptomyces sp. CB02058                 | 53 | 60 | WP_073753628.1 |
| WP_221474752.1 | 2e-57 | Sphaerisporangium rubeum DSM 44936       | 53 | 60 | WP_184979809.1 |
| WP_093256825.1 | 2e-57 | Thermostaphylospora chromogena DSM 43794 | 53 | 62 | WP_093256734.1 |
| TDB92362.1     | 2e-60 | Actinomadura sp. 7K534                   | 52 | 62 | TDB96418.1     |
| WP_204052624.1 | 5e-62 | Microbispora siamensis NBRC 104113       | 52 | 60 | WP_204052369.1 |
| WP_116428710.1 | 9e-52 | Streptomyces spongiicola 531S            | 52 | 62 | WP_116428706.1 |
| WP_189650259.1 | 1e-55 | Nonomuraea spiralis JCM 3286             | 52 | 60 | WP_189650279.1 |
| WP_093891684.1 | 8e-63 | Streptosporangium canum CGMCC 4.2126     | 52 | 62 | WP_093891671.1 |
| WP_086577273.1 | 2e-62 | Streptosporangium minutum M26            | 52 | 62 | WP_086578318.1 |
| WP_184882159.1 | 2e-60 | Sphaerisporangium siamense NBRC 107570   | 52 | 60 | WP_184882142.1 |
| WP_184616680.1 | 3e-60 | Sphaerisporangium krabiense NBRC 107571  | 52 | 61 | WP_184616671.1 |
| WP_237104053.1 | 7e-54 | Nonomuraea sp. MG754425                  | 52 | 61 | WP_237109081.1 |
| WP_189164291.1 | 2e-60 | Sphaerisporangium melleum NBRC 107356    | 52 | 61 | WP_189164301.1 |
| GGK91151.1     | 5e-60 | Sphaerisporangium melleum JCM 13064      | 52 | 61 | GGK91218.1     |
| WP_051865492.1 | 4e-62 | Streptosporangium roseum NRRL B-2638     | 52 | 62 | WP_031168554.1 |
| WP_012893415.1 | 5e-62 | Streptosporangium roseum DSM 43021       | 52 | 62 | WP_012893430.1 |
| WP_148432627.1 | 3e-57 | Nonomuraea sp. PA05                      | 51 | 59 | WP_148432609.1 |
| WP_238498517.1 | 8e-54 | Streptosporangium sp. KLBMP 9127         | 51 | 61 | WP_238498573.1 |
| WP_214410496.1 | 5e-58 | Sphaerisporangium sp. H8589              | 50 | 63 | WP_214410487.1 |

| NYF38201.1     | 6e-56 | Streptosporangium sandarakinum DSM 45763 | 50 | 60 | NYF38184.1     |
|----------------|-------|------------------------------------------|----|----|----------------|
| WP_125637902.1 | 2e-56 | Nonomuraea sp. WAC 01424                 | 50 | 58 | WP_125637924.1 |
| WP_204066954.1 | 2e-59 | Planobispora siamensis NBRC 107568       | 50 | 60 | WP_204067024.1 |
| WP_197093687.1 | 7e-59 | Nonomuraea sp. SBT364                    | 50 | 59 | WP_049565860.1 |

| Gene       | AA a | Putative Function                                 | Protein homologs <sup>a</sup> | Identity (%) |
|------------|------|---------------------------------------------------|-------------------------------|--------------|
| PA05_orf1  | 430  | Glycerol phosphate ABC transporter                | SgcB1 (AAL06653)              | 53           |
| PA05_orf2  | 394  | Alkylhalidase                                     | SgcC3 (AAL06656)              | 36           |
| PA05_orf3  | 586  | A-domain type II peptide synthetase               | SgcC1 (AAL06681)              | 31           |
| PA05_orf4  | 70   | Unknown (MbtH-like protein)                       | Spoorf19(ABP55170)            | 58           |
| PA05_orf5  | 353  | p-hydroxymandelate synthase                       | AcmP1 (ATV95608)              | 54           |
| PA05_orf6  | 450  | C-domain type II peptide synthetase               | SgcC5 (AAL06678)              | 45           |
| PA05_orf7  | 450  | Glycosyl transferase                              | SgcA6 (AAL06670)              | 65           |
| PA05_orf8  | 327  | dNTP-glucose dehydratase                          | SgcA (AAL06671)               | 77           |
| PA05_orf9  | 423  | C-methyltransferase                               | SgcA3 (AAL06661)              | 63           |
| PA05_orf10 | 246  | N-methyl transferase                              | SgcA5 (AAL06660)              | 70           |
| PA05_orf11 | 385  | Amino transferase                                 | SgcA4 (AAL06659)              | 66           |
| PA05_orf12 | 1013 | SARP family regulator                             | Spoorf26 (ABP55181)           | 30           |
| PA05_orf13 | 63   | Homeobox protein TGIF2LY                          | TGIF2LY(Q8IUE0)               | 54           |
| PA05_orf14 | 114  | 5-hydroxyisourate hydrolase                       | hiuH (P76341.1)               | 64           |
| PA05_orf15 | 577  | 2-isopropyImalate synthase                        | leuA (D2ATJ4)                 | 63           |
| PA05_orf16 | 924  | Oxygen regulatory protein                         | nreC(Q7WZY4.1)                | 43           |
| PA05_orf17 | 69   | Glucoside xylosyltransferase 2                    | gxylt2(Q6DE37.1)              | 37           |
| PA05_orf18 | 305  | Unknown                                           | Ncs56 (AAM78025)              | 61           |
| PA05_orf19 | 321  | Unknown                                           | SgcE2 (AAL06703)              | 64           |
| PA05_orf20 | 302  | Unknown                                           | SgcE3 (AAL06702)              | 56           |
| PA05_orf21 | 647  | Unknown                                           | NcsE4 (AAM78014)              | 56           |
| PA05_orf22 | 324  | Unknown                                           | NcsE5 (AAM78013)              | 72           |
| PA05_orf23 | 1905 | Enediyne polyketide synthase                      | SgcE (AAL06699)               | 61           |
| PA05_orf24 | 144  | Thioesterase                                      | NcsE10 (AAM78011)             | 85           |
| PA05_orf25 | 176  | Flavin-dependent oxidoreductase                   | NcsE6 (AAM78010)              | 59           |
| PA05_orf26 | 457  | Cytochrome P450                                   | SgcE7 (AAL06697)              | 64           |
| PA05_orf27 | 245  | AraC family transcriptional regulator             | SgcR2 (AAL06696)              | 48           |
| PA05_orf28 | 167  | RNA polymerase sigma-E factor                     | sigE (Q82EA9.1)               | 35           |
| PA05_orf29 | 189  | Unknown                                           | NcsE8 (AAM78006)              | 62           |
| PA05_orf30 | 545  | FDA-dependent oxidoreductase                      | NcsE9 (AAM78005)              | 76           |
| PA05_orf31 | 379  | Unknown                                           | Ncs14 (AAM77983)              | 46           |
| PA05_orf32 | 268  | Unknown                                           | SgcE11 (AAL06691)             | 63           |
| PA05_orf33 | 72   | Calmodulin-like protein 12                        | CML12(P25071.3)               | 46           |
| PA05_orf34 | 498  | CoA ligase                                        | NcsB2 (AAM77987)              | 27           |
| PA05_orf35 | 343  | Conserved oligomeric Golgi complex subunit 6      | cog6 (A1DNX2.1)               | 35           |
| PA05_orf36 | 328  | Bialaphos biosynthetic pathway regulatory protein | brpA (Q01108.1)               | 34           |
| PA05_orf37 | 536  | Methylmalonyl-CoA decarboxylase                   | mdporf-2 (ABY66032.1)         | 75           |
| PA05_orf38 | 93   | AlaninetRNA ligase                                | ALATS (P36428.3)              | 34           |
| PA05_orf39 | 255  | 4'-phosphopantetheinyl transferase Hetl           | hetl (P37695.2)               | 34           |
| PA05_orf40 | 152  | Unknown                                           | SgcT (AAL06706)               | 40           |

**Table S6**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Nonomuraea sp. PA05.

| PA05_orf41 | 180 | Unknown                              | SgcS (AAL06705)  | 70 |
|------------|-----|--------------------------------------|------------------|----|
| PA05_orf42 | 215 | Phenazine biosynthesis protein PhzD2 | PhzD2 (P0DPC1.1) | 48 |
| PA05_orf43 | 446 | Oxidoreductase                       | SgcL (AAL06685)  | 42 |
| PA05_orf44 | 316 | Probable prephenate dehydrogenase    | NovF (Q9L9G2.1)  | 38 |

| Gene            | AA a | Putative Function                                 | Protein homologs <sup>a</sup> | Identity (%) |
|-----------------|------|---------------------------------------------------|-------------------------------|--------------|
| NBRC13918_orf1  | 742  | Polysulfide reductase chain A                     | psrA (P31075.1)               | 26           |
| NBRC13918_orf2  | 960  | Transcriptional regulator                         | AcmR4 (ATV95651)              | 36           |
| NBRC13918_orf3  | 86   | ABC transporter D family member 2                 | ABCC2 (Q6NLC1.1)              | 33           |
| NBRC13918_orf4  | 59   | Nidogen                                           | Ndg (A1Z877.1)                | 56           |
| NBRC13918_orf5  | 103  | Protein furry homolog [Homo sapiens]              | FRY (Q5TBA9.1)                | 35           |
| NBRC13918_orf6  | 112  | 5-hydroxyisourate hydrolase                       | hiuH (Q4VYA5.1)               | 30           |
| NBRC13918_orf7  | 917  | HTH-type transcriptional regulator MalT           | malT (Q8D4P3.1)               | 23           |
| NBRC13918_orf8  | 57   | Sodium- and chloride-dependent GABA transporter 2 | SLC6A13 (Q9NSD5.3)            | 42           |
| NBRC13918_orf9  | 317  | Unknown                                           | Ncs56 (AAM78025)              | 64           |
| NBRC13918_orf10 | 327  | Unknown                                           | SgcE2 (AAL06703)              | 65           |
| NBRC13918_orf11 | 306  | Unknown                                           | SgcE3 (AAL06702)              | 56           |
| NBRC13918_orf12 | 642  | Unknown                                           | SgcE4 (AAL06701)              | 58           |
| NBRC13918_orf13 | 338  | Unknown                                           | NcsE5 (AAM78013)              | 69           |
| NBRC13918_orf14 | 1913 | Enediyne polyketide synthase                      | SgcE (AAL06699)               | 63           |
| NBRC13918_orf15 | 142  | Thioesterase                                      | NcsE10 (AAM78011)             | 84           |
| NBRC13918_orf16 | 178  | Flavin reductase                                  | SgcE6 (AAL06698)              | 57           |
| NBRC13918_orf17 | 457  | Cytochrome P450                                   | SgcE7 (AAL06697)              | 64           |
| NBRC13918_orf18 | 214  | AraC family transcriptional regulator             | SgcR2 (AAL06696)              | 50           |
| NBRC13918_orf19 | 187  | Unknown                                           | NcsE8 (AAM78006)              | 65           |
| NBRC13918_orf20 | 550  | FDA-dependent oxidoreductase                      | NcsE9 (AAM78005)              | 78           |
| NBRC13918_orf21 | 338  | Unknown                                           | Ncs14 (AAM77983)              | 47           |
| NBRC13918_orf22 | 267  | Unknown                                           | SgcE11 (AAL06691)             | 66           |
| NBRC13918_orf23 | 320  | Probable prephenate dehydrogenase NovF            | novF(Q9L9G2.1)                | 40           |
| NBRC13918_orf24 | 111  | Unknown                                           | Spoorf12 (ABP55159)           | 30           |
| NBRC13918_orf25 | 372  | O-acyltransferase                                 | cyaA4 (AGO97197)              | 38           |
| NBRC13918_orf26 | 67   | No hit                                            | no                            | no           |
| NBRC13918_orf27 | 359  | DUF2855 family protein                            | WP_203890131.1                | 100          |
| NBRC13918_orf28 | 226  | Unknown                                           | Spoorf22 (ABP55176)           | 34           |
| NBRC13918_orf29 | 448  | Glycerol phosphate ABC transporter                | SgcB1 (AAL06653)              | 49           |
| NBRC13918_orf30 | 474  | Oxidoreductase                                    | spoT4 (ABP55175)              | 28           |
| NBRC13918_orf31 | 413  | P-450 hydroxylase                                 | NcsB3 (AAM77997)              | 48           |
| NBRC13918_orf32 | 282  | Monooxygenase                                     | KedU11 (FV52167.1)            | 29           |
| NBRC13918_orf33 | 460  | Flavin-dependent oxidoreductase                   | Ncs32 (AAM78001)              | 31           |

 Table S7. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Planobispora longispora NBRC 13918

Table S8. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Actinomadura livida strain JCM 3387

| Gene          | AA a | Putative Function                                | Protein homologs <sup>a</sup> | Identity (%) |
|---------------|------|--------------------------------------------------|-------------------------------|--------------|
| JCM3387_orf1  | 130  | epoxide hydrolase-like protein                   | Kedorf-2 (AFV52129)           | 68           |
| JCM3387_orf2  | 321  | 2-acylphloroglucinol 4-prenyltransferase         | PT1L (A0A0B5A051.1)           | 30           |
| JCM3387_orf3  | 558  | 2-isopropylmalate synthase                       | leuA (D2ATJ4.1)               | 58           |
| JCM3387_orf4  | 311  | Probable prephenate dehydrogenase                | NovF ( Q9L9G2.1)              | 39           |
| JCM3387_orf5  | 266  | Unknown                                          | NcsE11 (AAM78004)             | 59           |
| JCM3387_orf6  | 367  | Unknown                                          | Ncs14 (AAM77983)              | 47           |
| JCM3387_orf7  | 551  | Oxidoreductase                                   | SgcE9 (AAL06693)              | 76           |
| JCM3387_orf8  | 189  | Unknown                                          | SgcE8 (AAL06694)              | 67           |
| JCM3387_orf9  | 351  | Unknown                                          | SgcE2 (AAL06703)              | 64           |
| JCM3387_orf10 | 326  | Unknown                                          | SgcE3 (AAL06702)              | 55           |
| JCM3387_orf11 | 664  | Unknown                                          | SgcE4 (AAL06701)              | 58           |
| JCM3387_orf12 | 346  | Unknown                                          | SgcE5 (AAL06700)              | 65           |
| JCM3387_orf13 | 1929 | Enediyne polyketide synthase                     | SgcE (AAL06699)               | 63           |
| JCM3387_orf14 | 146  | Thioesterase                                     | NcsE10 (AAM78011)             | 80           |
| JCM3387_orf15 | 183  | Flavin-dependent oxidoreductase                  | NcsE6 (AAM78010)              | 61           |
| JCM3387_orf16 | 454  | Cytochrome P450                                  | SgcE7 (AAL06697)              | 63           |
| JCM3387_orf17 | 295  | AraC family transcriptional regulator            | SgcR2 (AAL06696)              | 43           |
| JCM3387_orf18 | 526  | Chlorophenol-4-monooxygenase                     | SgcC (AAL06674)               | 76           |
| JCM3387_orf19 | 158  | Unknown                                          | SgcJ (AAL06676)               | 59           |
| JCM3387_orf20 | 151  | Unknown                                          | SgcJ (AAL06676)               | 39           |
| JCM3387_orf21 | 530  | Oxidoreductase                                   | cyaN2 (AGO97205)              | 66           |
| JCM3387_orf22 | 393  | Oxidoreductase                                   | SgcL (AAL06685)               | 60           |
| JCM3387_orf23 | 154  | thiol peroxidase                                 | AcmU6 (ATV95618)              | 33           |
| JCM3387_orf24 | 264  | Tryptophan 2,3-dioxygenase                       | kynA (B4UMQ6.1)               | 54           |
| JCM3387_orf25 | 270  | Oxidoreductase                                   | ypmI( SCL57600.1)             | 31           |
| JCM3387_orf26 | 281  | Kynurenine formamidase                           | afmid (Q566U4.2)              | 33           |
| JCM3387_orf27 | 254  | Macrocin O-methyltransferase                     | tylF (Q9S4D5.1)               | 56           |
| JCM3387_orf28 | 442  | O-acyltransferase                                | cyaA4 (AGO97197.1)            | 28           |
| JCM3387_orf29 | 140  | ATP phosphoribosyltransferase regulatory subunit | hisZ (B3PDB6.1)               | 31           |
| JCM3387_orf30 | 390  | Amino transferase                                | SgcA4 (AAL06659)              | 29           |
| JCM3387_orf31 | 236  | N-methyl transferase                             | SgcA5 (AAL06660)              | 45           |
| JCM3387_orf32 | 328  | NDP-hexose reductase                             | CalS12 (AAM70349)             | 61           |

Table S9. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Microbispora corallina strain NBRC 16416

| Gene            | AA a | Putative Function                                                | Protein homologs <sup>a</sup> | Identity (%) |
|-----------------|------|------------------------------------------------------------------|-------------------------------|--------------|
| NBRC16416_orf1  | 216  | HTH-type transcriptional repressor KstR2                         | kstR2 (P9WMB8.1)              | 32           |
| NBRC16416_orf2  | 397  | Uncharacterized MFS-type transporter YkuC                        | ykuC (O31695.2)               | 22           |
| NBRC16416_orf3  | 260  | Demethylmenaquinone methyltransferase                            | menG (Q72HI4.1)               | 29           |
| NBRC16416_orf4  | 330  | Unknown                                                          | SgcE2 (AAL06703)              | 65           |
| NBRC16416_orf5  | 315  | Unknown                                                          | NcsE3 (AAM78015)              | 58           |
| NBRC16416_orf6  | 655  | Unknown                                                          | SgcE4 (AAL06701)              | 58           |
| NBRC16416_orf7  | 342  | Unknown                                                          | NcsE5 (AAM78013)              | 68           |
| NBRC16416_orf8  | 1933 | Enediyne polyketide synthase                                     | SgcE (AAL06699)               | 65           |
| NBRC16416_orf9  | 146  | Thioesterase                                                     | NcsE10 (AAM78011)             | 80           |
| NBRC16416_orf10 | 179  | Flavin-dependent oxidoreductase                                  | NcsE6 (AAM78010)              | 58           |
| NBRC16416_orf11 | 466  | Cytochrome P450                                                  | SgcE7 (AAL06697)              | 67           |
| NBRC16416_orf12 | 115  | Terephthalate 1,2-dioxygenase, reductase component 1             | tphA1I(Q3C1E0.1)              | 33           |
| NBRC16416_orf13 | 258  | AraC family transcriptional regulator                            | SgcR2 (AAL06696)              | 52           |
| NBRC16416_orf14 | 98   | DNA-directed RNA polymerase II subunit RPB1                      | RPB1 (Q75A34.2)               | 33           |
| NBRC16416_orf15 | 284  | [Acyl-carrier-protein] phosphodiesterase PptH                    | pptH (I6YEE1.1)               | 57           |
| NBRC16416_orf16 | 233  | RNA polymerase sigma-E factor                                    | sigE (Q82EA9.1)               | 40           |
| NBRC16416_orf17 | 189  | Unknown                                                          | NcsE8 (AAM78006)              | 73           |
| NBRC16416_orf18 | 551  | FDA-dependent oxidoreductase                                     | NcsE9 (AAM78005)              | 79           |
| NBRC16416_orf19 | 368  | Unknown                                                          | SgcM (AAL06686)               | 48           |
| NBRC16416_orf20 | 267  | Unknown                                                          | NcsE11 (AAM78004)             | 62           |
| NBRC16416_orf21 | 341  | DAHP synthase                                                    | Kedorf-11 (AFV52120.1)        | 50           |
| NBRC16416_orf22 | 285  | Probable prephenate dehydrogenase                                | NovF (Q9L9G2.1)               | 39           |
| NBRC16416_orf23 | 384  | Endoglucanase B                                                  | cenB (P26225.1)               | 39           |
| NBRC16416_orf24 | 56   | tRNA N6-adenosine threonylcarbamoyltransferase                   | tsaD (Q2VNJ2.1)               | 47           |
| NBRC16416_orf25 | 422  | Coenzyme F390 synthase-like protein                              | SgcH (AAL06673)               | 69           |
| NBRC16416_orf26 | 400  | 3-O-Acyltransferase                                              | SgcD6 (AAL06667)              | 46           |
| NBRC16416_orf27 | 223  | 2-Amino-4-deoxychorismate dehydrogenase                          | SgcG (AAL06666)               | 82           |
| NBRC16416_orf28 | 492  | Phenylacetyl-CoA ligase                                          | SgcD5 (AAL06665)              | 74           |
| NBRC16416_orf29 | 528  | 2-Amino-4-deoxychorismate synthase                               | SgcD (AAL06664)               | 63           |
| NBRC16416_orf30 | 335  | Alcohol dehydrogenase                                            | mdpC8 (ABY66028)              | 35           |
| NBRC16416_orf31 | 115  | Transposase for insertion sequence element IS6120                | P35883.1                      | 62           |
| NBRC16416_orf32 | 80   | tRNA uridine 5-carboxymethylaminomethyl modification enzyme MnmG | mnmG (A4YJT4)                 | 45           |
| NBRC16416_orf33 | 282  | Esterase/hydrolase                                               | Ncs27 (AAM77996)              | 34           |
| NBRC16416_orf34 | 414  | Cytochrome P450 hydroxylase                                      | SgcD3 (AAL06684)              | 55           |
| NBRC16416_orf35 | 205  | Anthranilate synthase II                                         | SgcD1 (AAL06663)              | 69           |
| NBRC16416_orf36 | 150  | DNA-directed RNA polymerase subunit alpha                        | rpoA (Q7V9Y5.1)               | 32           |
| NBRC16416_orf37 | 77   | Beta-galactosidase-1-like protein 3                              | Glb1l3 (Q5XIL5.1)             | 29           |
| NBRC16416_orf38 | 242  | Unknown                                                          | Spoorf22 (ABP55176)           | 54           |
| NBRC16416_orf39 | 445  | Quinoprotein glucose dehydrogenase B                             | gdhB (P13650.1)               | 22           |
| NBRC16416_orf40 | 386  | Inositol-3-phosphate synthase                                    | ino1 (Q54N49.1)               | 28           |

| NBRC16416_orf41 | 539  | Quinohemoprotein alcohol dehydrogenase ADH IIB | qbdA (Q8GR64)       | 26 |
|-----------------|------|------------------------------------------------|---------------------|----|
| NBRC16416_orf42 | 385  | Epoxide hydrolase                              | SgcF (AAL06662)     | 74 |
| NBRC16416_orf43 | 499  | FAD-binding monooxygenase                      | SgcD2 (AAL06669)    | 59 |
| NBRC16416_orf44 | 139  | Unknown                                        | SgcJ (AAL06676)     | 52 |
| NBRC16416_orf45 | 86   | Flagellar hook-basal body complex protein FliE | fliE (Q52945.2)     | 37 |
| NBRC16416_orf46 | 517  | Flavin-dependent oxidoreductase                | Ncs32 (AAM78001)    | 28 |
| NBRC16416_orf47 | 527  | Transmembrane efflux protein                   | SgcB (AAL06672)     | 52 |
| NBRC16416_orf48 | 374  | Oxidoreductase                                 | SgcL (AAL06685)     | 63 |
| NBRC16416_orf49 | 416  | P-450 hydroxylase                              | NcsB3 (AAM77997)    | 52 |
| NBRC16416_orf50 | 339  | Zinc-containing alcohol dehydrogenase          | spoT5 (ABP55167)    | 72 |
| NBRC16416_orf51 | 275  | Methyltransferase                              | SgdA5 (QIJ31495.1)  | 37 |
| NBRC16416_orf52 | 120  | Hypothetical protein                           | Spoorf16 (ABP55163) | 58 |
| NBRC16416_orf53 | 454  | C-domain type II peptide synthetase            | SgcC5 (AAL06678)    | 48 |
| NBRC16416_orf54 | 96   | Type II PCP                                    | SgcC2 (AAL06679)    | 50 |
| NBRC16416_orf55 | 530  | Chlorophenol-4-monooxygenase                   | SgcC (AAL06674)     | 77 |
| NBRC16416_orf56 | 454  | Glycerol phosphate ABC transporter             | SgcB1 (AAL06653)    | 51 |
| NBRC16416_orf57 | 507  | Methyltransferase type 11                      | spoT6 (ABP55177)    | 57 |
| NBRC16416_orf58 | 260  | NAD(P)-dependent dehydrogenase                 | AcmU3 (ATV95612)    | 30 |
| NBRC16416_orf59 | 237  | Oxidoreductase                                 | SgcN (AAL06687)     | 32 |
| NBRC16416_orf60 | 453  | Flavin-dependent oxidoreductase                | Ncs32 (AAM78001)    | 39 |
| NBRC16416_orf61 | 408  | Oxidoreductase                                 | SgcL (AAL06685)     | 31 |
| NBRC16416_orf62 | 459  | Flavin-dependent oxidoreductase                | Ncs32 (AAM78001)    | 32 |
| NBRC16416_orf63 | 120  | DGPFAETKE family protein                       | Spoorf12 (ABP55159) | 38 |
| NBRC16416_orf64 | 1069 | A-domain type II peptide synthetase            | SgcC1 (AAL06681)    | 45 |
| NBRC16416_orf65 | 534  | MIO-dependent tyrosine 2,3-aminomutase         | SgcC4 (AAL06680)    | 78 |

| Gene         | AA a | Putative Function                                                         | Protein homologs <sup>a</sup> | Identity (%) |
|--------------|------|---------------------------------------------------------------------------|-------------------------------|--------------|
| H13382_orf1  | 538  | Methylmalonyl-CoA decarboxylase                                           | mdporf-2 (ABY66032.1)         | 76           |
| H13382_orf2  | 76   | D-inositol 3-phosphate glycosyltransferase                                | mshA (Q4JSW2.1)               | 39           |
| H13382_orf3  | 328  | Bialaphos biosynthetic pathway regulatory protein                         | brpA (Q01108)                 | 31           |
| H13382_orf4  | 367  | Trigger factor                                                            | tig (B6JGU6.1)                | 38           |
| H13382_orf5  | 267  | Unknown                                                                   | SgcE11 (AAL06691)             | 68           |
| H13382_orf6  | 363  | Unknown                                                                   | SgcM (AAL06686)               | 53           |
| H13382_orf7  | 553  | Oxidoreductase                                                            | SgcE9 (AAL06693)              | 78           |
| H13382_orf8  | 189  | Unknown                                                                   | NcsE8 (AAM78006)              | 71           |
| H13382_orf9  | 187  | RNA polymerase sigma-E factor                                             | sigE (P38133.2)               | 41           |
| H13382_orf10 | 281  | [Acyl-carrier-protein] phosphodiesterase PptH                             | PptH (I6YEE1.1)               | 58           |
| H13382_orf11 | 256  | AraC family transcriptional regulator                                     | SgcR2 (AAL06696)              | 53           |
| H13382_orf12 | 460  | Cytochrome P450                                                           | SgcE7 (AAL06697)              | 62           |
| H13382_orf13 | 183  | Flavin-dependent oxidoreductase                                           | NcsE6 (AAM78010)              | 60           |
| H13382_orf14 | 132  | Thioesterase                                                              | NcsE10 (AAM78011)             | 83           |
| H13382_orf15 | 1942 | Enediyne polyketide synthase                                              | SgcE (AAL06699)               | 66           |
| H13382_orf16 | 336  | Unknown                                                                   | NcsE5 (AAM78013)              | 70           |
| H13382_orf17 | 655  | Unknown                                                                   | NcsE4 (AAM78014)              | 58           |
| H13382_orf18 | 314  | Unknown                                                                   | NcsE3 (AAM78015)              | 57           |
| H13382_orf19 | 328  | Unknown                                                                   | NcsE2 (AAM78016)              | 65           |
| H13382_orf20 | 83   | Biotin-dependent acetyl-/propionyl-coenzyme A carboxylase epsilon subunit | accE5 (P96886)                | 39           |
| H13382_orf21 | 955  | Putative HTH-type transcriptional regulator Mb0914c                       | MB0914C (P59969.1)            | 45           |
| H13382_orf22 | 598  | 2-isopropylmalate synthase                                                | leuA (D2ATJ4.1)               | 71           |
| H13382_orf23 | 112  | 5-hydroxyisourate hydrolase                                               | hiuH (P76341.1)               | 35           |
| H13382_orf24 | 69   | Serine/threonine-protein kinase PrkC                                      | PrkC (O34507.1)               | 48           |
| H13382_orf25 | 1051 | Transcriptional regulator                                                 | AcmR4 (ATV95651)              | 34           |
| H13382_orf26 | 91   | Type II PCP                                                               | SgcC2 (AAL06679)              | 44           |
| H13382_orf27 | 393  | Oxidoreductase                                                            | SgcL (AAL06685)               | 69           |
| H13382_orf28 | 295  | Probable prephenate dehydrogenase                                         | NovF( Q9L9G2.1)               | 41           |
| H13382_orf29 | 253  | Oxidoreductase                                                            | SgcN (AAL06687)               | 30           |

 Table S10. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Microbispora sp. H13382

| H13382_orf30 | 226 | Phenazine biosynthesis protein PhzD1 | PhzD1 (P0DPB9.1) | 61 |
|--------------|-----|--------------------------------------|------------------|----|
| H13382_orf31 | 70  | Peptide chain release factor 3       | prfC (Q8XPH8.1)  | 32 |

| Gene           | AA a | Putative Function                                 | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|---------------------------------------------------|-------------------------------|--------------|
| WAC01424_orf1  | 297  | Probable prephenate dehydrogenase                 | NovF (Q9L9G2.1)               | 39           |
| WAC01424_orf2  | 83   | Type II PCP                                       | SgcC2 (AAL06679)              | 37           |
| WAC01424_orf3  | 87   | Type II PCP                                       | SgcC2 (AAL06679)              | 45           |
| WAC01424_orf4  | 275  | Purine nucleoside phosphorylase                   | novF (Q9KYV7.1)               | 39           |
| WAC01424_orf5  | 395  | S-adenosylmethionine synthase                     | metK (B1W470.1)               | 78           |
| WAC01424_orf6  | 215  | Phenazine biosynthesis protein PhzD1              | phzD1 (P0DPB9.1)              | 50           |
| WAC01424_orf7  | 185  | Unknown                                           | SgcS (AAL06705)               | 66           |
| WAC01424_orf8  | 160  | Unknown                                           | SgcT (AAL06706)               | 42           |
| WAC01424_orf9  | 241  | hypothetical protein                              | Cya-4 (AGO97186)              | 26           |
| WAC01424_orf10 | 256  | 4'-phosphopantetheinyl transferase Hetl           | Hetl(P37695)                  | 32           |
| WAC01424_orf11 | 111  | Phosphoglucosamine mutase                         | glmM (Q11DI7)                 | 48           |
| WAC01424_orf12 | 470  | Efflux pump transporter                           | NcsA1 (AAM77999)              | 35           |
| WAC01424_orf13 | 527  | Methylmalonyl-CoA decarboxylase                   | mdporf-2 (ABY66032.1)         | 76           |
| WAC01424_orf14 | 71   | E3 ubiquitin-protein ligase DZIP3                 | DZIP3(Q7TPV2.2)               | 41           |
| WAC01424_orf15 | 328  | Bialaphos biosynthetic pathway regulatory protein | brpA(Q01108)                  | 32           |
| WAC01424_orf16 | 376  | 30S ribosomal protein S2                          | rps2 (A8A8X0.1)               | 28           |
| WAC01424_orf17 | 500  | A-domain type II peptide synthetase               | SgcC1 (AAL06681)              | 27           |
| WAC01424_orf18 | 267  | Unknown                                           | SgcE11(AAL06691)              | 66           |
| WAC01424_orf19 | 345  | Unknown                                           | SgcM (AAL06686)               | 50           |
| WAC01424_orf20 | 550  | Oxidoreductase                                    | SgcE9 (AAL06693)              | 79           |
| WAC01424_orf21 | 186  | Unknown                                           | SgcE8 (AAL06694)              | 64           |
| WAC01424_orf22 | 157  | RNA polymerase sigma-E factor                     | sigE (Q82EA9)                 | 38           |
| WAC01424_orf23 | 283  | [Acyl-carrier-protein] phosphodiesterase PptH     | PptH (I6YEE1)                 | 57           |
| WAC01424_orf24 | 252  | AraC family transcriptional regulator             | SgcR2 (AAL06696)              | 50           |
| WAC01424_orf25 | 448  | Cytochrome P450                                   | SgcE7 (AAL06697)              | 64           |
| WAC01424_orf26 | 177  | Flavin-dependent oxidoreductase                   | NcsE6 (AAM78010)              | 62           |
| WAC01424_orf27 | 142  | Thioesterase                                      | NcsE10 (AAM78011)             | 78           |
| WAC01424_orf28 | 1904 | Enediyne polyketide synthase                      | SgcE (AAL06699)               | 62           |
| WAC01424_orf29 | 323  | Unknown                                           | NcsE5 (AAM78013)              | 72           |
| WAC01424_orf30 | 648  | Unknown                                           | SgcE4 (AAL06701)              | 57           |
| WAC01424_orf31 | 312  | Unknown                                           | SgcE3 (AAL06702)              | 55           |
| WAC01424_orf32 | 330  | Unknown                                           | NcsE2 (AAM78016)              | 62           |
| WAC01424_orf33 | 62   | Uronate isomerase                                 | uxaC (Q3BMC5.1)               | 43           |
| WAC01424_orf34 | 923  | Oxygen regulatory protein NreC                    | NreC (Q7WZY4.1)               | 41           |
| WAC01424_orf35 | 623  | 2-isopropylmalate synthase                        | leuA (D2ATJ4.1)               | 62           |
| WAC01424_orf36 | 112  | 5-hydroxyisourate hydrolase                       | hiuH (P76341.1)               | 31           |
| WAC01424_orf37 | 66   | Replicase large subunit                           | P89659.2                      | 41           |
| WAC01424_orf38 | 64   | Taste receptor type 1 member 2                    | TAS1R2 (A3QP07.1)             | 37           |
| WAC01424_orf39 | 1025 | Transcriptional regulator                         | AcmR4 (ATV95651)              | 32           |

 Table S11. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Nonomuraea sp. WAC 01424

| Table S12. | Predicted func | tions of ORFs | in the enediy | ne biosynthetic | gene cluster | from Planon | nonospora sp. | ID67723 |
|------------|----------------|---------------|---------------|-----------------|--------------|-------------|---------------|---------|
|            |                |               |               |                 |              |             |               |         |

| Gene          | AA a | Putative Function                                   | Protein homologs <sup>a</sup> | Identity (%) |
|---------------|------|-----------------------------------------------------|-------------------------------|--------------|
| ID67723_orf1  | 316  | Unknown                                             | Ncs56 (AAM78025)              | 64           |
| ID67723_orf2  | 331  | Unknown                                             | NcsE2 (AAM78016)              | 66           |
| ID67723_orf3  | 309  | Unknown                                             | NcsE3 (AAM78015)              | 56           |
| ID67723_orf4  | 658  | Unknown                                             | SgcE4 (AAL06701)              | 57           |
| ID67723_orf5  | 323  | Unknown                                             | NcsE5 (AAM78013)              | 71           |
| ID67723_orf6  | 1927 | Enediyne polyketide synthase                        | SgcE (AAL06699)               | 65           |
| ID67723_orf7  | 142  | Thioesterase                                        | NcsE10 (AAM78011)             | 82           |
| ID67723_orf8  | 179  | Flavin-dependent oxidoreductase                     | NcsE6 (AAM78010)              | 60           |
| ID67723_orf9  | 464  | Cytochrome P450                                     | SgcE7 (AAL06697)              | 67           |
| ID67723_orf10 | 240  | AraC family transcriptional regulator               | SgcR2 (AAL06696)              | 49           |
| ID67723_orf11 | 284  | Acyl-carrier-protein] phosphodiesterase PptH        | PptH (I6YEE1)                 | 55           |
| ID67723_orf12 | 192  | RNA polymerase sigma-E factor                       | sigE (P38133.2)               | 40           |
| ID67723_orf13 | 188  | Unknown                                             | SgcE8 (AAL06694)              | 71           |
| ID67723_orf14 | 549  | FDA-dependent oxidoreductase                        | NcsE9 (AAM78005)              | 81           |
| ID67723_orf15 | 349  | Unknown                                             | SgcM (AAL06686)               | 52           |
| ID67723_orf16 | 267  | Unknown                                             | NcsE11 (AAM78004)             | 65           |
| ID67723_orf17 | 318  | Alpha-humulene/(-)-(E)-beta-caryophyllene synthase  | TPS21 (Q84UU4)                | 32           |
| ID67723_orf18 | 328  | Bialaphos biosynthetic pathway regulatory protein   | brpA (Q01108)                 | 31           |
| ID67723_orf19 | 92   | DNA-directed RNA polymerase subunit beta            | rpoC2 (P73334.1)              | 43           |
| ID67723_orf20 | 551  | Methylmalonyl-CoA decarboxylase                     | mdporf-2 (ABY66032.1)         | 75           |
| ID67723_orf21 | 89   | Formin-F                                            | forF (Q5TJ56.1)               | 41           |
| ID67723_orf22 | 252  | Putative 4'-phosphopantetheinyl transferase slr0495 | slr0495 (Q55185.1)            | 28           |
| ID67723_orf23 | 241  | Methylesterase 8                                    | MES8 (O80475.1)               | 36           |
| ID67723_orf24 | 166  | Unknown                                             | SgcT (AAL06706)               | 42           |
| ID67723_orf25 | 188  | Unknown                                             | SgcS (AAL06705)               | 70           |
| ID67723_orf26 | 348  | Epoxide hydrolase                                   | SgcF (AAL06662)               | 30           |
| ID67723_orf27 | 454  | Flavin-dependent oxidoreductase                     | Ncs32 (AAM78001)              | 34           |
| ID67723_orf28 | 615  | Asparagine synthetase                               | asnO (005272)                 | 46           |
| ID67723_orf29 | 404  | FAD-dependent oxidoreductase                        | dynE13( ACB47064)             | 33           |
| ID67723_orf30 | 632  | Anthranilate synthase II                            | SgcD1 (AAL06663)              | 31           |
| ID67723_orf31 | 217  | Phenazine biosynthesis protein PhzD1                | PhzD1(P0DPB9.1)               | 55           |
| ID67723_orf32 | 254  | Short chain dehydrogenase                           | KedU16 (AFV52172)             | 40           |
| ID67723_orf33 | 1059 | A-domain type II peptide synthetase                 | SgcC1 (AAL06681)              | 40           |
| ID67723_orf34 | 552  | MIO-dependent tyrosine 2,3-aminomutase              | SgcC4 (AAL06680)              | 72           |
| ID67723_orf35 | 525  | Chlorophenol-4-monooxygenase                        | SgcC (AAL06674)               | 77           |
| ID67723_orf36 | 406  | Oxidoreductase                                      | SgcL (AAL06685)               | 26           |
| ID67723_orf37 | 268  | N-methyl transferase                                | SgcA5 (AAL06660)              | 45           |
| ID67723_orf38 | 369  | Amino transferase                                   | SgcA4 (AAL06659)              | 31           |
| ID67723_orf39 | 711  | Formate dehydrogenase subunit alpha                 | fdhA (P61159)                 | 23           |
| ID67723_orf40 | 360  | 1,2-phenylacetyl-CoA epoxidase, subunit E           | paaE (P76081.1)               | 40           |

| ID67723_orf41 | 145 | Putative 1,2-phenylacetyl-CoA epoxidase, subunit D | paaD (P76080)        | 45 |
|---------------|-----|----------------------------------------------------|----------------------|----|
| ID67723_orf42 | 243 | 1,2-phenylacetyl-CoA epoxidase, subunit C          | paaC (P76079.1)      | 48 |
| ID67723_orf43 | 411 | 1,2-phenylacetyl-CoA epoxidase, subunit A          | paa A(P76077.1)      | 60 |
| ID67723_orf44 | 550 | A-domain type II peptide synthetase                | SgcC1 (AAL06681)     | 28 |
| ID67723_orf45 | 263 | Arylamine N-acetyltransferase                      | nat (O86309.3)       | 33 |
| ID67723_orf46 | 551 | A-domain type II peptide synthetase                | SgcC1 (AAL06681)     | 34 |
| ID67723_orf47 | 631 | Radical SAM C-methyltransferase                    | KedN5 (AFV52163)     | 31 |
| ID67723_orf48 | 374 | Enoyl reductase                                    | KedU32 (AFV52194)    | 30 |
| ID67723_orf49 | 263 | Type II thioesterase                               | KedU43 (AFV52205)    | 38 |
| ID67723_orf50 | 409 | 3-O-Acyltransferase                                | SgcD6 (AAL06667)     | 37 |
| ID67723_orf51 | 293 | Dioxygenase swnH1                                  | swnH1(D4AU26.1)      | 32 |
| ID67723_orf52 | 151 | transport protein                                  | CynR5 (AGO97175.1)   | 32 |
| ID67723_orf53 | 143 | Probable zinc-binding alcohol dehydrogenase Rv1895 | Rv1895 (O07737)      | 61 |
| ID67723_orf54 | 403 | C-methyltransferase                                | SgcA3 (AAL06661)     | 36 |
| ID67723_orf55 | 452 | Flavin-dependent oxidoreductase                    | Ncs32 (AAM78001)     | 28 |
| ID67723_orf56 | 514 | Methyltransferase                                  | spoT6 (ABP55177)     | 45 |
| ID67723_orf57 | 475 | Glycerol phosphate ABC transporter                 | SgcB1 (AAL06653)     | 46 |
| ID67723_orf58 | 431 | Glycosyl transferase                               | SgcA6 (AAL06670)     | 52 |
| ID67723_orf59 | 326 | dNDP-hexose 4, 6-dehydratase                       | NcsC1 (AAM77990)     | 33 |
| ID67723_orf60 | 411 | P-450 hydroxylase                                  | NcsB3 (AAM77997)     | 47 |
| ID67723_orf61 | 523 | Transmembrane efflux protein                       | SgcB (AAL06672)      | 51 |
| ID67723_orf62 | 391 | O-acyltransferase                                  | cyaA4 (AGO97197.1)   | 44 |
| ID67723_orf63 | 250 | Short chain dehydrogenase                          | KedU16 (AFV52172)    | 40 |
| ID67723_orf64 | 467 | FAD-binding monooxygenase                          | SgcD2 (AAL06669)     | 52 |
| ID67723_orf65 | 444 | C-domain type II peptide synthetase                | SgcC5 (AAL06678)     | 45 |
| ID67723_orf66 | 261 | Hydrolase                                          | Sgcl (AAL06675)      | 48 |
| ID67723_orf67 | 429 | Acyl-CoA N-acyltransferase                         | KedN4 ( AFV52164.1)  | 31 |
| ID67723_orf68 | 244 | Probable N-octanoylanthranilate hydrolase AqdA1    | AqdA1 (A0A0G3FWY4.1) | 33 |
| ID67723_orf69 | 500 | A-domain type II peptide synthetase                | SgcC1 (AAL06681)     | 26 |
| ID67723_orf70 | 265 | Tryptophan 2,3-dioxygenase                         | kynA (B4UMQ6.1)      | 53 |
| ID67723_orf71 | 401 | Uncharacterized aminotransferase YcbU              | YcbU (P42253.3)      | 23 |
| ID67723_orf72 | 437 | NDP glucose dehydrogenase                          | AcmA2 (ATV95598)     | 69 |
| ID67723_orf73 | 434 | Amino transferase                                  | SgcA4 (AAL06659)     | 29 |
| ID67723_orf74 | 136 | Unknown                                            | SgcJ (AAL06676)      | 55 |
| ID67723_orf75 | 91  | Type II PCP                                        | SgcC2 (AAL06679)     | 45 |
| ID67723_orf76 | 393 | Oxidoreductase                                     | SgcL (AAL06685)      | 69 |
| ID67723_orf77 | 348 | Probable prephenate dehydrogenase                  | NovF (Q9L9G2.1)      | 40 |

| Gene             | AA a | Putative Function                                        | Protein homologs <sup>a</sup> | Identity (%) |
|------------------|------|----------------------------------------------------------|-------------------------------|--------------|
| NBRC107356_orf1  | 187  | Unknown                                                  | SgcS (AAL06705)               | 72           |
| NBRC107356_orf2  | 186  | Alkylhydroperoxidase                                     | SgcO (WP_010056303)           | 55           |
| NBRC107356_orf3  | 131  | Uncharacterized protein Mb0035                           | Mb0035(P64674)                | 33           |
| NBRC107356_orf4  | 263  | Alkylhydroperoxidase                                     | SgcO (WP_010056303)           | 53           |
| NBRC107356_orf5  | 383  | Acyltransferase                                          | cynA4 (AGO97170)              | 37           |
| NBRC107356_orf6  | 535  | Transmembrane efflux protein                             | SgcB (AAL06672)               | 53           |
| NBRC107356_orf7  | 87   | Uncharacterized protein F44E2.8                          | F44E2.8(P34438.2)             | 27           |
| NBRC107356_orf8  | 327  | Unknown                                                  | SgcE2 (AAL06703)              | 65           |
| NBRC107356_orf9  | 297  | Unknown                                                  | NcsE3 (AAM78015)              | 56           |
| NBRC107356_orf10 | 655  | Unknown                                                  | NcsE4 (AAM78014)              | 59           |
| NBRC107356_orf11 | 339  | Unknown                                                  | SgcE5 (AAL06700)              | 69           |
| NBRC107356_orf12 | 1930 | Enediyne polyketide synthase                             | SgcE (AAL06699)               | 65           |
| NBRC107356_orf13 | 142  | Thioesterase                                             | NcsE10 (AAM78011)             | 78           |
| NBRC107356_orf14 | 179  | Flavin-dependent oxidoreductase                          | NcsE6 (AAM78010)              | 57           |
| NBRC107356_orf15 | 478  | Cytochrome P450                                          | SgcE7 (AAL06697)              | 65           |
| NBRC107356_orf16 | 243  | AraC family transcriptional regulator                    | SgcR2 (AAL06696)              | 52           |
| NBRC107356_orf17 | 189  | Unknown                                                  | SgcE8 (AAL06694)              | 67           |
| NBRC107356_orf18 | 551  | Oxidoreductase                                           | SgcE9 (AAL06693)              | 79           |
| NBRC107356_orf19 | 373  | Unknown                                                  | Ncs14 (AAM77983)              | 49           |
| NBRC107356_orf20 | 267  | Unknown                                                  | SgcE11 (AAL06691)             | 64           |
| NBRC107356_orf21 | 266  | Probable methyltransferase PMT5                          | PMT5(Q3EC77.2)                | 25           |
| NBRC107356_orf22 | 89   | tRNA pseudouridine synthase A                            | truA(P70973.2)                | 29           |
| NBRC107356_orf23 | 362  | Probable prephenate dehydrogenase                        | NovF (Q9L9G2.1)               | 38           |
| NBRC107356_orf24 | 543  | Transmembrane efflux protein                             | SgcB (AAL06672)               | 50           |
| NBRC107356_orf25 | 109  | DGPFAETKE family protein                                 | Spoorf12 (ABP55159)           | 41           |
| NBRC107356_orf26 | 157  | D-ribose pyranase                                        | rbsD (B7IGD0)                 | 30           |
| NBRC107356_orf27 | 414  | 3-O-Acyltransferase                                      | SgcD6 (AAL06667)              | 25           |
| NBRC107356_orf28 | 391  | Mycoketide-CoA synthase                                  | pks12 (I6XD69.1)              | 27           |
| NBRC107356_orf29 | 244  | Phosphoribosylaminoimidazole-succinocarboxamide synthase | purC (A0R4I0.1)               | 44           |
| NBRC107356_orf30 | 448  | Glycerol phosphate ABC transporter                       | SgcB1 (AAL06653)              | 49           |

 Table S13. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Sphaerisporangium melleum NBRC 107356

| Gene           | AA a | Putative Function                                         | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|-----------------------------------------------------------|-------------------------------|--------------|
| DSM44936_orf1  | 313  | Unknown                                                   | SgcE2 (AAL06703)              | 64           |
| DSM44936_orf2  | 314  | Unknown                                                   | SgcE3 (AAL06702)              | 58           |
| DSM44936_orf3  | 653  | Unknown                                                   | NcsE4 (AAM78014)              | 57           |
| DSM44936_orf4  | 327  | Unknown                                                   | NcsE5 (AAM78013)              | 68           |
| DSM44936_orf5  | 1926 | Enediyne polyketide synthase                              | SgcE (AAL06699)               | 64           |
| DSM44936_orf6  | 145  | Thioesterase                                              | NcsE10 (AAM78011)             | 84           |
| DSM44936_orf7  | 179  | Flavin-dependent oxidoreductase                           | NcsE6 (AAM78010)              | 60           |
| DSM44936_orf8  | 466  | Cytochrome P450                                           | SgcE7 (AAL06697)              | 64           |
| DSM44936_orf9  | 255  | AraC family transcriptional regulator                     | SgcR2 (AAL06696)              | 55           |
| DSM44936_orf10 | 176  | Unknown                                                   | NcsE8 (AAM78006)              | 66           |
| DSM44936_orf11 | 551  | Oxidoreductase                                            | SgcE9 (AAL06693)              | 79           |
| DSM44936_orf12 | 346  | Unknown                                                   | SgcM (AAL06686)               | 50           |
| DSM44936_orf13 | 267  | Unknown                                                   | SgcE11 (AAL06691)             | 61           |
| DSM44936_orf14 | 344  | DAHP synthase                                             | Kedorf-11 (AFV52120.1)        | 50           |
| DSM44936_orf15 | 293  | Probable prephenate dehydrogenase                         | NovF (Q9L9G2.1)               | 39           |
| DSM44936_orf16 | 326  | Reticulon-4-interacting protein 1, mitochondrial          | RTN4IP1 (Q8WWV3)              | 32           |
| DSM44936_orf17 | 78   | Uncharacterized HTH-type transcriptional regulator MJ0272 | MJ0272 (Q57720.2)             | 49           |
| DSM44936_orf18 | 141  | p-hydroxybenzoic acid efflux pump subunit AaeB            | AaeB (Q6DAH4.1)               | 32           |
| DSM44936_orf19 | 415  | P-450 hydroxylase                                         | NcsB3 (AAM77997)              | 47           |
| DSM44936_orf20 | 537  | Transmembrane efflux protein                              | SgcB (AAL06672)               | 54           |
| DSM44936_orf21 | 239  | Fructose-1-phosphate phosphatase YqaB                     | YqaB (P77475.1)               | 36           |
| DSM44936_orf22 | 376  | Amino transferase                                         | SgcA4 (AAL06659)              | 28           |
| DSM44936_orf23 | 250  | N-methyl transferase                                      | SgcA5 (AAL06660)              | 51           |

 Table S14. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Sphaerisporangium rubeum DSM 44936
| Gene        | AA a | Putative Function                     | Protein homologs <sup>a</sup> | Identity (%) |
|-------------|------|---------------------------------------|-------------------------------|--------------|
| YC537_orf1  | 267  | Unknown                               | SgcM (AAL06686)               | 59           |
| YC537_orf2  | 485  | Probable prephenate dehydrogenase     | NovF (Q9L9G2.1)               | 37           |
| YC537_orf3  | 273  | Unknown                               | SgcE11 (AAL06691)             | 76           |
| YC537_orf4  | 152  | Thioesterase                          | NcsE10 (AAM78011)             | 85           |
| YC537_orf5  | 551  | Oxidoreductase                        | SgcE9 (AAL06693)              | 86           |
| YC537_orf6  | 196  | Unknown                               | NcsE8 (AAM78006)              | 72           |
| YC537_orf7  | 363  | Regulatory protein                    | SgcR1 (AAL06695)              | 65           |
| YC537_orf8  | 255  | AraC family transcriptional regulator | SgcR2 (AAL06696)              | 68           |
| YC537_orf9  | 448  | Cytochrome P450                       | SgcE7 (AAL06697)              | 78           |
| YC537_orf10 | 150  | Flavin-dependent oxidoreductase       | NcsE6 (AAM78010)              | 64           |
| YC537_orf11 | 153  | Thioesterase                          | NcsE10 (AAM78011)             | 62           |
| YC537_orf12 | 1936 | Enediyne polyketide synthase          | SgcE (AAL06699)               | 75           |
| YC537_orf13 | 386  | Unknown                               | SgcE5 (AAL06700)              | 75           |
| YC537_orf14 | 640  | Unknown                               | SgcE4 (AAL06701)              | 77           |
| YC537_orf15 | 328  | Unknown                               | SgcE3 (AAL06702)              | 73           |
| YC537_orf16 | 359  | Unknown                               | SgcE2 (AAL06703)              | 69           |
| YC537_orf17 | 147  | HxIR family transcriptional regulator | SgcE1 (AAL06704)              | 69           |
| YC537_orf18 | 188  | Unknown                               | SgcS (AAL06705)               | 69           |
| YC537_orf19 | 156  | Unknown                               | SgcT (AAL06706)               | 54           |
| YC537_orf20 | 393  | Transcriptional regulator             | SgcR3 (AAL06707)              | 62           |
| YC537_orf21 | 213  | γ-Butyrolactone receptor protein      | NcsR3 (AAM78020)              | 40           |
| YC537_orf22 | 326  | Unknown                               | Ncs56 (AAM78025)              | 71           |

 Table S15. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces boluensis YC537

| Gene           | AA a | Putative Function                       | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|-----------------------------------------|-------------------------------|--------------|
| NRRL5741_orf1  | 344  | Oxidase                                 | SgcQ (AAL06690)               | 58           |
| NRRL5741_orf2  | 138  | Guanylate cyclase                       | GC (S7VVK4.1)                 | 38           |
| NRRL5741_orf3  | 241  | 4'-phosphopantetheinyl transferase Hetl | Hetl (P37695.2)               | 30           |
| NRRL5741_orf4  | 392  | S-adenosylmethionine synthase           | metK (Q9X4Q2.1)               | 83           |
| NRRL5741_orf5  | 518  | MIO-dependent tyrosine 2,3-aminomutase  | SgcC4 (AAL06680)              | 58           |
| NRRL5741_orf6  | 205  | Unknown                                 | Ncs13 (AAM77982)              | 39           |
| NRRL5741_orf7  | 334  | Unknown                                 | SgcM (AAL06686)               | 61           |
| NRRL5741_orf8  | 291  | Fibronectin                             | FN1 (Q28749.2)                | 28           |
| NRRL5741_orf9  | 351  | Probable prephenate dehydrogenase       | NovF (Q9L9G2.1)               | 40           |
| NRRL5741_orf10 | 266  | Unknown                                 | SgcE11 (AAL06691)             | 82           |
| NRRL5741_orf11 | 155  | Type II thioesterase                    | SgcE10 (AAL06692)             | 86           |
| NRRL5741_orf12 | 541  | Oxidoreductase                          | SgcE9 (AAL06693)              | 91           |
| NRRL5741_orf13 | 176  | Unknown                                 | SgcE8 (AAL06694)              | 80           |
| NRRL5741_orf14 | 351  | Regulatory protein                      | SgcR1 (AAL06695)              | 70           |
| NRRL5741_orf15 | 241  | AraC family transcriptional regulator   | SgcR2 (AAL06696)              | 74           |
| NRRL5741_orf16 | 449  | Cytochrome P450                         | SgcE7 (AAL06697)              | 82           |
| NRRL5741_orf17 | 179  | Flavin reductase                        | SgcE6 (AAL06698)              | 70           |
| NRRL5741_orf18 | 153  | Type II thioesterase                    | SgcE10 (AAL06692)             | 51           |
| NRRL5741_orf19 | 1948 | Enediyne polyketide synthase            | SgcE (AAL06699)               | 79           |
| NRRL5741_orf20 | 298  | Unknown                                 | SgcE5 (AAL06700)              | 76           |
| NRRL5741_orf21 | 460  | Unknown                                 | SgcE4 (AAL06701)              | 80           |
| NRRL5741_orf22 | 328  | Unknown                                 | SgcE3 (AAL06702)              | 80           |
| NRRL5741_orf23 | 330  | Unknown                                 | SgcE2 (AAL06703)              | 75           |
| NRRL5741_orf24 | 147  | HxIR family transcriptional regulator   | SgcE1 (AAL06704)              | 78           |
| NRRL5741_orf25 | 187  | Unknown                                 | SgcS (AAL06705)               | 79           |
| NRRL5741_orf26 | 160  | Unknown                                 | SgcT (AAL06706)               | 65           |
| NRRL5741_orf27 | 400  | Transcriptional regulator               | SgcR3 (AAL06707)              | 68           |

**Table S16**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces jumonjinensis NRRL 5741.

| Table S17. | Predicted | functions | of ORFs in | the enediyne | biosynthetic gene | cluster from 3 | Streptomyces sp. DH | 5. |
|------------|-----------|-----------|------------|--------------|-------------------|----------------|---------------------|----|
|            |           |           |            |              |                   |                |                     |    |

| Gene      | AA a | Putative Function                       | Protein homologs <sup>a</sup> | Identity (%) |
|-----------|------|-----------------------------------------|-------------------------------|--------------|
| DH5_orf1  | 415  | P-450 hydroxylase                       | NcsB3 (AAM77997)              | 51           |
| DH5_orf2  | 412  | Oxidoreductase                          | SgcL (AAL06685)               | 30           |
| DH5_orf3  | 460  | C-domain type II peptide synthetase     | SgcC5 (AAL06678)              | 41           |
| DH5_orf4  | 584  | A-domain type II peptide synthetase     | SgcC1 (AAL06681)              | 32           |
| DH5_orf5  | 410  | L-arginine-specific L-amino acid ligase | rizA (B5UAT8.1)               | 26           |
| DH5_orf6  | 317  | O-acetylserine sulfhydrylase            | cysK (P0A535.1)               | 52           |
| DH5_orf7  | 212  | Serine acetyltransferase                | cysE (Q9ZK14.1)               | 48           |
| DH5_orf8  | 421  | Uncharacterized protein y4rH            | y4rH (P55641.1)               | 28           |
| DH5_orf9  | 414  | Uncharacterized protein y4rH            | y4rH (P55641.1)               | 31           |
| DH5_orf10 | 64   | Serine/threonine-protein kinase CLA4    | CLA4 (Q9HFW2.1)               | 41           |
| DH5_orf11 | 295  | Probable prephenate dehydrogenase       | NovF (Q9L9G2.1)               | 39           |
| DH5_orf12 | 268  | Unknown                                 | SgcE11 (AAL06691)             | 73           |
| DH5_orf13 | 353  | Unknown                                 | SgcM (AAL06686)               | 54           |
| DH5_orf14 | 557  | Oxidoreductase                          | SgcE9 (AAL06693)              | 83           |
| DH5_orf15 | 195  | Unknown                                 | NcsE8 (AAM78006)              | 77           |
| DH5_orf16 | 357  | StrR-like transcriptional regulator     | NcsR6 (AAM78007)              | 60           |
| DH5_orf17 | 255  | AraC family, transcriptional regulator  | NcsR5 (AAM78008)              | 71           |
| DH5_orf18 | 449  | P-450 hydroxylase                       | NcsE7 (AAM78009)              | 78           |
| DH5_orf19 | 179  | Flavin-dependent oxidoreductase         | NcsE6 (AAM78010)              | 69           |
| DH5_orf20 | 152  | Thioesterase                            | NcsE10 (AAM78011)             | 83           |
| DH5_orf21 | 1969 | Enediyne polyketide synthase            | NcsE (AAM78012)               | 74           |
| DH5_orf22 | 357  | Unknown                                 | NcsE5 (AAM78013)              | 75           |
| DH5_orf23 | 616  | Unknown                                 | NcsE4 (AAM78014)              | 79           |
| DH5_orf24 | 308  | Unknown                                 | NcsE3 (AAM78015)              | 75           |
| DH5_orf25 | 329  | Unknown                                 | NcsE2 (AAM78016)              | 68           |
| DH5_orf26 | 147  | Transcription regulator                 | NcsE1 (AAM78017)              | 71           |
| DH5_orf27 | 395  | SgcR3 like transcriptional regulator    | NcsR7 (AAM78019)              | 60           |
| DH5_orf28 | 225  | γ-Butyrolactone receptor protein        | NcsR3 (AAM78020)              | 49           |
| DH5_orf29 | 320  | dNDP-hexose dehydratase                 | NcsC2 (AAM78021)              | 57           |
| DH5_orf30 | 208  | γ-Butyrolactone receptor protein        | NcsR2 (AAM78022)              | 66           |
| DH5_orf31 | 315  | γ-Butyrolactone biosynthesis enzyme     | NcsR1 (AAM78023)              | 59           |
| DH5_orf32 | 501  | 2-amino-4-deoxychorismate synthase      | sgcD (Q8GMH4.1)               | 72           |
| DH5_orf33 | 276  | Unknown                                 | Ncs55 (AAM78024)              | 72           |

| Table S18. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces sp. NK1 | 5101. |
|------------------------------------------------------------------------------------------------------------|-------|
|------------------------------------------------------------------------------------------------------------|-------|

| Gene          | AA a | Putative Function                      | Protein homologs <sup>a</sup> | Identity (%) |
|---------------|------|----------------------------------------|-------------------------------|--------------|
| NK15101_orf1  | 316  | γ-Butyrolactone biosynthesis enzyme    | NcsR1 (AAM78023)              | 60           |
| NK15101_orf2  | 209  | γ-Butyrolactone receptor protein       | NcsR2 (AAM78022)              | 66           |
| NK15101_orf3  | 319  | dNDP-hexose dehydratase                | NcsC2 (AAM78021)              | 58           |
| NK15101_orf4  | 213  | γ-Butyrolactone receptor protein       | NcsR3 (AAM78020)              | 50           |
| NK15101_orf5  | 403  | SgcR3 like transcriptional regulator   | NcsR7 (AAM78019)              | 62           |
| NK15101_orf6  | 147  | Transcription regulator                | NcsE1 (AAM78017)              | 73           |
| NK15101_orf7  | 342  | Unknown                                | SgcE2 (AAL06703)              | 70           |
| NK15101_orf8  | 307  | Unknown                                | NcsE3 (AAM78015)              | 75           |
| NK15101_orf9  | 636  | Unknown                                | NcsE4 (AAM78014)              | 79           |
| NK15101_orf10 | 390  | Unknown                                | NcsE5 (AAM78013)              | 77           |
| NK15101_orf11 | 1960 | Enediyne polyketide synthase           | NcsE (AAM78012)               | 75           |
| NK15101_orf12 | 152  | Thioesterase                           | NcsE10 (AAM78011)             | 84           |
| NK15101_orf13 | 181  | Flavin-dependent oxidoreductase        | NcsE6 (AAM78010)              | 71           |
| NK15101_orf14 | 423  | P-450 hydroxylase                      | NcsE7 (AAM78009)              | 78           |
| NK15101_orf15 | 256  | AraC family, transcriptional regulator | NcsR5 (AAM78008)              | 67           |
| NK15101_orf16 | 372  | StrR-like transcriptional regulator    | NcsR6 (AAM78007)              | 60           |
| NK15101_orf17 | 195  | Unknown                                | NcsE8 (AAM78006)              | 78           |
| NK15101_orf18 | 556  | Oxidoreductase                         | SgcE9 (AAL06693)              | 81           |
| NK15101_orf19 | 268  | Unknown                                | NcsE11 (AAM78004)             | 75           |
| NK15101_orf20 | 299  | Probable prephenate dehydrogenase      | NovF (Q9L9G2.1)               | 41           |
| NK15101_orf21 | 86   | Type II PCP                            | SgcC2 (AAL06679)              | 41           |
| NK15101_orf22 | 288  | Dioxygenase swnH1                      | swnH1 (E9F8L9.1)              | 34           |
| NK15101_orf23 | 418  | P-450 hydroxylase                      | NcsB3 (AAM77997)              | 48           |
| NK15101_orf24 | 142  | Unknown                                | SgcJ (AAL06676)               | 61           |
| NK15101_orf25 | 396  | Oxidoreductase                         | SgcL (AAL06685)               | 65           |
| NK15101_orf26 | 528  | Chlorophenol-4-monooxygenase           | SgcC (AAL06674)               | 75           |
| NK15101_orf27 | 445  | C-domain type II peptide synthetase    | SgcC5 (AAL06678)              | 52           |
| NK15101_orf28 | 544  | MIO-dependent tyrosine 2,3-aminomutase | SgcC4 (AAL06680)              | 78           |
| NK15101_orf29 | 849  | A-domain type II peptide synthetase    | SgcC1 (AAL06681)              | 43           |
| NK15101_orf30 | 482  | FAD-binding monooxygenase              | SgcD2 (AAL06669)              | 54           |
| NK15101_orf31 | 412  | Oxidoreductase                         | SgcL (AAL06685)               | 27           |

| Gene              | AA a | Putative Function                     | Protein homologs <sup>a</sup> | Identity (%) |
|-------------------|------|---------------------------------------|-------------------------------|--------------|
| CGMCC4.2126_orf1  | 331  | Unknown                               | SgcE2 (AAL06703)              | 66           |
| CGMCC4.2126_orf2  | 300  | Unknown                               | NcsE3 (AAM78015)              | 56           |
| CGMCC4.2126_orf3  | 658  | Unknown                               | NcsE4 (AAM78014)              | 58           |
| CGMCC4.2126_orf4  | 329  | Unknown                               | NcsE5 (AAM78013)              | 69           |
| CGMCC4.2126_orf5  | 1930 | Enediyne polyketide synthase          | SgcE (AAL06699)               | 67           |
| CGMCC4.2126_orf6  | 142  | Thioesterase                          | NcsE10 (AAM78011)             | 84           |
| CGMCC4.2126_orf7  | 179  | Flavin-dependent oxidoreductase       | NcsE6 (AAM78010)              | 59           |
| CGMCC4.2126_orf8  | 482  | Cytochrome P450                       | SgcE7 (AAL06697)              | 66           |
| CGMCC4.2126_orf9  | 255  | AraC family transcriptional regulator | SgcR2 (AAL06696)              | 53           |
| CGMCC4.2126_orf10 | 164  | RNA polymerase sigma-E factor         | sigE (P38133.2)               | 41           |
| CGMCC4.2126_orf11 | 176  | Unknown                               | SgcE8 (AAL06694)              | 71           |
| CGMCC4.2126_orf12 | 551  | Oxidoreductase                        | SgcE9 (AAL06693)              | 81           |
| CGMCC4.2126_orf13 | 374  | Unknown                               | SgcM (AAL06686)               | 48           |
| CGMCC4.2126_orf14 | 267  | Unknown                               | NcsE11 (AAM78004)             | 65           |
| CGMCC4.2126_orf15 | 395  | Acyltransferase                       | cynA4 (AGO97170)              | 40           |
| CGMCC4.2126_orf16 | 311  | Arylamine N-acetyltransferase         | nat (P0A5L9.1)                | 32           |
| CGMCC4.2126_orf17 | 407  | Cytochrome P450 hydroxylase           | SgcD3 (AAL06684)              | 56           |
| CGMCC4.2126_orf18 | 334  | O-methyltransferase                   | SgcD4 (AAL06683)              | 58           |
| CGMCC4.2126_orf19 | 342  | DAHP synthase                         | Kedorf-11 (AFV52120.1)        | 50           |
| CGMCC4.2126_orf20 | 283  | Probable prephenate dehydrogenase     | NovF (Q9L9G2.1)               | 39           |
| CGMCC4.2126_orf21 | 416  | P-450 hydroxylase                     | NcsB3 (AAM77997)              | 49           |
| CGMCC4.2126_orf22 | 183  | Pyrimidine reductase                  | Cyaorf7 (AGO97196)            | 32           |
| CGMCC4.2126_orf23 | 122  | Acid phosphatase                      | gpm2 (Q6MWZ7.1)               | 28           |
| CGMCC4.2126_orf24 | 110  | 30S ribosomal protein S18             | rpsR (A5EXN0.1)               | 45           |
| CGMCC4.2126_orf25 | 148  | 50S ribosomal protein L3              | rpIC (A8IAS6.2)               | 24           |
| CGMCC4.2126_orf26 | 118  | ATPase                                | Cynorf32 (AGO97175)           | 44           |
| CGMCC4.2126_orf27 | 451  | Efflux pump transporter               | NcsA1 (AAM77999)              | 33           |
| CGMCC4.2126_orf28 | 411  | Oxidoreductase                        | SgcL (AAL06685)               | 29           |
| CGMCC4.2126_orf29 | 459  | C-domain type II peptide synthetase   | SgcC5 (AAL06678)              | 47           |
| CGMCC4.2126_orf30 | 143  | Unknown                               | SgcJ (AAL06676)               | 64           |
| CGMCC4.2126_orf31 | 393  | Oxidoreductase                        | SgcL (AAL06685)               | 67           |
| CGMCC4.2126_orf32 | 526  | Chlorophenol-4-monooxygenase          | SgcC (AAL06674)               | 78           |
| CGMCC4.2126_orf33 | 251  | Oxidoreductase                        | SgcN (AAL06687)               | 31           |
| CGMCC4.2126_orf34 | 468  | FAD-binding monooxygenase             | SgcD2 (AAL06669)              | 53           |
| CGMCC4.2126_orf35 | 362  | p-hydroxymandelate synthase           | AcmP1 (ATV95608)              | 60           |
| CGMCC4.2126_orf36 | 58   | Unknown                               | Spoorf19 (ABP55170)           | 56           |
| CGMCC4.2126_orf37 | 592  | A-domain type II peptide synthetase   | SgcC1 (AAL06681)              | 31           |
| CGMCC4.2126_orf38 | 460  | Flavin-dependent oxidoreductase       | Ncs32 (AAM78001)              | 29           |
| CGMCC4.2126_orf39 | 475  | Glycerol phosphate ABC transporter    | SgcB1 (AAL06653)              | 50           |
| CGMCC4.2126_orf40 | 550  | Transmembrane efflux protein          | SgcB (AAL06672)               | 47           |

 Table S19. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptosporangium canum CGMCC 4.2126.

| CGMCC4.2126_orf41 | 282 | Esterase/hydrolase  | Ncs27 (AAM77996) | 36 |
|-------------------|-----|---------------------|------------------|----|
| CGMCC4.2126_orf42 | 336 | O-methyltransferase | SgcD4 (AAL06683) | 61 |

| Gene           | AA a | Putative Function                                                         | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|---------------------------------------------------------------------------|-------------------------------|--------------|
| DSM45763_orf1  | 562  | CoA ligase                                                                | NcsB2 (AAM77987)              | 27           |
| DSM45763_orf2  | 263  | Tryptophan 2,3-dioxygenase                                                | kynA (Q2IEC3.1)               | 43           |
| DSM45763_orf3  | 432  | Kynureninase                                                              | kynU (P83788.1)               | 26           |
| DSM45763_orf4  | 165  | Redox-sensitive transcriptional activator SoxR                            | SoxR(Q51506.1)                | 51           |
| DSM45763_orf5  | 500  | Transmembrane efflux protein                                              | SgcB (AAL06672)               | 30           |
| DSM45763_orf6  | 396  | Uncharacterized protein YahJ                                              | YahJ (P77554.1)               | 36           |
| DSM45763_orf7  | 243  | Nta operon transcriptional regulator                                      | ntaR (P54988.2)               | 32           |
| DSM45763_orf8  | 369  | Calmodulin-interacting protein 111                                        | CIP111 (Q9LET7.1)             | 35           |
| DSM45763_orf9  | 152  | HTH-type transcriptional regulator MhqR                                   | MhqR (O31672.1)               | 28           |
| DSM45763_orf10 | 267  | Unknown                                                                   | SgcE11 (AAL06691)             | 67           |
| DSM45763_orf11 | 409  | Unknown                                                                   | SgcM (AAL06686)               | 45           |
| DSM45763_orf12 | 550  | FDA-dependent oxidoreductase                                              | NcsE9 (AAM78005)              | 80           |
| DSM45763_orf13 | 176  | Unknown                                                                   | SgcE8 (AAL06694)              | 67           |
| DSM45763_orf14 | 187  | RNA polymerase sigma-E factor                                             | SigE (P38133.2)               | 39           |
| DSM45763_orf15 | 284  | AraC family transcriptional regulator                                     | SgcR2 (AAL06696)              | 52           |
| DSM45763_orf16 | 474  | Cytochrome P450                                                           | SgcE7 (AAL06697)              | 65           |
| DSM45763_orf17 | 179  | Flavin-dependent oxidoreductase                                           | NcsE6 (AAM78010)              | 60           |
| DSM45763_orf18 | 144  | Thioesterase                                                              | NcsE10 (AAM78011)             | 83           |
| DSM45763_orf19 | 1961 | Enediyne polyketide synthase                                              | SgcE (AAL06699)               | 65           |
| DSM45763_orf20 | 323  | Unknown                                                                   | NcsE5 (AAM78013)              | 69           |
| DSM45763_orf21 | 652  | Unknown                                                                   | NcsE4 (AAM78014)              | 59           |
| DSM45763_orf22 | 298  | Unknown                                                                   | NcsE3 (AAM78015)              | 57           |
| DSM45763_orf23 | 329  | Unknown                                                                   | NcsE2 (AAM78016)              | 64           |
| DSM45763_orf24 | 286  | UPF0182 protein MAV_4137                                                  | MAV_4137(A0QK47.1)            | 36           |
| DSM45763_orf25 | 89   | Biotin-dependent acetyl-/propionyl-coenzyme A carboxylase epsilon subunit | accE5 (P96886.1)              | 55           |
| DSM45763_orf26 | 927  | HTH-type transcriptional regulator MaIT                                   | MaIT (Q8D4P3.1)               | 23           |
| DSM45763_orf27 | 665  | 2-isopropylmalate synthase                                                | leuA (D2ATJ4.1)               | 65           |
| DSM45763_orf28 | 112  | 5-hydroxyisourate hydrolase                                               | hiuH (Q8ZQ52.1)               | 32           |
| DSM45763_orf29 | 52   | Legumain                                                                  | LGMN (Q99538.1)               | 33           |
| DSM45763_orf30 | 1029 | Transcriptional regulator                                                 | AcmR4 (ATV95651)              | 33           |
| DSM45763_orf31 | 90   | Type II PCP                                                               | SgcC2 (AAL06679)              | 42           |
| DSM45763_orf32 | 164  | ECF RNA polymerase sigma factor SigJ                                      | SigJ (L0TCG5.1)               | 53           |
| DSM45763_orf33 | 394  | Oxidoreductase                                                            | SgcL (AAL06685)               | 69           |
| DSM45763_orf34 | 315  | Probable prephenate dehydrogenase                                         | NovF (Q9L9G2.1)               | 39           |

**Table S20**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptosporangium sandarakinum DSM 45763.

| Gene            | AA a | Putative Function                         | Protein homologs <sup>a</sup> | Identity (%) |
|-----------------|------|-------------------------------------------|-------------------------------|--------------|
| KLBMP9127_orf1  | 305  | Probable prephenate dehydrogenase         | NovF (Q9L9G2.1)               | 36           |
| KLBMP9127_orf2  | 191  | Putative carboxymethylenebutenolidase     | (P95862.1)                    | 23           |
| KLBMP9127_orf3  | 436  | Flavin-dependent oxidoreductase           | Ncs32 (AAM78001)              | 29           |
| KLBMP9127_orf4  | 483  | Efflux pump transporter                   | NcsA1 (AAM77999)              | 36           |
| KLBMP9127_orf5  | 169  | Uncharacterized protein Mb2934c           | Mb2934c (P65054.1)            | 24           |
| KLBMP9127_orf6  | 298  | LysR transcriptional regulator            | Kedorf-15 (AFV52116)          | 27           |
| KLBMP9127_orf7  | 394  | Oxidoreductase                            | SgcL (AAL06685)               | 66           |
| KLBMP9127_orf8  | 91   | Type II PCP                               | SgcC2 (AAL06679)              | 45           |
| KLBMP9127_orf9  | 84   | Type II PCP                               | SgcC2 (AAL06679)              | 52           |
| KLBMP9127_orf10 | 259  | Argininosuccinate lyase 2                 | argH2 (Q981V0.1)              | 25           |
| KLBMP9127_orf11 | 261  | Hydrolase                                 | Sgcl (AAL06675)               | 47           |
| KLBMP9127_orf12 | 136  | Unknown                                   | Ncs16 (AAM77985)              | 50           |
| KLBMP9127_orf13 | 416  | Acyl-CoA N-acyltransferase                | KedN4 (AFV52164.1)            | 33           |
| KLBMP9127_orf14 | 459  | C-domain type II peptide synthetase       | SgcC5 (AAL06678)              | 50           |
| KLBMP9127_orf15 | 404  | FAD-binding monooxygenase                 | SgcD2 (AAL06669)              | 54           |
| KLBMP9127_orf16 | 250  | Short chain dehydrogenase                 | KedU16 (AFV52172)             | 35           |
| KLBMP9127_orf17 | 467  | Flavin-dependent oxidoreductase           | Ncs32 (AAM78001)              | 29           |
| KLBMP9127_orf18 | 528  | Methyltransferase type 11                 | spoT6 (ABP55177)              | 45           |
| KLBMP9127_orf19 | 483  | Glycerol phosphate ABC transporter        | SgcB1 (AAL06653)              | 46           |
| KLBMP9127_orf20 | 150  | transport protein                         | CynR5 ( AGO97175.1)           | 29           |
| KLBMP9127_orf21 | 412  | Oxidoreductase                            | SgcL (AAL06685)               | 26           |
| KLBMP9127_orf22 | 527  | Chlorophenol-4-monooxygenase              | SgcC (AAL06674)               | 74           |
| KLBMP9127_orf23 | 296  | Dioxygenase swnH1                         | swnH1(E9F8L9.1)               | 36           |
| KLBMP9127_orf24 | 555  | MIO-dependent tyrosine 2,3-aminomutase    | SgcC4 (AAL06680)              | 74           |
| KLBMP9127_orf25 | 1060 | A-domain type II peptide synthetase       | SgcC1 (AAL06681)              | 42           |
| KLBMP9127_orf26 | 310  | epoxide hydrolase-like protein            | Kedorf-2 (AFV52129)           | 27           |
| KLBMP9127_orf27 | 422  | 3-O-Acyltransferase                       | SgcD6 (AAL06667)              | 34           |
| KLBMP9127_orf28 | 271  | Type II thioesterase                      | KedU43 (AFV52205)             | 40           |
| KLBMP9127_orf29 | 379  | Acyl-CoA dehydrogenase                    | KedU41 (AFV52203)             | 31           |
| KLBMP9127_orf30 | 643  | Radical SAM C-methyltransferase           | KedN5 (AFV52163)              | 29           |
| KLBMP9127_orf31 | 555  | A-domain type II peptide synthetase       | SgcC1 (AAL06681)              | 35           |
| KLBMP9127_orf32 | 265  | Arylamine N-acetyltransferase 2           | Nat2 (P50295.1)               | 29           |
| KLBMP9127_orf33 | 526  | CoA ligase                                | NcsB2 (AAM77987)              | 27           |
| KLBMP9127_orf34 | 490  | 1,2-phenylacetyl-CoA epoxidase, subunit A | paaA (P76077.1)               | 63           |
| KLBMP9127_orf35 | 249  | 1,2-phenylacetyl-CoA epoxidase, subunit C | paaC (P76079.1)               | 48           |
| KLBMP9127_orf36 | 163  | 1,2-phenylacetyl-CoA epoxidase, subunit D | paaD (P76080.2)               | 43           |
| KLBMP9127_orf37 | 368  | 1,2-phenylacetyl-CoA epoxidase, subunit E | PaaE(P76081.1)                | 41           |
| KLBMP9127_orf38 | 723  | Polysulfide reductase chain A             | psrA (P31075.1)               | 27           |
| KLBMP9127_orf39 | 187  | Unknown                                   | SgcS (AAL06705)               | 71           |
| KLBMP9127_orf40 | 159  | Unknown                                   | SgcT (AAL06706)               | 46           |

**Table S21**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from *Streptosporangium* sp. KLBMP 9127.

| KLBMP9127_orf41 | 253  | hypothetical protein                              | Cya-4 ( AGO97186)     | 27 |
|-----------------|------|---------------------------------------------------|-----------------------|----|
| KLBMP9127_orf42 | 252  | 4'-phosphopantetheinyl transferase Hetl           | Hetl (P37695.2)       | 36 |
| KLBMP9127_orf43 | 163  | RNA polymerase II elongation factor ELL3          | ELL3(Q9HB65.2)        | 32 |
| KLBMP9127_orf44 | 540  | Methylmalonyl-CoA decarboxylase                   | mdporf-2 (ABY66032.1) | 74 |
| KLBMP9127_orf45 | 99   | Levansucrase; Flags: Precursor                    | levS (Q70XJ9.1)       | 48 |
| KLBMP9127_orf46 | 328  | Bialaphos biosynthetic pathway regulatory protein | brpA (Q01108.1)       | 30 |
| KLBMP9127_orf47 | 339  | Probable D-serine dehydratase                     | dsdA (A6UB95.1)       | 38 |
| KLBMP9127_orf48 | 541  | A-domain type II peptide synthetase               | SgcC1 (AAL06681)      | 28 |
| KLBMP9127_orf49 | 294  | Tryptophan 2,3-dioxygenase                        | kynA (B4UMQ6.1)       | 55 |
| KLBMP9127_orf50 | 405  | Isopenicillin N epimerase                         | cefD (P18549.3)       | 28 |
| KLBMP9127_orf51 | 267  | Unknown                                           | SgcE11 (AAL06691)     | 66 |
| KLBMP9127_orf52 | 350  | Unknown                                           | SgcM (AAL06686)       | 49 |
| KLBMP9127_orf53 | 550  | FDA-dependent oxidoreductase                      | NcsE9 (AAM78005)      | 78 |
| KLBMP9127_orf54 | 189  | Unknown                                           | SgcE8 (AAL06694)      | 67 |
| KLBMP9127_orf55 | 188  | RNA polymerase sigma-E factor                     | sigE (P38133.2)       | 40 |
| KLBMP9127_orf56 | 283  | [Acyl-carrier-protein] phosphodiesterase          | PptH (I6YEE1.1)       | 59 |
| KLBMP9127_orf57 | 240  | AraC family, transcriptional regulator            | NcsR5 (AAM78008)      | 49 |
| KLBMP9127_orf58 | 458  | Cytochrome P450                                   | SgcE7 (AAL06697)      | 65 |
| KLBMP9127_orf59 | 179  | Flavin-dependent oxidoreductase                   | NcsE6 (AAM78010)      | 59 |
| KLBMP9127_orf60 | 142  | Thioesterase                                      | NcsE10 (AAM78011)     | 83 |
| KLBMP9127_orf61 | 1925 | Enediyne polyketide synthase                      | SgcE (AAL06699)       | 65 |
| KLBMP9127_orf62 | 323  | Unknown                                           | SgcE5 (AAL06700)      | 68 |
| KLBMP9127_orf63 | 650  | Unknown                                           | NcsE4 (AAM78014)      | 55 |
| KLBMP9127_orf64 | 290  | Unknown                                           | SgcE3 (AAL06702)      | 60 |
| KLBMP9127_orf65 | 329  | Unknown                                           | NcsE2 (AAM78016)      | 63 |
| KLBMP9127_orf66 | 313  | Unknown                                           | Ncs56 (AAM78025)      | 65 |

| Gene             | AA a | Putative Function                                  | Protein homologs <sup>a</sup> | Identity (%) |
|------------------|------|----------------------------------------------------|-------------------------------|--------------|
| NBRC107568 orf1  | 357  | Probable prephenate dehydrogenase                  | NovF (Q9L9G2.1)               | 40           |
| NBRC107568_orf2  | 394  | Oxidoreductase                                     | SgcL (AAL06685)               | 70           |
| NBRC107568_orf3  | 91   | Type II PCP                                        | SgcC2 (AAL06679)              | 47           |
| NBRC107568_orf4  | 337  | Acyl-CoA synthetase/P-450 monooxygenase            | KedU28 (AFV52184)             | 53           |
| NBRC107568_orf5  | 136  | Unknown                                            | Ncs16 (AAM77985)              | 53           |
| NBRC107568_orf6  | 343  | dNTP-glucose synthase                              | SgcA1 (AAL06657)              | 61           |
| NBRC107568_orf7  | 447  | Amino transferase                                  | SgcA4 (AAL06659)              | 28           |
| NBRC107568_orf8  | 448  | NDP glucose dehydrogenase                          | AcmA2 (ATV95598)              | 70           |
| NBRC107568_orf9  | 418  | Kynureninase                                       | kynU (A7GPY3.1)               | 30           |
| NBRC107568_orf10 | 266  | Tryptophan 2,3-dioxygenase                         | kynA (A9B4J6.1)               | 51           |
| NBRC107568_orf11 | 500  | CoA ligase                                         | NcsB2 (AAM77987)              | 27           |
| NBRC107568_orf12 | 241  | Probable N-octanoylanthranilate hydrolase AqdA1    | AqdA1 (A0A0G3FWY4.1)          | 34           |
| NBRC107568_orf13 | 412  | Acyl-CoA N-acyltransferase                         | KedN4 (AFV52164)              | 32           |
| NBRC107568_orf14 | 261  | Hydrolase                                          | Sgcl (AAL06675)               | 47           |
| NBRC107568_orf15 | 444  | C-domain type II peptide synthetase                | SgcC5 (AAL06678)              | 45           |
| NBRC107568_orf16 | 468  | FAD-binding monooxygenase                          | SgcD2 (AAL06669)              | 53           |
| NBRC107568_orf17 | 250  | Oxidoreductase                                     | SgcN (AAL06687)               | 32           |
| NBRC107568_orf18 | 391  | O-acyltransferase                                  | cyaA4 (AGO97197.1)            | 43           |
| NBRC107568_orf19 | 535  | Transmembrane efflux protein                       | SgcB (AAL06672)               | 51           |
| NBRC107568_orf20 | 417  | P-450 hydroxylase                                  | NcsB3 (AAM77997)              | 48           |
| NBRC107568_orf21 | 324  | dNDP-hexose 4, 6-dehydratase                       | NcsC1 (AAM77990)              | 33           |
| NBRC107568_orf22 | 432  | Glycosyl transferase                               | SgcA6 (AAL06670)              | 49           |
| NBRC107568_orf23 | 475  | Glycerol phosphate ABC transporter                 | SgcB1 (AAL06653)              | 47           |
| NBRC107568_orf24 | 504  | Methyltransferase type 11                          | spoT6 (ABP55177)              | 44           |
| NBRC107568_orf25 | 484  | Flavin-dependent oxidoreductase                    | Ncs32 (AAM78001)              | 30           |
| NBRC107568_orf26 | 353  | C-methyltransferase                                | SgcA3 (AAL06661)              | 39           |
| NBRC107568_orf27 | 147  | transport protein                                  | CynR5 (AGO97175.1)            | 33           |
| NBRC107568_orf28 | 299  | Dioxygenase swnH1                                  | swnH1(E9F8L9.1)               | 35           |
| NBRC107568_orf29 | 384  | 3-O-Acyltransferase                                | SgcD6 (AAL06667)              | 34           |
| NBRC107568_orf30 | 263  | Type II thioesterase                               | KedU43 (AFV52205)             | 38           |
| NBRC107568_orf31 | 385  | Encyl reductase                                    | KedU32 (AFV52194)             | 31           |
| NBRC107568_orf32 | 633  | Radical SAM C-methyltransferase                    | KedN5 (AFV52163)              | 31           |
| NBRC107568_orf33 | 550  | A-domain type II peptide synthetase                | SgcC1 (AAL06681)              | 33           |
| NBRC107568_orf34 | 267  | Arylamine N-acetyltransferase 2                    | Nat2 (P50295.1)               | 28           |
| NBRC107568_orf35 | 511  | A-domain type II peptide synthetase                | SgcC1 (AAL06681)              | 28           |
| NBRC107568_orf36 | 432  | 1,2-phenylacetyl-CoA epoxidase, subunit A          | paaA (P76077.1)               | 61           |
| NBRC107568_orf37 | 243  | 1,2-phenylacetyl-CoA epoxidase, subunit C          | paaC (P76079.1)               | 47           |
| NBRC107568_orf38 | 154  | Putative 1,2-phenylacetyl-CoA epoxidase, subunit D | paaD (P76080.2)               | 43           |
| NBRC107568_orf39 | 384  | 1,2-phenylacetyl-CoA epoxidase, subunit E          | PaaE(P76081.1)                | 38           |
| NBRC107568_orf40 | 726  | Formate dehydrogenase subunit alpha                | fdhA (P61159.2)               | 23           |

**Table S22**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from *Planobispora siamensis strain* NBRC 107568.

| NBRC107568_orf41 | 370  | Amino transferase                                           | SgcA4 (AAL06659)      | 31 |
|------------------|------|-------------------------------------------------------------|-----------------------|----|
| NBRC107568_orf42 | 261  | N-methyl transferase                                        | SgcA5 (AAL06660)      | 45 |
| NBRC107568_orf43 | 411  | Oxidoreductase                                              | SgcL (AAL06685)       | 28 |
| NBRC107568_orf44 | 506  | Chlorophenol-4-monooxygenase                                | SgcC (AAL06674)       | 77 |
| NBRC107568_orf45 | 567  | MIO-dependent tyrosine 2,3-aminomutase                      | SgcC4 (AAL06680)      | 71 |
| NBRC107568_orf46 | 1030 | A-domain type II peptide synthetase                         | SgcC1 (AAL06681)      | 41 |
| NBRC107568_orf47 | 254  | Type I PKS: KS, AT , (ACP), DH, KR, TD                      | NcsE (AAM78012)       | 35 |
| NBRC107568_orf48 | 217  | Phenazine biosynthesis protein PhzD1                        | PhzD1(P0DPB9.1)       | 60 |
| NBRC107568_orf49 | 639  | Anthranilate synthase II                                    | SgcD1 (AAL06663)      | 32 |
| NBRC107568_orf50 | 395  | FAD-dependent oxidoreductase                                | dynE13( ACB47064)     | 33 |
| NBRC107568_orf51 | 617  | Asparagine synthetase [glutamine-hydrolyzing] 3             | asnO(005272.3)        | 44 |
| NBRC107568_orf52 | 453  | Flavin-dependent oxidoreductase                             | Ncs32 (AAM78001)      | 29 |
| NBRC107568_orf53 | 351  | epoxide hydrolase-like protein                              | Kedorf-2 (AFV52129)   | 30 |
| NBRC107568_orf54 | 187  | Unknown                                                     | SgcS (AAL06705)       | 72 |
| NBRC107568_orf55 | 159  | Unknown                                                     | SgcT (AAL06706)       | 45 |
| NBRC107568_orf56 | 241  | hypothetical protein                                        | Cya-4 ( AGO97186)     | 27 |
| NBRC107568_orf57 | 252  | 4'-phosphopantetheinyl transferase Hetl                     | Hetl (P37695.2)       | 34 |
| NBRC107568_orf58 | 101  | Nipped-B-like protein B [Danio rerio]                       | nipblb (F1QBY1.1)     | 27 |
| NBRC107568_orf59 | 115  | Exodeoxyribonuclease 7 large subunit                        | xseA (Q5F8V5.1)       | 32 |
| NBRC107568_orf60 | 250  | etracycline repressor protein class A from transposon 1721  | tetR (P03038)         | 28 |
| NBRC107568_orf61 | 224  | Putative acetyltransferase OgpAT                            | OgpAT (Q2CEE2.1)      | 35 |
| NBRC107568_orf62 | 170  | Aminoglycoside N(6')-acetyltransferase type 1               | aacA7 (P50858.1)      | 31 |
| NBRC107568_orf63 | 551  | Methylmalonyl-CoA decarboxylase                             | mdporf-2 (ABY66032.1) | 75 |
| NBRC107568_orf64 | 90   | ThreoninetRNA ligase                                        | thrS (B9JWF4.1)       | 30 |
| NBRC107568_orf65 | 136  | Inner membrane protein YmfA                                 | YmfA (P75962.2)       | 24 |
| NBRC107568_orf66 | 328  | Bialaphos biosynthetic pathway regulatory protein           | brpA(Q01108.1)        | 30 |
| NBRC107568_orf67 | 327  | IsoleucinetRNA ligase                                       | ileS (B0UV12.1)       | 26 |
| NBRC107568_orf68 | 267  | Unknown                                                     | SgcE11 (AAL06691)     | 68 |
| NBRC107568_orf69 | 384  | Unknown                                                     | SgcM (AAL06686)       | 48 |
| NBRC107568_orf70 | 550  | FDA-dependent oxidoreductase                                | NcsE9 (AAM78005)      | 81 |
| NBRC107568_orf71 | 154  | Unknown                                                     | SgcE8 (AAL06694)      | 68 |
| NBRC107568_orf72 | 242  | RNA polymerase sigma-E factor                               | sigE (P38133.2)       | 41 |
| NBRC107568_orf73 | 285  | [Acyl-carrier-protein] phosphodiesterase                    | PptH(I6YEE1.1)        | 56 |
| NBRC107568_orf74 | 256  | AraC family transcriptional regulator                       | SgcR2 (AAL06696)      | 49 |
| NBRC107568_orf75 | 424  | Cytochrome P450                                             | SgcE7 (AAL06697)      | 67 |
| NBRC107568_orf76 | 67   | Lysylphosphatidylglycerol biosynthesis bifunctional protein | LysX (A1UHB3.1)       | 34 |
| NBRC107568_orf77 | 186  | Flavin-dependent oxidoreductase                             | NcsE6 (AAM78010)      | 60 |
| NBRC107568_orf78 | 142  | Thioesterase                                                | NcsE10 (AAM78011)     | 82 |
| NBRC107568_orf79 | 1948 | Enediyne polyketide synthase                                | SgcE (AAL06699)       | 65 |
| NBRC107568_orf80 | 323  | Unknown                                                     | NcsE5 (AAM78013)      | 70 |
| NBRC107568_orf81 | 660  | Unknown                                                     | SgcE4 (AAL06701)      | 57 |
| NBRC107568_orf82 | 298  | Unknown                                                     | NcsE3 (AAM78015)      | 56 |
| NBRC107568_orf83 | 331  | Unknown                                                     | NcsE2 (AAM78016)      | 64 |

| Gene       | AA a | Putative Function                             | Protein homologs <sup>a</sup> | Identity (%) |
|------------|------|-----------------------------------------------|-------------------------------|--------------|
| SM13_orf1  | 537  | MIO-dependent tyrosine 2,3-aminomutase        | SgcC4 (AAL06680)              | 80           |
| SM13_orf2  | 534  | Transmembrane efflux protein                  | SgcB (AAL06672)               | 46           |
| SM13_orf3  | 147  | Apo-protein                                   | NcsA (AAM77994)               | 42           |
| SM13_orf4  | 478  | Flavin-dependent oxidoreductase               | Ncs32 (AAM78001)              | 26           |
| SM13_orf5  | 510  | Methyltransferase type 11                     | spoT6 (ABP55177)              | 49           |
| SM13_orf6  | 389  | Epoxide hydrolase                             | SgcF (AAL06662)               | 69           |
| SM13_orf7  | 469  | Glycerol phosphate ABC transporter            | SgcB1 (AAL06653)              | 49           |
| SM13_orf8  | 69   | Acetate kinase                                | ackA(A8AZH2.1)                | 39           |
| SM13_orf9  | 459  | Coenzyme F390 synthase-like protein           | SgcH (AAL06673)               | 82           |
| SM13_orf10 | 211  | Anthranilate synthase II                      | SgcD1 (AAL06663)              | 74           |
| SM13_orf11 | 493  | 2-Amino-4-deoxychorismate synthase            | SgcD (AAL06664)               | 71           |
| SM13_orf12 | 478  | Phenylacetyl-CoA ligase                       | SgcD5 (AAL06665)              | 78           |
| SM13_orf13 | 223  | 2-Amino-4-deoxychorismate dehydrogenase       | SgcG (AAL06666)               | 86           |
| SM13_orf14 | 412  | Cytochrome P450 hydroxylase                   | SgcD3 (AAL06684)              | 71           |
| SM13_orf15 | 335  | O-methyltransferase                           | SgcD4 (AAL06683)              | 73           |
| SM13_orf16 | 700  | Antibiotic transporter                        | SgcB4 (AAL06682)              | 67           |
| SM13_orf17 | 262  | Hydrolase                                     | Sgcl (AAL06675)               | 46           |
| SM13_orf18 | 432  | 3-O-Acyltransferase                           | SgcD6 (AAL06667)              | 40           |
| SM13_orf19 | 605  | A-domain type II peptide synthetase           | SgcC1 (AAL06681)              | 31           |
| SM13_orf20 | 494  | C-domain type II peptide synthetase           | SgcC5 (AAL06678)              | 43           |
| SM13_orf21 | 411  | Oxidoreductase                                | SgcL (AAL06685)               | 29           |
| SM13_orf22 | 416  | P-450 hydroxylase                             | NcsB3 (AAM77997)              | 53           |
| SM13_orf23 | 448  | FAD-binding monooxygenase                     | SgcD2 (AAL06669)              | 58           |
| SM13_orf24 | 140  | Unknown                                       | SgcJ (AAL06676)               | 58           |
| SM13_orf25 | 393  | Oxidoreductase                                | SgcL (AAL06685)               | 67           |
| SM13_orf26 | 526  | Chlorophenol-4-monooxygenase                  | SgcC (AAL06674)               | 74           |
| SM13_orf27 | 553  | Acetolactate synthase isozyme 3 large subunit | ilvI(P40811.3)                | 27           |
| SM13_orf28 | 332  | O-methyltransferase                           | SgcD4 (AAL06683)              | 27           |
| SM13_orf29 | 81   | Heat-inducible transcription repressor        | HrcA (Q3B2T3.1)               | 65           |
| SM13_orf30 | 298  | Probable prephenate dehydrogenase             | NovF (Q9L9G2.1)               | 38           |
| SM13_orf31 | 265  | Unknown                                       | SgcE11 (AAL06691)             | 70           |
| SM13_orf32 | 343  | Unknown                                       | SgcM (AAL06686)               | 56           |
| SM13_orf33 | 555  | Oxidoreductase                                | SgcE9 (AAL06693)              | 83           |
| SM13_orf34 | 195  | Unknown                                       | NcsE8 (AAM78006)              | 74           |
| SM13_orf35 | 348  | Regulatory protein                            | SgcR1 (AAL06695)              | 60           |
| SM13_orf36 | 260  | AraC family, transcriptional regulator        | NcsR5 (AAM78008)              | 67           |
| SM13_orf37 | 447  | P-450 hydroxylase                             | NcsE7 (AAM78009)              | 78           |
| SM13_orf38 | 182  | Flavin-dependent oxidoreductase               | NcsE6 (AAM78010)              | 72           |
| SM13_orf39 | 152  | Thioesterase                                  | NcsE10 (AAM78011)             | 85           |
| SM13 orf40 | 1958 | Enediyne polyketide synthase                  | NcsE (AAM78012)               | 75           |

**Table S23**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from *Streptomyces* sp. SM13.

| SM13_orf41 | 351 | Unknown                               | NcsE5 (AAM78013)   | 76 |
|------------|-----|---------------------------------------|--------------------|----|
| SM13_orf42 | 636 | Unknown                               | NcsE4 (AAM78014)   | 78 |
| SM13_orf43 | 307 | Unknown                               | NcsE3 (AAM78015)   | 73 |
| SM13_orf44 | 325 | Unknown                               | SgcE2 (AAL06703)   | 66 |
| SM13_orf45 | 147 | Transcription regulator               | NcsE1 (AAM78017)   | 71 |
| SM13_orf46 | 403 | SgcR3 like transcriptional regulator  | NcsR7 (AAM78019)   | 58 |
| SM13_orf47 | 216 | γ-Butyrolactone receptor protein      | NcsR3 (AAM78020)   | 50 |
| SM13_orf48 | 314 | dNDP-hexose dehydratase               | NcsC2 (AAM78021)   | 55 |
| SM13_orf49 | 208 | γ-Butyrolactone receptor protein      | NcsR2 (AAM78022)   | 61 |
| SM13_orf50 | 293 | γ-Butyrolactone biosynthesis enzyme   | NcsR1 (AAM78023)   | 62 |
| SM13_orf51 | 461 | Argininosuccinate lyase               | argH (B1X082.1)    | 27 |
| SM13_orf52 | 257 | Unknown                               | Ncs55 (AAM78024)   | 69 |
| SM13_orf53 | 367 | Probable phosphoenolpyruvate synthase | ppsA (O29548.1)    | 23 |
| SM13_orf54 | 634 | Kynurenine 3-monooxygenase            | kmo (A5IG23.1)     | 44 |
| SM13_orf55 | 355 | Methionine synthase                   | (Q975N4.1)         | 23 |
| SM13_orf56 | 99  | Uncharacterized transporter C4B3.13   | C4B3.13 (Q9USK3.1) | 31 |
| SM13_orf57 | 114 | TyrosinetRNA ligase                   | tyrS (Q7TUT0.2)    | 32 |

| Gene             | AA a | Putative Function                                  | Protein homologs <sup>a</sup> | Identity (%) |
|------------------|------|----------------------------------------------------|-------------------------------|--------------|
| NBRC107570_orf1  | 276  | N-methyl transferase                               | SgcA5 (AAL06660)              | 50           |
| NBRC107570_orf2  | 382  | Amino transferase                                  | SgcA4 (AAL06659)              | 28           |
| NBRC107570_orf3  | 915  | Imidazole glycerol phosphate synthase subunit HisF | HisF(A1AV74.1)                | 25           |
| NBRC107570_orf4  | 234  | Fructose-1-phosphate phosphatase YqaB              | YqaB (P77475.1)               | 33           |
| NBRC107570_orf5  | 539  | Transmembrane efflux protein                       | SgcB (AAL06672)               | 56           |
| NBRC107570_orf6  | 416  | P-450 hydroxylase                                  | NcsB3 (AAM77997)              | 47           |
| NBRC107570_orf7  | 290  | Probable prephenate dehydrogenase                  | NovF (Q9L9G2.1)               | 40           |
| NBRC107570_orf8  | 267  | Unknown                                            | SgcE11 (AAL06691)             | 67           |
| NBRC107570_orf9  | 367  | Unknown                                            | SgcM (AAL06686)               | 49           |
| NBRC107570_orf10 | 551  | Oxidoreductase                                     | SgcE9 (AAL06693)              | 80           |
| NBRC107570_orf11 | 176  | Unknown                                            | SgcE8 (AAL06694)              | 70           |
| NBRC107570_orf12 | 256  | AraC family transcriptional regulator              | SgcR2 (AAL06696)              | 55           |
| NBRC107570_orf13 | 464  | Cytochrome P450                                    | SgcE7 (AAL06697)              | 63           |
| NBRC107570_orf14 | 179  | Flavin-dependent oxidoreductase                    | NcsE6 (AAM78010)              | 57           |
| NBRC107570_orf15 | 142  | Thioesterase                                       | NcsE10 (AAM78011)             | 81           |
| NBRC107570_orf16 | 1930 | Enediyne polyketide synthase                       | SgcE (AAL06699)               | 64           |
| NBRC107570_orf17 | 330  | Unknown                                            | NcsE5 (AAM78013)              | 70           |
| NBRC107570_orf18 | 638  | Unknown                                            | SgcE4 (AAL06701)              | 58           |
| NBRC107570_orf19 | 299  | Unknown                                            | SgcE3 (AAL06702)              | 57           |
| NBRC107570_orf20 | 330  | Unknown                                            | SgcE2 (AAL06703)              | 66           |
| NBRC107570_orf21 | 77   | acetyl-CoA carboxylase                             | AcmU19 (ATV95633)             | 43           |
| NBRC107570_orf22 | 231  | Alkylhydroperoxidase                               | SgcO (WP_010056303)           | 50           |
| NBRC107570_orf23 | 131  | Uncharacterized protein Mb0035                     | Mb0035(P64674.1)              | 32           |
| NBRC107570_orf24 | 185  | Alkylhydroperoxidase                               | SgcO (WP_010056303)           | 54           |
| NBRC107570_orf25 | 187  | Unknown                                            | SgcS (AAL06705)               | 67           |

**Table S24**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Sphaerisporangium siamense strain NBRC 107570.

| Gene        | AA a | Putative Function                                        | Protein homologs <sup>a</sup> | Identity (%) |
|-------------|------|----------------------------------------------------------|-------------------------------|--------------|
| H8589_orf1  | 425  | RNA polymerase sigma factor                              | AcmU22 (ATV95653)             | 50           |
| H8589_orf2  | 424  | GTP pyrophosphokinase                                    | relA (P52560.1)               | 50           |
| H8589_orf3  | 109  | Putative DNA-binding protein YizB                        | YizB (C0H3Y4.1)               | 36           |
| H8589_orf4  | 382  | Putative glutamatecysteine ligase 2-1                    | Q5YW64.1                      | 48           |
| H8589_orf5  | 522  | FAD-dependent oxidoreductase domain-containing protein 2 | Foxred2 (Q3USW5.1)            | 35           |
| H8589_orf6  | 187  | Unknown                                                  | SgcS (AAL06705)               | 68           |
| H8589_orf7  | 186  | Alkylhydroperoxidase                                     | SgcO (WP_010056303)           | 55           |
| H8589_orf8  | 93   | Sulfur carrier protein FdhD                              | FdhD (Q7WBA1.1)               | 29           |
| H8589_orf9  | 130  | Uncharacterized protein Mb0035                           | Mb0035 (P64674.1)             | 30           |
| H8589_orf10 | 230  | Alkylhydroperoxidase                                     | SgcO (WP_010056303)           | 51           |
| H8589_orf11 | 73   | Semaphorin-4D                                            | Sema4d (O09126.2)             | 33           |
| H8589_orf12 | 324  | Unknown                                                  | SgcE2 (AAL06703)              | 65           |
| H8589_orf13 | 327  | Unknown                                                  | SgcE3 (AAL06702)              | 55           |
| H8589_orf14 | 652  | Unknown                                                  | SgcE4 (AAL06701)              | 59           |
| H8589_orf15 | 331  | Unknown                                                  | SgcE5 (AAL06700)              | 70           |
| H8589_orf16 | 1915 | Enediyne polyketide synthase                             | SgcE (AAL06699)               | 65           |
| H8589_orf17 | 142  | Thioesterase                                             | NcsE10 (AAM78011)             | 81           |
| H8589_orf18 | 179  | Flavin-dependent oxidoreductase                          | NcsE6 (AAM78010)              | 58           |
| H8589_orf19 | 463  | Cytochrome P450                                          | SgcE7 (AAL06697)              | 64           |
| H8589_orf20 | 253  | AraC family transcriptional regulator                    | SgcR2 (AAL06696)              | 52           |
| H8589_orf21 | 176  | Unknown                                                  | NcsE8 (AAM78006)              | 68           |
| H8589_orf22 | 551  | Oxidoreductase                                           | SgcE9 (AAL06693)              | 79           |
| H8589_orf23 | 369  | Unknown                                                  | Ncs14 (AAM77983)              | 51           |
| H8589_orf24 | 267  | Unknown                                                  | SgcE11 (AAL06691)             | 64           |
| H8589_orf25 | 324  | Probable prephenate dehydrogenase                        | NovF (Q9L9G2.1)               | 39           |
| H8589_orf26 | 540  | Transmembrane efflux protein                             | SgcB (AAL06672)               | 50           |
| H8589_orf27 | 109  | DGPFAETKE family protein                                 | Spoorf12 (ABP55159)           | 31           |

**Table S25**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Sphaerisporangium sp. H8589.

| Gene           | AA a | Putative Function                          | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|--------------------------------------------|-------------------------------|--------------|
| DSM41781_orf1  | 615  | Asparagine synthetase                      | asnB (P54420.2)               | 25           |
| DSM41781_orf2  | 353  | Putative isomerase YraM                    | YraM (007931.2)               | 27           |
| DSM41781_orf3  | 374  | Acyl-CoA dehydrogenase                     | KedU41 (AFV52203)             | 32           |
| DSM41781_orf4  | 472  | Allantoinase                               | allB (Q1J391.1)               | 36           |
| DSM41781_orf5  | 608  | FAD-dependent oxidoreductase               | tnmP(AME18017)                | 37           |
| DSM41781_orf6  | 110  | Macrophage metalloelastase                 | MMP12 (P39900.1)              | 29           |
| DSM41781_orf7  | 61   | Bifunctional purine biosynthesis protein   | PurH (A9WEK8.1)               | 38           |
| DSM41781_orf8  | 325  | R2-like ligand binding oxidase             | A4F7B2.1                      | 29           |
| DSM41781_orf9  | 470  | Macrolide efflux protein A                 | mefA (P86889.1)               | 26           |
| DSM41781_orf10 | 338  | Cytoplasmic tRNA 2-thiolation protein 1    | B4NN33.1                      | 31           |
| DSM41781_orf11 | 260  | Uncharacterized glycosyltransferase MJ1057 | MJ1057 (Q58457.2)             | 20           |
| DSM41781_orf12 | 378  | Type I PKS: KS, AT , KR, DH, ACP           | NcsB (AAM77986)               | 34           |
| DSM41781_orf13 | 456  | CoA ligase                                 | NcsB2 (AAM77987)              | 27           |
| DSM41781_orf14 | 567  | Acetolactate synthase large subunit        | ilvl (085293.1)               | 25           |
| DSM41781_orf15 | 231  | GTPase Obg                                 | obg (A9IFF9.1)                | 31           |
| DSM41781_orf16 | 433  | Gamma-aminobutyraldehyde dehydrogenase     | patD (A4WAR9.1)               | 33           |
| DSM41781_orf17 | 709  | Unknown                                    | KedU42 (AFV52204.1)           | 34           |
| DSM41781_orf18 | 370  | dNDP-hexose 4, 6-dehydratase               | NcsC1 (AAM77990)              | 34           |
| DSM41781_orf19 | 307  | Mycothiol acetyltransferase                | mshD (D6ZEJ5.1)               | 31           |
| DSM41781_orf20 | 416  | Uncharacterized protein y4rH               | y4rH (P55641.1)               | 32           |
| DSM41781_orf21 | 422  | Uncharacterized protein y4rH               | y4rH (P55641.1)               | 29           |
| DSM41781_orf22 | 219  | Serine acetyltransferase                   | cysE (Q06750.1)               | 42           |
| DSM41781_orf23 | 320  | O-acetylserine sulfhydrylase               | cysK (P0A535.1)               | 50           |
| DSM41781_orf24 | 410  | L-arginine-specific L-amino acid ligase    | rizA (B5UAT8.1)               | 25           |
| DSM41781_orf25 | 492  | Transmembrane efflux protein               | SgcB (AAL06672)               | 30           |
| DSM41781_orf26 | 429  | Cytochrome P450 hydroxylase                | SgcD3 (AAL06684)              | 34           |
| DSM41781_orf27 | 343  | 3-hydroxybenzoate synthase                 | O30478.1                      | 46           |
| DSM41781_orf28 | 494  | A-domain type II peptide synthetase        | SgcC1 (AAL06681)              | 29           |
| DSM41781_orf29 | 537  | MIO-dependent tyrosine 2,3-aminomutase     | SgcC4 (AAL06680)              | 79           |
| DSM41781_orf30 | 576  | Transmembrane efflux protein               | SgcB (AAL06672)               | 46           |
| DSM41781_orf31 | 151  | Apo-protein                                | NcsA (AAM77994)               | 42           |
| DSM41781_orf32 | 461  | Flavin-dependent oxidoreductase            | Ncs32 (AAM78001)              | 30           |
| DSM41781_orf33 | 512  | Methyltransferase type 11                  | spoT6 (ABP55177)              | 49           |
| DSM41781_orf34 | 389  | Epoxide hydrolase                          | SgcF (AAL06662)               | 68           |
| DSM41781_orf35 | 468  | Glycerol phosphate ABC transporter         | SgcB1 (AAL06653)              | 52           |
| DSM41781_orf36 | 54   | Type-2 serinetRNA ligase                   | serS2 (Q46AN5.1)              | 42           |
| DSM41781_orf37 | 77   | CTP synthase                               | pyrG (Q11S24.1)               | 40           |
| DSM41781_orf38 | 435  | Coenzyme F390 synthase-like protein        | SgcH (AAL06673)               | 82           |
| DSM41781_orf39 | 217  | Anthranilate synthase II                   | SgcD1 (AAL06663)              | 77           |
| DSM41781_orf40 | 492  | 2-Amino-4-deoxychorismate synthase         | SgcD (AAL06664)               | 71           |

**Table S26**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces bungoensis DSM 41781.

| DSM41781_orf41 | 480  | Phenylacetyl-CoA ligase                             | SgcD5 (AAL06665)    | 74 |
|----------------|------|-----------------------------------------------------|---------------------|----|
| DSM41781_orf42 | 223  | 2-Amino-4-deoxychorismate dehydrogenase             | SgcG (AAL06666)     | 85 |
| DSM41781_orf43 | 413  | Cytochrome P450 hydroxylase                         | SgcD3 (AAL06684)    | 69 |
| DSM41781_orf44 | 335  | O-methyltransferase                                 | SgcD4 (AAL06683)    | 74 |
| DSM41781_orf45 | 701  | Antibiotic transporter                              | SgcB4 (AAL06682)    | 67 |
| DSM41781_orf46 | 262  | Hydrolase                                           | Sgcl (AAL06675)     | 46 |
| DSM41781_orf47 | 453  | 3-O-Acyltransferase                                 | SgcD6 (AAL06667)    | 39 |
| DSM41781_orf48 | 603  | A-domain type II peptide synthetase                 | SgcC1 (AAL06681)    | 30 |
| DSM41781_orf49 | 69   | Unknown                                             | Spoorf19 (ABP55170) | 50 |
| DSM41781_orf50 | 456  | C-domain type II peptide synthetase                 | SgcC5 (AAL06678)    | 44 |
| DSM41781_orf51 | 410  | Oxidoreductase                                      | SgcL (AAL06685)     | 30 |
| DSM41781_orf52 | 416  | P-450 hydroxylase                                   | NcsB3 (AAM77997)    | 52 |
| DSM41781_orf53 | 448  | FAD-binding monooxygenase                           | SgcD2 (AAL06669)    | 58 |
| DSM41781_orf54 | 141  | Unknown                                             | SgcJ (AAL06676)     | 59 |
| DSM41781_orf55 | 393  | Oxidoreductase                                      | SgcL (AAL06685)     | 67 |
| DSM41781_orf56 | 526  | Chlorophenol-4-monooxygenase                        | SgcC (AAL06674)     | 76 |
| DSM41781_orf57 | 555  | Sulfoacetaldehyde acetyltransferase                 | xsc (Q93PS3.1)      | 27 |
| DSM41781_orf58 | 332  | O-methyl transferase                                | NcsB1 (AAM77984)    | 28 |
| DSM41781_orf59 | 96   | Coiled-coil and C2 domain-containing protein 1-like | Q29M42.2            | 38 |
| DSM41781_orf60 | 298  | Probable prephenate dehydrogenase                   | NovF (Q9L9G2.1)     | 38 |
| DSM41781_orf61 | 269  | Unknown                                             | SgcE11 (AAL06691)   | 73 |
| DSM41781_orf62 | 346  | Unknown                                             | SgcM (AAL06686)     | 56 |
| DSM41781_orf63 | 555  | Oxidoreductase                                      | SgcE9 (AAL06693)    | 84 |
| DSM41781_orf64 | 192  | Unknown                                             | NcsE8 (AAM78006)    | 75 |
| DSM41781_orf65 | 358  | StrR-like transcriptional regulator                 | NcsR6 (AAM78007)    | 62 |
| DSM41781_orf66 | 265  | AraC family, transcriptional regulator              | NcsR5 (AAM78008)    | 68 |
| DSM41781_orf67 | 440  | P-450 hydroxylase                                   | NcsE7 (AAM78009)    | 78 |
| DSM41781_orf68 | 181  | Flavin-dependent oxidoreductase                     | NcsE6 (AAM78010)    | 73 |
| DSM41781_orf69 | 152  | Thioesterase                                        | NcsE10 (AAM78011)   | 85 |
| DSM41781_orf70 | 1959 | Enediyne polyketide synthase                        | NcsE (AAM78012)     | 74 |
| DSM41781_orf71 | 372  | Unknown                                             | NcsE5 (AAM78013)    | 76 |
| DSM41781_orf72 | 616  | Unknown                                             | NcsE4 (AAM78014)    | 77 |
| DSM41781_orf73 | 308  | Unknown                                             | NcsE3 (AAM78015)    | 74 |
| DSM41781_orf74 | 325  | Unknown                                             | SgcE2 (AAL06703)    | 68 |
| DSM41781_orf75 | 147  | Transcription regulator                             | NcsE1 (AAM78017)    | 71 |
| DSM41781_orf76 | 401  | SgcR3 like transcriptional regulator                | NcsR7 (AAM78019)    | 62 |
| DSM41781_orf77 | 100  | NAD kinase                                          | nadK(Q1ISV1.1)      | 36 |
| DSM41781_orf78 | 215  | γ-Butyrolactone receptor protein                    | NcsR3 (AAM78020)    | 49 |
| DSM41781_orf79 | 260  | Oxidoreductase                                      | SgcN (AAL06687)     | 32 |
| DSM41781_orf80 | 241  | Phosphoglycolate phosphatase                        | Q3SGR5.1            | 22 |
| DSM41781_orf81 | 205  | γ-Butyrolactone receptor protein                    | NcsR2 (AAM78022)    | 48 |
| DSM41781_orf82 | 317  | γ-Butyrolactone biosynthesis enzyme                 | NcsR1 (AAM78023)    | 57 |
| DSM41781_orf83 | 189  | Breakpoint cluster region protein                   | BCR (P11274.2)      | 27 |

| Table S27. Predicted functions c | of ORFs in the ened | iyne biosynthetic ge | ene cluster from Str | reptomyces lateritius Z1-26. |
|----------------------------------|---------------------|----------------------|----------------------|------------------------------|
|----------------------------------|---------------------|----------------------|----------------------|------------------------------|

| Gene        | AA a | Putative Function                             | Protein homologs <sup>a</sup> | Identity (%) |
|-------------|------|-----------------------------------------------|-------------------------------|--------------|
| Z1-26_orf1  | 285  | Unknown                                       | Ncs55 (AAM78024)              | 70           |
| Z1-26_orf2  | 217  | MerR family transcriptional regulator         | Spoorf2 (ABP55136)            | 35           |
| Z1-26_orf3  | 507  | Adenine deaminase                             | ade (Q92AR6.1)                | 28           |
| Z1-26_orf4  | 289  | γ-Butyrolactone biosynthesis enzyme           | NcsR1 (AAM78023)              | 60           |
| Z1-26_orf5  | 209  | γ-Butyrolactone receptor protein              | NcsR2 (AAM78022)              | 68           |
| Z1-26_orf6  | 321  | dNDP-hexose dehydratase                       | NcsC2 (AAM78021)              | 57           |
| Z1-26_orf7  | 214  | γ-Butyrolactone receptor protein              | NcsR3 (AAM78020)              | 51           |
| Z1-26_orf8  | 403  | SgcR3 like transcriptional regulator          | NcsR7 (AAM78019)              | 60           |
| Z1-26_orf9  | 147  | Transcription regulator                       | NcsE1 (AAM78017)              | 73           |
| Z1-26_orf10 | 325  | Unknown                                       | SgcE2 (AAL06703)              | 71           |
| Z1-26_orf11 | 307  | Unknown                                       | NcsE3 (AAM78015)              | 75           |
| Z1-26_orf12 | 616  | Unknown                                       | NcsE4 (AAM78014)              | 80           |
| Z1-26_orf13 | 392  | Unknown                                       | NcsE5 (AAM78013)              | 78           |
| Z1-26_orf14 | 1960 | Enediyne polyketide synthase                  | NcsE (AAM78012)               | 76           |
| Z1-26_orf15 | 152  | Thioesterase                                  | NcsE10 (AAM78011)             | 82           |
| Z1-26_orf16 | 151  | Flavin-dependent oxidoreductase               | NcsE6 (AAM78010)              | 75           |
| Z1-26_orf17 | 423  | P-450 hydroxylase                             | NcsE7 (AAM78009)              | 78           |
| Z1-26_orf18 | 260  | AraC family, transcriptional regulator        | NcsR5 (AAM78008)              | 66           |
| Z1-26_orf19 | 352  | Regulatory protein                            | SgcR1 (AAL06695)              | 63           |
| Z1-26_orf20 | 195  | Unknown                                       | NcsE8 (AAM78006)              | 76           |
| Z1-26_orf21 | 555  | Oxidoreductase                                | SgcE9 (AAL06693)              | 85           |
| Z1-26_orf22 | 346  | Unknown                                       | SgcM (AAL06686)               | 56           |
| Z1-26_orf23 | 269  | Unknown                                       | SgcE11 (AAL06691)             | 73           |
| Z1-26_orf24 | 298  | Probable prephenate dehydrogenase             | NovF (Q9L9G2.1)               | 38           |
| Z1-26_orf25 | 87   | E3 ubiquitin-protein ligase RNF126            | RNF126(Q91YL2.1)              | 37           |
| Z1-26_orf26 | 332  | O-methyltransferase                           | SgcD4 (AAL06683)              | 27           |
| Z1-26_orf27 | 549  | Acetolactate synthase isozyme 3 large subunit | ilvI (P40811.3)               | 26           |
| Z1-26_orf28 | 526  | Chlorophenol-4-monooxygenase                  | SgcC (AAL06674)               | 74           |
| Z1-26_orf29 | 393  | Oxidoreductase                                | SgcL (AAL06685)               | 68           |
| Z1-26_orf30 | 142  | Unknown                                       | SgcJ (AAL06676)               | 60           |
| Z1-26_orf31 | 448  | FAD-binding monooxygenase                     | SgcD2 (AAL06669)              | 58           |
| Z1-26_orf32 | 172  | HTH-type transcriptional regulator PapX       | PapX (P42193.1)               | 26           |
| Z1-26_orf33 | 440  | P-450 hydroxylase                             | NcsB3 (AAM77997)              | 51           |
| Z1-26_orf34 | 410  | Oxidoreductase                                | SgcL (AAL06685)               | 30           |
| Z1-26_orf35 | 457  | C-domain type II peptide synthetase           | SgcC5 (AAL06678)              | 43           |
| Z1-26_orf36 | 72   | Unknown                                       | Spoorf19 (ABP55170)           | 48           |
| Z1-26_orf37 | 614  | A-domain type II peptide synthetase           | SgcC1 (AAL06681)              | 30           |
| Z1-26_orf38 | 432  | 3-O-Acyltransferase                           | SgcD6 (AAL06667)              | 41           |
| Z1-26_orf39 | 262  | Hydrolase                                     | Sgcl (AAL06675)               | 46           |
| Z1-26_orf40 | 702  | Antibiotic transporter                        | SgcB4 (AAL06682)              | 69           |

| Z1-26_orf41 | 334 | O-methyltransferase                     | SgcD4 (AAL06683) | 75 |
|-------------|-----|-----------------------------------------|------------------|----|
| Z1-26_orf42 | 414 | Cytochrome P450 hydroxylase             | SgcD3 (AAL06684) | 71 |
| Z1-26_orf43 | 223 | 2-Amino-4-deoxychorismate dehydrogenase | SgcG (AAL06666)  | 83 |
| Z1-26_orf44 | 478 | Phenylacetyl-CoA ligase                 | SgcD5 (AAL06665) | 78 |
| Z1-26_orf45 | 492 | 2-Amino-4-deoxychorismate synthase      | SgcD (AAL06664)  | 72 |
| Z1-26_orf46 | 215 | Anthranilate synthase II                | SgcD1 (AAL06663) | 77 |
| Z1-26_orf47 | 435 | Coenzyme F390 synthase-like protein     | SgcH (AAL06673)  | 81 |
| Z1-26_orf48 | 69  | Quinolinate synthase A                  | nadA (Q7V7S6.1)  | 52 |
| Z1-26_orf49 | 471 | Glycerol phosphate ABC transporter      | SgcB1 (AAL06653) | 51 |
| Z1-26_orf50 | 389 | Epoxide hydrolase                       | NcsF2 (AAM78002) | 68 |
| Z1-26_orf51 | 511 | Methyltransferase type 11               | spoT6 (ABP55177) | 51 |
| Z1-26_orf52 | 461 | Flavin-dependent oxidoreductase         | Ncs32 (AAM78001) | 33 |
| Z1-26_orf53 | 148 | Apo-protein                             | NcsA (AAM77994)  | 39 |
| Z1-26_orf54 | 524 | Transmembrane efflux protein            | SgcB (AAL06672)  | 46 |
| Z1-26_orf55 | 537 | MIO-dependent tyrosine 2,3-aminomutase  | SgcC4 (AAL06680) | 82 |

| Gene        | AA a | Putative Function                                          | Protein homologs <sup>a</sup> | Identity (%) |
|-------------|------|------------------------------------------------------------|-------------------------------|--------------|
| CWH03_orf1  | 254  | Unknown                                                    | Ncs55 (AAM78024)              | 67           |
| CWH03_orf2  | 605  | Putative zinc finger and SCAN domain-containing protein 5D | ZSCAN5DP (P0CG00.1)           | 30           |
| CWH03_orf3  | 317  | γ-Butyrolactone biosynthesis enzyme                        | NcsR1 (AAM78023)              | 58           |
| CWH03_orf4  | 205  | γ-Butyrolactone receptor protein                           | NcsR2 (AAM78022)              | 51           |
| CWH03_orf5  | 231  | Lipoyl synthase                                            | lipA (Q9Y9E3.2)               | 36           |
| CWH03_orf6  | 262  | Methyltransferase                                          | ucmG( AMK92579)               | 37           |
| CWH03_orf7  | 212  | γ-Butyrolactone receptor protein                           | NcsR3 (AAM78020)              | 50           |
| CWH03_orf8  | 401  | SgcR3 like transcriptional regulator                       | NcsR7 (AAM78019)              | 60           |
| CWH03_orf9  | 147  | Transcription regulator                                    | NcsE1 (AAM78017)              | 72           |
| CWH03_orf10 | 336  | Unknown                                                    | NcsE2 (AAM78016)              | 67           |
| CWH03_orf11 | 328  | Unknown                                                    | NcsE3 (AAM78015)              | 73           |
| CWH03_orf12 | 636  | Unknown                                                    | NcsE4 (AAM78014)              | 78           |
| CWH03_orf13 | 387  | Unknown                                                    | NcsE5 (AAM78013)              | 79           |
| CWH03_orf14 | 1961 | Enediyne polyketide synthase                               | NcsE (AAM78012)               | 75           |
| CWH03_orf15 | 152  | Thioesterase                                               | NcsE10 (AAM78011)             | 82           |
| CWH03_orf16 | 180  | Flavin-dependent oxidoreductase                            | NcsE6 (AAM78010)              | 74           |
| CWH03_orf17 | 440  | P-450 hydroxylase                                          | NcsE7 (AAM78009)              | 81           |
| CWH03_orf18 | 255  | AraC family, transcriptional regulator                     | NcsR5 (AAM78008)              | 69           |
| CWH03_orf19 | 361  | StrR-like transcriptional regulator                        | NcsR6 (AAM78007)              | 59           |
| CWH03_orf20 | 195  | Unknown                                                    | NcsE8 (AAM78006)              | 76           |
| CWH03_orf21 | 555  | Oxidoreductase                                             | SgcE9 (AAL06693)              | 84           |
| CWH03_orf22 | 268  | Unknown                                                    | SgcE11 (AAL06691)             | 73           |
| CWH03_orf23 | 298  | Probable prephenate dehydrogenase                          | NovF (Q9L9G2.1)               | 30           |
| CWH03_orf24 | 87   | Type II PCP                                                | SgcC2 (AAL06679)              | 44           |
| CWH03_orf25 | 287  | Dioxygenase swnH1                                          | swnH1 (D4AU26.1)              | 31           |
| CWH03_orf26 | 416  | P-450 hydroxylase                                          | NcsB3 (AAM77997)              | 49           |
| CWH03_orf27 | 143  | Unknown                                                    | SgcJ (AAL06676)               | 59           |
| CWH03_orf28 | 375  | Oxidoreductase                                             | SgcL (AAL06685)               | 65           |
| CWH03_orf29 | 528  | Chlorophenol-4-monooxygenase                               | SgcC (AAL06674)               | 76           |
| CWH03_orf30 | 446  | C-domain type II peptide synthetase                        | SgcC5 (AAL06678)              | 52           |
| CWH03_orf31 | 541  | MIO-dependent tyrosine 2,3-aminomutase                     | SgcC4 (AAL06680)              | 78           |

**Table S28**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from *Streptomyces* sp. CWH03.

| Table S29. Predicted functions of ORFs in the enediyne biosynthetic gene clus | ster from Streptomyces sp. Mg1. |
|-------------------------------------------------------------------------------|---------------------------------|
|-------------------------------------------------------------------------------|---------------------------------|

| Gene      | AA a | Putative Function                                           | Protein homologs <sup>a</sup> | Identity (%) |
|-----------|------|-------------------------------------------------------------|-------------------------------|--------------|
| Mg1_orf1  | 330  | Hypothetical protein                                        | KedE1 (AFV52144)              | 59           |
| Mg1_orf2  | 121  | TetR/AcrR family transcriptional regulator                  | WP_234358425.1                | 49           |
| Mg1_orf3  | 406  | S-adenosylmethionine synthase                               | metK (B1W470.1)               | 93           |
| Mg1_orf4  | 424  | Na(+), Li(+), K(+)/H(+) antiporter                          | mdrP (A0A1C7E424.1)           | 28           |
| Mg1_orf5  | 70   | Probable tautomerase RSp0893                                | RS01664 (Q8XRG1.3)            | 38           |
| Mg1_orf6  | 287  | Alpha-ketoglutarate-dependent sulfate ester dioxygenase     | atsK (Q9WWU5.1)               | 46           |
| Mg1_orf7  | 257  | 4-hydroxy-2-oxovalerate aldolase                            | bphF ( 086013.1)              | 43           |
| Mg1_orf8  | 319  | Bifunctional L-3-cyanoalanine synthase/cysteine synthase D2 | CYSD2(Q9SXS7.1)               | 49           |
| Mg1_orf9  | 611  | Asparagine synthetase                                       | asnO ( 005272.3)              | 30           |
| Mg1_orf10 | 353  | Putative isomerase                                          | YraM (007931.2)               | 28           |
| Mg1_orf11 | 367  | Acyl-CoA dehydrogenase                                      | KedU41 (AFV52203)             | 33           |
| Mg1_orf12 | 474  | Allantoinase                                                | allB(Q82LL4.1)                | 37           |
| Mg1_orf13 | 612  | FAD-dependent oxidoreductase                                | dynE13( ACB47064)             | 38           |
| Mg1_orf14 | 102  | FAD-dependent monooxygenase                                 | WP_161692844                  | 77           |
| Mg1_orf15 | 61   | unknown                                                     | WP_061928956.1                | 78           |
| Mg1_orf16 | 329  | R2-like ligand binding oxidase                              | MRA_0241 (A5TYV8.1)           | 29           |
| Mg1_orf17 | 449  | MFS transporter                                             | WP_209520506.1                | 99           |
| Mg1_orf18 | 351  | unknown                                                     | WP_209520507.1                | 99           |
| Mg1_orf19 | 264  | glycosyltransferase family 2 protein                        | WP_123083558.1                | 100          |
| Mg1_orf20 | 381  | Type I PKS: KS, AT , KR, DH, ACP                            | NcsB (AAM77986)               | 31           |
| Mg1_orf21 | 456  | A-domain type II peptide synthetase                         | SgcC1 (AAL06681)              | 28           |
| Mg1_orf22 | 582  | Acetolactate synthase large subunit                         | ilvB(P42463.1)                | 33           |
| Mg1_orf23 | 218  | 3-oxoacyl-ACP synthase                                      | WP_010360138.1                | 45           |
| Mg1_orf24 | 422  | Aldehyde dehydrogenase                                      | mdporf1 ( ABY66031.1)         | 27           |
| Mg1_orf25 | 713  | Unknown                                                     | KedU42 (AFV52204.1)           | 34           |
| Mg1_orf26 | 325  | dNDP-hexose 4, 6-dehydratase                                | NcsC1 (AAM77990)              | 33           |
| Mg1_orf27 | 307  | GNAT family N-acetyltransferase                             | WP_123083552.1                | 100          |
| Mg1_orf28 | 417  | Argininosuccinate lyase 2                                   | argH2(Q981V0.1)               | 35           |
| Mg1_orf29 | 423  | Argininosuccinate lyase 2                                   | argH2(Q981V0.1)               | 27           |
| Mg1_orf30 | 214  | Serine acetyltransferase                                    | cysE(P71405.2)                | 47           |
| Mg1_orf31 | 318  | O-acetylserine sulfhydrylase                                | cysK(P0A535.1)                | 51           |
| Mg1_orf32 | 410  | L-arginine-specific L-amino acid ligase                     | rizA(B5UAT8.1)                | 27           |
| Mg1_orf33 | 497  | Efflux pump transporter                                     | NcsA1 (AAM77999)              | 32           |
| Mg1_orf34 | 343  | 3-hydroxybenzoate synthase                                  | (O30478.1)                    | 49           |
| Mg1_orf35 | 494  | A-domain type II peptide synthetase                         | SgcC1 (AAL06681)              | 27           |
| Mg1_orf36 | 541  | MIO-dependent tyrosine 2,3-aminomutase                      | SgcC4 (AAL06680)              | 80           |
| Mg1_orf37 | 523  | Transmembrane efflux protein                                | SgcB (AAL06672)               | 46           |
| Mg1_orf38 | 399  | aminotransferase                                            | ycbU(P42253.3)                | 25           |
| Mg1_orf39 | 263  | Tryptophan 2,3-dioxygenase                                  | kynA(B4UMQ6.1)                | 52           |
| Mg1_orf40 | 514  | A-domain type II peptide synthetase                         | SgcC1 (AAL06681)              | 29           |

| Mg1_orf41 | 148  | Apo-protein                            | NcsA (AAM77994)   | 44 |
|-----------|------|----------------------------------------|-------------------|----|
| Mg1_orf42 | 456  | Flavin-dependent oxidoreductase        | Ncs32 (AAM78001)  | 28 |
| Mg1_orf43 | 515  | Methyltransferase type 11              | spoT6 (ABP55177)  | 51 |
| Mg1_orf44 | 70   | no                                     | no                | no |
| Mg1_orf45 | 404  | Epoxide hydrolase                      | SgcF (AAL06662)   | 67 |
| Mg1_orf46 | 468  | Glycerol phosphate ABC transporter     | SgcB1 (AAL06653)  | 50 |
| Mg1_orf47 | 261  | Hydrolase                              | Sgcl (AAL06675)   | 47 |
| Mg1_orf48 | 444  | 3-O-Acyltransferase                    | SgcD6 (AAL06667)  | 41 |
| Mg1_orf49 | 303  | Arylamine N-acetyltransferase 2        | Nat2(P50298.1)    | 25 |
| Mg1_orf50 | 602  | A-domain type II peptide synthetase    | SgcC1 (AAL06681)  | 30 |
| Mg1_orf51 | 73   | Unknown (MbtH-like protein)            | AcmP7 (ATV95609)  | 48 |
| Mg1_orf52 | 459  | C-domain type II peptide synthetase    | SgcC5 (AAL06678)  | 41 |
| Mg1_orf53 | 411  | Oxidoreductase                         | SgcL (AAL06685)   | 28 |
| Mg1_orf54 | 415  | P-450 hydroxylase                      | NcsB3 (AAM77997)  | 50 |
| Mg1_orf55 | 447  | FAD-binding monooxygenase              | SgcD2 (AAL06669)  | 59 |
| Mg1_orf56 | 142  | Unknown                                | SgcJ (AAL06676)   | 64 |
| Mg1_orf57 | 393  | Oxidoreductase                         | SgcL (AAL06685)   | 68 |
| Mg1_orf58 | 526  | Chlorophenol-4-monooxygenase           | SgcC (AAL06674)   | 76 |
| Mg1_orf59 | 572  | acetolactate synthase                  | Q57725.1          | 31 |
| Mg1_orf60 | 332  | SAM-dependent methyltransferase        | ucmJ ( AMK92576)  | 38 |
| Mg1_orf61 | 409  | Cytochrome P450 hydroxylase            | SgcD3 (AAL06684)  | 53 |
| Mg1_orf62 | 337  | O-methyl transferase                   | NcsB1 (AAM77984)  | 56 |
| Mg1_orf63 | 297  | acetolactate synthase                  | ilvB (Q57725.1)   | 31 |
| Mg1_orf64 | 104  | Unknown                                | OKI38084.1        | 99 |
| Mg1_orf65 | 279  | Probable prephenate dehydrogenase      | NovF(Q9L9G2.1)    | 36 |
| Mg1_orf66 | 272  | Unknown                                | SgcE11 (AAL06691) | 71 |
| Mg1_orf67 | 357  | Unknown                                | SgcM (AAL06686)   | 56 |
| Mg1_orf68 | 555  | Oxidoreductase                         | SgcE9 (AAL06693)  | 85 |
| Mg1_orf69 | 199  | Unknown                                | NcsE8 (AAM78006)  | 78 |
| Mg1_orf70 | 374  | Regulatory protein                     | SgcR1 (AAL06695)  | 57 |
| Mg1_orf71 | 258  | AraC family, transcriptional regulator | NcsR5 (AAM78008)  | 70 |
| Mg1_orf72 | 423  | P-450 hydroxylase                      | NcsE7 (AAM78009)  | 77 |
| Mg1_orf73 | 181  | Flavin-dependent oxidoreductase        | NcsE6 (AAM78010)  | 73 |
| Mg1_orf74 | 152  | Thioesterase                           | NcsE10 (AAM78011) | 84 |
| Mg1_orf75 | 1965 | Enediyne polyketide synthase           | NcsE (AAM78012)   | 75 |
| Mg1_orf76 | 352  | Unknown                                | NcsE5 (AAM78013)  | 76 |
| Mg1_orf77 | 616  | Unknown                                | NcsE4 (AAM78014)  | 74 |
| Mg1_orf78 | 307  | Unknown                                | NcsE3 (AAM78015)  | 71 |
| Mg1_orf79 | 326  | Unknown                                | SgcE2 (AAL06703)  | 72 |
| Mg1_orf80 | 147  | Transcription regulator                | NcsE1 (AAM78017)  | 73 |
| Mg1_orf81 | 401  | SgcR3 like transcriptional regulator   | NcsR7 (AAM78019)  | 63 |
| Mg1_orf82 | 105  | Unknown                                | GHD82081.1        | 99 |
| Mg1_orf83 | 212  | y-Butyrolactone receptor protein       | NcsR3 (AAM78020)  | 51 |

| Mg1_orf84 | 315 | dNDP-hexose dehydratase             | NcsC2 (AAM78021) | 58 |
|-----------|-----|-------------------------------------|------------------|----|
| Mg1_orf85 | 208 | γ-Butyrolactone receptor protein    | NcsR2 (AAM78022) | 66 |
| Mg1_orf86 | 314 | γ-Butyrolactone biosynthesis enzyme | NcsR1 (AAM78023) | 62 |
| Mg1_orf87 | 557 | SMC-Scp complex subunit ScpB        | WP_234388934     | 46 |
| Mg1_orf88 | 287 | Unknown                             | Ncs55 (AAM78024) | 63 |
| Mg1_orf89 | 60  | Unknown                             | GHD82097.1       | 93 |
| Mg1_orf90 | 124 | transcription factor                | KJY47981.1       | 82 |
| Mg1_orf91 | 505 | helicase L207/L206                  | Q5UQ22.2         | 28 |

**Table S30**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces sp. NE5-10.

| Gene         | AA a | Putative Function                                   | Protein homologs <sup>a</sup> | Identity (%) |
|--------------|------|-----------------------------------------------------|-------------------------------|--------------|
| NE5-10_orf1  | 216  | Anthranilate synthase II                            | SgcD1 (AAL06663)              | 73           |
| NE5-10_orf2  | 338  | Alcohol dehydrogenase                               | mdpC8 (ABY66028)              | 31           |
| NE5-10_orf3  | 436  | Coenzyme F390 synthase-like protein                 | SgcH (AAL06673)               | 79           |
| NE5-10_orf4  | 63   | HistidinetRNA ligase                                | hisS(A4YJ03.1)                | 39           |
| NE5-10_orf5  | 446  | 3-O-Acyltransferase                                 | SgcD6 (AAL06667)              | 43           |
| NE5-10_orf6  | 279  | Epoxide hydrolase                                   | SgcF (AAL06662)               | 73           |
| NE5-10_orf7  | 466  | FAD-binding monooxygenase                           | SgcD2 (AAL06669)              | 61           |
| NE5-10_orf8  | 139  | Unknown                                             | SgcJ (AAL06676)               | 57           |
| NE5-10_orf9  | 502  | Flavin-dependent oxidoreductase                     | Ncs32 (AAM78001)              | 27           |
| NE5-10_orf10 | 108  | AlaninetRNA ligase                                  | alaS (Q3ILF3.1)               | 33           |
| NE5-10_orf11 | 298  | Probable prephenate dehydrogenase                   | NovF (Q9L9G2.1)               | 37           |
| NE5-10_orf12 | 269  | Unknown                                             | SgcE11 (AAL06691)             | 70           |
| NE5-10_orf13 | 347  | Unknown                                             | SgcM (AAL06686)               | 55           |
| NE5-10_orf14 | 555  | Oxidoreductase                                      | SgcE9 (AAL06693)              | 84           |
| NE5-10_orf15 | 213  | Unknown                                             | SgcE8 (AAL06694)              | 74           |
| NE5-10_orf16 | 369  | StrR-like transcriptional regulator                 | NcsR6 (AAM78007)              | 57           |
| NE5-10_orf17 | 255  | AraC family, transcriptional regulator              | NcsR5 (AAM78008)              | 67           |
| NE5-10_orf18 | 449  | P-450 hydroxylase                                   | NcsE7 (AAM78009)              | 80           |
| NE5-10_orf19 | 181  | Flavin-dependent oxidoreductase                     | NcsE6 (AAM78010)              | 73           |
| NE5-10_orf20 | 152  | Transcription regulator                             | NcsE1 (AAM78017)              | 84           |
| NE5-10_orf21 | 1964 | Enediyne polyketide synthase                        | NcsE (AAM78012)               | 75           |
| NE5-10_orf22 | 361  | Unknown                                             | NcsE5 (AAM78013)              | 78           |
| NE5-10_orf23 | 635  | Unknown                                             | NcsE4 (AAM78014)              | 77           |
| NE5-10_orf24 | 307  | Unknown                                             | NcsE3 (AAM78015)              | 75           |
| NE5-10_orf25 | 325  | Unknown                                             | NcsE2 (AAM78016)              | 66           |
| NE5-10_orf26 | 147  | Transcription regulator                             | NcsE1 (AAM78017)              | 72           |
| NE5-10_orf27 | 404  | SgcR3 like transcriptional regulator                | NcsR7 (AAM78019)              | 62           |
| NE5-10_orf28 | 62   | Polyketide synthase-nonribosomal peptide synthetase | phmA (Q0V6Q6.2)               | 46           |
| NE5-10_orf29 | 204  | y-Butyrolactone receptor protein                    | NcsR3 (AAM78020)              | 53           |
| NE5-10_orf30 | 331  | dNDP-hexose dehydratase                             | NcsC2 (AAM78021)              | 54           |
| NE5-10_orf31 | 209  | γ-Butyrolactone receptor protein                    | NcsR2 (AAM78022)              | 65           |
| NE5-10_orf32 | 307  | y-Butyrolactone biosynthesis enzyme                 | NcsR1 (AAM78023)              | 62           |
| NE5-10_orf33 | 494  | hypothetical protein                                | WP_241845776                  | 80           |
| NE5-10_orf34 | 221  | MerR family transcriptional regulator               | CyaR5 (AGO97221)              | 39           |

| Table S31. F | Predicted | functions of | of ORF | s in the | enediyne | biosynthetic | c gene clust | er from | Streptomyces sp. | TSRI0281. |
|--------------|-----------|--------------|--------|----------|----------|--------------|--------------|---------|------------------|-----------|
|              |           |              |        |          |          |              |              |         |                  |           |

| Gene           | AA a | Putative Function                       | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|-----------------------------------------|-------------------------------|--------------|
| TSRI0281_orf1  | 354  | Methionine synthase                     | metE (Q980A9.1)               | 25           |
| TSRI0281_orf2  | 190  | Pyrimidine reductase                    | Cyaorf7 (AGO97196)            | 33           |
| TSRI0281_orf3  | 97   | ADP-ribose glycohydrolase               | ARH3 (Q28FQ6.1)               | 59           |
| TSRI0281_orf4  | 433  | Citrate/shikimate transporter           | SgcK (AAL06677)               | 63           |
| TSRI0281_orf5  | 179  | Alkylhydroperoxidase                    | SgcO (WP_010056303)           | 65           |
| TSRI0281_orf6  | 115  | CysteinetRNA ligase                     | cysS (A5N4M6.1)               | 30           |
| TSRI0281_orf7  | 146  | Apo-protein                             | NcsA (AAM77994)               | 44           |
| TSRI0281_orf8  | 554  | Transmembrane efflux protein            | SgcB (AAL06672)               | 46           |
| TSRI0281_orf9  | 460  | Flavin-dependent oxidoreductase         | Ncs32 (AAM78001)              | 29           |
| TSRI0281_orf10 | 515  | Methyltransferase type 11               | spoT6 (ABP55177)              | 49           |
| TSRI0281_orf11 | 390  | Epoxide hydrolase                       | SgcF (AAL06662)               | 67           |
| TSRI0281_orf12 | 469  | Glycerol phosphate ABC transporter      | SgcB1 (AAL06653)              | 51           |
| TSRI0281_orf13 | 89   | Probable polyketide synthase 27         | pks27 (Q54G30.1)              | 33           |
| TSRI0281_orf14 | 446  | Coenzyme F390 synthase-like protein     | SgcH (AAL06673)               | 83           |
| TSRI0281_orf15 | 218  | Anthranilate synthase II                | SgcD1 (AAL06663)              | 77           |
| TSRI0281_orf16 | 493  | 2-Amino-4-deoxychorismate synthase      | SgcD (AAL06664)               | 70           |
| TSRI0281_orf17 | 474  | Phenylacetyl-CoA ligase                 | SgcD5 (AAL06665)              | 76           |
| TSRI0281_orf18 | 254  | 2-Amino-4-deoxychorismate dehydrogenase | SgcG (AAL06666)               | 84           |
| TSRI0281_orf19 | 411  | Cytochrome P450 hydroxylase             | SgcD3 (AAL06684)              | 70           |
| TSRI0281_orf20 | 350  | O-methyltransferase                     | SgcD4 (AAL06683)              | 74           |
| TSRI0281_orf21 | 701  | Antibiotic transporter                  | SgcB4 (AAL06682)              | 67           |
| TSRI0281_orf22 | 260  | Hydrolase                               | Sgcl (AAL06675)               | 47           |
| TSRI0281_orf23 | 439  | 3-O-Acyltransferase                     | SgcD6 (AAL06667)              | 38           |
| TSRI0281_orf24 | 108  | C4-dicarboxylate transport protein      | dctA (C1D8S5.1)               | 34           |
| TSRI0281_orf25 | 662  | FAD-dependent oxidoreductase            | dynE13( ACB47064)             | 36           |
| TSRI0281_orf26 | 474  | Allantoinase                            | allB (Q1J391.1)               | 35           |
| TSRI0281_orf27 | 367  | Acyl-CoA dehydrogenase                  | KedU41 (AFV52203)             | 32           |
| TSRI0281_orf28 | 354  | Putative isomerase YraM                 | YraM (007931.2)               | 24           |
| TSRI0281_orf29 | 606  | Asparagine synthetase                   | asnB (P54420.2)               | 26           |
| TSRI0281_orf30 | 313  | Cysteine synthase                       | Q00834.1                      | 46           |
| TSRI0281_orf31 | 265  | 5-keto-4-deoxy-D-glucarate aldolase     | garL (A8AQ14.1)               | 34           |
| TSRI0281_orf32 | 286  | Alkylsulfatase                          | atsK (Q6FBW1.1)               | 45           |
| TSRI0281_orf33 | 422  | Efflux pump transporter                 | NcsA1 (AAM77999)              | 29           |
| TSRI0281_orf34 | 407  | Argininosuccinate lyase 2               | argH2 (Q981V0.1)              | 33           |
| TSRI0281_orf35 | 427  | Uncharacterized protein y4rH            | y4rH (P55641.1)               | 26           |
| TSRI0281_orf36 | 212  | Serine acetyltransferase                | cysE(Q06750.1)                | 41           |
| TSRI0281_orf37 | 317  | O-acetylserine sulfhydrylase            | cysK (P0A535.1)               | 52           |
| TSRI0281_orf38 | 413  | L-arginine-specific L-amino acid ligase | rizA (B5UAT8.1)               | 25           |
| TSRI0281_orf39 | 590  | A-domain type II peptide synthetase     | SgcC1 (AAL06681)              | 31           |
| TSRI0281_orf40 | 457  | C-domain type II peptide synthetase     | SgcC5 (AAL06678)              | 41           |

| TSRI0281_orf41 | 413  | Oxidoreductase                                              | SgcL (AAL06685)        | 31 |
|----------------|------|-------------------------------------------------------------|------------------------|----|
| TSRI0281_orf42 | 414  | P-450 hydroxylase                                           | NcsB3 (AAM77997)       | 50 |
| TSRI0281_orf43 | 449  | FAD-binding monooxygenase                                   | SgcD2 (AAL06669)       | 60 |
| TSRI0281_orf44 | 143  | Unknown                                                     | SgcJ (AAL06676)        | 57 |
| TSRI0281_orf45 | 393  | Oxidoreductase                                              | SgcL (AAL06685)        | 67 |
| TSRI0281_orf46 | 91   | Glycine cleavage system H protein                           | gcvH (A1RFY7.1)        | 34 |
| TSRI0281_orf47 | 511  | Chlorophenol-4-monooxygenase                                | SgcC (AAL06674)        | 75 |
| TSRI0281_orf48 | 225  | 50S ribosomal protein L2                                    | rpIB (Q839G1.1)        | 27 |
| TSRI0281_orf49 | 343  | Sterol-4-alpha-carboxylate 3-dehydrogenase, decarboxylating | NSDHL (Q3ZBE9.1)       | 26 |
| TSRI0281_orf50 | 386  | FerredoxinNADP reductase                                    | Cpar_1603 (B3QPZ8.1)   | 32 |
| TSRI0281_orf51 | 157  | Serine-protein kinase RsbW                                  | RsbW (A7Z1M9.1)        | 26 |
| TSRI0281_orf52 | 140  | LeucinetRNA ligase                                          | leuS (Q65VR5.1)        | 27 |
| TSRI0281_orf53 | 311  | Protein nfe2                                                | nfe2 (Q52994.1)        | 30 |
| TSRI0281_orf54 | 478  | Uncharacterized protein Cbei_0202                           | Cbei_0202 (Q05627.2)   | 22 |
| TSRI0281_orf55 | 259  | Putative protein adenylyltransferase MJ1305                 | MJ1305 (Q58701.1)      | 48 |
| TSRI0281_orf56 | 372  | radical SAM-domain containing protein                       | Cyaorf36 ( AGO97225.1) | 24 |
| TSRI0281_orf57 | 365  | radical SAM-domain containing protein                       | Cyaorf36 ( AGO97225.1) | 23 |
| TSRI0281_orf58 | 431  | GlutamatetRNA ligase                                        | gltX (Q47SA6.1)        | 67 |
| TSRI0281_orf59 | 556  | Probable acetolactate synthase large subunit                | ilvB (Q57725.1)        | 26 |
| TSRI0281_orf60 | 332  | O-methyl transferase                                        | NcsB1 (AAM77984)       | 29 |
| TSRI0281_orf61 | 60   | Protein maph-9                                              | maph-9 (Q18452.2)      | 50 |
| TSRI0281_orf62 | 192  | Alkylhydroperoxidase                                        | SgcO (WP_010056303)    | 76 |
| TSRI0281_orf63 | 216  | Type II beta-Tyr adenylation domain protein                 | mdpC1 (ABY66004)       | 41 |
| TSRI0281_orf64 | 411  | Regulator                                                   | SgcR (AAL06689)        | 84 |
| TSRI0281_orf65 | 324  | Oxidase                                                     | SgcQ (AAL06690)        | 64 |
| TSRI0281_orf66 | 256  | 4'-phosphopantetheinyl transferase Hetl                     | Hetl (P37695.2)        | 29 |
| TSRI0281_orf67 | 126  | CysteinetRNA ligase                                         | cysS (Q2SX78.1)        | 37 |
| TSRI0281_orf68 | 392  | S-adenosylmethionine synthase                               | metK (B1W470.1)        | 87 |
| TSRI0281_orf69 | 136  | Unknown                                                     | Ncs13 (AAM77982)       | 33 |
| TSRI0281_orf70 | 348  | Unknown                                                     | SgcM (AAL06686)        | 62 |
| TSRI0281_orf71 | 328  | Probable prephenate dehydrogenase                           | NovF (Q9L9G2.1)        | 42 |
| TSRI0281_orf72 | 267  | Unknown                                                     | SgcE11 (AAL06691)      | 82 |
| TSRI0281_orf73 | 156  | Type II thioesterase                                        | SgcE10 (AAL06692)      | 86 |
| TSRI0281_orf74 | 552  | Oxidoreductase                                              | SgcE9 (AAL06693)       | 93 |
| TSRI0281_orf75 | 185  | Unknown                                                     | SgcE8 (AAL06694)       | 82 |
| TSRI0281_orf76 | 370  | Regulatory protein                                          | SgcR1 (AAL06695)       | 74 |
| TSRI0281_orf77 | 258  | AraC family transcriptional regulator                       | SgcR2 (AAL06696)       | 72 |
| TSRI0281_orf78 | 449  | Cytochrome P450                                             | SgcE7 (AAL06697)       | 85 |
| TSRI0281_orf79 | 182  | Flavin reductase                                            | SgcE6 (AAL06698)       | 69 |
| TSRI0281_orf80 | 154  | Transcription regulator                                     | NcsE1 (AAM78017)       | 53 |
| TSRI0281_orf81 | 1937 | Enediyne polyketide synthase                                | SgcE (AAL06699)        | 82 |
| TSRI0281_orf82 | 313  | Unknown                                                     | SgcE5 (AAL06700)       | 81 |
| TSRI0281_orf83 | 642  | Unknown                                                     | SgcE4 (AAL06701)       | 86 |

| TSRI0281_orf84 | 325 | Unknown                               | SgcE3 (AAL06702)    | 83 |
|----------------|-----|---------------------------------------|---------------------|----|
| TSRI0281_orf85 | 327 | Unknown                               | NcsE2 (AAM78016)    | 66 |
| TSRI0281_orf86 | 195 | HxIR family transcriptional regulator | SgcE1 (AAL06704)    | 80 |
| TSRI0281_orf87 | 187 | Unknown                               | SgcS (AAL06705)     | 83 |
| TSRI0281_orf88 | 143 | Unknown                               | SgcT (AAL06706)     | 68 |
| TSRI0281_orf89 | 413 | Transcriptional regulator             | SgcR3 (AAL06707)    | 75 |
| TSRI0281_orf90 | 201 | γ-Butyrolactone receptor protein      | NcsR3 (AAM78020)    | 43 |
| TSRI0281_orf91 | 254 | Methyltransferase                     | ucmG( AMK92579)     | 37 |
| TSRI0281_orf92 | 224 | γ-Butyrolactone receptor protein      | NcsR2 (AAM78022)    | 41 |
| TSRI0281_orf93 | 305 | γ-Butyrolactone biosynthesis enzyme   | NcsR1 (AAM78023)    | 39 |
| TSRI0281_orf94 | 557 | Putative helicase L207/L206           | alcA (Q5UQ22.2)     | 37 |
| TSRI0281_orf95 | 133 | Alcohol dehydrogenase 1               | alcA (P08843.2)     | 37 |
| TSRI0281_orf96 | 319 | Unknown                               | Ncs56 (AAM78025)    | 68 |
| TSRI0281_orf97 | 196 | Alkylhydroperoxidase                  | SgcO (WP_010056303) | 65 |
| TSRI0281_orf98 | 133 | Alcohol dehydrogenase 1               | alcA (P08843.2)     | 36 |
| TSRI0281_orf99 | 69  | D-aminoacyl-tRNA deacylase            | dtd (Q3ZAH5.1)      | 29 |

| Gene       | AA a | Putative Function                                      | Protein homologs <sup>a</sup> | Identity (%) |
|------------|------|--------------------------------------------------------|-------------------------------|--------------|
| 531S_orf1  | 255  | Unknown                                                | Ncs55 (AAM78024)              | 72           |
| 531S_orf2  | 544  | Cypemycin cysteine dehydrogenase (decarboxylating)     | cypD(E5KIB9.1)                | 38           |
| 531S_orf3  | 317  | γ-Butyrolactone biosynthesis enzyme                    | NcsR1 (AAM78023)              | 60           |
| 531S_orf4  | 205  | γ-Butyrolactone receptor protein                       | NcsR2 (AAM78022)              | 49           |
| 531S_orf5  | 231  | Hydroxymethylpyrimidine/phosphomethylpyrimidine kinase | ThiD (Q9ZL00.1)               | 32           |
| 531S_orf6  | 262  | Oxidoreductase                                         | YpmI ( SCL57600.1)            | 37           |
| 531S_orf7  | 213  | γ-Butyrolactone receptor protein                       | NcsR3 (AAM78020)              | 51           |
| 531S_orf8  | 407  | SgcR3 like transcriptional regulator                   | NcsR7 (AAM78019)              | 60           |
| 531S_orf9  | 147  | Transcription regulator                                | NcsE1 (AAM78017)              | 71           |
| 531S_orf10 | 341  | Unknown                                                | NcsE2 (AAM78016)              | 67           |
| 531S_orf11 | 300  | Unknown                                                | NcsE3 (AAM78015)              | 74           |
| 531S_orf12 | 616  | Unknown                                                | NcsE4 (AAM78014)              | 78           |
| 531S_orf13 | 374  | Unknown                                                | NcsE5 (AAM78013)              | 75           |
| 531S_orf14 | 1963 | Enediyne polyketide synthase                           | NcsE (AAM78012)               | 76           |
| 531S_orf15 | 152  | Transcription regulator                                | NcsE1 (AAM78017)              | 84           |
| 531S_orf16 | 181  | Flavin-dependent oxidoreductase                        | NcsE6 (AAM78010)              | 73           |
| 531S_orf17 | 440  | P-450 hydroxylase                                      | NcsE7 (AAM78009)              | 80           |
| 531S_orf18 | 256  | AraC family, transcriptional regulator                 | NcsR5 (AAM78008)              | 69           |
| 531S_orf19 | 366  | StrR-like transcriptional regulator                    | NcsR6 (AAM78007)              | 59           |
| 531S_orf20 | 195  | Unknown                                                | NcsE8 (AAM78006)              | 74           |
| 531S_orf21 | 555  | Oxidoreductase                                         | SgcE9 (AAL06693)              | 84           |
| 531S_orf22 | 268  | Transcription regulator                                | NcsE1 (AAM78017)              | 72           |
| 531S_orf23 | 298  | Probable prephenate dehydrogenase                      | NovF (Q9L9G2.1)               | 36           |
| 531S_orf24 | 114  | Type II PCP                                            | SgcC2 (AAL06679)              | 44           |
| 531S_orf25 | 288  | Dioxygenase swnH1                                      | swnH1 (D4AU26.1)              | 31           |
| 531S_orf26 | 418  | P-450 hydroxylase                                      | NcsB3 (AAM77997)              | 49           |
| 531S_orf27 | 143  | Unknown                                                | SgcJ (AAL06676)               | 62           |
| 531S_orf28 | 375  | Oxidoreductase                                         | SgcL (AAL06685)               | 66           |
| 531S_orf29 | 528  | Chlorophenol-4-monooxygenase                           | SgcC (AAL06674)               | 76           |
| 531S_orf30 | 446  | C-domain type II peptide synthetase                    | SgcC5 (AAL06678)              | 52           |
| 531S_orf31 | 541  | MIO-dependent tyrosine 2,3-aminomutase                 | SgcC4 (AAL06680)              | 78           |
| 531S_orf32 | 894  | A-domain type II peptide synthetase                    | SgcC1 (AAL06681)              | 42           |
| 531S_orf33 | 486  | FAD-binding monooxygenase                              | SgcD2 (AAL06669)              | 55           |
| 531S_orf34 | 412  | Oxidoreductase                                         | SgcL (AAL06685)               | 26           |
| 531S_orf35 | 808  | Formate dehydrogenase subunit alpha                    | FdhA (P61159.2)               | 23           |
| 531S_orf36 | 447  | Glycerol phosphate ABC transporter                     | SgcH (AAL06653)               | 51           |

**Table S32**. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from *Streptomyces spongiicola* 531S.

| Gene           | AA a | Putative Function                                | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|--------------------------------------------------|-------------------------------|--------------|
| TRM43335_orf1  | 67   | Tyrosine-protein phosphatase non-receptor type 1 | PTPN1(P18031.1)               | 35           |
| TRM43335_orf2  | 268  | Unknown                                          | Ncs55 (AAM78024)              | 66           |
| TRM43335_orf3  | 311  | γ-Butyrolactone biosynthesis enzyme              | NcsR1 (AAM78023)              | 65           |
| TRM43335_orf4  | 208  | γ-Butyrolactone receptor protein                 | NcsR2 (AAM78022)              | 65           |
| TRM43335_orf5  | 325  | dNDP-hexose dehydratase                          | NcsC2 (AAM78021)              | 58           |
| TRM43335_orf6  | 213  | γ-Butyrolactone receptor protein                 | NcsR3 (AAM78020)              | 52           |
| TRM43335_orf7  | 398  | SgcR3 like transcriptional regulator             | NcsR7 (AAM78019)              | 66           |
| TRM43335_orf8  | 147  | Transcription regulator                          | NcsE1 (AAM78017)              | 71           |
| TRM43335_orf9  | 326  | Unknown                                          | NcsE2 (AAM78016)              | 72           |
| TRM43335_orf10 | 328  | Unknown                                          | SgcE3 (AAL06702)              | 66           |
| TRM43335_orf11 | 635  | Unknown                                          | NcsE4 (AAM78014)              | 76           |
| TRM43335_orf12 | 359  | Unknown                                          | NcsE5 (AAM78013)              | 78           |
| TRM43335_orf13 | 1964 | Enediyne polyketide synthase                     | NcsE (AAM78012)               | 76           |
| TRM43335_orf14 | 152  | Transcription regulator                          | NcsE1 (AAM78017)              | 86           |
| TRM43335_orf15 | 188  | Flavin-dependent oxidoreductase                  | NcsE6 (AAM78010)              | 75           |
| TRM43335_orf16 | 467  | P-450 hydroxylase                                | NcsE7 (AAM78009)              | 78           |
| TRM43335_orf17 | 258  | AraC family, transcriptional regulator           | NcsR5 (AAM78008)              | 66           |
| TRM43335_orf18 | 360  | Regulatory protein                               | SgcR1 (AAL06695)              | 61           |
| TRM43335_orf19 | 194  | Unknown                                          | NcsE8 (AAM78006)              | 75           |
| TRM43335_orf20 | 555  | Oxidoreductase                                   | SgcE9 (AAL06693)              | 84           |
| TRM43335_orf21 | 348  | Unknown                                          | SgcM (AAL06686)               | 58           |
| TRM43335_orf22 | 269  | Unknown                                          | SgcE11 (AAL06691)             | 71           |
| TRM43335_orf23 | 298  | Probable prephenate dehydrogenase                | NovF (Q9L9G2.1)               | 39           |
| TRM43335_orf24 | 500  | Flavin-dependent oxidoreductase                  | Ncs32 (AAM78001)              | 26           |
| TRM43335_orf25 | 141  | Unknown                                          | SgcJ (AAL06676)               | 55           |
| TRM43335_orf26 | 461  | FAD-binding monooxygenase                        | SgcD2 (AAL06669)              | 59           |
| TRM43335_orf27 | 386  | Epoxide hydrolase                                | SgcF (AAL06662)               | 72           |
| TRM43335_orf28 | 437  | 3-O-Acyltransferase                              | SgcD6 (AAL06667)              | 46           |
| TRM43335_orf29 | 65   | Triosephosphate isomerase                        | tpiA (Q1D8I9.1)               | 48           |
| TRM43335_orf30 | 432  | Coenzyme F390 synthase-like protein              | SgcH (AAL06673)               | 63           |

 Table S33. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces taklimakanensis TRM43335.

| Gene      | AA a | Putative Function                                             | Protein homologs <sup>a</sup> | Identity (%) |
|-----------|------|---------------------------------------------------------------|-------------------------------|--------------|
| T7A_orf1  | 271  | Unknown                                                       | Ncs55 (AAM78024)              | 74           |
| T7A_orf2  | 244  | FeMo cofactor biosynthesis protein NifB                       | NifB (P10390.1)               | 33           |
| T7A_orf3  | 133  | Histone-lysine N-methyltransferase SETD5                      | SETD5 (Q5XJV7.2)              | 31           |
| T7A_orf4  | 305  | y-Butyrolactone biosynthesis enzyme                           | NcsR1 (AAM78023)              | 57           |
| T7A_orf5  | 205  | γ-Butyrolactone receptor protein                              | NcsR2 (AAM78022)              | 48           |
| T7A_orf6  | 240  | Formate-dependent phosphoribosylglycinamide formyltransferase | purT (A4Y447.1)               | 27           |
| T7A_orf7  | 263  | Oxidoreductase                                                | tnml( AME18007)               | 37           |
| T7A_orf8  | 229  | γ-Butyrolactone receptor protein                              | NcsR3 (AAM78020)              | 50           |
| T7A_orf9  | 398  | SgcR3 like transcriptional regulator                          | NcsR7 (AAM78019)              | 61           |
| T7A_orf10 | 147  | Transcription regulator                                       | NcsE1 (AAM78017)              | 71           |
| T7A_orf11 | 325  | Unknown                                                       | NcsE2 (AAM78016)              | 67           |
| T7A_orf12 | 308  | Unknown                                                       | NcsE3 (AAM78015)              | 76           |
| T7A_orf13 | 621  | Unknown                                                       | NcsE4 (AAM78014)              | 78           |
| T7A_orf14 | 354  | Unknown                                                       | NcsE5 (AAM78013)              | 75           |
| T7A_orf15 | 1956 | Enediyne polyketide synthase                                  | NcsE (AAM78012)               | 74           |
| T7A_orf16 | 152  | Transcription regulator                                       | NcsE1 (AAM78017)              | 85           |
| T7A_orf17 | 181  | Flavin-dependent oxidoreductase                               | NcsE6 (AAM78010)              | 72           |
| T7A_orf18 | 440  | P-450 hydroxylase                                             | NcsE7 (AAM78009)              | 80           |
| T7A_orf19 | 266  | AraC family, transcriptional regulator                        | NcsR5 (AAM78008)              | 67           |
| T7A_orf20 | 354  | StrR-like transcriptional regulator                           | NcsR6 (AAM78007)              | 60           |
| T7A_orf21 | 195  | Unknown                                                       | NcsE8 (AAM78006)              | 76           |
| T7A_orf22 | 555  | Oxidoreductase                                                | SgcE9 (AAL06693)              | 84           |
| T7A_orf23 | 346  | Unknown                                                       | SgcM (AAL06686)               | 58           |
| T7A_orf24 | 269  | Unknown                                                       | SgcE11 (AAL06691)             | 71           |
| T7A_orf25 | 288  | Probable prephenate dehydrogenase                             | NovF (Q9L9G2.1)               | 39           |
| T7A_orf26 | 500  | Oxidoreductase                                                | spoT4 (ABP55175)              | 29           |
| T7A_orf27 | 141  | Unknown                                                       | SgcJ (AAL06676)               | 56           |
| T7A_orf28 | 463  | FAD-binding monooxygenase                                     | SgcD2 (AAL06669)              | 60           |
| T7A_orf29 | 386  | Epoxide hydrolase                                             | SgcF (AAL06662)               | 72           |
| T7A_orf30 | 446  | 3-O-Acyltransferase                                           | SgcD6 (AAL06667)              | 43           |
| T7A_orf31 | 62   | AsparaginetRNA ligase, cytoplasmic                            | nars-1 (Q19722.1)             | 27           |
| T7A_orf32 | 436  | Coenzyme F390 synthase-like protein                           | SgcH (AAL06673)               | 78           |
| T7A_orf33 | 332  | Zinc-containing alcohol dehydrogenase                         | AcmP5 (ATV95592)              | 29           |
| T7A_orf34 | 217  | Anthranilate synthase II                                      | SgcD1 (AAL06663)              | 70           |
| T7A_orf35 | 491  | 2-Amino-4-deoxychorismate synthase                            | SgcD (AAL06664)               | 65           |
| T7A_orf36 | 222  | 2-Amino-4-deoxychorismate dehydrogenase                       | SgcG (AAL06666)               | 80           |
| T7A_orf37 | 536  | Transmembrane efflux protein                                  | SgcB (AAL06672)               | 48           |
| T7A_orf38 | 371  | Beta-lactamase domain-containing protein 2                    | lact-2(Q09621.1)              | 32           |
| T7A_orf39 | 460  | Flavin-dependent oxidoreductase                               | Ncs32 (AAM78001)              | 30           |
| T7A_orf40 | 415  | Oxidoreductase                                                | SgcL (AAL06685)               | 27           |

 Table S34. Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces viridosporus T7A.

| T7A_orf41 | 448 | Flavin-dependent oxidoreductase                             | Ncs32 (AAM78001)    | 33 |
|-----------|-----|-------------------------------------------------------------|---------------------|----|
| T7A_orf42 | 260 | Oxidoreductase                                              | SgcN (AAL06687)     | 29 |
| T7A_orf43 | 238 | Unknown                                                     | Spoorf22 (ABP55176) | 39 |
| T7A_orf44 | 453 | Glycerol phosphate ABC transporter                          | SgcB1 (AAL06653)    | 49 |
| T7A_orf45 | 517 | Chlorophenol-4-monooxygenase                                | SgcC (AAL06674)     | 77 |
| T7A_orf46 | 84  | Type II PCP                                                 | SgcC2 (AAL06679)    | 58 |
| T7A_orf47 | 471 | C-domain type II peptide synthetase                         | SgcC5 (AAL06678)    | 50 |
| T7A_orf48 | 119 | Hypothetical protein                                        | Spoorf16 (ABP55163) | 57 |
| T7A_orf49 | 277 | Methyltransferase                                           | CalE5 (AAM94788)    | 34 |
| T7A_orf50 | 749 | P-450 hydroxylase                                           | NcsB3 (AAM77997)    | 53 |
| T7A_orf51 | 393 | Oxidoreductase                                              | SgcL (AAL06685)     | 62 |
| T7A_orf52 | 512 | Methyltransferase type 11                                   | spoT6 (ABP55177)    | 52 |
| T7A_orf53 | 537 | MIO-dependent tyrosine 2,3-aminomutase                      | SgcC4 (AAL06680)    | 87 |
| T7A_orf54 | 878 | A-domain type II peptide synthetase                         | SgcC1 (AAL06681)    | 48 |
| T7A_orf55 | 410 | L-arginine-specific L-amino acid ligase                     | rizA (B5UAT8.1)     | 25 |
| T7A_orf56 | 320 | O-acetylserine sulfhydrylase                                | cysK (P0A535.1)     | 50 |
| T7A_orf57 | 219 | Serine acetyltransferase                                    | cysE (Q06750.1)     | 41 |
| T7A_orf58 | 443 | Uncharacterized protein y4rH                                | y4rH (P55641.1)     | 28 |
| T7A_orf59 | 416 | Argininosuccinate lyase 2                                   | argH2 (Q981V0.1)    | 33 |
| T7A_orf60 | 125 | Eukaryotic peptide chain release factor GTP-binding subunit | sup35 (O74718.2)    | 28 |
| T7A_orf61 | 59  | Putative Nrdl-like protein                                  | P0DC72.1            | 44 |
| T7A_orf62 | 146 | Apo-protein                                                 | NcsA (AAM77994)     | 43 |
| T7A_orf63 | 70  | DNA-directed RNA polymerase subunit beta                    | rpoC (B1I1M9.1)     | 29 |
| T7A_orf64 | 609 | FAD-dependent oxidoreductase                                | tnmP ( AME18017)    | 38 |
| T7A_orf65 | 473 | Allantoinase                                                | allB (Q1J391.1)     | 35 |
| T7A_orf66 | 365 | Acyl-CoA dehydrogenase                                      | KedU41 (AFV52203)   | 35 |
| T7A_orf67 | 353 | Putative isomerase YraM                                     | YraM (007931.2)     | 27 |
| T7A_orf68 | 612 | Asparagine synthetase [glutamine-hydrolyzing] 1             | asnB (P54420.2)     | 27 |
| T7A_orf69 | 135 | Cysteine synthase 3                                         | cysl-3 (O01592.1)   | 42 |
| T7A_orf70 | 68  | Probable tautomerase SERP0934                               | SERP0934 (Q5HPH8.3) | 36 |
| T7A_orf71 | 421 | Na(+), Li(+), K(+)/H(+) antiporter                          | mdrP (A0A1C7E424.1) | 29 |
| T7A_orf72 | 335 | O-methyltransferase                                         | SgcD4 (AAL06683)    | 58 |
| T7A_orf73 | 446 | Cytochrome P450 hydroxylase                                 | SgcD3 (AAL06684)    | 57 |
| T7A_orf74 | 479 | Phenylacetyl-CoA ligase                                     | SgcD5 (AAL06665)    | 75 |
| T7A_orf75 | 91  | Glucan 1,3-beta-glucosidase D                               | exgD (Q5AVZ7.1)     | 40 |
| T7A_orf76 | 306 | Uncharacterized N-acetyltransferase AF_0521                 | AF_0521 (029729.1)  | 31 |
| T7A_orf77 | 66  | dTDP-glucose 4,6-dehydratase                                | novT (Q9L9E8.1)     | 39 |
| T7A_orf78 | 77  | FMN-dependent NADH:quinone oxidoreductase 2                 | azoR2 (O32224.1)    | 47 |
| T7A_orf79 | 141 | DNA mismatch repair protein MutL                            | MutL (B2II71.1)     | 54 |
| T7A_orf80 | 332 | Unknown                                                     | Ncs56 (AAM78025)    | 58 |
|           | 320 | Oxidoreductase                                              | SacN (AAL06687)     | 51 |

| Table S35. | Predicted | functions | of ORFs in | the enediyne | biosynthetic | gene cluster | from 7 | Thermostaphylospora | chromogena DSI | M 43794. |
|------------|-----------|-----------|------------|--------------|--------------|--------------|--------|---------------------|----------------|----------|
|            |           |           |            |              |              |              |        |                     |                |          |

| Gene           | AA a | Putative Function                                   | Protein homologs <sup>a</sup> | Identity (%) |
|----------------|------|-----------------------------------------------------|-------------------------------|--------------|
| DSM43794_orf1  | 1035 | Transcriptional regulator                           | AcmR4 (ATV95651)              | 32           |
| DSM43794_orf2  | 59   | Membrane protein insertase YidC                     | YidC (Q21DG0.1)               | 44           |
| DSM43794_orf3  | 112  | 5-hydroxyisourate hydrolase                         | hiuH (Q8ZQ52.1)               | 35           |
| DSM43794_orf4  | 575  | 2-isopropylmalate synthase                          | leuA (D2ATJ4.1)               | 63           |
| DSM43794_orf5  | 921  | Oxygen regulatory protein NreC                      | NreC (Q7WZY4.1)               | 44           |
| DSM43794_orf6  | 63   | Ribose-phosphate pyrophosphokinase                  | prs (Q8NRU9.1)                | 31           |
| DSM43794_orf7  | 342  | Unknown                                             | Ncs56 (AAM78025)              | 62           |
| DSM43794_orf8  | 331  | Unknown                                             | NcsE2 (AAM78016)              | 64           |
| DSM43794_orf9  | 318  | Unknown                                             | SgcE3 (AAL06702)              | 58           |
| DSM43794_orf10 | 647  | Unknown                                             | SgcE4 (AAL06701)              | 56           |
| DSM43794_orf11 | 324  | Unknown                                             | NcsE5 (AAM78013)              | 70           |
| DSM43794_orf12 | 1892 | Enediyne polyketide synthase                        | NcsE (AAM78012)               | 62           |
| DSM43794_orf13 | 142  | Transcription regulator                             | NcsE1 (AAM78017)              | 83           |
| DSM43794_orf14 | 179  | Flavin-dependent oxidoreductase                     | NcsE6 (AAM78010)              | 59           |
| DSM43794_orf15 | 457  | Cytochrome P450                                     | SgcE7 (AAL06697)              | 64           |
| DSM43794_orf16 | 255  | AraC family transcriptional regulator               | SgcR2 (AAL06696)              | 50           |
| DSM43794_orf17 | 56   | Glutamyl-tRNA reductase                             | hemA (B1JEP7.1)               | 40           |
| DSM43794_orf18 | 145  | RNA polymerase sigma-E factor                       | sigE (Q82EA9.1)               | 38           |
| DSM43794_orf19 | 183  | Unknown                                             | SgcE8 (AAL06694)              | 68           |
| DSM43794_orf20 | 550  | FDA-dependent oxidoreductase                        | NcsE9 (AAM78005)              | 79           |
| DSM43794_orf21 | 357  | Unknown                                             | SgcM (AAL06686)               | 48           |
| DSM43794_orf22 | 267  | Unknown                                             | SgcE11 (AAL06691)             | 65           |
| DSM43794_orf23 | 328  | Bialaphos biosynthetic pathway regulatory protein   | brpA (Q01108.1)               | 32           |
| DSM43794_orf24 | 61   | Basal body-orientation factor 1                     | bbof1 (Q08C53.2)              | 30           |
| DSM43794_orf25 | 536  | methylmalonyl-CoA carboxyltransferase               | AcmU20 (ATV95634)             | 73           |
| DSM43794_orf26 | 123  | Methionyl-tRNA formyltransferase                    | fmt (A9B2Z9.1)                | 32           |
| DSM43794_orf27 | 249  | Putative 4'-phosphopantetheinyl transferase slr0495 | slr0495(Q55185.1)             | 31           |
| DSM43794_orf28 | 241  | hypothetical protein                                | Cya-4 ( AGO97186)             | 27           |
| DSM43794_orf29 | 150  | Unknown                                             | SgcT (AAL06706)               | 45           |
| DSM43794_orf30 | 181  | Unknown                                             | SgcS (AAL06705)               | 66           |
| DSM43794_orf31 | 413  | C-methyltransferase                                 | SgcA3 (AAL06661)              | 32           |
| DSM43794_orf32 | 329  | NDP-hexose-3-ketoreductase                          | KedS3 (AFV52211)              | 49           |
| DSM43794_orf33 | 151  | transport protein                                   | CynR5 ( AGO97175.1)           | 31           |
| DSM43794_orf34 | 546  | Transmembrane efflux protein                        | SgcB (AAL06672)               | 50           |
| DSM43794_orf35 | 739  | Polysulfide reductase chain A                       | psrA (P31075.1)               | 28           |
| DSM43794_orf36 | 284  | HxIR family transcriptional regulator               | SgcE1 (AAL06704)              | 35           |
| DSM43794_orf37 | 368  | Oxidoreductase                                      | SgcL (AAL06685)               | 28           |
| DSM43794_orf38 | 465  | FAD-binding monooxygenase                           | SgcD2 (AAL06669)              | 54           |
| DSM43794_orf39 | 452  | C-domain type II peptide synthetase                 | SgcC5 (AAL06678)              | 49           |
| DSM43794_orf40 | 415  | P-450 hydroxylase                                   | NcsB3 (AAM77997)              | 49           |

| DSM43794_orf41 | 472 | Glycerol phosphate ABC transporter     | SgcB1 (AAL06653)    | 48 |
|----------------|-----|----------------------------------------|---------------------|----|
| DSM43794_orf42 | 250 | Oxidoreductase                         | SgcN (AAL06687)     | 33 |
| DSM43794_orf43 | 451 | Glycosyl transferase                   | SgcA6 (AAL06670)    | 48 |
| DSM43794_orf44 | 465 | NDP-hexose 2,3-dehydratase             | CalS14 (AAM70359)   | 52 |
| DSM43794_orf45 | 433 | NDP glucose dehydrogenase              | AcmA2 (ATV95598)    | 61 |
| DSM43794_orf46 | 333 | dNDP-hexose 4, 6-dehydratase           | NcsC1 (AAM77990)    | 34 |
| DSM43794_orf47 | 189 | NUDIX domain-containing protein        | AcmU1 (ATV95597)    | 69 |
| DSM43794_orf48 | 399 | Amino transferase                      | SgcA4 (AAL06659)    | 28 |
| DSM43794_orf49 | 218 | Unknown                                | Spoorf22 (ABP55176) | 41 |
| DSM43794_orf50 | 246 | N-methyl transferase                   | SgcA5 (AAL06660)    | 43 |
| DSM43794_orf51 | 436 | Glycosyl transferase                   | SgcA6 (AAL06670)    | 34 |
| DSM43794_orf52 | 291 | dNTP-glucose synthase                  | SgcA1 (AAL06657)    | 37 |
| DSM43794_orf53 | 284 | Dioxygenase swnH1                      | swnH1 (D4AU26.1)    | 33 |
| DSM43794_orf54 | 90  | Type II PCP                            | SgcC2 (AAL06679)    | 45 |
| DSM43794_orf55 | 528 | MIO-dependent tyrosine 2,3-aminomutase | SgcC4 (AAL06680)    | 77 |
| DSM43794_orf56 | 498 | A-domain type II peptide synthetase    | SgcC1 (AAL06681)    | 51 |
| DSM43794_orf57 | 519 | Methyltransferase type 11              | spoT6 (ABP55177)    | 48 |
| DSM43794_orf58 | 274 | Methyltransferase                      | CalE5 (AAM94788)    | 40 |
| DSM43794_orf59 | 135 | Unknown                                | Ncs16 (AAM77985)    | 58 |
| DSM43794_orf60 | 522 | Chlorophenol-4-monooxygenase           | SgcC (AAL06674)     | 76 |
| DSM43794_orf61 | 117 | Phosphopentomutase                     | deoB (A8FET4.1)     | 32 |
| DSM43794_orf62 | 460 | Flavin-dependent oxidoreductase        | Ncs32 (AAM78001)    | 30 |
| DSM43794_orf63 | 394 | Oxidoreductase                         | SgcL (AAL06685)     | 64 |
| DSM43794_orf64 | 315 | Probable prephenate dehydrogenase      | NovF (Q9L9G2.1)     | 39 |
| DSM43794_orf65 | 180 | Uncharacterized protein YyaP           | YyaP (P37508.1)     | 33 |

| Gene          | AA a | Putative Function                                                   | Protein homologs <sup>a</sup> | Identity (%) |
|---------------|------|---------------------------------------------------------------------|-------------------------------|--------------|
| HNM0039_orf1  | 536  | MIO-dependent tyrosine 2,3-aminomutase                              | SgcC4 (AAL06680)              | 80           |
| HNM0039_orf2  | 524  | Transmembrane efflux protein                                        | SgcB (AAL06672)               | 48           |
| HNM0039_orf3  | 148  | Apo-protein                                                         | NcsA (AAM77994)               | 39           |
| HNM0039_orf4  | 461  | Flavin-dependent oxidoreductase                                     | Ncs32 (AAM78001)              | 32           |
| HNM0039_orf5  | 512  | Methyltransferase type 11                                           | spoT6 (ABP55177)              | 49           |
| HNM0039_orf6  | 389  | Epoxide hydrolase                                                   | SgcF (AAL06662)               | 69           |
| HNM0039_orf7  | 469  | Glycerol phosphate ABC transporter                                  | SgcB1 (AAL06653)              | 51           |
| HNM0039_orf8  | 94   | Hypothetical protein                                                | Kedorf-14 (AFV52117.1)        | 34           |
| HNM0039_orf9  | 188  | Uncharacterized HTH-type transcriptional regulator in lacX 3'region | P42097.1                      | 26           |
| HNM0039_orf10 | 363  | N-ethylmaleimide reductase                                          | NemA (P77258.1)               | 43           |
| HNM0039_orf11 | 161  | Kyphoscoliosis peptidase                                            | KY (Q8NBH2.3)                 | 25           |
| HNM0039_orf12 | 71   | Histidine decarboxylase                                             | hdc (P05034.2)                | 47           |
| HNM0039_orf13 | 435  | Coenzyme F390 synthase-like protein                                 | SgcH (AAL06673)               | 82           |
| HNM0039_orf14 | 214  | Anthranilate synthase II                                            | SgcD1 (AAL06663)              | 74           |
| HNM0039_orf15 | 492  | 2-Amino-4-deoxychorismate synthase                                  | SgcD (AAL06664)               | 72           |
| HNM0039_orf16 | 478  | Phenylacetyl-CoA ligase                                             | SgcD5 (AAL06665)              | 76           |
| HNM0039_orf17 | 243  | 2-Amino-4-deoxychorismate dehydrogenase                             | SgcG (AAL06666)               | 84           |
| HNM0039_orf18 | 414  | Cytochrome P450 hydroxylase                                         | SgcD3 (AAL06684)              | 73           |
| HNM0039_orf19 | 334  | O-methyltransferase                                                 | SgcD4 (AAL06683)              | 75           |
| HNM0039_orf20 | 701  | Antibiotic transporter                                              | SgcB4 (AAL06682)              | 67           |
| HNM0039_orf21 | 262  | Hydrolase                                                           | Sgcl (AAL06675)               | 48           |
| HNM0039_orf22 | 431  | 3-O-Acyltransferase                                                 | SgcD6 (AAL06667)              | 41           |
| HNM0039_orf23 | 590  | A-domain type II peptide synthetase                                 | SgcC1 (AAL06681)              | 31           |
| HNM0039_orf24 | 84   | Unknown                                                             | Spoorf19 (ABP55170)           | 46           |
| HNM0039_orf25 | 456  | C-domain type II peptide synthetase                                 | SgcC5 (AAL06678)              | 44           |
| HNM0039_orf26 | 410  | Oxidoreductase                                                      | SgcL (AAL06685)               | 30           |
| HNM0039_orf27 | 441  | P-450 hydroxylase                                                   | NcsB3 (AAM77997)              | 50           |
| HNM0039_orf28 | 448  | FAD-binding monooxygenase                                           | SgcD2 (AAL06669)              | 60           |
| HNM0039_orf29 | 142  | Unknown                                                             | SgcJ (AAL06676)               | 61           |
| HNM0039_orf30 | 393  | Oxidoreductase                                                      | SgcL (AAL06685)               | 67           |
| HNM0039_orf31 | 526  | Chlorophenol-4-monooxygenase                                        | SgcC (AAL06674)               | 75           |
| HNM0039_orf32 | 547  | Probable acetolactate synthase large subunit                        | ilvB (O08353.1)               | 27           |
| HNM0039_orf33 | 332  | O-methyl transferase                                                | NcsB1 (AAM77984)              | 27           |
| HNM0039_orf34 | 65   | Serine/threonine-protein kinase LATS1                               | LATS1(O95835.1)               | 57           |
| HNM0039_orf35 | 298  | Probable prephenate dehydrogenase                                   | NovF (Q9L9G2.1)               | 37           |
| HNM0039_orf36 | 269  | Unknown                                                             | SgcE11 (AAL06691)             | 75           |
| HNM0039_orf37 | 400  | Unknown                                                             | SgcM (AAL06686)               | 60           |
| HNM0039_orf38 | 555  | Oxidoreductase                                                      | SgcE9 (AAL06693)              | 85           |
| HNM0039_orf39 | 199  | Unknown                                                             | NcsE8 (AAM78006)              | 76           |
| HNM0039_orf40 | 389  | StrR-like transcriptional regulator                                 | NcsR6 (AAM78007)              | 62           |

 Table S36.
 Predicted functions of ORFs in the enediyne biosynthetic gene cluster from Streptomyces tirandamycinicus HNM0039.

| HNM0039_orf41 | 258  | AraC family, transcriptional regulator | NcsR5 (AAM78008) | 67 |
|---------------|------|----------------------------------------|------------------|----|
| HNM0039_orf42 | 440  | P-450 hydroxylase                      | NcsE7 (AAM78009) | 78 |
| HNM0039_orf43 | 181  | Flavin-dependent oxidoreductase        | NcsE6 (AAM78010) | 75 |
| HNM0039_orf44 | 151  | Transcription regulator                | NcsE1 (AAM78017) | 84 |
| HNM0039_orf45 | 1962 | Enediyne polyketide synthase           | NcsE (AAM78012)  | 75 |
| HNM0039_orf46 | 380  | Unknown                                | NcsE5 (AAM78013) | 73 |
| HNM0039_orf47 | 636  | Unknown                                | NcsE4 (AAM78014) | 79 |
| HNM0039_orf48 | 300  | Unknown                                | NcsE3 (AAM78015) | 75 |
| HNM0039_orf49 | 325  | Unknown                                | NcsE2 (AAM78016) | 69 |
| HNM0039_orf50 | 147  | Transcription regulator                | NcsE1 (AAM78017) | 74 |
| HNM0039_orf51 | 389  | SgcR3 like transcriptional regulator   | NcsR7 (AAM78019) | 62 |
| HNM0039_orf52 | 61   | ATP synthase subunit alpha 1           | atpA1 (Q07YM0.1) | 36 |
| HNM0039_orf53 | 206  | γ-Butyrolactone receptor protein       | NcsR3 (AAM78020) | 52 |
| HNM0039_orf54 | 261  | Oxidoreductase                         | SgcN (AAL06687)  | 36 |
| HNM0039_orf55 | 245  | Phosphoglycolate phosphatase           | Q3SGR5.1         | 26 |
| HNM0039_orf56 | 196  | γ-Butyrolactone receptor protein       | NcsR2 (AAM78022) | 47 |
| HNM0039_orf57 | 315  | γ-Butyrolactone biosynthesis enzyme    | NcsR1 (AAM78023) | 61 |
| HNM0039_orf58 | 507  | Putative ripening-related protein 5    | Q8LN49.1         | 24 |
| HNM0039_orf59 | 255  | Unknown                                | Ncs55 (AAM78024) | 72 |

**Figure S1.** Structures of known 9-membered enediynes and isolated natural products as potential aromatized products from 9-membered enediynes via Myers-Saito aromatization. The enediyne cores or aromatized cores were highlighted in red, while the hydroxyl groups and epoxides periphery to the core structure were labeled in blue color. Note that the aziridine functionality in maduropeptin and a cyanide group in cyanosporasides were also highlighted in blue color.


**Figure S2.** The GNN analysis of putative enediyne BGCs. They are from CB02130, CB01883, CB02400, CB02261, CB03578, and CB00455, which are co-clustered with the neocarzinostatin BGC, along with 15 known BGCs of enediyne natural products or aromatized products derived from enediynes for the biosynthesis of calicheamicin, dynemycin, esperamicin, sungeidine, tiancimycin, uncialamycin, yangpumicin, kedarcidin, maduropeptin, C-1027, amycolamycin, cyanosporaside C, cyanosporaside F, and sporolides. The putative enediyne BGC from CB02130 is named as *wls*, since the strain was originally isolated from <u>Wuliangs</u>han Mountin. The analysis was displayed with an *E*- value threshold of  $10^{-6}$ . WIsPDH, WIsOrf3, and WIsORF30 (highlighted in large red rectangles) are unique to *wls* and the putative enediyne BGCs from CB01883, CB02400, CB02261, CB03578, and CB00455, which are thus tentatively named as *wls*-type BGCs.



**Figure S3.** Production of heptaene (1) in *E. coli* and *S.* sp. CB02130. (A) Production of 1 from recombinant *E. coli* strains coexpressing *wls*E/E10. (B) The UV spectra of 1 from recombinant *E. coli*. (C) The HR-APCI-LCMS spectrum of purified 1, which was isolated from the *E. coli* strain co-expressed with *wls*E/E10 under the control of T7Lac promoter in pET28a. The appearance of a series of peaks with the expected [M+H]<sup>+</sup> molecular ion of 199.1487 suggests the presence of stereoisomers of 1 under the current chromatography condition. (D) HPLC analysis of the methanol extract of *S.* sp. CB02130 mycelium, in comparison to the standard of 1. (E) The UV spectra of 1 from *S.* sp. CB02130.



Figure S4. Confirmation of gene replacement mutants in S. sp. CB02130 and  $\Delta w ls R3$ (YX4001). (A) w/sR2 gene replacement in CB02130 leads to YX4011; (B) w/sR3 gene replacement in CB02130 leads to YX4001; (C) w/sPDH gene replacement in CB02130 leads to YX4008; (D) w/sPKSE gene replacement in YX4001 leads to YX4003; (E) w/sorf3 gene replacement in YX4001 leads to YX4006; (F) wlsORF30 gene replacement in YX4001 leads to YX4007; (G) w/sPDH gene replacement in YX4001 leads to YX4009; (H) w/sF gene replacement in YX4001 leads to YX4010; (I) w/sC4 gene replacement in YX4001 leads to YX4005. (J) wlsorf8 gene replacement in YX4001 leads to YX4018; (K) wlsorf24 gene replacement in YX4001 leads to YX4019 ; (L) wlsL gene replacement in YX4001 leads to YX4020; (M) wlsE7 gene replacement in YX4001 leads to YX4021; (N) wlsE9 gene replacement in YX4001 leads to YX4022.

A





YX4008 (Apr<sup>s</sup>, Kana<sup>R</sup>)







Е

D





F





pYX4006 (Apr<sup>R</sup>, Kana<sup>R</sup>)

YX4006 (Apr<sup>s</sup>, Kana<sup>R</sup>)



I













pYX4005 (Apr<sup>R</sup>, Kana<sup>R</sup>)

YX4005 (Apr<sup>s</sup>, Kana<sup>R</sup>)











L

J

K







М

Ν







**Figure S5** HPLC profiles of S. sp. CB02130 wild-type strain (panel I) and its mutants, including YX4012 (CB02130::*ermE\*-wlsR1*) (panel II), YX4011 ( $\Delta wlsR2$ ) (panel III), YX4001 ( $\Delta wlsR3$ ) (panel IV), YX4013 (CB02130::*ermE\*-wlsR4*) (panel V), YX4014 (CB02130::*ermE\*-wlsR5*) (panel VI), and YX4015 (CB02130::*ermE\*-wlsR6*) (panel VI).



**Figure S6.** HR-ESI-MS spectra of **5**, **6**, **8**, **9** and APCI-HR-MS and APCI-HR-MS/MS spectra of **7**. The mechanistic proposal for the deduced MS of **7** was provided, showing the proposed fragmented ions with corresponding molecular weights.









Figure S8. UV spectra of 5–9.



**Figure S9** The time course analysis of crude extracts in *S*. sp. CB02130 wild-type and YX4001 ( $\Delta w$ /sR3). The production of **5–9** was observed as early as 72 h after the start of fermentation in YHX4001 ( $\Delta w$ /sR3).



**Figure S10** Characterization of WIsC4 as an ammonia lyase with L-Phe or L-Tyr as its substrates. (A) Phylogenetic analysis of WIsC4 and homologues. They include L-tyrosine ammonia mutases SgTAM and CcTAM, L-phenylalanine ammonia mutase TcPAM, L-tyrosine ammonia lyases RsTAL and RcTAL, L-phenylalanine ammonia lyases EncP and PcPAL.WIsC4, S. sp. CB02130 (OKJ20239.1); KedY4, *Streptoalloteichus* sp. ATCC 53650 (AFV52190); SgTAM (Also SgcC4), *Streptomyces globisporus* (Q8GMG0); RsTAL, *Rhodobacter sphaeroides* (Q3IWB0); RcTAL, *Rhodobacter capsulatus* (WP\_023923512); PcPAL, *Petroselinum crispum* (P24481); EncP, *Streptomyces maritimus* (AAF81735); TcPAM, *Taxus canadensis* (AAT47186); CcTAM, *Chrondromyes crocatus* (Q0VZ68). Previously characterized aminomutases are labeled with a black circle and characterized ammonia lyase are labeled with a black star. (B) Purification of WIsC4 as an N-His<sub>6</sub>-tagged protein. (C) UV spectrum of WIsC4. HPLC analysis (D) and ESI-LCMS (E) of WIsC4-catalyzed products cinnamic acid or p-hydroxycinnamic acid, using L-Phe or L-Tyr as substates, respectively.



D





**Figure S11** L-Phenylalanine (L-Phe) or L-tyrosine (L-Tyr) as the sole nitrogen source in its production medium for YX4001 ( $\Delta w l s R 3$ ) growth and the production of **5–9** or **1**. (A) The production of **5–9** in the indicated production medium with L-Phe as the sole carbon source (**III**), in comparison to the original production medium (I) or L-Tyr (IV) as the sole nitrogen source, or with no nitrogen source (**II**). (B) The production of heptaene (**1**) in YX4001 ( $\Delta w l s R 3$ ) in the indicated production media. Note that **1** was extracted from the mycelium of YX4001 in respective medium using MeOH, while **5–9** were extracted from the supernatant of YX4001 using EtOAc, concentrated, redissolved in MeOH, and analyzed. A typical 2-mL concentrated fermentation extract of YX4001 was obtained from each 50-mL fermentation culture, while individual sample (20~50 µL) was injected for HPLC analysis.



**Figure S12** L-Phe contributes to the production of polyene polyols **5–7.** (A) L-Phe with different concentrations (2, 4, 6 mM) was added to production medium as the sole nitrogen source before inoculation. (B) 6 mM L-Phe was used as an extra nitrogen source into the original production medium before inoculation.





**Figure S13** Gene inactivation of *wls*ORF8, *wls*ORF24, *wls*L, *wls*E7, and *wls*E9 in  $\Delta$ *wls*R3 had no effects towards the production of **5–7**.

**Figure S14** Overexpression of putative positive regulators *wls*R1 and *wls*R6 under the control of *ermEp*<sup>\*</sup> in  $\Delta wls$ R3 had no effects towards the production of **5–7**.



**Figure S15** Yield increasement of heptaene 1 in  $\Delta w/sR3$  and  $\Delta w/sPDH/\Delta w/sR3$ , while further overexpression of putative positive regulators w/sR1 and w/sR6 under the control of  $ermEp^*$  in w/sR3 had no effects towards the production of **1**.



Figure S16. <sup>1</sup>H NMR spectrum of 5 in CD<sub>3</sub>OD-*d*<sub>4</sub> (600 MHz).



Figure S17. Expanded <sup>1</sup>H NMR spectrum of 5 in CD<sub>3</sub>OD-*d*<sub>4</sub> (600 MHz).







5.764 5.760 5.756 5.752 5.748 5.744 5.740 5.736 5.732 5.728 5.724 5.720 5.716 5.712 5.708 5.704 5.700 f1 (ppm)







Figure S20. Expanded <sup>13</sup>C NMR spectrum of 5 in CD<sub>3</sub>OD-*d*<sub>4</sub> (150 MHz).





i5.0 134.9 134.8 134.7 134.6 134.5 134.4 134.3 134.2 134.1 134.0 133.9 133.8 133.7 133.6 133.5 133.4 133.3 133.2 133.1 133.0 132.9 132.8 132.7 132.6 132.5 f1 (ppm)

Figure S21. DEPT135 spectrum of 5 in CD<sub>3</sub>OD-*d*<sub>4</sub>.



150 140 130 120 110 100 90 80 70 60 50 40 30 20 10 f1 (ppm)

Figure S22. Expanded DEPT135 spectrum of 5 in CD<sub>3</sub>OD-d<sub>4</sub>.



134.9
134.5
134.3
134.1
133.9
133.7
133.3
133.1
132.9
132.7
132.5
132.3
132.1

f1<(ppm)</td>
f1
<td



Figure S23. HSQC spectrum of 5 in  $CD_3OD-d_4$ .



Figure S24. HMBC spectrum of 5 in CD<sub>3</sub>OD-d<sub>4</sub>.



**Figure S25.** <sup>1</sup>H-<sup>1</sup>H COSY spectrum of **5** in CD<sub>3</sub>OD- $d_4$ .



Figure S26. NOESY spectrum of 5.



Figure S27. <sup>1</sup>H NMR spectrum of 6 in CD<sub>3</sub>OD-*d*<sub>4</sub> (600 MHz).



Figure S28. Expanded <sup>1</sup>H NMR spectrum of 6 in CD<sub>3</sub>OD-*d*<sub>4</sub> (600 MHz).





5.80 (dd, *J* = 13.8, 6/6.6 Hz, 1H), 5.73 (dd, *J* =15.0, 6.6/6 Hz, 1H)

<sup>5.835 5.825 5.815 5.805 5.795 5.785 5.775 5.765 5.755 5.745 5.735 5.725 5.715 5.705 5.695</sup> f1 (ppm)

Figure S30. <sup>13</sup>C NMR spectrum of 6 in CD<sub>3</sub>OD-d<sub>4</sub>(150 MHz)



**Figure S31.** Expanded <sup>13</sup>C NMR spectrum of **6** in CD<sub>3</sub>OD- $d_4$ (150 MHz).

134.44 134.40 134.35 134.31 134.29 134.19 134.19



133.68

133.34

132.90

133.88

Figure S32. DEPT135 spectrum of 6 in CD<sub>3</sub>OD-d<sub>4</sub>.


Figure S33. DEPT90 spectrum of 6 in CD<sub>3</sub>OD-d<sub>4</sub>.



Figure S34. Expanded DEPT90 spectrum of 6 in CD<sub>3</sub>OD-d<sub>4</sub>.

| 134.16<br>134.11<br>134.07<br>134.03<br>134.03<br>134.01 | 133.91 | 133.59 | 133.39 | 133.05 | 132.61 |
|----------------------------------------------------------|--------|--------|--------|--------|--------|
| 11551                                                    |        |        |        |        |        |

MM vw1

134.4 134.3 134.2 134.1 134.0 133.9 133.8 133.7 133.6 133.5 133.4 133.3 133.2 133.1 133.0 132.9 132.8 132.7 132.6 132.5 132.4 132.3 132.2 132.1 f1 (ppm)

Figure S35. The homonuclear decoupling experiment for 6 using the Homodec sequence in CD<sub>3</sub>OD-d<sub>4</sub>.





Figure S36. HSQC spectrum of 6 in CD<sub>3</sub>OD-d<sub>4</sub>.







Figure S38. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 6 in CD<sub>3</sub>OD-d<sub>4</sub>.



Figure S39. NOESY spectrum of 6.

Figure S40. <sup>1</sup>H NMR spectrum of 7 in CD<sub>3</sub>OD-*d*<sub>4</sub> (600 MHz).





**Figure S41.** Expanded <sup>1</sup>H NMR spectrum of **7** in CD<sub>3</sub>OD-*d*<sub>4</sub> (600 MHz).



Figure S42. Expanded <sup>1</sup>H NMR spectrum of 7 (5.69–5.85 ppm) in CD<sub>3</sub>OD- $d_4$  (600 MHz).

5.80 (dd, *J* = 14.4, 6.6 Hz, 1H), 5.73 (dd, *J* =15.0, 6.6 Hz, 1H)

5.835 5.825 5.815 5.805 5.795 5.785 5.775 5.765 5.755 5.745 5.735 5.725 5.715 5.705 5.695 f1 (ppm)

Figure S43. <sup>13</sup>C NMR spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub> (150 MHz).



Figure S44. Expanded <sup>13</sup>C NMR spectrum of 7 in CD<sub>3</sub>OD-*d*<sub>4</sub> (150 MHz).

134.45
134.41
134.28
134.25
134.25
134.25
133.87
133.67
133.36
133.36

134.9 134.7 134.5 134.3 134.1 133.9 133.7 133.5 133.3 133.1 132.9 132.7 132.5 132.3 f1 (ppm)

Figure S45. DEPT135 spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.



Figure S46. Expanded DEPT135 spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.



135.1 135.0 134.9 134.8 134.7 134.6 134.5 134.4 134.3 134.2 134.1 134.0 133.9 133.8 133.7 133.6 133.5 133.4 133.3 133.2 133.1 133.0 132.9 132.8 132.7 132.6 132.5 132 f1 (ppm)



Figure S47. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.

Figure S48. Expanded <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.





Figure S49. HSQC spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.

Figure S50. Expanded HSQC spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.







Figure S52. Expanded HMBC spectrum of 7 in CD<sub>3</sub>OD-d<sub>4</sub>.





Figure S53. NOESY spectrum of 7.





Figure S55. <sup>13</sup>C NMR (125 MHz) spectrum of 8 in DMSO-d<sub>6</sub>.



Figure S56. DEPT135 spectrum of 8 in DMSO-d<sub>6</sub>.





Figure S57. <sup>1</sup>H-<sup>1</sup>H COSY spectrum of 8 in DMSO-*d*<sub>6</sub>.



Figure S58. HSQC spectrum of 8 in DMSO-d<sub>6</sub>.



Figure S59. HMBC spectrum of 8 in DMSO-d<sub>6</sub>.

Figure S60. <sup>1</sup>H NMR (500 MHz) spectrum of 9 in DMSO-d<sub>6</sub>.



Figure S61. <sup>13</sup>C NMR (125 MHz) spectrum of 9 in DMSO-*d*<sub>6</sub>.



## Reference

(1) X. Yan, H. Ge, T. Huang, Hindra, D. Yang, Q. Teng, I. Crnovčić, X. Li, J. D. Rudolf, J. R. Lohman, Y. Gansemans, X. Zhu, Y. Huang, L. X. Zhao, Y. Jiang, F. Van Nieuwerburgh, C. Rader, Y. Duan, B. Shen, *mBio* **2016**, *7* e02104-16.

(2) X. Yan, Hindra, H. Ge, D. Yang, T. Huang, I. Crnovcic, C.Y. Chang, S.M. Fang, T. Annaval, X. Zhu, Y. Huang, L. X. Zhao, Y. Jiang, Y. Duan, B. Shen. *J. Nat. Prod.* **2018**, *81*, 594-599.

(3) Liu. L, Li. S, Sun. R, Qin. X, Ju. J, Zhang. C, Duan. Y, Huang. Y, *Org. Lett.* **2020**, 22, 4614-4619..