Insight into ortho-boronoaldehyde conjugation via a FRET-based reporter assay

N. C. Rose, ${ }^{\mathrm{a}, \mathrm{b}}$ A. V. Sanchez, ${ }^{\mathrm{a}, \mathrm{b}}$ E. F. Tipple, ${ }^{\mathrm{a}, \mathrm{b}}$ J. M. Lynam, ${ }^{\mathrm{a}}$ and C. D. Spicer ${ }^{* a, b}$
${ }^{\text {a Department of Chemistry, University of York, Heslington, YO10 5DD, UK. }}$
${ }^{\text {b }}$ York Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.

Table of contents

S2 Supplementary figures
S7 General considerations
S8 Core dye synthesis
S14 Synthesis of reactive handles
S22 Reactive dye synthesis
S35 Synthesis of Cy3 negative controls
S41 Synthesis of control substrates for FRET studies
S48 Synthesis of OBA substrates for NMR and LC-MS studies
S55 Synthesis of nucleophiles for NMR and LC-MS studies, and FRET controls
S63 Determination of substrate concentration via UV-Vis absorbance
S63 Initial screening of Cy3 quenching
S64 FRET studies
S65 LC-MS reversibility studies
S66 NMR studies of pH dependent DAB-hydrazone exchange
S67 NMR studies of sugar binding
S67 NMR studies of analogue reaction equilibria
S68 DFT
S85 References
S87 NMR spectra of novel compounds

Supplementary figures and tables

Figure S1: Plots of emission at 580 nm over time following the addition of Cy5nucleophiles 6-10 $(50 \mu \mathrm{M})$ to Cy3-substrates $(5 \mu \mathrm{M}) 5(o B A)$ and controls 60 (benzaldehyde) and 66 (phenylboronic acid), relative to the emissions of controls containing either Cy3 or Cy5 substrate alone.

Figure S2: Plots of emission at 560 nm over time following the addition of propylamidecapped nucleophiles $\mathbf{2 6}, \mathbf{7 6}, \mathbf{7 8}, \mathbf{8 0}$, or $82(50 \mu \mathrm{M})$ to Cy3-oBA $5(5 \mu \mathrm{M})$, normalised to the emission at $t=3$ seconds (first measurement). In this experiment, the absence of a Cy5-acceptor should mean that no drop in Cy3 emission is observed upon oBID formation. Although an increase in emission is observed for the addition of hydrazine 76, the kinetics of this process are negligible relative to the rate of hydrazone/DAB formation.

Figure S3: Plot of reaction conversion against time for the formation of oBID 15 and from Cy3-oBA 5 and Cy5-hydrazine 10, at a reduced concentration of 750 nM under second-order conditions. Fits are based on second-order irreversible model, with errors based on the standard deviation of experiments run in triplicate.

Figure S4: Plot of cleavage against time for propyl amide-DAB $19(370 \mu \mathrm{M})$ following addition of methyl amide-hydrazine $21(3700 \mu \mathrm{M})$ in the stated buffer. Fits are based on the model described in SI Section 10. Nb. Data in the presence of 10 mM glucose and fructose are very similar, leading to overlap of the fits.

Figure S5: Conversion data grouped by nucleophile/structure formed, across range of pHs.

Figure S6: Plot of reaction conversion against time for the formation of oBIDs 14 and 15 from Cy3-oBA 5 and the relevant Cy5-nucleophile, in pH 7.4 PBS containing the stated additive. Reactions were run at a concentration of $2.5 \mu \mathrm{M}$ under second-order conditions. Fits are based on second-order irreversible, or reversible models, with errors based on the standard deviation of experiments run in triplicate.

Figure S7: Plot of relative stability of 14 and $15(2.5 \mu \mathrm{M})$, pre-formed in PBS, over time following the addition of 10% bovine serum. The absence of suitable references means it is not possible to calculate absolute conversions, and data is therefore based on changes in FRET ratio over time relative to oBA 5.

General considerations

Proton and carbon nuclear magnetic resonance (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR respectively) spectra were recorded on a Jeol ECX-400 (400 MHz) or Bruker AVIIIHD (500 MHz) spectrometer. NMR shifts were assigned using COSY, HSQC and HMBC spectra. All chemical shifts are quoted on the δ scale in ppm using residual solvent as the internal standard (${ }^{1} \mathrm{H} \mathrm{NMR:} \mathrm{CDCl}_{3}=7.26 ; \mathrm{MeOD}=3.31 ; \mathrm{D}_{2} \mathrm{O}=4.69 ; \mathrm{DMSO}-d_{6}=2.50$ and ${ }^{13} \mathrm{C}$ NMR: $\mathrm{CDCl}_{3}=77.16, \mathrm{MeOD}=49.00$, DMSO- $d_{6}=39.52$). Coupling constants (J) are reported in Hz with the following splitting abbreviations: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{app}=$ apparent, $\mathrm{br}=$ broad. Melting points (m.p.) were recorded on a Gallenkamp melting point apparatus. Infrared (IR) spectra were recorded on a Perkin Elmer UATR Two FT-IR spectrometer. Absorption maxima (Umax) are reported in wavenumbers $\left(\mathrm{cm}^{-1}\right)$. UV-Vis spectra were recorded on a Shimadzu UV-1800 UV spectrophotometer in a glass cuvette, using a 480/30 nm excitation filter and a 580/10 nm emission filter, a pathlength of 1 cm , and a sampling interval of 1 nm . 96-well plate fluorescence measurements were recorded on a PerkinElmer VICTOR Nivo Multimode Plate Reader. Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer in a glass fluorescence cuvette with a pathlength of 1 cm , a sampling interval of 1 nm , and excitation and emission slit widths of 5 nm . High resolution electrospray ionisation (ESI) mass spectra (HRMS) were recorded on a Bruker Compact TOF-MS or a Jeol AccuTOF GCx-plus spectrometer. Nominal and exact m / z values are reported in Daltons.

Thin layer chromatography (TLC) was carried out using aluminium backed sheets coated with $60 \mathrm{~F}_{254}$ silica gel (Merck). Visualization of the silica plates was achieved using a UV lamp ($\lambda_{\max }=254$, 302, or 366 nm), and/or ammonium molybdate (5% in $2 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$), and/or potassium permanganate ($5 \% \mathrm{KMnO}_{4}$ in 1 M NaOH with 5% potassium carbonate), and/or ninhydrin (1.5\% ninhydrin, 3\% AcOH in n-butanol), and/or bromocresol green (0.4% bromocresol green in ethanol, basified till blue with 0.1 M NaOH). Flash column chromatography was carried out using Geduran Si 60 (40$63 \mu \mathrm{~m}$) (Merck). Mobile phases are reported as ratios of more polar solvent to less polar solvent. Anhydrous solvents were dried over a PureSolv MD 7 Solvent Purification System. Deionized water was used for chemical reactions. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification. Reagents were purchased from Sigma-Aldrich and used as supplied, unless otherwise
indicated. Brine refers to a saturated solution of sodium chloride. Petrol refers to the fraction of petroleum ether boiling in the range $40-60^{\circ} \mathrm{C}$. Anhydrous magnesium sulfate (MgSO_{4}) was used as the drying agent after reaction workup unless otherwise stated. Liquid chromatography-mass spectrometry (LC-MS) was performed on a HCTultra ETD II ion trap spectrometer, coupled to an Ultimate300 HPLC using an Accucore C18 column ($150 \times 2.1 \mathrm{~mm}, 2.6 \mu \mathrm{~m}$ particle size). Water (solvent A) and acetonitrile (solvent B), both containing 0.1% formic acid, were used as the mobile phase at a flow rate of $0.3 \mathrm{~mL} \mathrm{~min}^{-1}$. LC traces were measured via UV absorption at 220, 270, and 280. The gradient was programmed as shown below:

1. Core dye synthesis

Numbering system for Cy3/5 NMR assignments

A mixture of 2,3,3-trimethylindolenine ($2.00 \mathrm{~mL}, 12.7 \mathrm{mmol}$) and 1,3-propanesultone ($1.55 \mathrm{~g}, 12.7 \mathrm{mmol}$) in toluene (50 mL) was refluxed for 20 h , during which time a dark red precipitate formed. After cooling to r.t., the reaction mixture was concentrated under reduced pressure. The residue was redissolved in dichloromethane (5 mL) and the solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (50 mL), and dried in air to yield a red oil ($3.10 \mathrm{~g}, 11.0 \mathrm{mmol}, 87 \%$). Data were consistent with those previously reported. ${ }^{1}$
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD 3 OD$) \delta=8.01-7.93(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{H}} 5), 7.78-7.70(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{H}} 7), 7.68-$ $7.59(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{\mathrm{H}} 8), 4.78-4.67\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{PhC} \underline{H}_{2}\right), 3.03-2.93\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right)$, 2.43$2.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right), 1.58\left(\mathrm{~s}, 6 \mathrm{H}, 2 \times \mathrm{CH}_{3}\right) ;$ HRMS: m/z (ESI+$)$ calc. for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{NO}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 282.1158$: Obs.: 282.1162; $V_{\max }:(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3426$, 2989, 1641, 1460, 1212, 1160, 1035, 758, 522.

Potassium phthalimide ($1.85 \mathrm{~g}, 10.0 \mathrm{mmol}$) was added in portions over 5 min to a stirred solution of 1,3-dibromopropane ($1.00 \mathrm{~mL}, 10.0 \mathrm{mmol}$) in acetone (50 mL). The solution was then refluxed for 18 h . After cooling to r.t., the reaction mixture was filtered under vacuum, and the filtrate concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:petrol (3:8). Fractions containing the product were concentrated under reduced pressure to provide a white solid ($1.17 \mathrm{~g}, 4.38 \mathrm{mmol}, 44 \%$). Data were consistent with those previously reported. ${ }^{2}$

Rf: 0.21 (2:8, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.91$-7.79 (m, 2H, Phth배2), 7.78-7.66 (m, 2H, Phth브3), 3.83 (t, $J=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 3.41 (t, $J=$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{Br}$), $2.25\left(\mathrm{tt}, J_{1}=J_{2}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}\right.$); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{11} \mathrm{H}_{10}{ }^{79} \mathrm{BrNO}_{2}\left[{ }^{79} \mathrm{M}+\mathrm{Na}\right]^{+}: 289.9787$; Obs.: 289.9774; Vmax: (FT-ATR)/cm ${ }^{-1}: 3454$, 2985, 1765, 1705, 1442, 1406, 1375, 1230, 1055, 966, 870, 723; m.p.: $71-74^{\circ} \mathrm{C}$.

Potassium iodide ($744 \mathrm{mg}, 4.48 \mathrm{mmol}$) was added to a stirred solution of 2,3,3trimethylindolenine ($710 \mu \mathrm{~L}, 4.48 \mathrm{mmol}$), and $31(1.00 \mathrm{~g}, 3.73 \mathrm{mmol})$ in anhydrous acetonitrile $(20 \mathrm{~mL})$ under an argon atmosphere. The resulting mixture was refluxed for 5 h . After cooling to r.t., the reaction was filtered under vacuum and the filtrate concentrated under reduced pressure. The residue was then redissolved in acetone $(10 \mathrm{~mL})$ and the solution added dropwise to diethyl ether $(200 \mathrm{~mL})$. The resultant brown precipitate was collected by filtration, washed with diethyl ether (30 mL) and dried in air. The solid was then redissolved in acetone (10 mL) and concentrated under reduced pressure to afford the product as a brown solid ($878 \mathrm{mg}, 2.53 \mathrm{mmol}, 68 \%$).

Rf: 0.29 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, UV active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.89-7.85$ ($\mathrm{m}, 1 \mathrm{H}, \underline{\mathrm{H}} 5$), 7.84-7.80 (m, 2H, Phth브2), 7.79-7.73 (m, 3H, Phth배3, $\underline{H} 7$), 7.64-7.55 (m, $2 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 6), 4.64\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}^{+}\right), 3.88\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NPhth}\right), 2.37$ ($\mathrm{tt}, J_{1}=J_{2}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{~N}$), 1.61 (s, $6 \mathrm{H}, 2 \times \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$)

 ($\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} N P h t h\right), ~} 26.5$ ($\left.\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} N P h t h\right), 21.5\left(\mathrm{CyCH}_{3}\right) ;$ HRMS: m/z (ESI+) calc. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}]^{+}: 347.1754$; Obs.: 347.1761; $\boldsymbol{v}_{\text {max }}:(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3441,2976,1769$, 1707, 1608, 1463, 1398, 765, 721, 530; m.p.: 176-179 ${ }^{\circ} \mathrm{C}$.

1)

$\mathrm{Ac}_{2} \mathrm{O}, 120^{\circ} \mathrm{C}, 1 \mathrm{~h}$
2) $\mathbf{2 8}$, pyridine, r.t., 20 h

A mixture of 27 ($3.10 \mathrm{~g}, 11.0 \mathrm{mmol}$) and N, N-diphenylformamidine ($2.17 \mathrm{~g}, 11.0 \mathrm{mmol}$) in acetic anhydride (10 mL) was heated to $120^{\circ} \mathrm{C}$ for 1 h . After the reaction mixture was cooled to r.t., a solution of $28(3.44 \mathrm{~g}, 9.91 \mathrm{mmol})$ in pyridine $(10 \mathrm{~mL})$ was added and the mixture stirred at r.t. for a further 20 h . After this time, the mixture was added dropwise to diethyl ether (500 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then redissolved in methanol (20 mL) and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink powder ($2.65 \mathrm{~g}, 4.16 \mathrm{mmol}, 42 \%$).

Rf: 0.16 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=$ 8.32 (dd, $\left.J_{1}=J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C N\right), ~ 7.84-7.75$ (m, 4H, Phth배2, Phth $\underline{H} 3$), 7.627.54 ($\mathrm{m}, 3 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}, \underline{\mathrm{H}} 8 / \underline{H} 8^{\prime}$), 7.45-7.35 (m, 3H, $\left.\underline{H} 7, \underline{H} 7^{\prime}, \underline{H} 8 / \underline{H} 8{ }^{\prime}\right), 7.25$ (ddd, $J_{1}=J_{2}=$ $\left.7.5 \mathrm{~Hz}, J_{3}=2.8 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{\mathrm{H}}{ }^{\prime}\right), 6.50(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H} C N), 4.26-4.18(\mathrm{~m}, 4 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}^{-}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} N P h t h$), $3.69\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \underline{C H}_{2} \mathrm{NPhth}\right)$, $2.52(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{CH}}_{2} \mathrm{SO}_{3}{ }^{-}$), $2.08\left(\mathrm{tt}, J_{1}=J_{2}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} N P h t h\right), 2.00\left(\mathrm{tt}, J_{1}=J_{2}=\right.$ $\left.7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right), 1.67\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=$

 ($\underline{\mathrm{C}} H C N$), $\left.49.4 \quad\left(\underline{\mathrm{C}_{2}} \mathrm{SO}_{3}-\right), 42.7 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)^{-}\right), \quad 41.6 \quad\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NPhth}\right), \quad 35.1$ ($\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} N P h t h$), 27.6 ($\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{NPhth)}$,26.1 ($\mathrm{Cy} \underline{\mathrm{C}} \mathrm{H}_{3}$), 22.8 ($\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$); HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{37} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 638.2683$; Obs.: 638.2695; $\boldsymbol{v}_{\text {max }}$: (FTATR)/ cm^{-1} : 3443, 2975, 2930, 1709, 1555, 1428, 1373, 1152, 1037, 929, 759, 723; m.p.: $272-276{ }^{\circ} \mathrm{C}$.

A mixture of methylamine (40% in methanol, 30 mL) and $3(500 \mathrm{mg}, 0.78 \mathrm{mmol})$ in methanol (5 mL) was stirred at $\mathrm{r} . \mathrm{t}$. for 16 h . The reaction mixture was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the solution added dropwise to diethyl ether $(400 \mathrm{~mL})$. The resultant precipitate was collected by filtration, washed with diethyl ether $(30 \mathrm{~mL})$ and dried in air. The solid was then redissolved in methanol (20 mL) and concentrated under reduced pressure to give a pink solid ($498 \mathrm{mg}, 0.78 \mathrm{mmol}$, quantitative yield).
$\boldsymbol{R f}$: 0.18 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.52$ (dd, $\left.J_{1}=J_{2}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C N\right), 7.53\left(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} \mathbf{5}^{\prime}\right), 7.45-7.30(\mathrm{~m}$, $4 \mathrm{H}, \underline{H} 7, \underline{H} 7^{\prime}, \underline{H} 8, \underline{H} 8$ '), 7.34-7.22 (m, 2H, $\underline{H} 6, \underline{H} 6$ '), 6.82 ($\mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C N}$), $6.60(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} \mathrm{CN}), 4.41\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right), 4.27(\mathrm{t}, J$ $=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), $3.21\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), $3.02(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}^{-}$), 2.29-2.23 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 2.20-2.16 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}^{-}$), 1.73

 $\mathrm{C}_{29} \mathrm{H}_{36} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 508.2636$; Obs.: 508.2636; $\boldsymbol{v}_{\text {max }}$: (FT-ATR)/cm${ }^{-1}: 3437,2975$, 1711, 1556, 1429, 1207, 1147, 1037, 971, 930, 758; m.p.: >325 ${ }^{\circ} \mathrm{C}$.

1

$\xrightarrow{\mathrm{Ac}_{2} \mathrm{O}, 120{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}}$
2) 28, pyridine, r.t., 20 h

4

A mixture of $27(2.00 \mathrm{~g}, 7.12 \mathrm{mmol})$ and malonaldehyde bis(phenylimine) monohydrochloride ($1.75 \mathrm{~g}, 7.83 \mathrm{mmol}$) in acetic anhydride $(10 \mathrm{~mL})$ was heated to 120 ${ }^{\circ} \mathrm{C}$ for 1.5 h . After cooling to $\mathrm{r} . \mathrm{t}$, a solution of $28(2.25 \mathrm{~g}, 6.48 \mathrm{mmol})$ in pyridine (10 mL) was added and stirring was continued at $\mathrm{r} . \mathrm{t}$. for a further 16 h . The reaction mixture was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution
added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then redissolved in methanol (10 mL) and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue solid ($1.35 \mathrm{~g}, 2.04 \mathrm{mmol}, 29 \%$).

Rf. 0.29 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=$ 8.28 (dd, $J=13.2,10.1 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C} \underline{H} C H C N), 7.85-7.75$ (m, 4H, Phth브2, Phth브3), $7.56(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H} 5} / \underline{\mathrm{H5}}), 7.53\left(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H} 5} / \underline{\mathrm{H} 5}{ }^{\prime}\right), 7.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}\right), 7.38-7.32\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 7}, \underline{\mathrm{H}}{ }^{\prime}\right), 7.29(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{H} 8$) $), 7.20(\mathrm{dd}, J$ $\left.=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H} 6} / \underline{\mathrm{H}} 6^{\prime}\right), 7.15(\mathrm{dd}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H} 6} / \underline{\mathrm{H} 6}), 6.45-6.33(\mathrm{~m}, 2 \mathrm{H}$, CHCHCHCN, CHCN), 6.20 ($\mathrm{d}, \mathrm{J}=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 4.34-4.22 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$), $4.17\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NPhth}\right), 3.67(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} N P h t h$), 2.57 ($\mathrm{t}, \mathrm{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$), 2.05-1.95 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NPh}^{2}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$), $1.62\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=173.8$ ($\underline{\mathrm{C}} 2$,

 $(\underline{\mathrm{C}} H C N), \quad 103.3 \quad(\underline{\mathrm{C}} H C N), \quad 48.4 \quad\left(\underline{\mathrm{C}_{2}} \mathrm{SO}_{3}^{-}\right), \quad 43.3 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right) \quad 41.5$ $\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NPhth}\right), 35.6$ ($\underline{\mathrm{C}}_{2} \mathrm{NCO}$), $27.6\left(\mathrm{C}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{3}\right), 26.5$ ($\left.\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{NPhth}\right), 24.0$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}^{-}\right)$; HRMS: m/z (ESI') calc. for $\mathrm{C}_{39} \mathrm{H}_{4} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 664.2840; Obs.: 664.2858; $V_{\text {max }}:(F T-A T R) / \mathrm{cm}^{-1}: 3442,2973,1770,1709,1492,1455,1381,1337$, 1132, 1108, 1034, 1017, 927, 795, 721, 530; m.p.: 264-269 ${ }^{\circ} \mathrm{C}$.

Methylamine (40% in water, 30 mL) was added to a solution of 4 ($200 \mathrm{mg}, 0.30 \mathrm{mmol}$) in ethanol (5 mL) and the solution stirred at r.t. for 16 h . The reaction mixture was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution added dropwise to diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether $(30 \mathrm{~mL})$ and dried in air. The solid was then redissolved in methanol (20 mL) and concentrated under reduced pressure to give the product as a blue solid (159 mg, $0.298 \mathrm{mmol}, 99 \%$).

Nb. Attempts to cleave the phthalimide with traditional hydrazinolysis were unsuccessful, with a loss of colour over a period of 1 h indicating a loss of conjugation/dye structure.

Rf: 0.17 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active). ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.21$
 H8/ $\underline{H} 8{ }^{\prime}$), 7.27-7.17 ($\mathrm{m}, 3 \mathrm{H}, \underline{\mathrm{H} 6}, \underline{\mathrm{H} 6}$ ', $\left.\underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}\right)$, 6.69-6.65 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} \underline{H C H C H C N}$), 6.62$6.58(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCN}), 6.33-6.28(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHCN}), 4.35(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$), 4.22-4.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), 3.02-2.94 (m, 4H, CH2 HH_{2}, $\mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$), 2.24-2.18 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}$), 2.10-2.00 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}$), $1.66(\mathrm{~s}$,

 122.1 (두7, $\underline{\mathrm{C}} 7^{\prime}$), 110.8 ($\underline{\mathrm{C}} 8, \mathrm{C}^{\prime}$), 103.4 (ㄷHCN), 102.9 ($\underline{\mathrm{C} H C N}$), 49.1 ($\left.\underline{\mathrm{CH}}_{2} \mathrm{SO}_{3}{ }^{-}\right), 42.7$ $\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right), 41.7\left(\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 36.7\left(\underline{\mathrm{C}}_{2} \mathrm{NH}_{2}\right), 28.8\left(\mathrm{Cy} \underline{\mathrm{CH}_{3}}\right), 26.6}\right.$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{31} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 534.2785; Obs.: 534.2803; $\boldsymbol{V}_{\text {max }}\left(\right.$ FT-ATR)/cm${ }^{-1}: 3438,2968,2937,1573,1482,1454$, $1381,1338,1136,1105,1035,1017,927,800,752,709,525$; m.p.: $252-256^{\circ} \mathrm{C}$.

2. Synthesis of reactive handles

32
A mixture of 2-bromo-4-hydroxybenzaldehyde ($2.07 \mathrm{~g}, 10.4 \mathrm{mmol}$), tert-butyl bromoacetate ($1.53 \mathrm{~mL}, 10.4 \mathrm{mmol}$) and potassium carbonate $(2.43 \mathrm{~g}, 17.6 \mathrm{mmol})$ in
acetonitrile (30 mL) was stirred for 16 h at $70^{\circ} \mathrm{C}$. The mixture was then cooled to r.t. and diluted with water (150 mL). The aqueous mixture was extracted with ethyl acetate $(3 \times 70 \mathrm{~mL})$, and the combined organics washed with brine $(2 \times 200 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a white solid ($3.23 \mathrm{~g}, 10.3 \mathrm{mmol}, 99 \%$). Data were consistent with those previously reported. ${ }^{3}$

Rf: 0.35 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.19$ (s, 1H, CHO), 7.87 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.11 ($\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 6.91 (dd, $J=$ $8.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 4$), 4.57 (s, 2H, CH2O), 1.47 (s, 9H, ${ }^{\mathrm{t}} \mathrm{Bu}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz,
 127.7 (Ph́ㅜ), 119.5 (Ph HRMS: $\mathrm{m} / \mathrm{z}\left(E I^{+}\right)$calc. for $\mathrm{C}_{13} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{4}\left[{ }^{79} \mathrm{M}+\mathrm{Na}\right]^{+}: 337.0053$; Obs.: 337.0046; Vmax : (FT-ATR)/cm ${ }^{-1}$: 2979, 2863, 1746, 1685, 1590, 1486, 1368, 1310, 1218, 1152, 1071, 1028, 843, 613; m.p.: 87-89 ${ }^{\circ} \mathrm{C}$.

32 ($2.15 \mathrm{~g}, 6.85 \mathrm{mmol}$), bis(pinacolato)diboron ($4.52 \mathrm{~g}, 17.8 \mathrm{mmol}$), 1,1'[bis(diphenylphosphino)ferrocene]dichloropalladium(II) ($500 \mathrm{mg}, 0.685 \mathrm{mmol}$) and potassium acetate ($3.62 \mathrm{~g}, 37.0 \mathrm{mmol}$) were placed under a nitrogen atmosphere, and anhydrous dioxane (25 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min , which was then stirred at $80^{\circ} \mathrm{C}$ for 1 h . After cooling to r.t., the reaction was concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (15:85). Fractions containing the product were concentrated under reduced pressure to yield a white solid ($1.87 \mathrm{~g}, 5.16 \mathrm{mmol}, 75 \%$). Data were consistent with those previously reported. ${ }^{3}$

Rf: 0.38 (15:85, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.39(\mathrm{~s}, 1 \mathrm{H}$, (븡), 7.93 (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.26 ($\mathrm{d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{\mathrm{H}} 2$), 7.03 (dd, $J=$ $8.8,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{4} 6$), $4.59\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.47(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Bu}), 1.36\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$;

 82.9 ($\underline{C M}_{3}$), $65.6\left(\underline{C}_{2} \mathrm{O}\right)$, $28.1\left({ }^{\mathrm{t}} \mathrm{Bu}\right), 25.1\left(\mathrm{C}\left(\underline{\mathrm{C}}_{3}\right)_{2}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{19} \mathrm{H}_{27} \mathrm{BO}_{6}[\mathrm{M}+\mathrm{H}]^{+}: 363.1977$; Obs.: 363.1977; $v_{\text {max: }}\left(\right.$ FT-ATR)/cm ${ }^{-1}: 2979$, 2933, 1752, 1686, 1589, 1420, 1340, 1323, 1211, 1147, 1123, 1077, 1052, 964, 849, 734; m.p.: $80-83^{\circ} \mathrm{C}$.

Trifluoroacetic acid (3.0 mL) was added dropwise to a solution of $33(1.00 \mathrm{~g}, 2.76$ mmol) in dichloromethane (15 mL), and the mixture was stirred at r.t. for 16 h . The reaction mixture was then concentrated under reduced pressure and azeotroped with dichloromethane ($4 \times 20 \mathrm{~mL}$) to obtain a white powder. ($810 \mathrm{mg}, 2.65 \mathrm{mmol}, 96 \%$). Data were consistent with those previously reported. ${ }^{3}$

Rf: 0.24 (4:6, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta=10.10$ (s, $1 \mathrm{H}, \mathrm{CHO}$), 7.85 (d, $J=8.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.12 (dd, $J=8.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), 7.09 (d, $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2), 4.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.30\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right) ;{ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{DMSO}-d_{6}\right) \delta=194.4(\underline{\mathrm{CHO}}), 168.4(\underline{\mathrm{COOH}}), 161.4(\mathrm{PhC} 1), 135.2(\mathrm{Ph} \underline{C} 3), 131.3$
 $25.0\left(\mathrm{C}\left(\mathrm{C}_{3}\right)_{2}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{BO}_{6}[\mathrm{M}+\mathrm{H}]^{+}$: 307.1350; Obs.: 307.1350; $V_{\max }$: (FT-ATR)/cm¹: 2979, 2937, 1763, 1561, 1418, 1371, 1343, 1283, 1203, 1174, 1125, 1072, 960, 850, 691; m.p.: 169-172 ${ }^{\circ} \mathrm{C}$.

Oxalyl chloride ($61 \mu \mathrm{~L}, 0.71 \mathrm{mmol}$) was added to a solution of $34(72 \mathrm{mg}, 0.24 \mathrm{mmol})$, dichloromethane (3 mL) and dimethylformamide (1 drop), and stirred at r.t. for 1 h . Excess oxalyl chloride and dichloromethane were removed under reduced pressure to
give the crude product as a brown oil, which was carried forward without further purification.

A mixture of N-(tert-butoxycarbonyl)glycine ($100 \mathrm{mg}, 0.571 \mathrm{mmol}$), N-hydroxy succinimide $\quad(99 \mathrm{mg}, \quad 0.857 \mathrm{mmol})$, and N -(3-dimethylaminopropyl)- N^{\prime} ethylcarbodiimide hydrochloride ($164 \mathrm{mg}, 0.86 \mathrm{mmol}$) in dichloromethane (5 mL) was stirred at r.t. for 1 h . Dichloromethane (30 mL) was then added and the organic layer was washed with water $(2 \times 20 \mathrm{~mL})$ and brine $(2 \times 20 \mathrm{~mL})$, dried with MgSO_{4}, filtered and concentrated under reduced pressure to give a white solid ($165 \mathrm{mg}, 0.61 \mathrm{mmol}$, 75%). Data were consistent with those previously reported. ${ }^{4}$

Rf. 0.27 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=4.97$ (app br s, $1 \mathrm{H}, \mathrm{NH}$), 4.28 (d, J = $5.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{~N}$), 2.84 (s, 4H, OSu), 1.44 (s, 9H, Boc); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{6}[\mathrm{M}+\mathrm{Na}]^{+}: 295.0901$; Obs.: 295.0901; m.p.: $156-159^{\circ} \mathrm{C}$.

37
Di-tert-butyl dicarbonate ($3.05 \mathrm{~g}, 14 \mathrm{mmol}$) was added to a solution of 2,3diaminopropionic acid ($500 \mathrm{mg}, 3.5 \mathrm{mmol}$) and sodium bicarbonate ($2.94 \mathrm{~g}, 10 \mathrm{mmol}$) in a mixture of dioxane (15 mL) and water (15 mL), and the reaction was stirred at r.t. for 18 h . The mixture was then diluted with water (50 mL) and washed with dichloromethane $(2 \times 15 \mathrm{~mL})$. The aqueous layer was acidified with hydrochloric acid $(1 \mathrm{M})$ to $\mathrm{pH} \sim 2$, and then extracted with dichloromethane $(3 \times 30 \mathrm{~mL})$. The combined organic extracts of the acidified aqueous fraction were combined, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil ($210 \mathrm{~g}, 0.7 \mathrm{mmol}, 20 \%$). Data were consistent with those previously reported. ${ }^{5}$
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.71$ (br s, 1H, N \underline{H}), 5.19 (br s, 1H, NH), 4.22-4.31 (m, $\left.1 \mathrm{H}, \underline{H}_{\alpha}\right), 3.46-3.75\left(\mathrm{~m}, 2 \mathrm{H}, \underline{H}_{\beta}\right), 1.43(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{Boc})$.

37

EDC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h

38

A mixture of 37 ($29 \mathrm{mg}, 95 \mu \mathrm{~mol}$), N-hydroxysuccinimide ($16 \mathrm{mg}, 0.143 \mathrm{mmol}$), and N -(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($28 \mathrm{mg}, 0.143 \mathrm{mmol}$) in dichloromethane $(1.0 \mathrm{~mL})$ was stirred at $\mathrm{r} . \mathrm{t}$. for 2 h . Dichloromethane $(10 \mathrm{~mL})$ was then added and the organics were washed with water ($2 \times 15 \mathrm{~mL}$) and brine (15 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a pink foam (28 $\mathrm{mg}, 70 \mu \mathrm{~mol}, 74 \%)$. The product was used immediately without any further purification or analysis.

Rf: 0.28 (1:9, EtOAc:Petrol); HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{~N}_{3} \mathrm{O}_{8}[\mathrm{M}+\mathrm{H}]^{+}: 402.1871$; Obs.: 402.1874; ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=2.82\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{NHS}-\mathrm{CH}_{2}\right), 1.42(\mathrm{~s}, 18 \mathrm{H}$, $2 \times \mathrm{Boc})$.

A mixture of Boc-Cys-(Trt)-OH (1.00 g, 2.16 mmol), N-hydroxysuccinimide (372 mg , 3.23 mmol), and N-(3-dimethylaminopropyl)- N^{\prime}-ethylcarbodiimide hydrochloride ($620 \mathrm{mg}, 3.23 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ was stirred at r.t. for 2 h . Dichloromethane (30 mL) was then added and the organics were washed with water $(2 \times 50 \mathrm{~mL})$ and brine (50 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a white foam. ($1.16 \mathrm{~g}, 0.207 \mathrm{mmol}$, quantitative yield).

Rf: 0.24 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.43$ (dd, $J=$ $7.5,1.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ph} \underline{H} 2), 7.29(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{Ph} \underline{H} 3), 7.24-7.18$ (t, $J=7.5,1.7 \mathrm{~Hz}$,
$3 H, \operatorname{Ph} \underline{H} 4), 4.86$ (d, $J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} N H B o c), 2.79(\mathrm{~s}, 4 \mathrm{H}, \mathrm{OSu}), 2.81-2.76$ (m, 1H, CH_{2} STrt), 2.71-2.66 (m, 1H, CH2STrt), 1.42 (s, 9H, Boc); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{29} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 536.1658$; Obs.: 536.1658; $\boldsymbol{v}_{\text {max }}:(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3426,2978$, 1707, 1491, 1444, 1393, 1368, 1217, 1162, 1052, 852, 744, 700, 675, 620, 505; m.p.: $71-74{ }^{\circ} \mathrm{C}$.

A solution of sodium hydrogen carbonate $(2.44 \mathrm{~g}, 29.0 \mathrm{mmol})$ in water $(30 \mathrm{~mL})$ was added dropwise to a mixture of hydroxylamine hydrochloride ($1.00 \mathrm{~g}, 14.5 \mathrm{mmol}$) and di-tert-butyl dicarbonate ($3.16 \mathrm{~g}, 14.5 \mathrm{mmol}$) in tetrahydrofuran (20 mL), and the reaction stirred at r.t. for 20 h . Water (150 mL) was then added, and the aqueous was extracted with ethyl acetate $(2 \times 150 \mathrm{~mL})$. The combined organics were washed with water (30 mL) and brine $(2 \times 30 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated to afford a colourless oil ($1.71 \mathrm{~g}, 12.9 \mathrm{mmol}, 89 \%$). Data were consistent with those previously reported. ${ }^{6,7}$

Rf: 0.30 (1:9, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.02$ (s, 1H, NH), 1.46 (s, $9 \mathrm{H}, \mathrm{Boc}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta=158.8$ ($\underline{\mathrm{C}}=\mathrm{O}$), 82.3 (드e3), 28.3 (Boc); HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}{ }^{+}\right)$calc. for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 156.0633 ; \mathrm{Obs} .: 156.0633$.

A mixture of ethyl bromoacetate ($1.40 \mathrm{~mL}, 12.6 \mathrm{mmol}$), UK/NR/037 ($1.68 \mathrm{~g}, 12.6$ mmol), and potassium hydroxide ($0.71 \mathrm{~g}, 12.6 \mathrm{mmol}$) in methanol (15 mL) was stirred at $60^{\circ} \mathrm{C}$ for 16 h . The reaction mixture was then concentrated under reduced pressure. Water (30 mL) was added to residue and the aqueous was extracted with dichloromethane ($4 \times 30 \mathrm{~mL}$). The combined organics were washed with brine (50 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:petrol (2:8). Pure fractions were concentrated under reduced pressure to provide a yellow solid ($1.36 \mathrm{~g}, 6.63 \mathrm{mmol}, 53 \%$). Data were consistent with those previously reported. ${ }^{8}$

Rf. 0.33 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.75$ (s, 1H, NH), 4.43 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 3.77 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OCH}_{3}$), 1.48 ($\mathrm{s}, 9 \mathrm{H}, \mathrm{Boc}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=$
 HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{NO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 228.0842$; Obs.: 228.0841; $\boldsymbol{v}_{\text {max }}$: (FTATR)/ $\mathrm{cm}^{-1}: 3305,2979,1737,1439,1368,1216,1165,1117,995,848,776,713,589$; m.p.: $55-57^{\circ} \mathrm{C}$.

Lithium hydroxide ($0.40 \mathrm{~g}, 16.6 \mathrm{mmol}$) was added to a solution of $41(1.36 \mathrm{~g}, 6.63$ mmol) in a mixture of tetrahydrofuran (5 mL) and water (5 mL), and the reaction was stirred at r.t. for 16 h . The tetrahydrofuran was then removed under reduced pressure and hydrochloric acid ($1 \mathrm{M}, 30 \mathrm{~mL}$) was added. The aqueous was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$) and the combined organics dried with MgSO_{4}, filtered, and concentrated under reduced pressure to afford a cream-white solid ($972 \mathrm{mg}, 5.09$ mmol, 77\%).

Rf: 0.22 (1:1, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=11.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OH}), 8.21(\mathrm{~s}$, $1 \mathrm{H}, \mathrm{NH}$), 4.46 (s, 2H, $\mathrm{CH}_{2} \mathrm{O}$), 1.47 (s, $9 \mathrm{H}, \mathrm{Boc}$); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{7} \mathrm{H}_{11} \mathrm{NO}_{5}$ [M+H]: 190.0721; Obs.: 190.0716; Vmax: (FT-ATR)/cm¹: 3266, 2981, 2936, 1721, 1479, 1395, 1370, 1251, 1163, 1122, 1054, 979, 847, 777, 675; m.p.: 102-105º C .

41

$\mathrm{EDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 2 h

42

A mixture of 41 ($920 \mathrm{mg}, 4.82 \mathrm{mmol}$), N-hydroxysuccinimide ($831 \mathrm{mg}, 7.23 \mathrm{mmol}$), and N-(3-dimethylaminopropyl)- $N^{\prime \prime}$-ethylcarbodiimide hydrochloride ($1.39 \mathrm{~g}, 7.23 \mathrm{mmol}$) in dichloromethane $(20 \mathrm{~mL})$ was stirred at r.t. for 2 h . Dichloromethane $(30 \mathrm{~mL})$ was then added and the organics were washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a colourless oil ($1.12 \mathrm{~g}, 3.89 \mathrm{mmol}, 81 \%$).

Rf: 0.35 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.99$ (s, 1H, NH), 4.71 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 2.81 (s, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), 1.41 (s, $9 \mathrm{H}, \mathrm{Boc}$); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{11} \mathrm{H}_{15} \mathrm{~N}_{2} \mathrm{O}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 311.0850$; Obs.: 311.0840; $\boldsymbol{V}_{\max }$: (FT-ATR)/cm${ }^{-1}: 3230$, 2981, 1702, 1395, 1370, 1215, 1162, 1120, 1080, 997, 815, 86, 716, 655; m.p.: $110-114{ }^{\circ} \mathrm{C}$.

A solution of di-tert-butyl dicarbonate ($3.52 \mathrm{~g}, 16.2 \mathrm{mmol}$) in dioxane (30 mL) was added dropwise to a stirred solution of hydrazine monohydrate ($3.20 \mathrm{~mL}, 66.4 \mathrm{mmol}$) and potassium carbonate ($9.28 \mathrm{~g}, 66.4 \mathrm{mmol}$) in water (30 mL), and the mixture stirred at $\mathrm{r} . \mathrm{t}$ for 16 h . The reaction mixture was then extracted with diethyl ether $(3 \times 50 \mathrm{~mL})$, and the combined organics dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a white solid ($2.08 \mathrm{~g}, 15.8 \mathrm{mmol}, 97 \%$).

Rf: 0.18 (8:2, EtOAc:Petrol); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.79$ (s, 1H, NH), 1.44 (s, $9 \mathrm{H}, \mathrm{Boc}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=135.9$ (CONH), 80.6 (들), 28.4 (Boc); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{Na}]^{+}: 155.0791$; Obs.: 155.0792; $\boldsymbol{v}_{\text {max: }}$ (FTATR)/cm ${ }^{-1}$: 3333, 2978, 2933, 1701, 1489, 1366, 1287, 1161, 1061, 870, 768; m.p.: $40-43{ }^{\circ} \mathrm{C}$.

Ethyl bromoacetate ($840 \mu \mathrm{~L}, 7.58 \mathrm{mmol}$) was added to a stirred solution of $43(1.50 \mathrm{~g}$, 11.3 mmol) in water (15 mL) and stirred at r.t. for 1 h . The reaction mixture was then extracted with diethyl ether ($3 \times 40 \mathrm{~mL}$), and the combined organics were washed with brine $(2 \times 50 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (4:6). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil ($1.12 \mathrm{~g}, 5.14 \mathrm{mmol}, 68 \%$).
$\boldsymbol{R f}: 0.27$ (4:6, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.47$ (s, $1 \mathrm{H}, \mathrm{NH}$), 4.23$4.13\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 3.66-3.59\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.42(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 1.25(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}$,
$\left.3 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta=171.2\left(\underline{C O C H}_{2}\right), 135.9$ (ㅈNNH), 80.8 (들), $61.1\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right), 52.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 28.4(\mathrm{Boc}), 14.3\left(\mathrm{CH}_{2} \underline{\mathrm{CH}_{3}}\right) ;$ HRMS: m/z (ESI+) calc. for $\mathrm{C}_{9} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 241.1159$; Obs.: 241.1160; $\boldsymbol{v}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3290$, 2971, 2926, 2854, 1675, 1557, 1456, 1429, 1151, 1114, 795.

44

45

A solution of lithium hydroxide ($749 \mathrm{mg}, 31.2 \mathrm{mmol}$) in water (5 mL) was added to asolution of $44(680 \mathrm{mg}, 3.12 \mathrm{mmol})$ in dioxane $(10 \mathrm{~mL})$, and the mixture stirred at 40 ${ }^{\circ} \mathrm{C}$ for 1 h . The reaction was then cooled to r.t. and acidified to $\mathrm{pH} \sim 4$ by addition of potassium bisulphate (1 M). The aqueous mixture was then extracted with dichloromethane ($3 \times 20 \mathrm{~mL}$), and the combined organics were washed with brine (40 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a white solid ($256 \mathrm{mg}, 1.35 \mathrm{mmol}, 43 \%$).

Rf. 0.11 (9:1, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=3.34-3.23\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 1.42 (s, 9H, Boc); ${ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=172.9\left(\mathrm{COCH}_{2}\right), 135.9$ (ㅡONH), 83.3 ($\underline{C M e}_{3}$), $51.9\left(\underline{\mathrm{C}}_{2}\right), 27.3$ (Boc); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 213.0846; Obs.: 213.0846; $V_{\text {max: }}(F T-A T R) / \mathrm{cm}^{-1}: 3252,2978,2964,1701,1536,1368$, 1247, 1148, 1058, 803, 736. m.p: $143-145^{\circ} \mathrm{C}$.

3. Reactive dye synthesis

4-Dimethylaminopyridine ($75 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added to a mixture of 1 (104 mg , 0.21 mmol), 35 ($77 \mathrm{mg}, 0.24 \mathrm{mmol}$), and potassium carbonate ($85 \mathrm{mg}, 0.62 \mathrm{mmol}$) in anhydrous dichloromethane (5 mL) and stirred at r.t. for 2 h . The reaction mixture was then precipitated in diethyl ether (400 mL). The solid was then collected by filtration, washed with diethyl ether (30 mL), and dried in air to give a pink powder. The residue was purified via flash column chromatography on silica gel eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil, which was redissolved in dichloromethane (30 mL). The organics were washed with hydrochloric acid $(0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure, to give a pink oil ($30 \mathrm{mg}, 38 \mu \mathrm{~mol}, 18 \%$).

Rf: 0.16 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, NMR data is provided for the acetal) $\delta=8.48$ (dd, $\left.J_{1}=J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCN}\right), 7.53-$
 $\underline{H} 6, \underline{H} 6$ ', $\underline{H} 8 / \underline{H} 8$ ',), 7.00 (dd, $J=8.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), $6.85(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2)$, 6.66 (dd, $J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N$), 6.41 (dd, $J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 5.47 (s, $\left.1 \mathrm{H}, \mathrm{CH}(\mathrm{OR})_{2}\right), 4.52\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.26\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.12(\mathrm{t}, J$ $\left.=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.45\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.97(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.25-2.20 (m, 2H, CH2 $\underline{H}_{2} \mathrm{SO}_{3}$), 2.11-2.01 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $1.72(\mathrm{~s}$, $\left.12 \mathrm{H}, \mathrm{CyCH} \underline{H}_{3}\right), 1.21$ (s, 12H, C(C-H3)2); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, NMR data is provided for the acetal) $\delta=174.7$ ($\underline{C H C H C N}$), 174.6 ($\underline{\mathrm{C}} 2, \underline{\mathrm{C}} 2^{\prime}$), 170.2 ($\underline{\mathrm{CONH}}$), 157.4

 $74.5 \quad\left(\left(\underline{\mathrm{CH}_{3}}\right)_{2} \mathrm{O}\right), 66.9 \quad(\underline{\mathrm{CH}} 2 \mathrm{CO}), 49.3 \quad\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{SO}_{3}\right), 42.6 \quad\left(\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 41.6}\right.$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 36.1\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right)$, $27.0\left(\mathrm{CyCH}_{3}\right)$, $23.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $23.7\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{2}\right)$, $22.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{44} \mathrm{H}_{54} \mathrm{BN}_{3} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 818.3636; Obs.: 818.3636; $V_{\max }:(F T-A T R) / \mathrm{cm}^{-1}: 3415,3076,2915,1645,1556,1454,1427$, 1217, 1149, 1113, 1036, 926, 795, 756, 731, 680, 527.

Trifluoroacetic acid (0.5 mL) was added to a solution of $46(30 \mathrm{mg}, 38 \mu \mathrm{~mol})$ and methylboronic acid ($23 \mathrm{mg}, 377 \mu \mathrm{~mol}$) in dichloromethane (5 mL), and the mixture stirred at r.t for 3 h . The reaction was azeotroped with dichloromethane ($3 \times 20 \mathrm{~mL}$), and hydrochloric acid $(0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL})$ was added, and concentrated under reduced pressure. The residue was then suspended in water (10 mL) and lypophilised to yield a pink solid. ($26 \mathrm{mg}, 38 \mu \mathrm{~mol}$, quantitative yield).

Rf: 0.12 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, NMR data is provided for the acetal) $\delta=8.53$ (dd, $\left.J_{1}=J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCN}\right), 7.55$ (dd, $\left.J=7.4,2.8 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{H} 5^{\prime}\right), 7.47-7.39$ (m, 3H, $\underline{H} 7, \underline{H} 7{ }^{\prime}$, $\underline{H} 8 / \underline{H} 8$ '), 7.37-7.27 (m, $4 \mathrm{H}, \mathrm{Ph} \underline{4} 5, \underline{H} 6, \underline{H} 6$ ', $\underline{H}_{8} / \underline{H} 8$ '), 7.04 (dd, $J=8.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), $6.90(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{Ph} \underline{H} 2), 6.62(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N), 6.46(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N), 5.41$ ($\left.\mathrm{s}, 1 \mathrm{H}, \mathrm{C} \underline{H}(\mathrm{OR})_{2}\right), 4.57\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.39-4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.16(\mathrm{t}, \mathrm{J}=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $3.49\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$), $3.02(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.29-2.25 (m, 2H, $\underline{\mathrm{H}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.10 (tt, $J_{1}=J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.77 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, NMR data is provided for the

 $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CO}\right), 46.8\left(\mathrm{CH}_{2} \mathrm{SO}_{3}\right), 42.6\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 41.5\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 36.1$ $\left(\underline{\mathrm{C}}_{2} \mathrm{NH}\right), 26.9\left(\mathrm{CyCH}_{3}\right), 26.6\left(\underline{C H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 22.8\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{38} \mathrm{H}_{44} \mathrm{BN}_{3} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 736.2834$; Obs.: 736.2834; $\boldsymbol{v}_{\text {max }}:(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}$:

3289, 2926, 1676, 1558, 1456, 1429, 1373, 1232, 1151, 1115, 1037, 927, 756, 681; m.p: $315-320^{\circ} \mathrm{C}$;

Evidence for the formation of 5 was further provided by incubating 5 mg with 1.5 equiv. of n-butylamine in MeOD for 30 min . After this time, exclusive formation of boronoimine 47 was observed.
${ }^{1} \mathrm{H}$ NMR (400 MHz, CD ${ }_{3} \mathrm{OD}$, NMR data is provided for the acetal) $\delta=8.62\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{CHNCH}_{2}\right), 8.57\left(\mathrm{dd}, J_{1}=J_{2}\right.$ $=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCN}), 7.63(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}$, Ph브5), 7.58-7.54 (m, 2H, $\underline{H} 5, \underline{H} 5$ '), 7.48-7.41 (m, 3H, ㅂ7, $\underline{H} 7^{\prime}, \underline{H} 8 / \underline{H} 8$ '), 7.35-7.30 (m, 3H, Phㅂ5, $\underline{H} 6, \underline{H} 6^{\prime}$, H88/브'), 7.15 (d, $J=2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2), 6.99$ (dd, $J=$

8.3, $2.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), 6.63 (d, $J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), $6.50(\mathrm{~d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHCN), $4.64\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.39-4.33\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.22(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $3.57\left(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$), $3.48(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H},-$ CHNCH_{2}), $3.00\left(\mathrm{t}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$), 2.29-2.23 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.15-2.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $1.79\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}\right), 1.52-1.38\left(\mathrm{~m}, 2 \mathrm{H},-\mathrm{CHNCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2}\right), 1.01$ ($\mathrm{t}, 3 \mathrm{H},-\mathrm{CH}_{3}$).

A mixture of $2(30 \mathrm{mg}, 56 \mu \mathrm{~mol}), 36(31 \mathrm{mg}, 0.112 \mathrm{mmol})$, and triethylamine ($39 \mu \mathrm{~L}$, 0.280 mmol) in dichloromethane (3 mL) was stirred at r.t. for 3 h . The reaction was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil ($30 \mathrm{mg}, 44 \mu \mathrm{~mol}, 77 \%$).

Rf: 0.38 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.20$ (dd, $J_{1}=J_{2}=13.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H} C H C N$), 7.43 (dd, $J=7.9,2.6 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}}{ }^{\prime}$), 7.377.30 ($\mathrm{m}, 3 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8{ }^{\prime}$), $7.30-7.27$ (m, 1H, $\left.\underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8{ }^{\prime}\right), 7.19$ (dd, $J=7.9,2.8 \mathrm{~Hz}, 2 \mathrm{H}$, $\underline{H} 6, \underline{H} 6$ '), $6.67\left(\mathrm{dd}, J_{1}=J_{2}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C H C N\right), 6.38(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHCN), 6.27 ($\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 4.34-4.26 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $4.08(\mathrm{t}$, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.70 ($\left.\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}\right), 3.36(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$), $2.97\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.22\left(\mathrm{tt}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$, $1.95\left(\mathrm{tt}, J_{1}=J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 1.65 (s, 12H, CyCH3 3), 1.42 (s,9H, Boc); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=173.1$ (드2, $\underline{\mathrm{C}} 2$ '), 171.8 ($\left.\underline{\mathrm{C}} 3, \underline{\mathrm{C}} 3^{\prime}\right), 169.9$ ($\underline{\mathrm{CON}}$), 157.2

 ($\underline{\mathrm{C}} H C N$), 79.4 ($\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NHBoc}$), 79.1, ($\underline{\mathrm{C} M e} 3$), $49.2\left(\underline{\left.\mathrm{C}_{2} \mathrm{SO}_{3}\right), ~} 42.4\left(\underline{\left.\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right) \text {, }}\right.\right.$

 713.3351; $V_{\max }:(F T-A T R) / \mathrm{cm}^{-1}: 3300,2968,2924,2852,1702,1659,1492,1482$, 1453, 1378, 1338, 1216, 1138, 1102, 1035, 925, 709, 522.

Trifluoroacetic acid (1.0 mL) was added to a solution of 48 ($30 \mathrm{mg}, 44 \mu \mathrm{~mol}$) in dichloromethane (5 mL) and stirred at r.t. for 2 h . The reaction mixture was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (30 mL) and concentrated under reduced pressure to give a blue oil (19 mg , $32 \mu \mathrm{~mol}, 73 \%)$.

Rf: 0.21 (5:95, $\mathrm{CH}_{2} \mathrm{Cl}_{2}: \mathrm{MeOH}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.10$ (d, $J=13.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H} C H C N), 7.40\left(\mathrm{dd}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{H} 5^{\prime}\right), 7.34(\mathrm{t}, \mathrm{J}=$ $7.5 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{H} 7$ '), 7.29 (dd, $J=7.9,2.5 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{H} 8$) , 7.15 (dd, $J_{1}=J_{2}=7.5$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{H} 6^{\prime}\right), 6.61\left(\mathrm{dd}, J_{1}=J_{2}=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C H C H C N}\right.$), $6.48(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} \underline{H} C N$), 6.17 ($\mathrm{d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N$), $4.32\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$), $4.13\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.81\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}\right), 3.42(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 3.03 ($\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}$), $2.23\left(\mathrm{tt}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 1.96 (tt, $J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.59 (s, 12H, CyCH3); ${ }^{13} \mathrm{C}$

 ($\underline{\mathrm{C}} H \mathrm{CHCHCN}$), 125.0 ($\underline{\mathrm{C}} 6, \underline{\mathrm{C}} 6$ '), 122.1 ($\underline{\mathrm{C}} 5, \underline{\mathrm{C}} 5^{\prime}$), 110.7 ($\underline{\mathrm{C}} 8, \underline{\mathrm{C}} 8^{\prime}$), 103.9 (ㄷHCN), 49.1 $\left(\underline{\mathrm{C}}_{2} \mathrm{NH}_{3}\right), 47.5\left(\underline{\mathrm{C}}_{2} \mathrm{SO}_{3}\right), 45.3,41.4\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 40.4\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 36.5$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 26.9\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $26.6\left(\mathrm{Cy}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{3}\right), 22.8\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 591.3014$; Obs.: 591.3000; $\boldsymbol{v}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 2918$, 2856, 1683, 1495, 1461, 1388, 1145, 1106, 1034, 928, 799, 752, 710.

A mixture of $2(19 \mathrm{mg}, 36 \mu \mathrm{~mol}), 38(28 \mathrm{mg}, 70 \mu \mathrm{~mol})$, and triethylamine ($24 \mu \mathrm{~L}, 0.18$ mmol) in dichloromethane (1 mL) was stirred at r.t. for 2 h . The reaction mixture was then concentrated under reduced pressure, and the residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil. ($11 \mathrm{mg}, 13 \mu \mathrm{~mol}, 38 \%$).
$\boldsymbol{R f}_{f} 0.32$ (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.22$ (dd, $J=13.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C} \underline{H} C H C N), 7.44\left(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}\right), 7.40-7.36(\mathrm{~m}$, $\left.2 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}\right), 7.36-7.28\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 8^{\prime}\right), 7.20\left(\mathrm{dd}, J_{1}=\mathrm{J}_{2}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{H} 6{ }^{\prime}\right), 6.67$ $\left(d d, J_{1}=J_{2}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C H C N\right), 6.38(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N), 6.29(\mathrm{t}, J$
$=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN})$, 4.40-4.24 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 4.13-4.07 ($\mathrm{m}, 3 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, \mathrm{C} \underline{H} \mathrm{CO}$), 3.40-3.33 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{NH}$), 3.30-3.23 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHBoc}$), $2.98\left(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.23\left(\mathrm{tt}, J_{1}=J_{2}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 1.97(\mathrm{tt}$, $J_{1}=J_{2}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $1.66\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH} \underline{H}_{3}\right), 1.40(\mathrm{~s}, 18 \mathrm{H}, 2 \times \mathrm{Boc}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta=173.1$ ($\underline{\mathrm{C}} 2, \underline{\mathrm{C}} 2^{\prime}$), 172.2 ($\left.\underline{\mathrm{C}} 3, \underline{\mathrm{C}} 3^{\prime}\right), 167.8$ ($\underline{\mathrm{CON}}$), 157.4

 $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 27.4\left(\mathrm{Cy}_{\mathrm{C}}^{3} 3\right), 26.6$ (Boc), $26.6\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 22.8\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(E S I^{+}\right)$calc. for $\mathrm{C}_{44} \mathrm{H}_{61} \mathrm{~N}_{5} \mathrm{O}_{8} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 820.4314$; Obs.: 820.4341; $\boldsymbol{V}_{\text {max: }}$ (FTATR)/ cm^{-1} : 3655, 2981, 2927, 1707, 1481, 1453, 1381, 1138, 1101, 1035, 926, 803, 753, 709,552 ; m.p.: $168-171^{\circ} \mathrm{C}$.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of 49 ($11 \mathrm{mg}, 13$ $\mu \mathrm{mol})$ in dichloromethane (9 mL) and the mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 2 h . The reaction was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a blue oil. ($10 \mathrm{mg}, 13 \mu \mathrm{~mol}$, quantitative yield).
$\boldsymbol{R f}$: 0.15 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.13$ (dd, $\left.J_{1}=J_{2}=13.6 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C} \underline{H} C H C N\right), 7.48-7.40\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}\right), 7.38-7.34(\mathrm{~m}$, 2H, $\left.\underline{H} 7, \underline{H} 7^{\prime}\right), ~ 7.32-7.25\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 8^{\prime}\right), 7.25-7.12$ ($\mathrm{m}, 2 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{\mathrm{H}} 6$ '), 6.66 (dd, $\mathrm{J}_{1}=\mathrm{J}_{2}$ $=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C H C N), 6.52(\mathrm{~d}, J=13.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H C N), 6.21(\mathrm{~d}, J=13.6 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} \underline{H} C N), 4.36-4.32\left(\mathrm{~m}, 3 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3} / \mathrm{C} \underline{H} C O\right), 4.19-4.15(\mathrm{~m}, 2 \mathrm{H}$,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.60-3.54 (m, 2H, CㅐㅏㄴNH), 3.44-3.38 (m, 2H, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), 3.08 (t, $J=$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{3}{ }^{+}$), $2.24\left(\mathrm{tt}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$), $2.02\left(\mathrm{tt}, J_{1}=J_{2}=\right.$ $7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $1.62\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH} \underline{H}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=174.9$

 (대CO), 50.5 ($\left.\underline{\mathrm{C}}_{2} \mathrm{SO}_{3}\right), 44.3\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 42.8\left(\underline{\left.\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), ~} 38.4\right.$ $\left(\underline{\mathrm{C}}_{2} \mathrm{NH}\right)$, $28.4\left(\mathrm{CyCH}_{3}\right)$, 24.5, ($\left.\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $24.2\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 620.3265$; Obs.: 620.3265; $\boldsymbol{v}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 2978$, 2929, 1680, 1488, 1456, 1384, 1145, 1038 1018, 995, 926, 800; m.p.: $178-181^{\circ} \mathrm{C}$.

A mixture of $2(30 \mathrm{mg}, 56 \mu \mathrm{~mol}), 39(90 \mathrm{mg}, 0.169 \mathrm{mmol})$, and triethylamine ($29 \mu \mathrm{~L}$, 0.280 mmol) in dichloromethane (2 mL) was stirred at $\mathrm{r} . \mathrm{t}$. for 2 h . The reaction mixture was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue solid ($45 \mathrm{mg}, 46 \mu \mathrm{~mol}, 84 \%$). The product was carried into the next step without further characterisation.

Rf: 0.32 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.24$ (dd, $J=13.5,13.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C} \underline{H} C H C N), 7.45(\mathrm{dd}, J=7.3,2.2 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5$), 7.427.38 (m, 2H, $\underline{H} 7, \underline{H} 7{ }^{\prime}$), 7.34 (d, $\left.J=7.7 \mathrm{~Hz}, 6 \mathrm{H}, \mathrm{TrtPh} \underline{H} 2\right), 7.31-7.26(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 8$ '), 7.26-7.20 (m, 8H, TrtPh브 / 브6, ㅂ6'), 7.17 (t, J=7.7 Hz, 3H, TrtPh브4), 6.63 (dd, $J_{1}=$ $J_{2}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCHCHCN}$), $6.34(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 6.25 (d, $J=13.5$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), $4.30\left(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.04(\mathrm{t}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.96 ($\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCO}$), 3.33 ($\mathrm{d}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{NH}$), $2.95\left(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{STrt}\right)$, 2.57-2.42 (m, 2H, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.24-2.17 (m, 2H,
$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 1.99-1.92 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.68 (s, 12H, CyCH3), 1.40 (s, 9H, Boc); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{58} \mathrm{H}_{66} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 979.4497; Obs.: 979.4542; $\boldsymbol{V}_{\text {max: }}$ (FT-ATR)/cm ${ }^{-1}$: 3419, 2925, 2859, 1711, 1489, 1455, 1382, 1338, 1216, 1140, 1104, 1036, 1018, 926, 750, 707; m.p.: 167-154 ${ }^{\circ} \mathrm{C}$.

TFA, TIPS $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 1 h

50

8

Trifluoroacetic acid (2 mL) was added dropwise to a stirred solution of $50(40 \mathrm{mg}, 41$ $\mu \mathrm{mol})$ and triisopropylsilane ($43 \mu \mathrm{~L}, 0.210 \mathrm{mmol}$) in dichloromethane (10 mL), and the mixture stirred at r.t. for 1 h . The reaction was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a blue oil. ($22 \mathrm{mg}, 35 \mu \mathrm{~mol}, 86 \%$).

Rf: 0.29 (1:9, MeOH:CH2Cl2, visible light active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.13$ (dd, $J=13.5,13.0 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C} \underline{H} C H C N$), 7.41 (dd, $J=7.4,1.1 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}$), $7.38-$ 7.33 ($\mathrm{m}, 2 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}$), $7.33-7.26\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 8^{\prime}\right), 7.17$ (ddd, $J_{1}=J_{2}=7.5, J_{3}=1.0$ $\left.\mathrm{Hz}, 2 \mathrm{H}, \underline{H} 6, \underline{H} 6^{\prime}\right), 6.64\left(\mathrm{dd}, J_{1}=J_{2}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C H C H C N}\right), 6.48(\mathrm{~d}, J=13.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{C} \underline{H C N}$), $6.21(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C N}), 4.34\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$, 4.18-4.10 (m, 3H, $\underline{C H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}, \mathrm{CHCO}$), 3.53-3.40 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 3.17-3.11 (m, $1 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{SH}$), 3.09-3.00 (m, 3H, $\mathrm{CH}_{2} \mathrm{SO}_{3}, \mathrm{CH}_{2} \mathrm{SH}$), 2.26-2.20 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$),
 $=173.5$ ($\underline{\mathrm{C}} 2, \underline{\mathrm{C}} 2^{\prime}$), 172.7 ($\underline{\mathrm{C}} 3, \underline{\mathrm{C}} 3^{\prime}$), 167.5 ($\underline{\mathrm{CONH}}$), 154.3 ($\underline{\mathrm{C} H C H C N), ~} 153.7$

 $\mathrm{C}_{34} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{4} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 637.2877$; Obs.: 637.2873; $\boldsymbol{V}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3412$, 2966, 1677, 1490, 1455, 1381, 1338, 1202, 1139, 1101, 1035, 1016,925, 798, 751, 709; m.p.: $194-197^{\circ} \mathrm{C}$.

A mixture of $2(30 \mathrm{mg}, 56 \mu \mathrm{~mol}), 42(49 \mathrm{mg}, 0.170 \mathrm{mmol})$, and triethylamine ($29 \mu \mathrm{~L}$, $0.28 \mathrm{mmol})$ in dichloromethane $(2 \mathrm{~mL})$ was stirred for at $\mathrm{r} . \mathrm{t}$. for 2 h . The reaction mixture was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil ($15 \mathrm{mg}, 21 \mu \mathrm{~mol}, 38 \%$).

Rf: 0.24 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.00$ (s, 1H, NㅂBoc), 7.86-7.78 (m, 2H, $2 \times$ CHCHCN) 7.39-7.32 (m, 2H, $\underline{H} 5, \underline{H} 5$ '), 7.31 (d, $\left.J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}\right), 7.24-7.18\left(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}\right), 7.20-7.12\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}, \underline{\mathrm{H}} 6 / \underline{\mathrm{H}} 6^{\prime}\right)$, $7.10\left(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H}} 6 / \underline{\mathrm{H}} 6^{\prime}\right), 7.08-7.03(\mathrm{~m}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N), 6.92-6.66(\mathrm{~m}, 1 \mathrm{H}, 2 \times$ CHCN), 6.05 (dd, $J_{1}=J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C H C H C N}$), $4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.46-4.40$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $4.07\left(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), $3.45(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $3.03\left(\mathrm{t}, \mathrm{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$), 2.32-2.21 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.09$1.98\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 1.64\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}\right), 1.37(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}) ;{ }^{13} \mathrm{C}$ NMR (101 MHz , CDCl_{3}) $\delta=174.7$ ($\underline{\mathrm{C}} 2 / \underline{\mathrm{C}} 2^{\prime}$), 174.3 ($\underline{\mathrm{C}} 2 / \underline{\mathrm{C}} 2^{\prime}$), 172.3 ($\underline{\mathrm{C}} 3 / \underline{\mathrm{C}} 3^{\prime}$), 172.1 (드3/ $\underline{\mathrm{C}} 3^{\prime}$), 160.6

 $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, $37.2\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right)$, $29.7(\mathrm{Boc}), 29.0\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 26.8\left(\mathrm{CyCH}_{3}\right), 24.9$
$\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}-\right)$; HRMS: m/z (ESI') calc. for $\mathrm{C}_{38} \mathrm{H}_{50} \mathrm{~N}_{4} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 707.3473$; Obs.: 707.3492 .

Trifluoroacetic acid (4 mL) was added dropwise to a stirred solution of 51 ($30 \mathrm{mg}, 42$ $\mu \mathrm{mol})$ in dichloromethane $(4 \mathrm{~mL})$ and the mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 2 h . The reaction was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution added dropwise to diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a blue oil (20 $\mathrm{mg}, 31 \mu \mathrm{~mol}, 74 \%$).

Rf: 0.21 (1:9, MeOH:CH2Cl2, visible light active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.24$ (dd, $J_{1}=J_{2}=13.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHCHCN}$), $7.98(\mathrm{t}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{NHCO}$), $7.45(\mathrm{~d}, J=$ 7.5 Hz, 2H, $\underline{H} 5, \underline{H} 5 '), 7.41-7.33$ (m, 3H, $\underline{H} 7, \underline{H} 7$ ', $\underline{H} 8 / \underline{H} 8$ '), 7.31-7.17 (m, 3H, $\underline{H} 6, \underline{H} 6$ ', $\underline{H} 8 / \underline{H} 8 '), 6.64\left(\mathrm{dd}, J_{1}=J_{2}=13.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C H C H C N}\right), 6.40(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, CHCN), 6.26 ($\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N$), $4.43\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $4.09\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.43-3.36\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right)$, $2.97\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.22\left(\mathrm{tt}, J_{1}=J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.01(\mathrm{tt}$, $J_{1}=J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $1.94\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.83\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.68(\mathrm{~s}, 12 \mathrm{H}$, CyCH_{3}). ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=174.5$ ($\underline{\mathrm{C}} 2 / \underline{\mathrm{C}} 2$ '), 173.7 ($\underline{\mathrm{C}} 2 / \underline{\mathrm{C}} 2$ '), 173.5

 $49.3(\underline{\mathrm{C}}=\mathrm{N}), 49.2\left(\underline{\mathrm{C}_{2}} \mathrm{SO}_{3}\right), 42.7\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 41.3\left(\underline{\mathrm{CH}}{ }_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 36.2$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 27.6\left(\mathrm{Cy}_{\mathrm{C}}^{2} 3\right), \quad 26.9\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 26.6\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right), 26.5\left(\underline{\mathrm{C}}_{3}\right), 22.8$
($\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{36} \mathrm{H}_{45} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 647.3261: Obs.: 647.3261;

52 ($15 \mathrm{mg}, 23 \mu \mathrm{~mol}$) was dissolved in hydrochloric acid (0.1 M 3 mL ,) and stirred at 80 ${ }^{\circ} \mathrm{C}$ for 2 h . The reaction mixture was then lyophilised to give the product as a blue oil ($14 \mathrm{mg}, 23 \mu \mathrm{~mol}, 99 \%$). Due to the reactivity of the oxime, the product was used directly in the next experiments without further analysis.

Rf: 0.14 (1:9, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.30-$
8.24 (m, 2H, $2 \times \mathrm{CHCHCN}$), 7.49-7.43 (m, 2H, $\left.\underline{H} 5, \underline{H} 5{ }^{\prime}\right), 7.46-7.39$ (m, 3H, $\underline{H} 7, \underline{H} 7$ ', $\left.\underline{H} 8 / \underline{H} 8{ }^{\prime}\right), 7.33-7.24\left(\mathrm{~m}, 3 \mathrm{H}, \underline{H} 6, \underline{H} 6 \prime, \underline{H} 8 / \underline{H} 8\right.$ '), 6.68 (dd, $J_{1}=J_{2}=12.4 \mathrm{~Hz}, 1 \mathrm{H}$, CHCHCHCN), 6.59 ($\mathrm{d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 6.24 ($\mathrm{d}, J=13.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 4.64 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.41-4.35 ($\mathrm{m}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 4.18-4.10 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.46-3.42 (m, $2 \mathrm{H}, \quad \mathrm{CH}_{2} \mathrm{NH}$), 3.05-2.98 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.24-2.30 (m, 2 H , $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.10-2.02 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.76 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}$); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{33} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 607.2949: Obs.: 607.2964.

Propylphosphonic anhydride solution ($50 \% \mathrm{w} / \mathrm{w}$ in EtOAc, $44 \mu \mathrm{~L}, 140 \mu \mathrm{~mol}$) was added to a stirred solution of $2(30 \mathrm{mg}, 56 \mu \mathrm{~mol}), 45(21 \mathrm{mg}, 112 \mu \mathrm{~mol})$, and triethylamine (39 $\mu \mathrm{L}, 281 \mu \mathrm{~mol})$ in dichloromethane $(3 \mathrm{~mL})$ dropwise at $0^{\circ} \mathrm{C}$. The solution was then stirred at $\mathrm{r} . \mathrm{t}$. for 16 h . The reaction was concentrated under reduced pressure and the
residue purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}(5: 95)$. Fractions containing the product were concentrated under reduced pressure to provide a blue oil ($18 \mathrm{mg}, 18 \mu \mathrm{~mol}, 45 \%$).

Rf. 0.28 ($5: 95, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.18$ (dd, $J=13.3,12.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{CHCHCN}$), 7.43 (dd, $\left.J=7.6,2.3 \mathrm{~Hz} 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}\right), 7.39-$ 7.31 ($\mathrm{m}, 3 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}$), $7.31-7.25$ ($\mathrm{m}, 1 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}$), 7.25-7.16 ($\mathrm{m}, 2 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{\mathrm{H}} 6^{\prime}$), 6.60 (dd, $J_{1}=J_{2}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C H C H C N}$), 6.52 (d, $\left.J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}\right), 6.16$ (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 5.47 (s, 1H, CH2NH), 4.34 (t, $J=7.6 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 4.14 (t, $J=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.54 (s, 2 H , $\left.\mathrm{CH}_{2} N H N H B o c\right), 3.38\left(\mathrm{t}, \mathrm{J}=7.8 \mathrm{~Hz} 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{NH}\right.$), $2.98\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.22$ (tt, $J_{1}=J_{2}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $2.00\left(\mathrm{tt}, \mathrm{J}_{1}=\mathrm{J}_{2}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right.$), 1.64 (s, 12H, CyCH3), 1.45 (s, 9H, Boc); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=172.9$ ($\left.\mathrm{C} 2, \underline{\mathrm{C}} 2^{\prime}\right)$,

 ($\underline{\mathrm{C} H C N}$), 79.3 , ($\underline{\mathrm{CMe}} 3$), 54.9 ($\left.\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NHNHBoc}\right), 46.5$ ($\left.\underline{\mathrm{C}}_{2} \mathrm{SO}_{3}\right), 42.6\left(\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$, $41.2\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$, 36.2 ($\mathrm{CH}_{2} \mathrm{NH}$), 27.3 (Boc$), 26.9$ (CyCH_{3}), 26.6 ($\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right)$), 22.7 ($\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{38} \mathrm{H}_{51} \mathrm{~N}_{5} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 728.3488$,; Obs.: 728.3488; $\boldsymbol{v}_{\text {max: }}($ FT-ATR)/cm¹: 3267, 2974, 2929, 1705, 1658, 1492, 1456, 1338, 1141, 1104, 1018, 926, 802, 756.

Trifluoroacetic acid (1 mL) was added to a solution of 53 ($13 \mathrm{mg}, 18 \mu \mathrm{~mol}$) in dichloromethane (5 mL) and stirred at r .t. for 2 h . The reaction mixture was then added dropwise into diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then
dissolved in methanol (30 mL) and concentrated under reduced pressure to give a blue oil ($11 \mathrm{mg}, 18 \mu \mathrm{~mol}$, quantitative yield).
$\boldsymbol{R f}$: 0.13 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.19$ (dd, $J=13.3,12.5 \mathrm{~Hz}, 2 \mathrm{H}, 2 \times \mathrm{C} \underline{H} C H C N$), 7.44 (dd, $J=7.3,2.0 \mathrm{~Hz}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}$), 7.417.33 (m, 3H, $\left.\underline{H} 7, \underline{H} 7^{\prime}, \underline{H} 8 / \underline{H} 8{ }^{\prime}\right), 7.28(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8$ ') 7.25-7.16 (m, 2H, $\underline{\mathrm{H}} 6$, H6'), 6.63 (dd, $\left.J_{1}=J_{2}=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C H C N\right), ~ 6.52(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 6.18 (d, $J=13.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N$), $4.35\left(\mathrm{t}, 2 \mathrm{H}, J=7.0 \mathrm{~Hz}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.13(\mathrm{t}, J$ $=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.75 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHNH}_{2}$), $3.39(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{NH}$), $3.01\left(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.23\left(\mathrm{tt}, J_{1}=J_{2}=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$, $1.99\left(\mathrm{tt}, J_{1}=J_{2}=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 1.66\left(\mathrm{~s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}\right) ;{ }^{13} \mathrm{C} \mathbf{N M R}(101 \mathrm{MHz}$, $\mathrm{CD}_{3} \mathrm{OD}$) $\delta=173.6$ (드2, $\underline{\mathrm{C}} 2^{\prime}$), 172.8 ($\underline{\mathrm{C}} 3, \underline{\mathrm{C}} 3^{\prime}$), 163.2 ($\underline{\mathrm{CON}}$), 154.4 ($\underline{\mathrm{C} H C H C N}$), 153.8

 $(\underline{\mathrm{C}} \mathrm{HCN}), \quad 49.2 \quad\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NHNH}_{2}\right), \quad 47.2 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{SO}_{3}\right), \quad 42.4 \quad\left(\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right),} 41.2\right.$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), \quad 36.3 \quad\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), \quad 26.9 \quad\left(\mathrm{Cy}_{\mathrm{C}}^{\mathrm{C}} \mathrm{H}_{3}\right), \quad 26.6 \quad\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), \quad 22.7$ $\left(\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right) \text {; HRMS: } \mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right) \text {calc. for } \mathrm{C}_{33} \mathrm{H}_{43} \mathrm{~N}_{5} \mathrm{O}_{4} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: \text {606.3109; Obs.: }}\right.$ 606.3122; $V_{\max }:(F T-A T R) / \mathrm{cm}^{-1}: 3294,2923,2853,1678,1495,1458,1385,1338$, 1144, 1105, 1038, 926, 751.

4. Synthesis of control substrates for FRET studies

Acetyl chloride ($7 \mu \mathrm{~L}, 99 \mu \mathrm{~mol}$) was added to a solution of $2(10 \mathrm{mg}, 19 \mu \mathrm{~mol})$ in dichloromethane (3 mL) and stirred at r.t. for 1 h . The reaction mixture was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing
the product were concentrated under reduced pressure to provide a blue oil (7 mg, 12 $\mu \mathrm{mol}, 64 \%)$.

Rf: 0.29 (5:95, MeOH:CH2Cl2, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.30$ (dd, $\left.J_{1}=J_{2}=13.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H} C H C N\right), 7.53-7.47\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}}{ }^{\prime}\right)$, 7.45-7.41 (m, 3H, $\left.\underline{H} 7, \underline{H} 7^{\prime}, \underline{H} 8 / \underline{H} 8^{\prime}\right), 7.31-7.25\left(\mathrm{~m}, 3 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{H} 6\right.$ ', $\left.\mathrm{H} 8 /{ }^{H} 8^{\prime}\right), 6.68\left(\mathrm{dd}, J_{1}=J_{2}=13.1 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHCHCHCN), 6.47 ($\mathrm{d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 6.30 ($\mathrm{d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 4.37 ($\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $4.15\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), 3.34$3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 3.01\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.27\left(\mathrm{tt}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $2.03\left(\mathrm{tt}, J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right.$), $1.99\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{COCH}_{3}\right), 1.74$ (s, $12 \mathrm{H}, \mathrm{CyCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=173.5$ ($\underline{\mathrm{C}} 2, \underline{\mathrm{C}} 2^{\prime}$), 172.9 ($\underline{\mathrm{C}} 3 / \underline{\mathrm{C}} 3$ '),

 $\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 41.9\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 36.5\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 26.7\left(\mathrm{CyCH}_{3}\right), 26.4\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$, $26.5\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $22.7\left(\underline{C H}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}{ }^{+}\right)$calc. for $\mathrm{C}_{33} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}$ [M+H] ${ }^{+}$: 576.2891; Obs.: 576,2905; Vmax: (FT-ATR)/cm${ }^{-1}: 3288,3054,2921,2850$, 1657, 1492, 1452, 1377, 1337, 1217, 1137, 1099, 1016, 926, 796, 708, 593.

A mixture of tert-butyl 4-hydroxybenzoate ($1.00 \mathrm{~g}, 5.15 \mathrm{mmol}$), bromoacetic acid (1.08 $\mathrm{g}, 7.73 \mathrm{mmol}$) and potassium carbonate ($1.92 \mathrm{~g}, 13.9 \mathrm{mmol}$) in dimethylformamide (10 mL) was stirred for 16 h at $80^{\circ} \mathrm{C}$. The mixture was then cooled to r.t. and diluted with water (100 mL). The aqueous was extracted with ethyl acetate $(3 \times 70 \mathrm{~mL})$ and the combined organic layers washed with brine $(2 \times 70 \mathrm{~mL})$, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a white foam (77 $\mathrm{mg}, 0.31 \mathrm{mmol}, 6 \%)$.

Rf: 0.22 (15:85, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.82$ (d, J= $8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 6.80 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 4.45 (s, 2H, CH2 \underline{H}_{2}, 1.52 (s, 9H, ${ }^{\mathrm{B}} \mathrm{Bu}$);

 $\left(\mathrm{CH}_{2}\right), 28.3$ (${ }^{\mathrm{t} B u}$); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 253.1080$; Obs.: 253.1080; $V_{\text {max }}:(F T-A T R) / \mathrm{cm}^{-1}: 3296,2979,2932,1674,1605,1589,1514,1442$, 1317, 1280, 1226, 1154, 1102, 849, 774, 700, 618, 520, 499; m.p.: $185-204^{\circ} \mathrm{C}$.

54

55

A mixture of 54 ($77 \mathrm{mg}, 0.31 \mathrm{mmol}$), N -hydroxysuccinimide ($53 \mathrm{mg}, 0.46 \mathrm{mmol}$) and N -(3-dimethylaminopropyl)- N '-ethylcarbodiimide hydrochloride ($88 \mathrm{mg}, 0.46 \mathrm{mmol}$) in dichloromethane (3 mL) was stirred at r.t. for 3 h . Dichloromethane $(20 \mathrm{~mL})$ was then added and the organics were washed with water $(2 \times 30 \mathrm{~mL})$ and brine $(30 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a colourless oil ($61 \mathrm{mg}, 0.18 \mathrm{mmol}, 56 \%$).

Rf: 0.31 (1:9, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=7.95-7.91$ (m , 2H, Ph브3), 6.94-6.90 (m, 2H, Ph브2), 4.99 (s, 2H, CH2O), 2.82 (s, 4H, OSu), 1.54 (s, 9H, ${ }^{\mathrm{t} B u}$); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CD ${ }_{3} \mathrm{OD}$) $\delta=169.3$ (CON), 168.8 (CON), 165.3

 (OSu); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{17} \mathrm{H}_{19} \mathrm{NO}_{7}[\mathrm{M}+\mathrm{Na}]^{+}: 372.1054$; Obs.: 372.1054.

$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, r.t., 3 h

A mixture of 1 ($67 \mathrm{mg}, 0.13 \mathrm{mmol}$), $55(60 \mathrm{mg}, 0.17 \mathrm{mmol})$ and triethylamine ($91 \mu \mathrm{~L}$, 0.66 mmol) in dichloromethane (3 mL) was stirred for 3 h . The reaction mixture was then concentrated under reduced pressure, and the residue purified via flash column chromatography on silica gel eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil (29 mg , $39 \mu \mathrm{~mol}, 30 \%)$.

Rf. 0.36 (5:95, MeOH:CH2Cl2, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.51$ (dd, $\left.J_{1}=J_{2}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C N\right), ~ 7.92-7.84(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3), 7.53-7.49(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 5$, $\left.\underline{H} 5^{\prime}\right), 7.46-7.34\left(\mathrm{~m}, 3 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}\right), 7.34-7.19\left(\mathrm{~m}, 3 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{\mathrm{H}} 6^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8{ }^{\prime}\right), 7.09-7.00$ (m, 2H, Pḧㅡ) , 6.60 (dd, $J=13.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H C N}$), 6.44 (dd, $J=13.5,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, CHCN), $4.61\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.30\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.14(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.45 (t, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), $2.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), $2.21\left(\mathrm{tt}, J_{1}=J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$), $2.06\left(\mathrm{tt}, J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}\right.$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.74 (s, 12H, CyCH_{3}), $1.52\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{t}} \mathrm{Bu}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ

 $81.0 \quad\left(\underline{\mathrm{C}_{C H}}\right), \quad 68.4\left(\underline{\mathrm{C}_{2}} \mathrm{H}_{2} \mathrm{CO}\right), \quad 50.8 \quad\left(\underline{\mathrm{C}_{2}} \mathrm{SO}_{3}\right), 44.1 \quad\left(\underline{\mathrm{C}_{2}} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 43.1$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 37.7\left(\mathrm{CH}_{2} \mathrm{NH}\right)$, $28.5(\mathrm{CyCH} 3)$, $28.3\left({ }^{(} \mathrm{Bu}\right), 28.3\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), 24.3$ $\left(\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{42} \mathrm{H}_{50} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}: 742.3530$; Obs.: 742.3530; $V_{\text {max }}$: (FT-ATR)/ cm^{-1} : 3410, 2979, 2934, 1752, 1686, 1589, 1450, 1339, 1211, 1145, 1076, 964, 850, 734, 674.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of $56(15 \mathrm{mg}, 20$ $\mu \mathrm{mol})$ in dichloromethane (4 mL) and the mixture stirred at $\mathrm{r} . \mathrm{t}$. for 1 h . The reaction was then added dropwise to diethyl ether (200 mL). The precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was redissolved in methanol (10 mL) and concentrated under reduced pressure to afford a pink oil (10 $\mathrm{mg}, 15 \mu \mathrm{~mol}, 73 \%$).

Rf: 0.23 (1:9, $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.51$ (dd, $J=13.5,4,3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C N), 7.95(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3), 7.54-7.48(\mathrm{~m}, 2 \mathrm{H}$, $\left.\underline{H} 5, \underline{H} 5^{\prime}\right), 7.45-7.34$ ($\left.\mathrm{m}, 3 \mathrm{H}, \underline{\mathrm{H}} 7, \underline{\mathrm{H}} 7^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}\right), 7.30-7.22$ ($\mathrm{m}, 3 \mathrm{H}, \underline{\mathrm{H}} 6, \underline{\mathrm{H}} 6^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8$ '), 7.06 (d, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 6.58 (dd, $J=13.5,4.3 \mathrm{~Hz} 1 \mathrm{H}, \mathrm{C} \underline{H} C N$), 6.41 (dd, $J=13.5$, $4.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} \mathrm{CN}$), $4.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right)$, 4.37-4.26 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 4.15-4.11 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.52-3.39 (m, 2H, CㅐㅡN NH), 3.01-2.94 (m, 2H, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.252.31 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.09-2.03 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.73 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}$); ${ }^{13} \mathrm{C}$

 $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right)$, $24.3\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{38} \mathrm{H}_{42} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$: 686.2917; Obs.: 686.2917; Vmax; (FT-ATR)/cm¹: 2979, 2929, 1709, 1558, 1457, 1430, 1275, 1153, 1114, 928, 750.

57

$-\mathrm{SO}_{3}{ }^{-} \quad 17$

To a solution of $57(10 \mathrm{mg}, 15 \mu \mathrm{~mol})$, $2(12 \mathrm{mg}, 22 \mu \mathrm{~mol})$, and triethylamine ($10 \mu \mathrm{~L}, 73$ $\mu \mathrm{mol}$) in dichloromethane (5 mL), was added propylphosphonic anhydride solution ($50 \% \mathrm{w} / \mathrm{w}$ in EtOAc, $13 \mu \mathrm{~L}, 37 \mu \mathrm{~mol}$) at $0^{\circ} \mathrm{C}$ and the mixture stirred at r.t. for 16 h . The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a purple oil ($12 \mathrm{mg}, 10 \mu \mathrm{~mol}, 10,66 \%$).

Rf: 0.32 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathbf{H} \mathbf{N M R}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.50$ (dd, $J_{1}=J_{2}=13.5 \mathrm{~Hz}, 1 \mathrm{H}$, Cy3-CHCHCN), 8.22-8.16 (m, 2H, CHCHCN), 7.89-7.84
 $\left.6 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 8^{\prime}\right), 7.30-7.21$ ($\left.\mathrm{m}, 6 \mathrm{H}, \underline{\mathrm{H}} 8, \underline{\mathrm{H}} 8^{\prime}, 2 \times \underline{\mathrm{H}} 6,2 \times \underline{\mathrm{H}} 6^{\prime}\right), 7.19-7.15$ (m, 2H, Phㅐㅡ2), 6.57 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cy} 3-\mathrm{CHCN}), 6.46(\mathrm{~d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cy} 3-$ CHCN), $6.40(\mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \boldsymbol{H} C H C H C N), 6.31$ ($\mathrm{d}, J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cy} 5-\mathrm{CHCN}$), 6.18 ($\mathrm{d}, \mathrm{J}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Cy} 5-\mathrm{CHCN}$), 4.65 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 4.36-4.26 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 4.21-4.11 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 3.44-3.50 (m, $4 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}$), 3.01-2.95 (m, 4H, $\mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.19-2.11 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.16-2.04 (m, 4H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.80-1.56 (m, 24H, CyCH H_{3}); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=176.3$ (Cy3$\left.\underline{\mathrm{C}} 2 / \underline{\mathrm{C}} 2^{\prime}\right), 176.1$ (Cy3- $\underline{\mathrm{C}} 2 / \underline{2} 2$ '), 174.9 (Сy3- $\underline{C H C H C N}$), 174.6 (Сy3- $\underline{C} 3 / \underline{\mathrm{C}} 3$ '), 174.4 (Сy3$\underline{C} 3 / \underline{C} 3$ '), 171.1 ($\left.\mathrm{Cy} 5-\underline{\mathrm{C}} 2, \underline{\mathrm{C}} 2^{\prime}\right), 169.8$ (Сy3- $\underline{C O N}$), 162.1, 155.8, 152.4, 143.6 (ㄷ9, $\underline{\mathrm{C}} 9$ '),

 $\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 38.3\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 37.7\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NCO}\right), 28.5\left(\mathrm{Cy}_{3} \underline{\mathrm{CH}}_{3}\right), 28.4$ $\left(\mathrm{Cy}_{\underline{\mathrm{C}}}^{3} 3\right), 28.2\left(\underline{\mathrm{C}_{2}} \mathrm{CH}_{2} \mathrm{NCO}\right), \quad 28.1 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{NCO}\right), 24.8 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right), 24.4$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}{ }^{-}\right)$; HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{69} \mathrm{H}_{80} \mathrm{~N}_{6} \mathrm{O}_{9} \mathrm{~S}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$: 1223.5320; Obs.: 1223.5322; $V_{\max }(F T-A T R) / \mathrm{cm}^{-1}: 3358,2922,2852,1659,1633,1556,1487,1429$, 1454, 1377, 1140, 1035, 925, 797, 750, 708, 552.

5. Synthesis of Cy3 negative controls

58
A mixture of tert-butyl bromoacetate ($1.20 \mathrm{~mL}, 8.20 \mathrm{mmol}$), 4-hydroxybenzaldehyde $(1.00 \mathrm{~g}, 8.20 \mathrm{mmol})$, and potassium carbonate ($1.92 \mathrm{~g}, 14.0 \mathrm{mmol}$) in acetone (15 mL) was stirred at $65^{\circ} \mathrm{C}$ for 16 h . The mixture was then cooled to r.t. and diluted with water $(100 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(3 \times 70 \mathrm{~mL})$, and the combined organics washed with brine ($2 \times 70 \mathrm{~mL}$), dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (1.43 $\mathrm{g}, 6.06 \mathrm{mmol}, 74 \%)$. Data were consistent with those previously reported. ${ }^{9}$

Rf: 0.26 (15:85, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=9.91$ (s, 1 H , CHO), 7.86 ($\mathrm{d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 7.04 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 4.77 ($\mathrm{s}, 2 \mathrm{H}$, CH_{2}), 0.06 (s, $9 \mathrm{H},{ }^{\mathrm{H}} \mathrm{Bu}$); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{4}[\mathrm{M}+\mathrm{H}]^{+}$: 237.1121; Obs.: 237.1119; $V_{\max }$: (FT-ATR)/ cm^{-1} : 2980, 1748, 1691, 1598, 1509, 1368, 1308, 1216, 1148, 1071, 944, 831, 746, 608, 513; m.p.: 191-194 ${ }^{\circ} \mathrm{C}$.

Trifluoroacetic acid (10 mL) was added dropwise to a stirred solution of $58(1.43 \mathrm{~g}$, $6.06 \mathrm{mmol})$ in dichloromethane $(10 \mathrm{~mL})$ and the mixture was stirred at $\mathrm{r} . \mathrm{t}$. for 1 h . The reaction mixture was then concentrated under reduced pressure and the residue was azeotroped with dichloromethane ($3 \times 10 \mathrm{~mL}$) to afford a yellow powder ($1.08 \mathrm{~g}, 6.00$ $\mathrm{mmol}, 99 \%)$. Data were consistent with those previously reported. ${ }^{10}$

Rf: 0.28 (2:8, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}$) $\delta=13.13$ (s, $1 \mathrm{H}, \mathrm{OH}$), 9.83 (s, 1H, CHO$), 7.82$ (d, $J=7.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 7.06 (d, $J=7.9 \mathrm{~Hz}, \mathrm{Ph} \underline{H} 2$), 4.79 (s, 2H, CH2 2); HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{O}_{4}[\mathrm{M}-\mathrm{H}]:$ 179.0350; Obs.: 179.0351; $V_{\text {max }}:(F T-A T R) / \mathrm{cm}^{-1}: 3660,2982,1598,1385,1259,1166,1074,954,750$; m.p.: $191-194^{\circ} \mathrm{C}$;

A reaction mixture of 59 ($100 \mathrm{mg}, 0.56 \mathrm{mmol}$), N-hydroxysuccinimide ($96 \mathrm{mg}, 0.83$ mmol), and N-(3-dimethylaminopropyl)- $N^{\prime \prime}$-ethylcarbodiimide hydrochloride (150 mg , 0.83 mmol) in dichloromethane (2 mL) was stirred at r.t. for 2 h . Dichloromethane (20 mL) was then added and the organic layer was washed with water $(2 \times 30 \mathrm{~mL})$ and brine (30 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure to give a pink foam which was used in the subsequent step without further analysis or purification ($72 \mathrm{mg}, 0.26 \mathrm{mmol}, 46 \%$).

Rf: 0.29 (1:9, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ for aldehyde) $\delta=$ 9.90 (s, 1H, CHO $), 7.87$ (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 7.05 (d, $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 6.08 (s, $\mathrm{CH}_{2} \mathrm{O}$), 2.87 (s, 4H, OSu); HRMS: m/z (ESI+) calc. $\mathrm{C}_{13} \mathrm{H}_{11} \mathrm{NO} 6[\mathrm{M}+\mathrm{H}]^{+}$: 278.0652; Obs.: 278.0652; $V_{\text {max }}$: (FT-ATR)/cm${ }^{-1}$: 2978, 1824, 1785, 1737, 1600, 1508, 1427, 1207, 1165, 1074, 834, 646; m.p.: 142-146 ${ }^{\circ} \mathrm{C}$.

A reaction mixture of $\mathbf{1}(40 \mathrm{mg}, 79 \mu \mathrm{~mol}), 60(22 \mathrm{mg}, 79 \mu \mathrm{~mol})$, and triethylamine (42 $\mu \mathrm{L}, 0.395 \mu \mathrm{~mol})$ in dichloromethane $(2 \mathrm{~mL})$ was stirred at r.t. for 3 h . The reaction mixture was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil ($18 \mathrm{mg}, 27 \mu \mathrm{~mol}, 45 \%$).

Rf: 0.17 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$; in this solvent, a mix of aldehyde and methanol hemi-acetal were formed. Data is provided for the aldehyde form) $\delta=9.82(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CHO}), 8.53\left(\mathrm{dd}, J_{1}=J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}\right.$, CHCHCN), 7.86 ($\mathrm{d}, \mathrm{J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 7.54-7.50 (m, 2H, H $5, ~ H-5 '), ~ 7.45-7.33(\mathrm{~m}$, $\left.3 \mathrm{H}, \underline{H} 7, \underline{H} 7^{\prime}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8^{\prime}\right), 7.31-7.25\left(\mathrm{~m}, 3 \mathrm{H}, \underline{\mathrm{H}} 8 / \underline{\mathrm{H}} 8\right.$ ', $\left.\underline{\mathrm{H}} 6, \underline{\mathrm{H}} 6^{\prime}\right), 7.17(\mathrm{~d}, J=8.5 \mathrm{~Hz} 2 \mathrm{H}$, Phㅐㅓ2), 6.60 ($\mathrm{d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 6.44 ($\mathrm{d}, J=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CHCN}$), 4.55 (s, 2H, $\mathrm{CH}_{2} \mathrm{O}$), 4.32 ($\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), $4.16(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), $3.45\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{NH}\right.$), $2.96\left(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$, 2.27-2.21 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}$), 2.11-2.07 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.76 ($\mathrm{s}, 12 \mathrm{H}, \mathrm{CyCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=192.8$ (ㄷHO), 176.3 (ㄷONH), 176.0 (Ph́ㅜ), 175.9

 $(\underline{\mathrm{C}} H C N), \quad 68.3 \quad\left(\underline{\mathrm{CH}_{2} \mathrm{CO}}\right), \quad 48.0 \quad\left(\mathrm{CH}_{2} \mathrm{SO}_{3}\right), \quad 44.0 \quad\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), \quad 42.9$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), \quad 37.5\left(\mathrm{CH}_{2} \mathrm{NH}\right), \quad 28.1 \quad\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), \quad 26.3 \quad(\mathrm{Cy} \underline{\mathrm{CH}} 3), \quad 24.2$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{38} \mathrm{H}_{43} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}[\mathrm{M}+\mathrm{H}]^{+}$requires 670.2945,
found 670.2928; Vmax: (FT-ATR)/cm${ }^{-1}$: 3378, 2925, 2854, 1713, 1600, 1557, 1457, 1430, 1373, 1218, 1153, 1115, 1037, 928, 795.

62

A mixture of 3-bromophenol ($2.00 \mathrm{~g}, 11.6 \mathrm{mmol}$), tert-butyl bromoacetate (1.71 mL , $11.6 \mathrm{mmol})$, and potassium carbonate ($2.71 \mathrm{~g}, 19.7 \mathrm{mmol}$) in acetone (20 mL) was stirred at $65{ }^{\circ} \mathrm{C}$ for 16 h . After cooling to r.t., water (100 mL) was added, and the aqueous was extracted with ethyl acetate ($3 \times 70 \mathrm{~mL}$). The combined organics were washed with brine ($2 \times 70 \mathrm{~mL}$), dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:petrol (1:9). Fractions containing the product were concentrated under reduced pressure to provide a red oil. ($3.32 \mathrm{~g}, 11.5 \mathrm{mmol}, 99 \%$).

Rf: 0.23 (1:9, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.14-7.10$ (m, $1 \mathrm{H}, \mathrm{Ph} \underline{4} 5$), $7.11-7.08$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 4$), $7.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 6.81 (dd, $J=7.8$, 2.1, $1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), $4.48\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 1.47\left(\mathrm{~s}, 9 \mathrm{H},{ }^{\mathrm{H} B u}\right) ;{ }^{13} \mathrm{C}$ NMR $\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=$
 113.7 (PhC6), 82.8 ($\underline{\mathrm{C} M e} \mathbf{3}_{3}$), 65.8 ($\underline{\mathrm{CH}}_{2} \mathrm{O}$), 28.1 tBu); HRMS: m/z (ESI+) calc. for $\mathrm{C}_{12} \mathrm{H}_{15}{ }^{79} \mathrm{BrO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 309.0097$; Obs.: 309.0096; $\boldsymbol{V}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 2979$, 2933, 1750, 1575, 1474, 1368, 1304, 1215, 1150, 1078, 834, 767.

62 (1.77 g, 6.17 mmol$)$, bis(pinacolato)diboron ($2.35 \mathrm{~g}, 9.25 \mathrm{mmol}$), 1,1'bis(diphenylphosphino)ferrocene]dichloropalladium (II) ($452 \mathrm{mg}, 0.617 \mathrm{mmol}$) and potassium acetate ($3.26 \mathrm{~g}, 33.3 \mathrm{mmol}$) were placed under a nitrogen atmosphere, and anhydrous dioxane (5 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min , which was then stirred at $80^{\circ} \mathrm{C}$ for 1 h . After cooling to r.t., water $(70 \mathrm{~mL})$ was added, and the aqueous was extracted with ethyl acetate $(3 \times 50 \mathrm{~mL})$.

The combined organics were washed with brine ($2 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a white solid (1.76 $\mathrm{g}, 5.27 \mathrm{mmol}, 88 \%)$.

Rf: 0.22 (15:85, EtOAc:petrol, UV active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.41$ (dd, J_{1} $=J_{2}=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), $7.29(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 4), 7.27(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, Ph배2), 7.03 (dd, $J=8.2,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{\mathrm{H}} 6$), 4.53 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 1.47 (s, 9H, ${ }^{\mathrm{t} \mathrm{Bu}), 1.31}$ (s, 12H, C($\left.\mathrm{CH}_{3}\right)_{2}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=168.2$ ($\underline{\mathrm{C}}=\mathrm{O}$), 157.4 ($\mathrm{Ph} \underline{\mathrm{C}} 1$), 129.1
 82.3 ($\underline{C M e}_{3}$), $65.8\left(\underline{C H}_{2} \mathrm{O}\right), 28.1$ (${ }^{\mathrm{B} B u}$), $24.9\left(\mathrm{C}\left(\mathrm{CH}_{3}\right)_{2}\right)$; HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{18} \mathrm{H}_{27} \mathrm{BO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 357.1855$; Obs.: 357.1844; $V_{\max }:(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 2979$, 2993, 1754, 1576, 1428, 1355, 1317, 1213, 1147, 1085, 065, 852, $775,705,673,599$; m.p.: $65-69{ }^{\circ} \mathrm{C}$.

Trifluoroacetic acid (5 mL) was added dropwise to a solution of $63(500 \mathrm{mg}, 1.50 \mathrm{mmol})$ in dichloromethane (15 mL) and the mixture was stirred at r.t. for 3 h . The reaction mixture was then concentrated under reduced pressure and azeotroped with dichloromethane ($3 \times 20 \mathrm{~mL}$) to afford a white powder. ($344 \mathrm{mg}, 1.24 \mathrm{mmol}, 83 \%$).

Rf: 0.22 (1:9, EtOAc:petrol, UV active); ${ }^{1} \mathrm{H}$ NMR (600 MHz , DMSO-d6) $\delta=7.32$ (dd, J $=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.27 (ddd, $J=7.2,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 4$), 7.11 (dd, $J=2.8$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2), 7.05$ (ddd, $J=8.1,2.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), 4.69 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), 1.30 (s, 12H, C($\left.\mathrm{CH}_{3}\right)_{2}$); 13C NMR (101 MHz, DMSO- d_{6}) $\delta=170.7$ ($\underline{\mathrm{C}}=\mathrm{O}$), 157.8 ($\mathrm{Ph} \underline{\mathrm{C}} 1$),
 $\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 64.8\left(\underline{\mathrm{CH}_{2} \mathrm{O}}\right), 25.1\left(\mathrm{C}\left(\underline{\mathrm{CH}}_{3}\right)_{2}\right)$; HRMS: $\mathrm{m} / \mathrm{z}(\mathrm{ESI})$ calc. for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{BO}_{5}[\mathrm{M}-\mathrm{H}]:$: 277.1263; Obs.:277.1263; $v_{\text {max: }}(F T-A T R) / \mathrm{cm}^{-1}: 3059,2979,2932,1737,1575,1428$, 1356, 1143, 1064, 964, 705; m.p.: $155-158^{\circ} \mathrm{C}$.

Oxalyl chloride ($46 \mu \mathrm{~L}, 0.540 \mathrm{mmol}$) was added to a solution of 64 (50 mg , 0.180 mmol), and dimethylformamide (1 drop) in dichloromethane (3 mL), and the mixture was stirred at r.t. for 30 min . Excess oxalyl chloride and dichloromethane were removed under reduced pressure to give the crude product as an orange oil, which was carried forward without further purification.

4-Dimethylaminopyridine ($75 \mathrm{mg}, 0.62 \mathrm{mmol}$) was added to a mixture of $\mathbf{1}(77 \mathrm{mg}, 0.15$ mmol), 65 ($77 \mathrm{mg}, 0.24 \mathrm{mmol}$), and potassium carbonate ($62 \mathrm{mg}, 0.44 \mathrm{mmol}$) in anhydrous dichloromethane (5 mL) and the reaction stirred at r.t. for 3 h . The reaction mixture was then added dropwise to diethyl ether (400 mL), and the resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air to give a pink powder. The precipitate was then purified via flash column chromatography on silica gel eluting with $\mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil. The residue was then redissolved in dichloromethane (30 mL), and the organics were washed with hydrochloric acid ($0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL}$) to remove co-ordinating 4dimethylaminopyridine, dried with MgSO_{4}, filtered, and concentrated under reduced pressure, to give a pink oil ($5 \mathrm{mg}, 6 \mu \mathrm{~mol}, 4 \%$).

Rf: 0.34 ($5: 95, \mathrm{MeOH}: \mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=8.54$ (d, $\left.J_{1}=J_{2}=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C N\right), 7.57-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} \mathbf{5}^{\prime}\right), 7.49-7.37(\mathrm{~m}, 4 \mathrm{H}, \underline{\mathrm{H}} 7$,
 ($\mathrm{m}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), 7.11-7.07 (m, 1H, Ph패2), 6.57 (d, $J=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N), 6.46$ (d, J $=13.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C N$), $4.56\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 4.33-4.26\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 4.18$ (t, $\left.J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.47\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 3.00(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}$), $2.25\left(\mathrm{tt}, J_{1}=J_{2}=7.8 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 2.11\left(\mathrm{tt}, J_{1}=J_{2}=7.5\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.79 (s, 12H, CyCH3 3); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=176.3$

 125.4 (ㄷ6, $\underline{\mathrm{C}} 6^{\prime}$), 122.1 ($\left.\underline{\mathrm{C}} 5, \underline{\mathrm{C}} 5^{\prime}\right), 119.1$ (Ph ($\underline{C} 8 / \underline{\mathrm{C}} 8$) , 102.7 ($\underline{\mathrm{C}} \mathrm{HCN}$), 102.6 ($\underline{\mathrm{CHCN}), ~} 66.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CO}\right), 46.8$ ($\left.\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{SO}_{3}\right), 42.5$ $\left(\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right),} 41.4\left(\underline{\left.\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right),} 36.0\left(\underline{\mathrm{C}}{ }_{2} \mathrm{NH}\right), 26.9 \quad\left(\mathrm{CyCH}_{3}\right), 26.6\right.\right.$
 790.3668; Obs.: 790.3712; $\boldsymbol{V}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3378,2921,2850,1558,1457,1430$, 1372, 1152, 1114, 749.

A solution of $66(5 \mathrm{mg}, 6.5 \mu \mathrm{~mol})$ and methylboronic acid ($4 \mathrm{mg}, 65.3 \mu \mathrm{~mol}$) in a mixture of dichloromethane $(5 \mathrm{~mL})$ and trifluoroacetic acid $(0.5 \mathrm{~mL})$ was stirred at $\mathrm{r} . \mathrm{t}$. for 4 h . The reaction mixture was then concentrated under reduced pressure. The residue was azeotroped with hydrochloric acid ($0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL}$) to give a pink oil ($4 \mathrm{mg}, 6.5 \mu \mathrm{~mol}$, quantitative yield).

Rf: 0.29 (5:95, MeOH: $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, visible light active); ${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.54$ (dd, $\left.J_{1}=J_{2}=13.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} C H C N\right), 7.57-7.53\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H}} 5, \underline{\mathrm{H}} 5^{\prime}\right), 7.49-7.40(\mathrm{~m}, 3 \mathrm{H}$, $\left.\underline{H} 7, \underline{H} 7^{\prime}, \underline{H} 8 / \underline{H} 8{ }^{\prime}\right), 7.34-7.27$ ($\left.\mathrm{m}, 3 \mathrm{H} \underline{\mathrm{H}} 6, \underline{\mathrm{H}} 6^{\prime}, \underline{\mathrm{H}} 8 / \underline{H}^{\prime}{ }^{\prime}\right), 6.62-6.52$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{C} \underline{H} \mathrm{CN}$), 6.486.42 (m, 1H, CㅐCN), 4.56 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $4.29\left(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$),
$4.18\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), 3.48\left(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 2.99(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{SO}_{3}$), $2.25\left(\mathrm{tt}, J_{1}=J_{2}=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right.$), $2.11\left(\mathrm{tt}, J_{1}=J_{2}=7.5\right.$ $\mathrm{Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}$), 1.78 (s, $12 \mathrm{H}, \mathrm{CyCH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=174.6$
 (두4, $\underline{C} 4$ '), 128.7 (Ph
 ($\underline{\mathrm{C}} \mathrm{HCN}$), 102.7 ($\underline{\mathrm{C}} H C N$), $66.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CO}\right), 49.2\left(\underline{\mathrm{C}_{2}} \mathrm{SO}_{3}\right), 42.5\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right), 41.4$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{NH}\right), \quad 36.0 \quad\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), \quad 27.0 \quad\left(\mathrm{CyCH}_{3}\right), \quad 26.9 \quad\left(\underline{\mathrm{C}_{2}} \mathrm{CH}_{2} \mathrm{NH}_{2}\right), \quad 22.7$ $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SO}_{3}\right)$; HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{37} \mathrm{H}_{44} \mathrm{BN}_{3} \mathrm{O}_{7} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}: 708.2882$; Obs.: 708.2885; $V_{\max }$: (FT-ATR)/ cm^{-1} : 3321, 2923, 1663, 1559, 1429, 1373, 1229, 1151, 1113, 1039, 756;

5. Synthesis of OBA substrates for NMR and LC-MS studies

Propylamine ($3.78 \mathrm{~mL}, 45.4 \mathrm{mmol}$) was added to a solution of bromoacetyl bromide $(2.00 \mathrm{~mL}, 22.6 \mathrm{mmol})$ in dichloromethane $(40 \mathrm{~mL})$ and stirred at r.t. for 30 min . The mixture was then diluted with water (150 mL) and the aqueous extracted with dichloromethane ($3 \times 70 \mathrm{~mL}$). The combined organics were washed with brine (2×200 mL), dried with MgSO_{4}, filtered, and concentrated under reduced pressure to provide a colourless oil ($3.40 \mathrm{~g}, 19.0 \mathrm{mmol}, 84 \%$).

Rf: 0.32 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.67$ (s, 1H, NH), 3.88 (s, $2 \mathrm{H}, \mathrm{C} \underline{H_{2} \mathrm{Br}}$), 3.28-3.15 (m, 2H, C- $\underline{2}_{2} \mathrm{~N}$), 2.00-1.91 ($\mathrm{m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.92(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=165.8(\underline{\mathrm{CON}}), 42.0\left(\underline{\mathrm{C}_{2}} \mathrm{NH}\right), 29.4\left(\underline{\mathrm{CH}} \mathrm{H}_{2} \mathrm{Br}\right)$, $22.6\left(\underline{C H}_{2} \mathrm{CH}_{3}\right), 11.3\left(\underline{\mathrm{C}}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{5} \mathrm{H}_{10}{ }^{79} \mathrm{BrNO}[\mathrm{M}+\mathrm{H}]^{+}$: 181.0019; Obs.: 181.0020; Vmax: (FT-ATR)/cm¹: 3265, 3073, 2965, 2934, 2876, 1738, 1650, 1550, 1460, 1437, 1313, 1211, 1150, 953, 651, 550.

A mixture of 2-bromo-4-hydroxybenzaldehyde ($1.56 \mathrm{~g}, 8.57 \mathrm{mmol}$), 68 ($1.72 \mathrm{~g}, 8.57$ $\mathrm{mmol})$ and potassium carbonate $(2.01 \mathrm{~g}, 14.6 \mathrm{mmol})$ in acetonitrile $(30 \mathrm{~mL})$ was stirred at $75^{\circ} \mathrm{C}$ for 16 h . The mixture was then cooled to $\mathrm{r} . \mathrm{t}$. and diluted with water (150 mL). The aqueous was extracted with ethyl acetate ($3 \times 70 \mathrm{~mL}$), and the combined organics washed with brine ($2 \times 200 \mathrm{~mL}$), dried with MgSO_{4}, filtered, and concentrated under reduced pressure to provide an orange oil ($2.50 \mathrm{~g}, 8.32 \mathrm{mmol}, 97 \%$). Data were consistent with those previously reported. ${ }^{3}$

Rf: 0.30 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$); $\delta=10.20$ (s, 1H, PhCOH), 7.89 (d, J = $8.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.17 (d, $J=2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 6.96 (dt, $J=$ $8.7,2.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{4} 4), 6.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$,
 $\left.\mathrm{CDCl}_{3}\right)$) $\delta=190.5$ ($\mathrm{Ph} \underline{\mathrm{COH}}$), 166.6 ($\underline{\mathrm{CON}}$), 161.8 ($\mathrm{Ph} \underline{\mathrm{C}} 3$), 131.8 (Ph 5), 128.8 (Ph 6),
 $11.4(\underline{\mathrm{CH}} 33)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 324.0028; Obs.: 324.0028; $V_{\text {max }}$: (FT-ATR)/ cm^{-1} : 3319, 2974, 2934, 2876, 1679, 1590, 1540, 1412, 1336, 1215, 1142, 965, 852, 831, 675, 578.

69 ($300 \mathrm{mg}, 1.00 \mathrm{mmol}$), bis(pinacolato)diboron ($660 \mathrm{mg}, 2.60 \mathrm{mmol}$), 1,1'[bis(diphenylphosphino)ferrocene]dichloropalladium(II) (146 mg, 0.20 mmol), and potassium acetate ($530 \mathrm{mg}, 5.40 \mathrm{mmol}$) were placed under a nitrogen atmosphere, and anhydrous dioxane (20 mL) was added. The reaction was degassed under a constant flow of nitrogen for 10 min , and then stirred at $80^{\circ} \mathrm{C}$ for 16 h . After cooling to r.t., the reaction was concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8).

Fractions containing the product were concentrated under reduced pressure to yield a colourless oil ($34 \mathrm{mg}, 95 \mu \mathrm{~mol}, 9 \%$).

Rf: 0.25 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.29(\mathrm{~s}, 1 \mathrm{H}$, PhCOH $), 7.86$ (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 7.00 (dd, $J=8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 6.80 (t , $J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6), 6.51(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.51\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.22\left(\mathrm{dt}, J_{1}=J_{2}=6.6 \mathrm{~Hz}\right.$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}$), 1.51-1.45 (m,2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.30(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Pin}), 0.84-0.79\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta=193.0(\underline{\mathrm{COH}}), 167.8(\underline{\mathrm{CON}}), 160.7$ (Ph 1$), 135.6$ (Ph 4$)$,
 $\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 67.1\left(\underline{\mathrm{C}}_{2} \mathrm{O}\right), 40.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 24.8(\mathrm{Pin}), 22.7\left(\underline{\left.\mathrm{C}_{2} \mathrm{CH}_{3}\right), 11.3\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right) ; \text { HRMS: }}\right.$ $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 370.1796$; Obs.: 370.1802; $V_{\text {max: }}$ (FTATR)/ cm^{-1} : 3315, 2966, 2933, 2875, 1657, 1542, 1422, 1336, 1213, 1141, 1060, 964, 812, 675, 578.

Trifluoroacetic acid (2 mL) was added to a solution of $70(34 \mathrm{mg}, 95 \mu \mathrm{~mol})$ and methylboronic acid ($57 \mathrm{mg}, 0.95 \mathrm{mmol}$) in dichloromethane (10 mL), and the mixture stirred at r.t for 16 h . The reaction was concentrated under reduced pressure and the residue azeotroped with dichloromethane ($3 \times 20 \mathrm{~mL}$), then hydrochloric acid (0.1 M , $2 \times 10 \mathrm{~mL}$), to give a brown oil ($25 \mathrm{mg}, 95 \mu \mathrm{~mol}$, quantitative yield).

Rf: 0.18 (3:7, EtOAc:Petrol, UV active); ${ }^{1}$ H NMR ($400 \mathrm{MHz}, 100 \mathrm{mM}$ deuterated PBS $\left.+10 \% \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=9.84(\mathrm{~s}, 1 \mathrm{H},-\mathrm{C} \underline{\mathrm{HO}}$), 7.97-8.01 (m, 1H, Ph븡), 7.21-7.14 (m, 2H,
 $\left.=6.9 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.88\left(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, 100 \mathrm{mM}$ deuterated PBS + 10\% DMSO-d6) $\delta=195.2$ (-ㄷHO), 170.3 (ㄷON), 161.9 (Ph́ㅜ1),
 $\left(\underline{\mathrm{CH}_{2} \mathrm{O}}\right), 40.9\left(\underline{\mathrm{C}}_{2} \mathrm{~N}\right), 21.9\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 10.6\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right) ;$ HRMS: m/z (ESI+) calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BNO}_{5}[\mathrm{M}-\mathrm{H}]^{+}: 288.1014$; Obs.: 288.1018; $\boldsymbol{V}_{\text {max: }}$ (FT-ATR)/cm ${ }^{-1}$: 3329, 3010, 2996, 2980, 1690, 1592, 1555, 1456, 1320, 1286, 1130, 911, 750, 512.

71

A mixture of 2-bromo-4-hydroxybenzaldehyde ($800 \mathrm{mg}, 4.00 \mathrm{mmol}$), bromoacetate 68 (864 mg, 4.80 mmol) and potassium carbonate ($1.10 \mathrm{~g}, 8.00 \mathrm{mmol}$) in dimethylformamide (30 mL) was stirred at $75^{\circ} \mathrm{C}$ for 16 h . The mixture was then cooled to $\mathrm{r} . \mathrm{t}$. and diluted with water $(150 \mathrm{~mL})$. The aqueous mixture was extracted with ethyl acetate $(3 \times 70 \mathrm{~mL})$, and the combined organics washed with brine $(2 \times 200 \mathrm{~mL})$, dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a white solid ($700 \mathrm{mg}, 2.34 \mathrm{mmol}, 59 \%$).

Rf: 0.32 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.29$ (s, 1 H , CHO), 7.59 (d, $J=8.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 6$), 7.45 ($\mathrm{d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 7.07 (dd, $J=$ $8.6,1,6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), $6.50(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.36-3.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{~N}\right)$, 1.59-1.53 (m, 2H, $\underline{\mathrm{H}}_{2} \mathrm{CH}_{3}$), $0.94\left(\mathrm{t}, J=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)

 $\left(\underline{\mathrm{CH}}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}{ }^{+}\right)$calc. for $\mathrm{C}_{12} \mathrm{H}_{14}{ }^{79} \mathrm{BrNO}_{3}[\mathrm{M}+\mathrm{H}]^{+}: 300.0231$; Obs.: 300.0231; $V_{\text {max }}$: (FT-ATR)/cm¹: 3350, 3075, 2963, 2870, 1667, 1540, 1285, 1227, 1068, 959, 824, 695, 597.

71

dioxane, $80^{\circ} \mathrm{C}, 2 \mathrm{~h}$

72

71 (200 mg, 0.66 mmol), bis(pinacolato)diboron (205 mg, 0.80 mmol), 1,1'[bis(diphenylphosphino)ferrocene]dichloropalladium(II) ($24 \mathrm{mg}, 0.03 \mathrm{mmol}$) and potassium acetate ($194 \mathrm{mg}, 2.00 \mathrm{mmol}$) were placed under a nitrogen atmosphere, and anhydrous dioxane (5 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min , which was then stirred at $80^{\circ} \mathrm{C}$ for 2 h . After cooling to r.t., the
reaction was concentrated under reduced pressure. The residue was then dissolved in ethyl acetate (100 mL), and washed with water $(2 \times 70 \mathrm{~mL})$ and brine $(2 \times 70 \mathrm{~mL})$, and dried with MgSO_{4}, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil ($190 \mathrm{mg}, 0.548 \mathrm{mmol}, 83 \%$).

Rf. 0.34 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.64$ (s, 1H, CHㅡ), 7.90 (d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.51 (d, $J=2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 7.13 (dd, $J=$ $8.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{6} 6$), $6.55(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 4.54\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{~N}$), 1.62-1.51 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.36(\mathrm{~s}, 12 \mathrm{H}, \mathrm{Pin}), 0.92\left(\mathrm{t}, \mathrm{J}=7.6 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.4$ (등), 167.4 (ㅡCON), 159.5 (PhC-1), 143.8
 $67.3\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{O}\right), 40.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 25.0(\mathrm{Pin}), 22.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 11.4\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right) ;$ HRMS: m/z (ESI+) calc. for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{H}]^{+}: 348.1977$; Obs.: 348.1981; Vmax: (FT-ATR)/cm ${ }^{-1}$: 3323, 2975, 1685, 1663, 1596, 1538, 1378, 1344, 1269, 1243, 1112, 1042, 962, 857, 652, 579.

Trifluoroacetic acid (2.0 mL) was added to a solution of $72(132 \mathrm{mg}, 0.42 \mathrm{mmol})$ and methylboronic acid ($216 \mathrm{mg}, 3.60 \mathrm{mmol}$) in dichloromethane (10 mL), and the mixture stirred at r.t for 16 h . The reaction was azeotroped with dichloromethane ($3 \times 20 \mathrm{~mL}$), and hydrochloric acid ($0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL}$) was added, and concentrated under reduced pressure to give a colourless oil ($98 \mathrm{mg}, 0.42 \mathrm{mmol}$, quantitative yield).

Rf: 0.21 (2:8, EtOAc:Petrol, UV active); ${ }^{1}$ H NMR ($400 \mathrm{MHz}, 100 \mathrm{mM}$ deuterated PBS $+10 \%$ DMSO- d_{6}) $\delta=9.97$ (s, 1H, -Cㅐㅡㅇ), 7.69-7.59 (m, 1H, Ph브), 7.54 ($\mathrm{d}, \mathrm{J}=2.4$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2), 7.32(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5), 4.70\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}\right), 3.24(\mathrm{t}, J=6.9 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{~N}$), 1.57-1.47 (m,2H, $\underline{H}_{2} \mathrm{CH}_{3}$), $0.85\left(\mathrm{t}, \mathrm{J}=7.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$; ${ }^{13} \mathrm{C}$ NMR (101
 114.2 (Ph́ㅡ 6$), 111.9$ ($\mathrm{Ph} \underline{C} 3$), 102.3 ($\mathrm{Ph} \underline{\mathrm{C}} 2$), $66.9\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{O}\right), 40.6\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 22.4\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}\right)$, $10.4\left(\underline{\mathrm{CH}_{3}}\right)$; HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{BNO}_{5}[\mathrm{M}+\mathrm{Na}]^{+}: 288.1014$; Obs.:
288.1016; $V_{\max }:(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3395,2968,2938,2875,1661,1548,1426,1348$, 1274, 1230, 1148, 807.

To a solution of 3-bromo-4-formylbenzoic acid ($1.00 \mathrm{~g}, 4.37 \mathrm{mmol}$), propylamine (430 $\mu \mathrm{L}, 5.24 \mathrm{mmol})$ and triethylamine ($2.79 \mathrm{~mL}, 21.8 \mathrm{mmol}$) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50\% w/w in EtOAc, $3.47 \mathrm{~mL}, 10.9$ mmol) at $0^{\circ} \mathrm{C}$ and the mixture was warmed to r.t. and stirred for 16 h . The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (1:9). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil ($547 \mathrm{mg}, 2.03 \mathrm{mmol}, 46 \%$).
$\boldsymbol{R f}_{f} 0.28$ (1:9, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.36(\mathrm{~s}, 1 \mathrm{H}$, CHㅇ), 8.04 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 2$), 7.93 (d, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 5$), 7.74 (dd, $J=$ $8.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 4), 6.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 3.44-3.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH} 2 \mathrm{~N}), 1.67-1.61(\mathrm{~m}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.98\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=191.3$ ($\underline{\mathrm{C}} \mathrm{HO}$),
 (Ph드), $42.2\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 22.9\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 11.5\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right) ;$ HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}{ }^{+}\right)$calc. for $\mathrm{C}_{11} \mathrm{H}_{12}{ }^{79} \mathrm{BrNO}_{2}$ [M+H] ${ }^{+}$: 270.1260; Obs.: 270.0124; $V_{\text {max: }}(F T-A T R) / \mathrm{cm}^{-1}: 3313,3075,2965,2934,2875$, 1698, 1642, 1545, 1467, 1441, 1313, 1288, 1202, 1039, 891, 846, 758, 653.

73

74

73 (265 mg, 0.981 mmol), bis(pinacolato)diboron ($648 \mathrm{mg}, 2.55 \mathrm{mmol}$), 1,1'[bis(diphenylphosphino)ferrocene]dichloropalladium(II) (144 mg, 0.196 mmol) and potassium acetate ($520 \mathrm{mg}, 5.30 \mathrm{mmol}$) were placed under a nitrogen atmosphere, and anhydrous dioxane (15 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min , which was then stirred at $80^{\circ} \mathrm{C}$ for 16 h . After cooling to
r.t., the reaction was concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil ($206 \mathrm{mg}, 0.619 \mathrm{mmol}, 24 \%$).

Rf: 0.37 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=10.52$ (s, 1 H ,
 $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{NH}$), 3.38-3.31 (m, 2H, CH2N), 1.58 (dt, $J_{1}=J_{2}=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.32 (s, 12H, Pin), 0.91 (t, J = $7.5 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=194.2$

 $\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 11.5\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$; HRMS: m/z (ESI-) calc. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BNO}_{4}$ [M-Pin]: 234.0943; Obs.: 234.0948; $V_{\text {max }}$ (FT-ATR)/cm${ }^{-1}$: 3358, 2977, 1643, 1535, 1452, 1371, 1341, 1141, 982, 851, 673, 578,

Trifluoroacetic acid (1.0 mL) was added to a solution of 74 ($70 \mathrm{mg}, 0.22 \mathrm{mmol}$) and methylboronic acid ($132 \mathrm{mg}, 2.21 \mathrm{mmol}$) in dichloromethane (5 mL), and the mixture stirred at r.t for 16 h . The reaction was azeotroped with dichloromethane ($3 \times 20 \mathrm{~mL}$), and hydrochloric acid $(0.1 \mathrm{M}, 2 \times 10 \mathrm{~mL})$ was added, and concentrated under reduced pressure to give a yellow oil ($52 \mathrm{mg}, 0.22 \mathrm{mmol}$, quantitative yield).

Rf: 0.29 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, for acetal) $\delta=$ 7.76-7.66 (m, 2H, Ph배, Ph브), 7.37 (d, J = $8.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{Ph} \underline{H} 3$), 5.45 (s, 1H, $\left.\mathrm{CH}(\mathrm{OMe})_{2}\right), 3.27-3.19\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{~N}\right), 1.53\left(\mathrm{dt}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.86(\mathrm{t}, J=$ $7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$, for acetal) $\delta=168.8$ (CON), 144.3
 $102.3\left(\underline{\mathrm{C} H}(\mathrm{OMe})_{2}\right), 84.1\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{2}\right), 41.5\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 23.7(\mathrm{Pin}), 22.4\left(\underline{\left.\mathrm{C}_{2} \mathrm{CH}_{3}\right), 10.5}\right.$ $\left(\underline{\mathrm{CH}}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{BNO}_{4}[\mathrm{M}-\mathrm{H}]^{+}: 234.0943$; Obs.: 234.0945; $V_{\text {max }}$: (FT-ATR)/ cm^{-1} : 3314, 2967, 2932, 1693, 1639, 1540, 1343, 1316, 1206, 1141, 1066, 964, 851, 813, 760.

6. Synthesis of nucleophiles for NMR and LC-MS studies, and FRET controls

A mixture of 38 ($154 \mathrm{mg}, 0.38 \mathrm{mmol}$), propylamine ($96 \mu \mathrm{~L}, 1.15 \mu \mathrm{~mol}$), and triethylamine ($266 \mu \mathrm{~L}, 1.92 \mathrm{mmol}$) in dichloromethane (5 mL) was stirred at r.t. for 3 h . The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil ($35 \mathrm{mg}, 0.10 \mathrm{mmol}, 27 \%$).

Rf: 0.38 (3:7, EtOAc:Petrol); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.72$ (s, 1H, NHPr), 5.84 (s, 1H, BocNHCH), 5.26 (s, 1H, BocNHCH2), 4.16 (dt, $\left.J_{1}=J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} H \mathrm{HBoc}\right)$, 3.49-3.40 (m, 2H, CH2 H $_{2}$ NBoc), $3.22-3.15\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right.$), 1.49 ($\mathrm{q}, \mathrm{J}=7.5 \mathrm{~Hz}$, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.43-1.39 (m, 18H, $2 \times \mathrm{Boc}$), $0.88\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz,
 $\left(\underline{(}\left(\mathrm{CH}_{3}\right)_{3}\right), 55.7 \underline{(\mathrm{CHNHBoc}),} 42.5\left(\underline{\mathrm{C}} \mathrm{H}_{2} N H B o c\right), 41.2\left(\underline{\left.\mathrm{C}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 28.4 \text { (Boc), } 28.4}\right.$ (Boc), $22.8\left(\underline{C H}_{2} \mathrm{CH}_{3}\right), 11.4\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{16} \mathrm{H}_{32} \mathrm{~N}_{3} \mathrm{O}_{5}[\mathrm{M}+\mathrm{H}]^{+}$:
 1518, 1365, 1249, 1163, 1078, 868, 780, 644.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of 74 ($30 \mathrm{mg}, 87$ $\mu \mathrm{mol})$ in dichloromethane $(5 \mathrm{~mL})$ and the solution was stirred at $\mathrm{r} . \mathrm{t}$. for 3 h . The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane ($4 \times 30 \mathrm{~mL}$) to obtain a colourless oil. ($13 \mathrm{mg}, 87 \mu \mathrm{~mol}$, quantitative yield).

Rf: 0.24 (3:7, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=4.21(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 1 \mathrm{H}$, CHCO), 3.47-3.26 (m, 3H, CH2NH, CONHCH2 $)_{2}$, 3.12 (dt, J = 13.7, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$, $\left.\mathrm{ONHCH}_{2}\right), 1.55\left(\mathrm{tq}, J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.93\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$
 $\left(\underline{\mathrm{C}}_{2} \mathrm{NH}_{3}{ }^{+}\right), 21.9\left(\underline{\mathrm{CH}}_{2} \mathrm{CH}_{3}\right), 10.3\left(\underline{\mathrm{C}}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{6} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$: 146.1288; Obs.: 146.1288; $\boldsymbol{V}_{\text {max: }}\left(\right.$ FT-ATR)/cm ${ }^{-1}: 3287,2968,2938,2879,1649,1553$, 1462, 1200, 1136, 837, 800, 722.

A mixture of 42 ($371 \mathrm{mg}, 2.81 \mathrm{mmol}$), 68 ($603 \mathrm{mg}, 3.37 \mathrm{mmol}$), and potassium carbonate ($776 \mathrm{mg}, 5.62 \mathrm{mmol}$) in dimethylformamide (5 mL) was stirred at $80^{\circ} \mathrm{C}$ for 30 min . The mixture was then cooled to r.t. and diluted with water (50 mL). The aqueous was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), and the combined organics washed with brine $(2 \times 30 \mathrm{~mL})$, dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil ($532 \mathrm{mg}, 2.30 \mathrm{mmol}, 82 \%$).
$\boldsymbol{R f}$: 0.36 (2:8, EtOAc:Petrol); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.56$ (s, 1H, NHPr), 6.40 (s, 1H, NHBoc), 4.19 (s, 1H, NHNHBoc), 3.46 (s, 2H, CㅐㅡㄴCO), 3.20 (t, J=7.4 Hz, 2H, $\mathrm{CH}_{2} \mathrm{NH}$), 1.55-1.49 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), 1.41 (s, 9H, Boc), $0.90\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=170.1$ ($\underline{\mathrm{CON}), ~} 156.8$ ($\underline{\mathrm{COBoc}), ~} 81.0\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right) 3\right), 55.5$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{O}\right), 41.0\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 28.3(\mathrm{Boc}), 22.8\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 11.5\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$; HRMS: m/z (ESI+) calc. for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}: 254.1475$; Obs.: 254.1469; $\boldsymbol{v}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3298$, 2969, 2934, 2877, 1714, 1650, 1545, 1460, 1367, 1282, 1250, 1159, 1046. 1022, 849, 754, 593.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of 76 ($70 \mathrm{mg}, 0.142$ mmol) in dichloromethane (5 mL), and the solution was stirred at r.t. for 16 h . The reaction mixture was then concentrated under reduced pressure and azeotroped with dichloromethane ($4 \times 30 \mathrm{~mL}$) to obtain a colourless oil. ($40 \mathrm{mg}, 0.142 \mathrm{mmol}$, quantitative yield).

Rf: 0.24 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=3.62\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NHNH}_{3}{ }^{+}\right)$, 3.16 (t, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{NHCO}$), $1.58-1.48\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.91(\mathrm{t}, J=7.3 \mathrm{~Hz}$,
 $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 22.2\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 10.3\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right) ;$ HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{5} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}[\mathrm{M}+\mathrm{Na}]^{+}$: 132.1131; Obs.: 132.1130; $\boldsymbol{V}_{\text {max: }}(F T-A T R) / \mathrm{cm}^{-1}: 3300,2965,2934,2876,1651,1543$, 1460, 1201, 1146, 721.

To a solution of Boc-Gly-OH ($150 \mathrm{mg}, 0.857 \mathrm{mmol}$), propylamine ($178 \mu \mathrm{~L}$, 2.14 mmol) and triethylamine ($593 \mu \mathrm{~L}, 4.29 \mathrm{mmol}$) in dichloromethane (5 mL), was added propylphosphonic anhydride solution ($50 \% \mathrm{w} / \mathrm{w}$ in EtOAc, $681 \mu \mathrm{~L}, 2.14 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture stirred at r.t. for 16 h . The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil ($132 \mathrm{mg}, 0.71 \mathrm{mmol}, 49 \%$).

Rf: 0.32 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=6.22$ (s, $1 \mathrm{H}, \mathrm{NHCO}$), 5.21 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NHBoc}$), 3.75 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{C} \underline{H}_{2} \mathrm{CO}$), $3.21\left(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right)$, 1.54-1.46 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.43(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 0.90\left(\mathrm{t}, \mathrm{J}=7.2,3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \mathbf{N M R}\left(101 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta=169.5(\underline{\mathrm{CON}}), 156.0$ ($\underline{\mathrm{COBoc}), ~} 80.4\left(\underline{\mathrm{CH}_{2} \mathrm{O}}\right), 44.6\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 41.2\left(\underline{\mathrm{C}_{2}} \mathrm{~N}\right), 28.4$ (Boc), $22.8\left(\underline{C H}_{2} \mathrm{CH}_{3}\right), 11.4\left(\underline{\mathrm{C}}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$: 239.1366; Obs.: 239.1367; $V_{\text {max: }}(F T-A T R) / \mathrm{cm}^{-1}: 3312,2968,2933,2876,1656,1512$, 1365, 1248, 1164, 1049, 940, 864, 735, 551, 462.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of $78(90 \mathrm{mg}, 0.42$ mmol) in dichloromethane (5 mL) and the solution was stirred at $\mathrm{r} . \mathrm{t}$. for 3 h . The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane $(4 \times 30 \mathrm{~mL})$ to obtain a colourless oil. ($48 \mathrm{mg}, 0.42 \mathrm{mmol}$, quantitative yield).
$\boldsymbol{R f}$: 0.32 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta=8.29$ (m, 1H, NH), 3.68 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CO}$), $3.16\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$), 1.51 (dt, $J_{1}=J_{2}=7.3 \mathrm{~Hz}, 2 \mathrm{H}$, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.89\left(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=165.8$ (ㄷON), $41.0\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{O}\right), 40.2\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{~N}\right), 22.8\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 10.29\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$; HRMS: m/z (ESI $\left.{ }^{+}\right)$calc. for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}: 117.1022 ;$ Obs.: 117.1022; $\boldsymbol{v}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 3305,2926,1663$, 1576, 1436, 1275, 1130, 840, 916, 798, 723, 518.

To a solution of Boc-Cys(Trt)-OH (200 mg, 0.431 mmol), propylamine ($54 \mu \mathrm{~L}, 0.647$ $\mathrm{mmol})$, and triethylamine ($300 \mu \mathrm{~L}, 2.16 \mathrm{mmol}$) in dichloromethane (5 mL), was added propylphosphonic anhydride solution ($50 \% \mathrm{w} / \mathrm{w}$ in EtOAc, $343 \mu \mathrm{~L}, 1.08 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture stirred at r.t. for 16 h . The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (205 mg, $0.43 \mathrm{mmol}, 99 \%$).

Rf: 0.29 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=7.44-7.38$ (m, 6H, Ph배2), 7.31-7.25 (m, 6H, Ph브3), 7.23-7.18 (m, 3H, Phㅂ4), 5.94 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NHBoc}$), 4.80-4.64 (m, 1H, NHPr), 3.80 ($\mathrm{d}, \mathrm{J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} \underline{H} N H B o c$), 3.16-3.09 (m, 2H, $\mathrm{CH}_{2} \mathrm{NH}$), 2.74-2.66 (m, 1H, CㅐㅡSTrt), 2.53-2.45 (m, 1H, CㅐㅡㅇTrt), 1.50-1.42 (m, 2H, $\mathrm{CH}_{2} \mathrm{CH}_{3}$), $1.40(\mathrm{~s}, 9 \mathrm{H}, \mathrm{Boc}), 0.86\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$)
 (CㅐㅡNHBoc), 67.3 ($\left.\mathrm{CH}_{2} \mathrm{STrt}\right), 41.3\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right)$, $28.4(\mathrm{Boc}), 22.8\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 11.4\left(\underline{\mathrm{C}}_{3}\right)$;

HRMS: m/z (ESI ${ }^{+}$) calc. for $\mathrm{C}_{30} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+}$: 527.2335; Obs.: 527.2335; Vmax: (FT-ATR)/cm¹: 3300, 3058, 2967, 2931, 2875, 1655, 1526, 1489, 1366, 1248, 1165, 1047, 865, 739, 698, 621, 505.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of $80(195 \mathrm{mg}$, 0.41 mmol) and triisopropylsilane ($439 \mu \mathrm{~L}, 2.04 \mathrm{mmol}$) in dichloromethane (5 mL), and the mixture stirred at r.t. for 16 h . The reaction was then concentrated under reduced pressure to $\sim 5 \mathrm{~mL}$, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a colourless oil. ($67 \mathrm{mg}, 0.41 \mathrm{mmol}$, quantitative yield).

Rf: 0.18 (2:8, EtOAc:Petrol, UV active); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=3.98-3.90$ (m, $1 \mathrm{H}, \mathrm{CHNH}_{3}{ }^{+}$), 3.29-3.15 (m, 2H, $\mathrm{CH}_{2} \mathrm{NH}$), 3.04-2.87 (m, 2H, CH \underline{H}_{2} STrt), 1.59-1.48 (m, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}$), $0.92\left(\mathrm{t}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=166.9$ $(\underline{\mathrm{C} O N}), 54.8\left(\underline{\mathrm{C}} \mathrm{HNH}_{3}{ }^{+}\right), 41.2\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right), 25.0\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{SH}\right), 22.1\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 10.4\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}[\mathrm{M}+\mathrm{Na}]^{+}: 185.0719$; Obs.: 185.0720; $\boldsymbol{v}_{\text {max }}$: (FTATR)/cm¹: 3286, 3090, 2966, 1655, 1571, 1265, 1181, 1133, 838, 798, 722, 517.

To a solution of $42(115 \mathrm{mg}, 0.602 \mathrm{mmol})$, propylamine ($125 \mu \mathrm{~L}, 1.51 \mathrm{mmol}$) and triethylamine ($416 \mu \mathrm{~L}, 3.01 \mathrm{mmol}$) in dichloromethane (5 mL), was added propylphosphonic anhydride solution ($50 \% \mathrm{w} / \mathrm{w}$ in EtOAc, $479 \mu \mathrm{~L}, 1.51 \mathrm{mmol}$) at $0{ }^{\circ} \mathrm{C}$ and the mixture was warmed to r.t. and stirred for 16 h . The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the
product were concentrated under reduced pressure to provide a colourless oil (65 mg , $0.28 \mathrm{mmol}, 46 \%)$.
$\boldsymbol{R f}$: 0.36 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.15$ ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$), 4.24 (s, $2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{O}$), $3.20\left(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right.$), $1.51\left(\mathrm{dt}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 1.42$ (s, 9H, Boc), 0.88 (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=169.1$ (드NH), 158.0 ($\underline{\mathrm{C} O B o c}$), 82.8 ($\left.\left(\mathrm{CH}_{3}\right)_{3}\right), 76.1\left(\underline{\left.\mathrm{C}_{2} \mathrm{CO}\right), ~} 40.9\right.$ ($\left.\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right)$, 28.2 (Boc), $22.6\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CH}_{3}\right), 11.5\left(\underline{\mathrm{C}}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}$: 255.1315; Obs.: 255.1311; $V_{\text {max: }}(F T-A T R) / \mathrm{cm}^{-1}: 3285,2969,2934,2877,1724,1650,1552$, 1459, 1368, 1252, 1162, 1110, 776, 586.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of $82(60 \mathrm{mg}, 0.26$ mmol) in dichloromethane (5 mL) and the solution was stirred at r.t. for 3 h . The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane ($4 \times 30 \mathrm{~mL}$) to obtain a colourless oil. ($34 \mathrm{mg}, 0.26 \mathrm{mmol}$, quantitative yield).

Rf: 0.27 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=4.20$ (s, 2H, $\mathrm{CH}_{2} \mathrm{CO}$), $2.92\left(\mathrm{t}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{NH}\right), 1.26\left(\mathrm{dt}, J_{1}=J_{2}=7.4 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{CH}_{3}\right), 0.64(\mathrm{t}, J=$ $\left.7.4 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR ($\left.101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=168.5(\underline{\mathrm{CONH}}), 71.4\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{CO}\right), 40.6$ $\left(\underline{\mathrm{C}} \mathrm{H}_{2} \mathrm{NH}\right)$, $22.2\left(\underline{\mathrm{C}}_{2} \mathrm{CH}_{3}\right), 10.3\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}$: 133.0972; Obs.: 133.0967; $V_{\max }$ (FT-ATR)/cm¹: 3288, 3089, 2966, 2877, 1654, 1544, 1460, 1201, 1084, 833, 580.

Methylamine ($1.00 \mathrm{~mL}, 22.6 \mathrm{mmol}$) was added to a solution of bromoacetyl bromide $(1.00 \mathrm{~mL}, 11.3 \mathrm{mmol})$ in dichloromethane (30 mL) and stirred at r.t. for 30 min . The mixture was then diluted with water (70 mL) and the aqueous was extracted with ethyl acetate $(3 \times 70 \mathrm{~mL})$. The combined organics were washed with brine $(2 \times 100 \mathrm{~mL})$,
dried with MgSO_{4}, filtered, and concentrated under reduced pressure to provide a colourless oil ($1.56 \mathrm{~g}, 1.03 \mathrm{mmol}, 91 \%$).

Rf: 0.29 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=3.80\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.73(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right) ;{ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl 3) $\delta=167.8(\underline{\mathrm{CON}}), 53.2\left(\underline{\mathrm{C}} \mathrm{H}_{2}\right), 25.7\left(\underline{\mathrm{C}_{3}}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{NO}[\mathrm{M}+\mathrm{Na}]^{+}$: 193.9525; Obs.: 193.9525; $\boldsymbol{v}_{\text {max: }}$ (FT-ATR)/cm ${ }^{-}$ ${ }^{1}$: 2956, 1736, 1437, 1280, 1165, 1113, 1006, 884, 708, 670, 549.

A mixture of 42 ($500 \mathrm{mg}, 3.79 \mathrm{mmol}$), $84(732 \mathrm{mg}, 4.55 \mathrm{mmol})$, and potassium carbonate ($1.05 \mathrm{~g}, 7.58 \mathrm{mmol}$) in dimethylformamide (10 mL) was stirred at $80^{\circ} \mathrm{C}$ for 3 h . The mixture was then cooled to r.t. and diluted with water (70 mL). The aqueous was extracted with ethyl acetate ($3 \times 50 \mathrm{~mL}$), and the combined organics washed with brine ($2 \times 50 \mathrm{~mL}$), dried with MgSO_{4}, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil ($50 \mathrm{mg}, 0.25 \mathrm{mmol}, 6 \%$).

Rf: 0.26 (2:8, EtOAc:Petrol); ${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data provided for major rotamer) $\delta=6.53$ (s, 1H, NHMe), 3.78-3.68 (m, 3H, C프3), 3.60 (s, 2H, Cㅐㅡㄴ), 1.40 (s, $9 \mathrm{H}, \mathrm{Boc}$); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$, data provided for major rotamer) $\delta=171.9$ (드N), 162.9 (ㄷCOBoc), $81.0\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 53.0\left(\mathrm{CH}_{2}\right), 52.2\left(\mathrm{CH}_{3}\right), 28.6\left(\mathrm{C}\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right)_{3}\right)$; HRMS: Product was not observed via HRMS; Vmax: (FT-ATR)/cm¹: 3320, 2978, 1714, 1438, 1367, 1209, 1149, 1049, 1017, 779.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of $84(43 \mathrm{mg}, 0.21$ mmol) in dichloromethane (5 mL) and the solution was stirred at r.t. for 16 h . The reaction mixture was then concentrated under reduced pressure and azeotroped with
dichloromethane ($4 \times 30 \mathrm{~mL}$) to obtain a colourless oil ($22 \mathrm{mg}, 0.21 \mathrm{mmol}$, quantitative yield).
$\boldsymbol{R f}: 0.18$ (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($\left.400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta=3.82-3.76\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 3.78-3.70 (m, 3H, C르3); ${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=171.8(\underline{\mathrm{C} O N}), 52.9\left(\underline{\mathrm{CH}_{2}}\right)$, $50.6\left(\underline{\mathrm{C}}_{3}\right)$; HRMS: Product was not observed via HRMS; $\boldsymbol{V}_{\text {max: }}(\mathrm{FT}-\mathrm{ATR}) / \mathrm{cm}^{-1}: 2959$, 1730, 1438, 1205, 1154, 1047, 1005, 907, 761.

To a solution of 42 ($300 \mathrm{mg}, 1.57 \mathrm{mmol}$), methylamine ($140 \mu \mathrm{~L}, 3.14 \mathrm{mmol}$), and triethylamine ($1.09 \mathrm{~mL}, 7.85 \mathrm{mmol}$) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, $1.25 \mathrm{~mL}, 3.93 \mathrm{mmol}$) at 0 ${ }^{\circ} \mathrm{C}$, and the mixture was then stirred at r.t. for 16 h . The reaction was concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a white solid ($145 \mathrm{mg}, 0.71 \mathrm{mmol}$, 45\%).
$\boldsymbol{R f}$: 0.31 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta=8.03$ (s, 1H, NHBoc), 7.60 (s, 1H, NHMe), 4.33 (s, 2H, CH2 \underline{H}_{2}, 2.86 (s, 3H, C \underline{H}_{3}), 1.48 (s, 9H, Boc); ${ }^{13} \mathrm{C}$ NMR (101 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta=169.4(\underline{\mathrm{CONH}}), 157.9$ (COBoc$), 83.4\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 76.6\left(\underline{\mathrm{CH}_{2} \mathrm{CO}}\right), 28.2$ $\left(\underline{\mathrm{C}}\left(\mathrm{CH}_{3}\right)_{3}\right), 25.8\left(\underline{\mathrm{C}} \mathrm{H}_{3}\right) ;$ HRMS: $\mathrm{m} / \mathrm{z}\left(\mathrm{ESI}^{+}\right)$calc. for $\mathrm{C}_{8} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+}: 227.1002$; Obs.: 227.1008; $V_{\max }:(F T-A T R) / \mathrm{cm}^{-1}: 3287,2979,2939,1723,1658,1559,1480,1369$, 1280, 1253, 1163, 1112, 977, 583.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of $86(60 \mathrm{mg}, 0.26$ mmol) in dichloromethane (5 mL) and stirred at r.t. for 3 h . The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane (4×30 mL) to obtain a colourless oil. ($34 \mathrm{mg}, 0.26 \mathrm{mmol}$, quantitative yield).

Rf: 0.22 (2:8, EtOAc:Petrol); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta=4.50\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80$ (s, 3H, C르3); ${ }^{13} \mathrm{C}$ NMR (101 MHz, CD 3 OD$) \delta=170.1(\underline{\mathrm{CON}})$, $72.7\left(\mathrm{CH}_{2}\right), 25.9\left(\mathrm{CH}_{3}\right)$; HRMS: $\mathrm{m} / \mathrm{z}\left(E I^{+}\right)$calc. for $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+}: 105.0659$; Obs.: 105.0652; Vmax: (FTATR)/cm ${ }^{-1}: 3313,2924,1654,1553,1414,1199,1135,1085,834,800,722,577$.

7. Determination of substrate concentration via UV-Vis analysis

Due to the low amounts of Cy3 and Cy5 substrates synthesised, and the potential for errors in mass calculations that could result, the concentrations of stock solutions of each substrate were calculated from a calibration curve of 1 or 2 of known concentrations. Briefly, stock dilutions of 1 or 2 were made in water to concentrations in the range of $0.1-400 \mu \mathrm{M}$ (at least 6 data points). Absorbance spectra were then recorded in the range 400-600 nm, and the absorbance at the $\lambda_{\max }$ plotted as a function of concentration (Cy3: 543 nm ; Cy5: 641 nm).

Aliquots of each substrate were then serially diluted in water to generate samples for measurement. Concentrations were then determined for appropriately dilute samples for which absorbance at $\lambda_{\max }$ fell within the linear range of the calibration curves.

8. Initial screening of Cy3 quenching

General procedure: A solution of Cy5-nucleophile ($50 \mu \mathrm{~L}, 100 \mu \mathrm{M}$) in PBS buffer was added to a solution Cy3-oBA $5(50 \mu \mathrm{~L}, 10 \mu \mathrm{M})$ in PBS buffer in a 96 -well plate, to give final Cy3 and Cy5 concentrations of $5 \mu \mathrm{M}$ and $50 \mu \mathrm{M}$ respectively (pseudo-first order). Single-point fluorescence emission intensities ($\lambda_{\text {excitation }}=480 \mathrm{~nm}$; $\lambda_{\text {emission }}=580 \mathrm{~nm}$) in the Cy3 channel were then recorded every 1 min for a period of 100 min .

Negative control: Run as for the general procedure, using Cy5-NHAc 16 ($50 \mu \mathrm{~L}, 100$ $\mu \mathrm{M})$

Positive control: The emission of a solution of Cy3-Cy5 covalent control 17 (100 $\mu \mathrm{L}$, $5 \mu \mathrm{M})$ was recorded over time as described above.

Data processing: Emission at 580 nm was plotted as a function of time, relative to the negative (100\%) and positive (0%) controls.

Cy3 controls: Run as for the general procedure, using either Cy3-benzaldehyde 61 or Cy3-phenylboronic acid $67(50 \mu \mathrm{~L}, 10 \mu \mathrm{M})$.

Controls to validate quenching via FRET: Run as for the general procedure, using PrNH-capped nucleophiles 26, 77, 79, 81, or $83(50 \mu \mathrm{~L}, 100 \mu \mathrm{M})$ in place of the Cy5nucleophile.

9. FRET studies

General procedure: FRET studies were performed in a $700 \mu \mathrm{~L}$ fluorescence cuvette under second-order conditions. A solution of Cy5-nucleophile ($300 \mu \mathrm{~L}, 5 \mu \mathrm{M}$) in the stated buffer was added to a solution of Cy3-oBA $5(300 \mu \mathrm{~L}, 5 \mu \mathrm{M})$ in the same buffer and rapidly mixed by pipetting up and down. Fluorescence emission spectra between 520-700 nm were recorded immediately after mixing, and then subsequently ever 15 seconds for a total of 100 measurements. The delay between mixing and the measurement of the first spectra was ~ 3 seconds. All measurements were performed in triplicate.

Negative control: Run as for the general procedure, using Cy5-NHAc 16 (300 $\mu \mathrm{L}, 5$ $\mu \mathrm{M})$.

Positive control: The emission of a solution of Cy3-Cy5 covalent control 17 ($600 \mu \mathrm{~L}$, $2.5 \mu \mathrm{M}$) was recorded over time as described above.

Data processing: The ratio of the emission at the $\lambda_{\max }$ of Cy3 (Emiss560) and Cy5 (Emiss657) was used to determine the FRET ratio (Emiss560/Emiss657). As the initial spectra were recorded at $t=3 \mathrm{sec}$, a plot of $1 /[E m i s 5560 / 657$] against time and linear regression analysis was used to determine Emiss560/657 at $t=0$ (intercept of linear regression). A minimum of 4 data points that lay within the initial linear region of this plot were included in this analysis. Emiss700 was used as a background measurement and subtracted from Emiss560/657 prior to analysis.

Conversion of FRET ratios to conversion: Data from the positive and negative controls was used to account for drift in the system and to calculate the expected FRET ratio for 0% and 100% conjugation at $t=\mathrm{x}$, averaged across three triplicates:
i) 0\% conjugation: Changes in Emiss560/657 from the negative control over the period of the measurement were fitted to a linear regression analysis, generating the gradients of drift $a_{560 / 657}$. The 0% conjugation FRET reference, A, then equals:

$$
A=\frac{{ }^{0} \text { Emiss }_{560}+\left(a_{560} \times x\right)}{{ }^{0} \text { Emiss }_{657}+\left(a_{657} \times x\right)}
$$

ii) 100\% conjugation: Changes in Emiss560/657 from the positive control over the period of the measurement were fitted to a linear regression analysis, generating the gradients of drift $b_{560 / 657}$ and the emissions at $t=0,{ }^{0} C_{560 / 657}$. The 100% conjugation FRET reference, B, then equals:

$$
B=\frac{{ }^{0} c_{560}+\left(b_{560} \times x\right)}{{ }^{0} c_{657}+\left(b_{657} \times x\right)}
$$

Conversion can then be calculated from:

$$
\text { Conversion }=\frac{A-F R E T}{A-B} \times 100
$$

Conversions over time were then averaged over the three triplicates and standard deviations at each time point calculated

Data fitting: Data were fit to a second order reversible kinetic model in Copasi 4.34.251. k_{1} and k_{-1} were estimated using the evolutionary programming method built into the software, with 200 generations and a population size of 20. Parameters were restricted within the confines of: $k_{1} 10^{-6}-10^{7} \mathrm{M}^{-1} \mathrm{~s}^{-1} ; k_{-1} 10^{-8}-10^{3} \mathrm{~s}^{-1}$.

10. LC-MS reversibility studies

General procedure: Stock solutions of $25(3 \mu \mathrm{~L}, 38 \mathrm{mM}, 114 \mathrm{nmol})$ and propyl amide nucleophile 83 or $77(6 \mu \mathrm{~L}, 38 \mathrm{mM}, 228 \mathrm{nmol})$ in methanol were added sequentially to the relevant buffer ($300 \mu \mathrm{~L}$, final oBA concentration $370 \mu \mathrm{M}$) and shaken for 30 min . At this point, a stock solution of the analogous methyl amide nucleophile 20 or 21 (30 $\mu \mathrm{L}, 38 \mathrm{mM}, 1140 \mathrm{nmol}$) was added and the mixture incubated at room temperature. Aliquots were analysed via LC-MS analysis every 24 h for 1 week.

Negative control: Run as described above, but methanol ($30 \mu \mathrm{~L}$) was added in place of the methyl amide nucleophile.

Positive control: Run as described above, but methanol $(6 \mu \mathrm{~L})$ was added in place of the propyl amide nucleophile.

Data analysis: The absorbance at 280 nm at time $t=\mathrm{x}\left(A_{\mathrm{x}}\right)$ was integrated for peaks relating to propyl-oBID (elution time: 2.90 min) products. A plot of In(Integration) was used to determine the integration at $t=0$ (intercept of linear regression). Data from the positive controls was used to calculate the expected integration at 100% exchange (B). Conversions were then calculated from:

$$
\text { Conversion }=\frac{A_{0}-A_{x}}{A_{0}-B} \times 100
$$

Data fitting: Data were fit to a two-reaction reversible kinetic model using Copasi 4.34.251, based on the following reactions:

k_{1} calculated from the FRET studies were used to estimate k_{-1}, using the evolutionary programming method built into the software, with 200 generations and a population size of 20 , and with the assumption that rates of reactions were the same for propyland methyl-amide nucleophiles. Parameters were restricted within the confines of: $k-1$ $10^{-10}-10^{-1} \mathrm{~s}^{-1}$.

11. NMR studies of pH dependent DAB-hydrazone exchange

Solutions of oBA $25(5 \mathrm{mg}, 19 \mu \mathrm{~mol})$ in DMSO-d $(25 \mu \mathrm{~L})$ and propyl-amide hydrazine $77(4.6 \mathrm{mg}, 19 \mu \mathrm{~mol})$ in DMSO- d_{6} were added sequentially to deuterated buffers (450 $\mu \mathrm{L}, 100 \mathrm{mM}$; pH 4 - acetate buffer, pH 5, 6, 7.4, 8 - phosphate buffer; prepared by evaporating standard buffer and then redissolving the residue in $\mathrm{D}_{2} \mathrm{O}$ three times) and
incubated for 30 min . The sample was then analysed by NMR and the ratio of DAB to hydrazone determined. In all cases, only signals from the cyclic DAB were observed, indicated by a singlet at $\delta \sim 8.6$, as previously reported by Gu et al. ${ }^{11}$

12. NMR studies of sugar binding

Solutions of oBA $25(2.5 \mathrm{mg}, 9 \mu \mathrm{~mol})$ in DMSO- $d_{6}(25 \mu \mathrm{~L})$ and either propyl-amide hydrazine 77 or hydroxylamine $83(9 \mu \mathrm{~mol})$ in DMSO-d6 were added sequentially to deuterated PBS ($450 \mu \mathrm{~L}, 100 \mathrm{mM}$; prepared by evaporating standard buffer and then redissolving the residue in $\mathrm{D}_{2} \mathrm{O}$ three times) and incubated for 30 min . Glucose or fructose ($9 \mu \mathrm{~mol}$) was then added and the samples incubated for a further 30 min . After this time the samples were analysed by NMR and shifts in the oxime/DAB peaks used to determine the extent of sugar binding. In all cases, no shift in signal was observed indicating no sugar binding was taking place under these conditions.

13. NMR studies of analogue reaction equilibria

General procedure: oBA 25 ($2 \mathrm{mg}, 7.5 \mu \mathrm{~mol}$) and another oBA analogue, 22-24 (7.5 $\mu \mathrm{mol})$, were dissolved in a mixture of deuterated PBS $(0.5 \mathrm{~mL}, 100 \mathrm{mM}$; prepared by evaporating standard PBS and then redissolving the residue in $\mathrm{D}_{2} \mathrm{O}$ three times) and DMSO- $d_{6}(50 \mu \mathrm{~L})$. A solution of 1,2-diamine $26(1.1 \mathrm{mg}, 7.5 \mu \mathrm{~mol})$ in deuterated PBS (0.5 mL) was then added and the mixture incubated for 2 hrs , prior to NMR analysis.

Data analysis: Peaks relating to oBID formation for both 25 and the oBA analogue competitor were identified via prior control reactions in which each oBA was incubated with 26 alone. Integration of peaks that fell within unique regions of the spectra relating
to oBID formation were used to determine the ratio of products formed. This ratio was then used to calculate K_{d} for each analogue, as follows:

$$
K_{\mathrm{d}}(\mathbf{2 5})=\frac{[\mathbf{A}][\mathbf{B}]}{[\mathbf{C}]} \quad K_{\mathrm{d}}(\boldsymbol{X})=\frac{[\mathbf{D}][\mathbf{B}]}{[\mathbf{E}]}
$$

Assuming $K_{d}(\mathbf{2 5})=K_{d}(\mathbf{5})$, which is known from our FRET studies, these equations can be rearranged to:

$$
[B]=\frac{[\mathbf{C}] K_{\mathrm{d}}(\mathbf{5})}{[\mathbf{A}]} \quad K_{\mathrm{d}}(\boldsymbol{X})=\frac{[\mathbf{D}][\mathbf{C}]}{[\mathbf{E}][\mathbf{A}]} K_{\mathrm{d}}(\mathbf{5})
$$

14. DFT

Calculations were performed to identify the relative energies of the imidazolidinoboronates 91-95 formed between model substrates 87-90 and ethylenediamine. The relative energies of intermediates and transition states were determined using the TURBOMOLE V6.4 package using the resolution of identity (RI) approximation. ${ }^{12-19}$ Initial optimisations were performed at the (RI-)BP86/SV(P) level, followed by frequency calculations at the same level. All minima were confirmed as such by the absence of imaginary frequencies. Single-point energies were then performed on the (RI-)BP86/SV(P) optimised geometries using the hybrid PBEO functional and the flexible def2-TZVPP basis set. Energies, xyz coordinates and the first 50 lines of the vibrational spectra are presented. Solvation effects were modelled using COMSO ${ }^{20}$ using the dielectronic constant of 78.2 for water and energies were corrected for dispersion using Grimme's D3-method with Becke-Johnson dampening. ${ }^{21}$

Differences in energy between aldehydes 88-90 and imidazolidino-boronates 92-94, relative to the energy difference between aldehyde 87 and imidazolidino-boronate 91.


```
SCF Energy (au)BP86/SV(P) -674.9440225343
SCF Energy (au)PBE0/def2-TZVPP -674.9308469654
SCF Energy (au)PBE0/def2-TZVPP -674.9532019095 (H2O Correction)
Zero Point Energy (au) 0.1888044
Chemical Potential (kJ mol-1) 386.35
Dispersion Correction (au) PBE0/def2-TZVPP -0.02324058
```

xyz coordinates
Energy = -674.9440225343

O	0.1229231	0.2566308	2.2691099
C	-0.3831042	0.2529079	1.0117610
C	-1.7247219	0.6933151	0.8880434
H	-2.2607038	1.0042750	1.7982604
C	-2.3279417	0.7147554	-0.3673593
H	-3.3758318	1.0485868	-0.4677091
C	-1.6123663	0.3084333	-1.5190090
C	-2.2472719	0.3208490	-2.8451379
C	-0.2648622	-0.1323970	-1.4130654
C	0.3340958	-0.1565716	-0.1407737
H	1.3725067	-0.5090888	-0.0449698
C	1.4652611	-0.1905523	2.4973762
C	1.7428751	-0.0918841	3.9895334
H	2.1752183	0.4442802	1.9157179
H	1.5757650	-1.2413014	2.1387234

B	0.5657355	-0.5979504	-2.6935615
O	1.3233065	0.2628537	-3.4641737
O	0.7193913	-1.9454335	-2.8970460
H	1.2582170	-2.0933026	-3.7054397
H	1.0912610	1.2007071	-3.3093381
H	1.6343672	0.9559426	4.3428952
H	2.7789774	-0.4302677	4.2062575
H	1.0376194	-0.7290728	4.5649349
H	-3.3268260	0.6586063	-2.8730183
O	-1.6738907	-0.0043208	-3.8820117

\$vibrational spectrum \# mode symmetry		wave number	IR intensity	selection rules	
		cm** (-1)	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	32.60	0.29671	YES	YES
8	a	59.47	0.14740	YES	YES
9	a	85.73	1.16228	YES	YES
10	a	103.79	0.56832	YES	YES
11	a	116.68	5.39791	YES	YES
12	a	122.86	3.87764	YES	YES
13	a	137.78	10.50889	YES	YES
14	a	213.73	2.31304	YES	YES
15	a	217.02	3.50938	YES	YES
16	a	261.80	0.16675	YES	YES
17	a	280.86	4.72200	YES	YES
18	a	290.73	2.40361	YES	YES
19	a	319.04	2.92983	YES	YES
20	a	359.36	7.26941	YES	YES
21	a	401.72	1.43017	YES	YES
22	a	455.23	68.91350	YES	YES
23	a	466.39	35.73710	YES	YES
24	a	493.82	13.51565	YES	YES
25	a	544.15	21.64311	YES	YES
26	a	554.12	21.30955	YES	YES
27	a	617.06	8.35809	YES	YES
28	a	624.34	30.34825	YES	YES
29	a	632.83	67.02284	YES	YES
30	a	686.74	5.27673	YES	YES
31	a	735.21	1.98373	YES	YES
32	a	811.49	36.01370	YES	YES
33	a	813.08	0.11214	YES	YES
34	a	817.54	23.26148	YES	YES
35	a	867.51	13.75104	YES	YES
36	a	876.10	4.05614	YES	YES
37	a	937.92	21.01572	YES	YES
38	a	943.69	0.37931	YES	YES
39	a	968.15	134.73842	YES	YES
40	a	985.95	0.63291	YES	YES
41	a	1003.86	138.29590	YES	YES
42	a	1041.32	18.16669	YES	YES
43	a	1057.69	143.17251	YES	YES
44	a	1106.83	18.69413	YES	YES
45	a	1113.53	11.41937	YES	YES

46	a	1142.58	3.88275	YES	YES
47	a	1211.72	84.69479	YES	YES
48	a	1244.38	63.71511	YES	YES
49	a	1266.50	2.30874	YES	YES
50	a	1276.66	353.78756	YES	YES

| SCF Energy (au)BP86/SV(P) | -788.9406342711 |
| :--- | :--- | :--- |
| SCF Energy (au)PBE0/def2-TZVPP -788.9253276879 | |
| SCF Energy (au)PBE0/def2-TZVPP -788.9473947863 | (H20 Correction) |
| Zero Point Energy (au) | 0.2758400 |
| Chemical Potential (kJ mol | |
| Dispersion Correction (au) PBE0/def2-TZVPP | -0.03331502 |

xyz coordinates
34

O	0.9899580	-0.0449146	3.3529898
C	0.4667609	-0.1027417	2.0925335
C	-0.8984918	0.2339073	1.9683906
H	-1.4525093	0.5217452	2.8763760
C	-1.5185551	0.1976461	0.7144989
H	-2.5810070	0.4666748	0.5975692
C	-0.8066750	-0.1839085	-0.4392565
C	-1.4717173	-0.1617649	-1.8098950
C	0.5640050	-0.5310371	-0.3327214
C	1.1896539	-0.4712039	0.9370550
H	2.2543873	-0.7437827	1.0181176
N	-2.9288865	0.1600810	-1.7913571
N	-0.8367965	0.8554651	-2.6638820
C	-1.8581630	1.1625053	-3.6741741
H	-1.8344296	0.3713715	-4.4588992
H	-1.6531834	2.1381534	-4.1639778
C	2.3556563	-0.4001573	3.5558619
C	2.6573487	-0.2780990	5.0427110
H	3.0187859	0.2752676	2.9611927
H	2.5357294	-1.4436400	3.1994127
B	1.4453406	-0.9639174	-1.5728429
O	2.6967897	-0.4186876	-1.7997094
O	1.0418140	-1.9838088	-2.3996487
H	1.7071870	-2.1138094	-3.1109314
H	2.8643027	0.3329171	-1.1944079
C	-3.1939919	1.1114965	-2.8896169
H	-3.4855202	-0.6961625	-1.8976481
H	-3.4462559	2.1228081	-2.4871024
H	-4.0556896	0.7873835	-3.5156344
H	-0.6665468	1.6941016	-2.0851981
H	-1.3061406	-1.1517411	-2.2998667
H	2.4860790	0.7619611	5.3946299
H	3.7168728	-0.5480603	5.2426811
H	2.0038884	-0.9560485	5.6327499

\$vibrational spectrum

mode	symmetry	wave number$c m^{* *}(-1)$	IR intensity km/mol	selection rules	
				IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	32.46	1.32549	YES	YES
8	a	40.97	2.68258	YES	YES
9	a	51.66	0.11918	YES	YES
10	a	75.95	0.36585	YES	YES
11	a	95.13	0.28409	YES	YES
12	a	98.26	0.14764	YES	YES
13	a	102.32	0.24753	YES	YES
14	a	128.55	2.21866	YES	YES
15	a	131.79	2.47801	YES	YES
16	a	202.27	0.33551	YES	YES
17	a	213.48	0.64153	YES	YES
18	a	252.74	1.99361	YES	YES
19	a	262.36	0.46050	YES	YES
20	a	281.69	4.01542	YES	YES
21	a	312.62	4.84903	YES	YES
22	a	323.17	3.21589	YES	YES
23	a	390.64	4.09645	YES	YES
24	a	411.73	3.00280	YES	YES
25	a	436.81	0.50164	YES	YES
26	a	493.47	25.43168	YES	YES
27	a	508.77	113.08135	YES	YES
28	a	534.05	10.23991	YES	YES
29	a	545.71	37.10191	YES	YES
30	a	582.58	46.20626	YES	YES
31	a	603.54	29.32661	YES	YES
32	a	613.23	2.51359	YES	YES
33	a	623.82	15.41473	YES	YES
34	a	667.15	58.97105	YES	YES
35	a	690.21	6.87422	YES	YES
36	a	740.82	4.20967	YES	YES
37	a	788.89	12.36679	YES	YES
38	a	806.29	36.88200	YES	YES
39	a	815.21	3.71629	YES	YES
40	a	841.54	12.53565	YES	YES
41	a	854.07	33.43152	YES	YES
42	a	859.27	10.26141	YES	YES
43	a	871.22	11.46102	YES	YES
44	a	892.07	37.04017	YES	YES
45	a	905.67	8.55998	YES	YES
46	a	937.16	21.95969	YES	YES
47	a	945.86	36.11721	YES	YES
48	a	971.76	11.93884	YES	YES
49	a	972.52	78.17454	YES	YES
50	a	984.94	6.11996	YES	YES

SCF Energy (au)BP86/SV(P)

SCF Energy (au)PBE0/def2-TZVPP -674.9275964242
SCF Energy (au)PBE0/def2-TZVPP -674.9498077236 ($\mathrm{H}_{2} \mathrm{O}$ Correction)
Zero Point Energy (au)
Chemical Potential (kJ mol ${ }^{-1}$) 385.49
Dispersion Correction (au) PBE0/def2-TZVPP -0.02309721
xyz coordinates
25

C	0.8692490	-0.2257113	0.7959236
C	-0.4933351	0.1470849	0.7817398
O	-1.2467293	0.3952855	1.8872224
C	-1.1462022	0.2753851	-0.4623468
H	-2.2125705	0.5562666	-0.4742417
C	-0.4484443	0.0409857	-1.6599565
C	-1.1696590	0.1687176	-2.9471273
C	0.9268066	-0.3308772	-1.6705095
C	1.5508787	-0.4593147	-0.4161465
H	2.6117724	-0.7592731	-0.3633153
B	1.7364544	-0.6019414	-3.0137117
O	2.3881120	0.3873014	-3.7246896
O	1.9662966	-1.9047792	-3.3751826
H	2.4899450	-1.9267254	-4.2065726
H	2.1209506	1.2835536	-3.4374479
H	-2.2637207	0.4468256	-2.8688666
O	-0.6509369	-0.0052088	-4.0423814
H	1.4116867	-0.3426130	1.7458226
C	-0.6582688	0.2460222	3.1812092
H	-0.2756138	-0.7962551	3.3033303
C	-1.7256349	0.5569297	4.2200851
H	0.2109718	0.9401257	3.2840675
H	-2.1002831	1.5962815	4.1009766
H	-1.3046897	0.4495908	5.2429648
H	-2.5870355	-0.1376568	4.1191539

\$vibrational spectrum wave number IR intensity selection rules					
\#		cm** (-1)	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	31.64	0.24155	YES	YES
8	a	43.04	0.40078	YES	YES
9	a	82.54	0.56006	YES	YES
10	a	106.67	0.52903	YES	YES
11	a	112.90	1.19890	YES	YES
12	a	126.18	4.91741	YES	YES
13	a	141.32	8.38718	YES	YES
14	a	205.15	3.52309	YES	YES
15	a	226.48	4.78505	YES	YES
16	a	257.07	3.30743	YES	YES
17	a	258.98	3.85558	YES	YES
18	a	279.68	2.29754	YES	YES
19	a	339.90	5.23091	YES	YES
20	a	379.61	0.90233	YES	YES
21	a	402.91	2.40395	YES	YES

22	a	449.69	11.90479	YES	YES
23	a	467.58	50.36263	YES	YES
24	a	471.87	80.36941	YES	YES
25	a	555.14	28.28682	YES	YES
26	a	561.10	15.75117	YES	YES
27	a	589.64	3.77702	YES	YES
28	a	632.43	33.65381	YES	YES
29	a	669.46	24.59020	YES	YES
30	a	697.17	27.98071	YES	YES
31	a	734.85	1.72734	YES	YES
32	a	772.46	34.88571	YES	YES
33	a	806.35	15.56160	YES	YES
34	a	827.09	5.52891	YES	YES
35	a	874.01	13.17085	YES	YES
36	a	881.59	26.93655	YES	YES
37	a	942.82	1.69313	YES	YES
38	a	962.79	20.66050	YES	YES
39	a	964.17	112.17912	YES	YES
40	a	990.31	0.11234	YES	YES
41	a	1005.40	161.89850	YES	YES
42	a	1045.66	75.63712	YES	YES
43	a	1077.47	29.76333	YES	YES
44	a	1109.99	26.70062	YES	YES
45	a	1129.81	33.18926	YES	YES
46	a	1144.78	4.42337	YES	YES
47	a	1155.94	25.49348	YES	YES
48	a	1240.86	34.94524	YES	YES
49	a	1261.88	0.47023	YES	YES
50	a	1284.18	494.84043	YES	YES

SCF Energy (au)BP86/SV(P)
-788.9425095482
SCF Energy (au)PBE0/def2-TZVPP -788.9272939722
SCF Energy (au)PBE0/def2-TZVPP -788.9492048317 ($\mathrm{H}_{2} \mathrm{O}$ Correction)
Zero Point Energy (au)
0.2759082

Chemical Potential (kJ mol ${ }^{-1}$) 604.22
Dispersion Correction (au) PBE0/def2-TZVPP -0.03346174

xyz	coordinates		
34			
C	1.6317658	-0.3479865	2.2473479
C	0.2665208	-0.0278803	2.0810459
O	-0.4062145	0.3462255	3.2065425
C	-0.3122739	-0.1072353	0.7965076
H	-1.3660726	0.1413393	0.5999420
C	0.4587230	-0.5164703	-0.3050478
C	-0.1706303	-0.5285419	-1.6957723
C	1.8297725	-0.8568570	-0.1601645
C	2.3873852	-0.7453958	1.1388462
H	3.4505926	-1.0037102	1.2967715
N	-1.6314178	-0.2156127	-1.7264191
N	0.4908565	0.4719760	-2.5510039
C	-0.5133563	0.8045091	-3.5692147

H	-0.5042715	0.0154072	-4.3567411
H	-0.2806843	1.7766286	-4.0538044
B	2.7425595	-1.3411831	-1.3517439
O	4.0306815	-0.8647663	-1.5279718
O	2.3240682	-2.3397690	-2.2000745
H	3.0147252	-2.5039665	-2.8792582
H	4.2162361	-0.1236691	-0.9151972
C	-1.8531340	0.7815326	-2.7927318
H	-2.1704221	-1.0710785	-1.9058403
H	-2.0624831	1.7884914	-2.3565248
H	-2.7279886	0.5111897	-3.4248166
H	0.6855723	1.3077032	-1.9766280
H	0.0083855	-1.5313798	-2.1510942
H	2.0721549	-0.2848673	3.2552423
C	-1.7910747	0.6792012	3.1077210
H	-2.3614873	-0.1871967	2.6942842
H	-1.9265405	1.5345195	2.4025335
C	-2.2865812	1.0401763	4.5010088
H	-3.3643880	1.3095001	4.4657631
H	-1.7208149	1.9054300	4.9087122
H	-2.1601641	0.1837363	5.1977803

\$vibrational spectrum					
\#		cm** (-1)	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	37.95	0.69293	YES	YES
8	a	38.84	0.46599	YES	YES
9	a	48.39	2.60176	YES	YES
10	a	79.45	0.58012	YES	YES
11	a	93.99	0.23451	YES	YES
12	a	103.32	0.63507	YES	YES
13	a	105.62	0.22877	YES	YES
14	a	116.11	1.73820	YES	YES
15	a	147.07	1.51618	YES	YES
16	a	208.88	0.51054	YES	YES
17	a	236.65	1.98296	YES	YES
18	a	257.76	1.30882	YES	YES
19	a	260.10	2.31876	YES	YES
20	a	263.29	0.51744	YES	YES
21	a	293.91	1.24063	YES	YES
22	a	338.92	6.93296	YES	YES
23	a	381.96	5.02205	YES	YES
24	a	420.43	6.02983	YES	YES
25	a	439.96	7.25825	YES	YES
26	a	500.81	8.47909	YES	YES
27	a	507.87	121.18499	YES	YES
28	a	525.93	36.83331	YES	YES
29	a	553.06	29.36751	YES	YES
30	a	579.75	14.87910	YES	YES
31	a	608.79	2.80337	YES	YES
32	a	625.73	14.53982	YES	YES
33	a	643.18	16.37811	YES	YES
34	a	658.54	61.05687	YES	YES

35	a	681.57	17.97435	YES	YES
36	a	741.62	6.06715	YES	YES
37	a	771.86	16.26398	YES	YES
38	a	805.38	19.76878	YES	YES
39	a	814.11	3.29819	YES	YES
40	a	822.52	19.82781	YES	YES
41	a	829.72	65.21726	YES	YES
42	a	879.30	2.31600	YES	YES
43	a	895.71	24.60431	YES	YES
44	a	901.86	4.59493	YES	YES
45	a	907.46	27.34382	YES	YES
46	a	929.34	11.72127	YES	YES
47	a	944.29	2.70749	YES	YES
48	a	964.76	105.19476	YES	YES
49	a	980.14	10.17753	YES	YES
50	a	984.42	18.46665	YES	YES

SCF Energy (au)BP86/SV(P)
-768.3662804744
SCF Energy (au)PBE0/def2-TZVPP -768.3458665976
SCF Energy (au)PBE0/def2-TZVPP -768.3756837592 ($\mathrm{H}_{2} \mathrm{O}$ Correction)
Zero Point Energy (au) 0.2106700
Chemical Potential (kJ mol-1) 433.00
Dispersion Correction (au) PBE0/def2-TZVPP -0.02729908

xyz	coordinates		
28			
C	0.0815768	0.0436788	0.1620131
C	-1.2543376	0.4694664	-0.0023776
C	-1.8297388	0.4787211	-1.2795124
H	-2.8712530	0.8192015	-1.4165020
C	-1.0790225	0.0648810	-2.3992879
C	-1.6915726	0.0838783	-3.7472164
C	0.2720443	-0.3604746	-2.2631661
C	0.8292976	-0.3476902	-0.9722863
H	1.8760597	-0.6505322	-0.8046681
B	1.1343219	-0.8500432	-3.5134552
O	1.9893301	-0.0232462	-4.2127994
O	1.1755455	-2.1944022	-3.7709400
H	1.7584923	-2.3662090	-4.5430413
H	1.8803724	0.9198741	-3.9763774
H	-2.7778383	0.3976095	-3.7896502
O	-1.0891597	-0.2076672	-4.7721562
C	0.7912857	0.0306121	1.4995650
N	-0.0181142	-0.1486585	2.5991530
O	2.0140463	0.1634793	1.5761011
C	0.4980592	-0.1741438	3.9621896
H	-1.0054440	-0.3691893	2.4505331
C	-0.0734348	0.9441371	4.8426513
H	1.5995304	-0.0800184	3.8651824
H	0.2876611	-1.1697421	4.4188334
H	0.1796869	1.9445177	4.4294523
H	0.3446522	0.8777397	5.8713307

H	-1.1817634	0.8752183	4.9263331
H	-1.8402839	0.8290020	0.8600983

\$vibrational spectrum
\# mode symmetry
wave number
cm** (-1)
0.00
0.00
0.00
0.00
0.00
0.00
24.87

IR intensity

> selection rules km/mol $\mathrm{km} / \mathrm{mol}$
0.00000
0.00000

IR	RAMAN
-	-
-	-
-	-
-	-
-	-
-	-
YES	$Y E S$

36.10 47.86
67.34 82.65
101.28
113.66
130.81
201.74
240.55
258.98
282.03
299.91
313.93
339.20
384.21
446.48
459.07
471.70
496.92
548.62
560.11
587.34
631.28
673.14
712.23
727.61
757.91
766.19
826.67
831.07
885.58
903.16
936.17
946.62
963.95
990.29
1002.37
1044.67
1062.00
1082.01
1123.54
0.00000
0.00000
0.00000
0.00000
$\begin{array}{cc}- & - \\ - & - \\ - & - \\ - & - \\ - & - \\ - & - \\ \text { YES } & \text { YES }\end{array}$
$\begin{array}{ll}\text { YES } & \text { YES } \\ \text { YES } & \text { YES }\end{array}$

3.70088	YES	YES
1.22314	YES	YES
0.89780	YES	YES

2.24117	YES	YES
3.75005	YES	YES
4.40072	YES	YES

SCF Energy (au)BP86/SV(P)				-882.3692975849
SCF Energy (au)PBE0/def2-TZVPP -882.3468880601				
SCF Energy (au)PBE0/def2-TZVPP -882.3757328395	Energy (au)	E0/def2-TZVP	-882.3757328395	($\mathrm{H}_{2} \mathrm{O}$ Correction)
Zero Point Energy (au)				0.2981772
Chemical Potential (kJ mol-1) 653.54				
Dispersion Correction (au) PBE0/def2-TZVPP				-0.03751637
xyz coordinates				
37				
C	0.1198952	0.8785706	1.2542675	
C	-1.0885955	0.2080747	0.9759599	
H	-1.9750041	0.3558618	1.6171557	
C	-1.1980916	-0.6178452	-0.1544076	
H	-2.1397636	-1.1343117	-0.4013854	
C	-0.1059423	-0.7994209	-1.0192777	
C	-0.2521202	-1.6390043	-2.2828730	
C	1.1277891	-0.1379215	-0.7604647	
C	1.2021339	0.7077888	0.3652670	
H	2.1291059	1.2597408	0.5984070	
N	-1.5701461	-2.3215501	-2.4341617	
N	-0.0826139	-0.7797205	-3.4684177	
C	-0.8108216	-1.4823147	-4.5336593	
H	-0.1647862	-2.2964048	-4.9359968	
H	-1.0550161	-0.7909063	-5.3676636	
B	2.4113694	-0.2958537	-1.6747118	
0	3.1737027	0.7901072	-2.0561657	
0	2.8670510	-1.5444099	-2.0222533	
H	3.6749555	-1.4581833	-2.5751683	
H	2.7619573	1.6360566	-1.7825120	
C	-2.0457096	-2.0747283	-3.8104243	
H	-1.4695759	-3.3276750	-2.2552984	
H	-2.8847130	-1.3370189	-3.8138548	
H	-2.4298981	-3.0076395	-4.2789514	
H	-0.5454925	0.1241911	-3.2800709	
H	0.5693856	-2.3949179	-2.2951885	
C	0.3235276	1.8122350	2.4232215	
N	-0.5257680	1.6256879	3.4937738	
0	1.1950966	2.6859690	2.4105236	
C	-0.4218421	2.4128428	4.7149741	
H	-1.1024710	0.7814055	3.5133983	
H	-1.4417422	2.7421954	5.0207096	
H	0.1594940	3.3175387	4.4414215	
C	0.2651732	1.6673816	5.8676258	
H	0.3068949	2.3090475	6.7756886	
H	1.3052133	1.3889726	5.5919263	
H	-0.2826317	0.7361590	6.1385868	

\$vibrational spectrum					
$\#$ mode	symmetry	wave number	IR intensity	selection rules	
$\#$			$\mathrm{~cm}^{* *}(-1)$	$\mathrm{km} / \mathrm{mol}$	IR
\# RAMAN					
	1	0.00	0.00000	-	-

2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	33.23	1.92012	YES	YES
8	a	39.26	0.21237	YES	YES
9	a	44.62	1.48425	YES	YES
10	a	47.53	1.03714	YES	YES
11	a	62.55	5.34562	YES	YES
12	a	79.56	0.96542	YES	YES
13	a	86.40	0.16151	YES	YES
14	a	100.11	1.23173	YES	YES
15	a	118.25	0.79332	YES	YES
16	a	127.65	1.60168	YES	YES
17	a	167.56	2.21721	YES	YES
18	a	210.76	1.05532	YES	YES
19	a	240.80	3.10806	YES	YES
20	a	243.91	2.67756	YES	YES
21	a	272.02	2.30307	YES	YES
22	a	290.54	7.23765	YES	YES
23	a	315.85	0.90137	YES	YES
24	a	325.10	17.16460	YES	YES
25	a	377.42	5.93944	YES	YES
26	a	404.47	2.20545	YES	YES
27	a	432.62	3.28190	YES	YES
28	a	472.68	19.64407	YES	YES
29	a	484.85	4.97184	YES	YES
30	a	512.19	49.18796	YES	YES
31	a	515.62	183.46617	YES	YES
32	a	534.83	13.62593	YES	YES
33	a	563.17	13.53597	YES	YES
34	a	586.91	17.31830	YES	YES
35	a	600.59	34.08771	YES	YES
36	a	609.84	1.53027	YES	YES
37	a	656.05	56.84228	YES	YES
38	a	657.05	19.13621	YES	YES
39	a	717.18	1.23204	YES	YES
40	a	739.49	0.90394	YES	YES
41	a	749.62	17.34563	YES	YES
42	a	778.78	12.71984	YES	YES
43	a	802.54	21.86722	YES	YES
44	a	810.80	25.39209	YES	YES
45	a	848.15	10.94579	YES	YES
46	a	855.33	56.44561	YES	YES
47	a	882.84	0.49062	YES	YES
48	a	891.59	19.53127	YES	YES
49	a	898.51	6.57716	YES	YES
50	a	905.10	10.25409	YES	YES

SCF Energy (au)BP86/SV(P)
-560.4967517160
SCF Energy (au)PBE0/def2-TZVPP -560.4829583873
SCF Energy (au)PBE0/def2-TZVPP -560.5031469908 ($\mathrm{H}_{2} \mathrm{O}$ Correction)

Zero Point Energy (au)			
Chemical Potential (kJ mol-1)			
Dispersion Correction (au) PBE0/def2-TZVPP			
xyz coordinates			
21			
C	0.7124482	0.1671435	3.1277351
C	0.0769321	0.1724504	1.7565363
C	-1.2561549	0.6003831	1.5729546
H	-1.8525741	0.9166407	2.4456734
C	-1.8248592	0.6174581	0.2933383
H	-2.8708807	0.9439486	0.1552711
C	-1.0701973	0.2108811	-0.8266783
C	-1.6747167	0.2225142	-2.1737977
C	0.2753983	-0.2272526	-0.6784133
C	0.8156764	-0.2383285	0.6198758
H	1.8525537	-0.5891937	0.7694565
B	1.1527588	-0.7100252	-1.9190795
0	1.9354869	0.1371922	-2.6781784
0	1.2998109	-2.0599849	-2.1060684
H	1.8737796	-2.2220887	-2.8871601
H	1.7164661	1.0792363	-2.5304242
H	-2.7546499	0.5570557	-2.2246473
0	-1.0767488	-0.0967469	-3.1951920
H	1.3435907	1.0741882	3.2773115
H	1.3761470	-0.7140295	3.2658553
H	-0.0502671	0.1585581	3.9356313

\$vibrational spectrum					
\#		$c m^{* *}(-1)$	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	33.78	0.26919	YES	YES
8	a	55.15	0.38611	YES	YES
9	a	86.50	2.44503	YES	YES
10	a	108.26	1.38162	YES	YES
11	a	127.47	8.19956	YES	YES
12	a	182.64	5.40546	YES	YES
13	a	197.50	8.01195	YES	YES
14	a	271.87	0.90310	YES	YES
15	a	288.02	7.23366	YES	YES
16	a	346.83	0.50713	YES	YES
17	a	353.06	4.14536	YES	YES
18	a	412.58	4.98028	YES	YES
19	a	449.17	16.06998	YES	YES
20	a	463.19	104.39600	YES	YES
21	a	534.46	32.98871	YES	YES
22	a	552.02	15.21097	YES	YES
23	a	581.27	6.67493	YES	YES
24	a	612.42	8.25378	YES	YES
25	a	634.42	59.27584	YES	YES
26	a	689.77	5.43340	YES	YES
27	a	743.64	1.12778	YES	YES

H	2.2204495	-2.1754228	-2.4629407
H	3.3558295	0.2930965	-0.5596097
C	-2.7086486	1.0299855	-2.2084708
H	-2.9910716	-0.8239167	-1.3102878
H	-2.9236182	2.0327217	-1.7649889
H	-3.5928104	0.7497969	-2.8233841
H	-0.1660244	1.5790662	-1.4417190
H	-0.8138082	-1.2653397	-1.6433218
C	1.6391251	-0.1348581	4.1005527
H	1.1996457	0.6386337	4.7677941
H	2.7287778	0.0666656	4.0110273
H	1.5303821	-1.1145110	4.6222420

\# mode symmetry wave number IR intensity selection rules					
\#		cm** (-1)	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	37.19	1.07755	YES	YES
8	a	42.72	1.92848	YES	YES
9	a	45.10	1.04826	YES	YES
10	a	78.11	0.37988	YES	YES
11	a	85.88	0.18659	YES	YES
12	a	114.96	0.90027	YES	YES
13	a	118.33	1.35459	YES	YES
14	a	165.56	0.49163	YES	YES
15	a	210.24	1.45287	YES	YES
16	a	264.41	1.63196	YES	YES
17	a	298.33	9.64356	YES	YES
18	a	312.15	2.07755	YES	YES
19	a	321.25	3.53982	YES	YES
20	a	349.83	1.60179	YES	YES
21	a	410.33	2.89567	YES	YES
22	a	481.43	12.55252	YES	YES
23	a	499.07	83.02366	YES	YES
24	a	520.16	67.73934	YES	YES
25	a	539.77	21.57590	YES	YES
26	a	581.96	21.28512	YES	YES
27	a	588.36	20.64614	YES	YES
28	a	592.14	25.51628	YES	YES
29	a	609.98	1.93984	YES	YES
30	a	659.85	72.13826	YES	YES
31	a	690.41	2.07992	YES	YES
32	a	744.81	5.57087	YES	YES
33	a	788.48	20.19874	YES	YES
34	a	800.94	29.39020	YES	YES
35	a	837.46	9.88888	YES	YES
36	a	852.03	45.88054	YES	YES
37	a	875.17	8.16490	YES	YES
38	a	891.16	25.43808	YES	YES
39	a	897.36	3.00083	YES	YES
40	a	904.60	7.74601	YES	YES
41	a	944.41	19.71977	YES	YES
42	a	967.99	86.85103	YES	YES
43	a	972.36	0.71430	YES	YES

44	a	984.13	23.87868	YES	YES
45	a	985.59	9.21871	YES	YES
46	a	1010.34	119.89112	YES	YES
47	a	1028.34	10.58650	YES	YES
48	a	1042.10	64.72899	YES	YES
49	a	1071.27	19.34589	YES	YES
50	a	1083.57	11.05166	YES	YES

$\mathrm{H}_{2} \mathrm{NH}$			
SCF Energy (au)BP86/SV(P)			
SCF Energy (au)PBE0/def2-			
```SCF Energy (au)PBE0/def2-TZVPP -190.38260 Zero Point Energy (au)```			
Chemical Potential (kJ mol-1) 207.67			
Dispersion Correction (au) PBE0/def2-TZVPP			
xyz coordinates			
12			
N	-1.1330603	1.2252625	0.8145257
C	0.1691229	-0.8078177	0.2452857
H	-0.7747596	-1.3939372	0.1383079
N	1.1992336	-1.4579361	-0.5637413
C	-0.1182786	0.6709942	-0.0824277
H	-2.0474290	0.7819880	0.6331013
H	0.8223445	1.2525489	0.0623127
H	-0.3629794	0.7448803	-1.1809071
H	-1.2610430	2.2327847	0.6398534
H	0.4530204	-0.8811665	1.3189967
H	2.0984138	-0.9624036	-0.4600138
H	0.9554147	-1.4051973	-1.5652936


\$vibrational spectrum wave number IR intensity selection rules					
\#		cm** (-1)	km/mol	IR	RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a	143.62	1.42402	YES	YES
8	a	238.53	21.17081	YES	YES
9	a	284.76	9.86618	YES	YES
10	a	321.97	65.34488	YES	YES
11	a	459.49	17.85979	YES	YES
12	a	770.49	11.50482	YES	YES
13	a	803.12	200.13669	YES	YES
14	a	822.11	128.91349	YES	YES
15	a	945.89	19.96233	YES	YES
16	a	990.00	18.01493	YES	YES
17	a	1074.81	15.70973	YES	YES
18	a	1092.00	4.86136	YES	YES
19	a	1122.72	2.30425	YES	YES
20	a	1233.03	8.03994	YES	YES
21	a	1280.34	10.26362	YES	YES


22	$a$	1322.06	7.30029	YES	YES
23	$a$	1348.02	2.15091	YES	YES
24	$a$	1383.18	3.55631	YES	YES
25	$a$	1428.85	2.41996	YES	YES
26	$a$	1453.69	1.96652	YES	YES
27	$a$	1607.04	22.89082	YES	YES
28	$a$	1614.36	20.10656	YES	YES
29	$a$	2796.50	130.04398	YES	YES
30	$a$	2930.46	29.66559	YES	YES
31	$a$	2954.77	47.09360	YES	YES
32	$a$	2999.09	38.15234	YES	YES
33	$a$	3319.14	2.94822	YES	YES
34	$a$	3325.98	2.44491	YES	YES
35	$a$	3402.76	0.32029	YES	YES
36	$a$	3410.43	0.17064	YES	YES



SCF Energy (au)BP86/SV(P)
$-76.34519822147$
SCF Energy (au)PBE0/def2-TZVPP -76.379978209
SCF Energy (au)PBE0/def2-TZVPP -76.3919088408 ( $\mathrm{H}_{2} \mathrm{O}$ Correction)
Zero Point Energy (au) 0.0199820
Chemical Potential (kJ mol ${ }^{-1}$ ) 5.89
Dispersion Correction (au) PBE0/def2-TZVPP -0.00027693
xyz coordinates
3

0	0.0000000	0.0000000	0.4047790
H	-0.7707436	0.0000000	-0.2023895
H	0.7707436	0.0000000	-0.2023895


$\begin{array}{ll} \text { \# mode } \\ \# & \end{array}$	symmetry	wave number $c m^{* *}(-1)$	IR intensity	$\begin{aligned} & \text { selec } \\ & \text { IR } \end{aligned}$	nules RAMAN
1		0.00	0.00000	-	-
2		0.00	0.00000	-	-
3		0.00	0.00000	-	-
4		0.00	0.00000	-	-
5		0.00	0.00000	-	-
6		0.00	0.00000	-	-
7	a1	1604.11	62.01507	YES	YES
8	a1	3526.34	0.10597	YES	YES
9	b1	3640.63	16.46475	YES	YES

## References

Z. Shi, P. Peng, D. Strohecker and Y. Liao, J. Am. Chem. Soc., 2011, 133, 1469914703.
X. Duan, Q. Ruan, Q. Gan, X. Song, S. Fang, X. Zhang and J. Zhang, J. Organomet. Chem., 2018, 868, 154-163.
K. Li, C. Weidman and J. Gao, Org. Lett., 2018, 20, 20-23.
K. K. H. Vong, S. Maeda and K. Tanaka, Chem. - A Eur. J., 2016, 22, 18865-18872.
M. K. Islam, S. Kim, H. K. Kim, S. Park, G. H. Lee, H. J. Kang, J. C. Jung, J. S. Park, T. J. Kim and Y. Chang, J. Med. Chem., 2017, 60, 2993-3001.
R. K. Varshnaya and P. Banerjee, European J. Org. Chem., 2016, 2016, 4059-4066.
L. Bollans, J. Bacsa, J. A. Iggo, G. A. Morris and A. V. Stachulski, Org. Biomol. Chem., 2009, 7, 4531-4538.
A. Weickgenannt, J. Mohr and M. Oestreich, Tetrahedron, 2012, 68, 3468-3479.
J. Gao, B. Zhao, M. Wang, M. A. C. Serrano, J. Zhuang, M. Ray, V. M. Rotello, R. W. Vachet and S. Thayumanavan, J. Am. Chem. Soc., 2018, 140, 2421-2425.
S. Nazreen, M. S. Alam, H. Hamid, M. S. Yar, A. Dhulap, P. Alam, M. A. Q. Pasha, S. Bano, M. M. Alam, S. Haider, C. Kharbanda, Y. Ali and K. Pillai, Arch. Pharm. (Weinheim)., 2015, 348, 421-432.
H. Gu, T. I. Chio, Z. Lei, R. J. Staples, J. S. Hirschi and S. Bane, Org. Biomol. Chem., 2017, 15, 7543-7548.
P. Császár and P. Pulay, J. Mol. Struct., 1984, 114, 31-34.
R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, Chem. Phys. Lett., 1989, 162, 165-169.
P. Deglmann, F. Furche and R. Ahlrichs, Chem. Phys. Lett., 2002, 362, 511-518.
P. Deglmann, K. May, F. Furche and R. Ahlrichs, Chem. Phys. Lett., 2004, 384, 103107.
K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, Chem. Phys. Lett., 1995, 242, 652-660.
K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, Theor. Chem. Acc., 1997, 97,

119-124.
O. Treutler and R. Ahlrichs, J. Chem. Phys., 1995, 102, 346-354.
M. Von Arnim and R. Ahlrichs, J. Chem. Phys., 1999, 111, 9183-9190.
A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799-805.
S. Niu, D. L. Strout, S. Zarić, C. A. Bayse and M. B. Hall, Organometallics, 1998, 17, 5139-5147.



## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$





10	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	10	c
										l shift										

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)




## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )





## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )

4




${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{MeOD}$ )


## ${ }^{13} \mathrm{C} \operatorname{NMR}(600 \mathrm{MHz}, \mathrm{MeOD})$



## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )





10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30		
										al shift									

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )




10	190	180	170	160	150	140	130	120	$\begin{gathered} 110 \\ \text { Ch } \end{gathered}$	$\begin{aligned} & 100 \\ & \text { al shif } \end{aligned}$		80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$




190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20
								Chemica	ft (pp								

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )




	190	180	170	160	150	140	130	1	110	10	1	80	70	60	5	,	30		10
10	190	180	170	160	150	140	130	120	${ }^{110}$	100		80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )





${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{MeOD}$ )


## ${ }^{13} \mathrm{C}$ NMR(600 MHz, MeOD)




## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



20

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )


${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, 100 \mathrm{mM}$ deuterated PBS + 10\% DMSO- $d_{6}$ )


## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )





	190	180	170	160	150	140	130	120	110			80	70	60	50	40	30	20	10
10	190	180	170	160	150	140	130	120		$\begin{aligned} & 100 \\ & \text { al shift } \end{aligned}$		80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, 100 \mathrm{mM}$ deuterated PBS + 10\% DMSO- $d_{6}$ )

${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, 100 \mathrm{mM}$ deuterated PBS + 10\% DMSO- $d_{6}$ )


$\begin{aligned} & \stackrel{\infty}{\circ} \\ & \stackrel{1}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{gathered} \stackrel{g}{=} \\ \stackrel{1}{\square} \end{gathered}$			

@
|
!

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$


${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )

28 NPhth


1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	10
210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									Chem	shif	pm)									

## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## $\overbrace{0}^{\mathrm{HO}} \mathrm{O}^{-\mathrm{NHBoc}}$

42


190	180	170	160	150	140	130	120	$\begin{array}{r} 110 \\ \text { Ch } \end{array}$	$100$		80	70	60	50	40	30	20	10

## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

$\mathrm{H}_{2} \mathrm{~N}^{-\mathrm{H}} \prod_{43}^{\mathrm{N}}<$

## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

## $\mathrm{H}_{2} \mathrm{~N}^{-\stackrel{\mathrm{H}}{\mathrm{N}}} \prod_{\mathrm{O}}^{\mathrm{O}}<$ <br> 43

$\begin{aligned} & \overrightarrow{a_{n}^{\prime}} \\ & \stackrel{\omega}{\omega} \end{aligned}$	


22	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
											chem	shif	pm)											

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$






## ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



J0	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										al shift									

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)

## $\prod_{\mathrm{O}}^{\mathrm{HO}} \mathrm{N}_{45}^{\mathrm{N}^{-}}$ <br> 45



# ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$ 

## $\prod_{\mathrm{O}}^{\mathrm{HO}} \mathrm{N}^{-\mathrm{NHBoc}}$ <br> 45

mamw
${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{MeOD}$ )


## ${ }^{13} \mathrm{C}$ NMR( $600 \mathrm{MHz}, \mathrm{MeOD}$ )




190	180	170	160	150	140	13	120	110	-	90	80	70	60	50	40	30	20	10
190	180	170	160	150	140	130	120		100		80	70	60	50	40	30	20	10

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )



10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
0	190	180		160	150			120		shif				6				20	10

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )




190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									shift									

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )



	190	180	170	160	150	140	130	120	110		90	80	70	60	50	40	30	20	0
10	190	180	170	160	150	140	130	120		$\begin{aligned} & 100 \\ & \text { al shift } \end{aligned}$		80	70	60	50	40	30	20	10

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )




190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
									a sh									

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{MeOD}$ )





## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{MeOD}$ )


## ${ }^{13} \mathrm{C}$ NMR(600 MHz, MeOD)


${ }^{1} \mathrm{H}$ NMR ( $600 \mathrm{MHz}, \mathrm{MeOD}$ )


## ${ }^{13} \mathrm{C}$ NMR( $600 \mathrm{MHz}, \mathrm{MeOD}$ )



		170																
190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	$1($

## ¹H NMR (500 MHz, MeOD)


${ }^{13} \mathrm{C} \operatorname{NMR}(500 \mathrm{MHz}, \mathrm{MeOD})$



## ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



包



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



10	19	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
10		180	170	160	150	140	130	120		100		80	70	60	50	40	30	20	10

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)




## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



64

ì	品	

त゙
$-25.13$


## ¹H NMR (500 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR(500 MHz, MeOD)




## ${ }^{1} \mathrm{H}$ NMR ( $\left.500 \mathrm{MHz}, \mathrm{MeOD}\right)$



## ${ }^{13} \mathrm{C}$ NMR(500 MHz, MeOD)



辛




## ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


$\stackrel{\sim}{\sim}$


## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$




210	200	190	180	170	160	150	140	130	120			90	80	70	60	50	40	30	20	10
									Cher	al shift										

## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )





## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )

210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										al sh	pm)									

## ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



72




## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



72

in


1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	T	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



73
$-201.73$
-170.32
-163.32

$$
-84.74
$$

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$




## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )


ö
$\stackrel{0}{0}$
$\overrightarrow{1}$



${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30			$20 \quad 10$
									al shift								2		

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



J0	190	180	170	160	150	140	130	120	$\begin{aligned} & 110 \\ & \text { Chen } \end{aligned}$	$\begin{aligned} & 100 \\ & \text { al shift } \end{aligned}$		80	70	60	50	40	30	20	10

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, $\left.\mathrm{CDCl}_{3}\right)$



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



1	,	1	1	1	1	,	1	1	1	1	,	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
											Chem	shit	ppm											

## ${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)



## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



79


10	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10
										shift									

## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)
+



## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$




## ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



## ${ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



10	190	180	170	160	$\stackrel{1}{150}$	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0
										shift										

${ }^{1} \mathrm{H}$ NMR (400 MHz, MeOD)


## ${ }^{13} \mathrm{C}$ NMR ( $\left.100 \mathrm{MHz}, \mathrm{MeOD}\right)$



$\stackrel{\stackrel{\circ}{\uparrow}}{\uparrow}$	i	1


			1	1	170		1			1			1					40						
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20

## ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )






1	1	1	1		17	16	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1
220	210	200	190	180	170	160	150	140	130	120	110	100	90	80	70	60	50	40	30	20	10	0	-10	-20
											Chem	shift	ppm											

## ${ }^{1} \mathrm{H}$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )



## ${ }^{13} \mathrm{C}$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ )




