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Part 0. Further Explanation for COV, MAT, and MMD

The RMSD defination goes as follows:
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where n is the number of heavy atoms and Φ is an alignment function that aligns two 

conformations by rotation and translation.

Following (M. Xu, Luo, et al., 2021), we adopted Coverage (COV) and Matching (MAT) 

to quantify the results of the SDEGen model.
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where S_g and S_r are generated and reference molecular conformation ensembles, 

respectively. δ is a given RMSD threshold. In general, a high COV metric represents higher 

diversity performance, while a low MAT metric represents better accuracy of generated 

conformations.

Figure S0. An illustrative example of COV and MAT

To visually explain the COV and MAT metrics, let’s take an example to illustrate. The 

horizontal line is the generated conformation(Gen. Confs.), and the vertical line is the reference 

conformation(GT Confs.) calculated by quantum mechanics. The number of the (i,j) square grid 
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is the RMSD value between the i-th GT Conf and the j-th Gen. Conf., the unit is Ångstrom and 

the RMSD threshold is 1.25 Å. To compute the COV metric, we count whether the Gen. Confs. 

could lie in the threshold of GT confs, which is, to count the rows containing colored squares. 

In this example is 3/4, so the COV is 75%. And the MAT is the mean of RMSD values, in this 

example is 1.2575 Å. 

𝑀𝑀𝐷2(𝑃,𝑄) = ∥ 𝜇𝑃 ‒ 𝜇𝑄 ∥ 2
𝐹

𝑀𝑀𝐷2(𝑃,𝑄) = 𝐸𝑃[𝑘(𝑋,𝑋)] ‒ 2𝐸𝑃,𝑄[𝑘(𝑋,𝑌)] + 𝐸𝑄[𝑘(𝑌,𝑌)]

Maximum mean discrepancy (MMD) is a kernel-based statistical test used to determine 

whether given two distributions are the same which is proposed in1. 

Since the original design of the AI-based model(except the DMCG is to model the 

interatomic distributions, so we claim that the lower MMD is, the better estimation of distances 

the model makes.

Part 1. The Relation between Conformation Generation and Protein Folding 

Problem

Protein folding is a problem of broad interest in academia and industry, and it is a subproblem 

of the generalized conformation generation problem, where the goal is to search for the lowest 

energy static conformation. It is worth noting that most of the current popular protein 

conformation prediction models do not utilize the ab initio approach, but an approach aided by 

additional prior knowledge. There is a lot of prior knowledge about proteins, and the initial 

conformation of a protein can be estimated to a reasonable point on the complex potential 

energy surface by methods such as homology modeling and Multiple Sequence Alignment 

(MSA)2, and then optimized by physical methods so that the protein conformation can be 

further searched to the optimal point. Most of the protein motifs are known, which also greatly 

simplifies the complexity of the protein folding problem.

Generalized conformation generation is believed to be a more challenging problem, where 

the goal is not to generate a static structure but to generate a representative set of conformations. 

It is generally believed that any conformation within 3-8 kcal/mol of the lowest energy 

conformation is likely to be the active conformation of a drug molecule3. Therefore, our goal is 
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not only to find the lowest energy conformation, but also to identify a series of conformations 

that are at the trough of the molecular potential energy surface. So conformation prediction 

methods on proteins such as AlphaFold4 cannot be directly applied to our small molecule 

conformation generation problem.

For the dynamic conformation generation of macromolecules, researchers have proposed 

several deep learning algorithms, which are broadly classified into three categories. For 

example, the Boltzmann Generator5 based on the Flow model, which aims at an unbiased, once-

generated sample from a thermal equilibrium system, belongs to an enhanced sampling 

approach. Lemke6 proposed a dimensionality reduction algorithm based on VAE and nonlinear 

distance gauge; Zhang invented the TALOS7 based on the architecture of GAN8. These models 

tend to input sampling data for a particular protein target and then perform targeted learning, 

so their learned coordinate transformations are not directly applicable to other molecules. In 

contrast, we condition the conformation generation problem to the graph structure, allowing us 

to generalize to molecules that the model has not seen once we have trained the models on a 

portion of the molecular conformations.

Part 2. The exponential averaging algorithms on SDEGen

To improve the model’s performance on small molecule datasets, we used an exponential 

averaging algorithm to update the parameters of the SDEGen. If the number of iteration steps 

reaches 100, the parameters could be written as follows: 

𝑣100 = (1 ‒ 𝛽)𝜃100 + 𝛽(1 ‒ 𝛽)𝜃99 + 𝛽2(1 ‒ 𝛽)𝜃98 + … + 𝛽99(1 ‒ 𝛽)𝜃1

where  is a hyperparameter that controls the degree of smoothing while the  is the 𝛽 𝜃

optimization parameter of the model. It can be found that the improvement of the SDEGen 

effect on the QM9 dataset is obvious.

Part 3. The Algorithm of the Predictor-Corrector Solver
Algorithm S1. Predictor-Corrector solver 
Input molecular graph G, the standard deviation of the perturbation kernel std, diffusion 
coefficient g(t), the number of Euler-Maruyama sampling steps N, the Langevin MCMC 
sampling steps M, the smallest time step for numerical stability eps, 
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1: Initialize interatomic distances  from a prior distribution 𝑑0
𝑇 𝑁(0,𝑠𝑡𝑑 ∗ 𝐼)

2:           discretized time stepΔ𝑡 = (1 ‒ 𝑒𝑝𝑠)/(𝑁 ‒ 1) ⊳
3: for i = N-1 to 0 do:
4:                 Euler-Maruyama𝑔←𝑔(𝑡) ⊳

5:                𝑑0
𝑖 = 𝑑 0

𝑖 + 1 + 𝑔2 ∗ 𝑠𝜃(𝑑 0
𝑖 + 1,𝑖) ∗ Δ𝑡

6:      𝑧 ∼ 𝑁(0,1)

7:      𝑑𝑖←𝑑𝑖 + Δ𝑡 ∗ 𝑔 ∗ 𝑧

8:      for j = 1 to M do:          ⊳ 𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛 𝑀𝐶𝑀𝐶
9:           𝑧 ∼ 𝑁(0,1)

10:          𝑔𝑟𝑎𝑑←𝑠𝜃(𝑑𝑗 ‒ 1
𝑖 ,𝑖)

11:              𝜖 = 2 ∗ (𝑟 ∗ ||𝑧||2/||𝑔𝑟𝑎𝑑||2)2
⊳ 𝜖 𝑖𝑠 𝑡ℎ𝑒 𝐿𝑎𝑛𝑔𝑒𝑣𝑖𝑛 𝑡𝑖𝑚𝑒 𝑠𝑡𝑒𝑝 

12:          𝑑𝑗
𝑖←𝑑𝑗 ‒ 1

𝑖 + 𝜖 ∗ 𝑔𝑟𝑎𝑑 + 2 ∗ 𝜖 ∗ 𝑧

13:          end for

13:     𝑑 0
𝑖 ‒ 1 = 𝑑𝑀

𝑖

14: end for

15: Reconstruct  to 𝑑0
0 𝑅0

Output generated conformation 𝑅0

Part 4. Multiscale Calculation Settings 

During the conformation generation the MMFF949-based refinement is performed with the max 

number of iterations 200, and the energy tolerance 1.0e-6 kcal mol-1 Å-1. In the thermodynamic 

property prediction and the two-rotor with crystal ligand torsional scanning, the generated 

samples for the two-rotor are 50 per molecule, while for the twelve-rotor are 250 per molecule. 

The quantum chemistry calculations (single-point calculations) were carried out using the 

PySCF10 code. Restricted density functional theory (DFT) calculations were performed under 

the M06-2X/def2-TZVPP level of theory 11, 12 to determine the ground state electron energies 

and the HOMO-LUMO gaps of different conformations of the tested molecules.

In the additional ten two-rotors and two twelve-rotors sampling experiments, the rigid scanning 

of the molecular potential energy surfaces that spanned by two torsion angles was performed 
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under the GFN2-xTB level13 of theory using the xTB14 code. The step size of the scanning was 

set as 10 degrees. As a result, the obtained potential energy surfaces were all sampled by 1296 

points. However, for molecules with twelve torsion angles, direct rigid scanning would require 

36e10 single-point energy calculations, which is unaffordable even under the semiempirical 

level of theory. Thus, we invoked the semiempirical ab-initio molecular dynamics (AIMD) 

method to sample the distributions of their torsion angles. These AIMD calculations were 

carried out under the GFN2-xTB level of theory using the xTB code as well. For each molecule 

with twelve torsion angles, a MD run of the length of 2.5 ns was performed with a time step of 

2 fs under the NVT ensemble of 300 K. The temperature control was achieved by the Berendsen 

thermostat15. To further accelerate the conformational sampling, the metadynamics16 

methodology was adopted during the simulations. The scaling factor for RMSD criteria was 

chosen as 0.02 and the width of the gaussian potentials was chosen as 2.0. To maintain the 

stabilities of the simulations, masses of the hydrogen atoms were set as 2 a.m.u, while the 

SHAKE method17 was applied to constrain the length of all the chemical bonds. The simulation 

trajectories were saved every 50 fs. Since the dimension of the torsion angle space is rather high 

for an intuitive study, we performed dimensional reduction with the TICA18 method with the 

pyEMMA code19. The lag time of the TICA method was chosen as 5 ps and the input features 

were selected as the twelve torsion angles of each molecule. After the dimensional reductions, 

the first two most significant patterns of linear combinations of the input features were adopted 

as the collective variables to present the overall distributions of the torsion angles.

Part5. Examples of Generated Conformations and the Additional 10-rotor 
Examples
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Figure S1.. The examples of the conformations generated by SDEGen. 

Figure S2.. Comparison of the conformations generated by different methods for several 
examples.
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Figure S3. The additional 10 two-rotors energy surface and the SDEGen generated samples. 

The darker the color of the potential energy surface, the lower the energy. Red color points 

represent samples of SDEGen, while orange points represent samples of RDKit. Two axes 

represent two rotatable angles. There are some potential energy surfaces that are empty because 

RDKit did not succeed in generating the conformations of these molecules. 
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