Insight into *ortho*-boronoaldehyde conjugation via a FRET-based reporter assay

N. C. Rose,^{a,b} A. V. Sanchez,^{a,b} E. F. Tipple,^{a,b} J. M. Lynam,^a and C. D. Spicer*^{a,b}

^aDepartment of Chemistry, University of York, Heslington, YO10 5DD, UK.

^bYork Biomedical Research Institute, University of York, Heslington, YO10 5DD, UK.

Table of contents

- S2 Supplementary figures
- **S7** General considerations
- S8 Core dye synthesis
- S14 Synthesis of reactive handles
- S22 Reactive dye synthesis
- S35 Synthesis of Cy3 negative controls
- S41 Synthesis of control substrates for FRET studies
- S48 Synthesis of OBA substrates for NMR and LC-MS studies
- **S55** Synthesis of nucleophiles for NMR and LC-MS studies, and FRET controls
- S63 Determination of substrate concentration via UV-Vis absorbance
- S63 Initial screening of Cy3 quenching
- S64 FRET studies
- S65 LC-MS reversibility studies
- S66 NMR studies of pH dependent DAB-hydrazone exchange
- S67 NMR studies of sugar binding
- S67 NMR studies of analogue reaction equilibria
- **S68** DFT
- S85 References
- S87 NMR spectra of novel compounds

Supplementary figures and tables

Figure S1: Plots of emission at 580 nm over time following the addition of Cy5nucleophiles **6-10** (50 μ M) to Cy3-substrates (5 μ M) **5** (*o*BA) and controls **60** (benzaldehyde) and **66** (phenylboronic acid), relative to the emissions of controls containing either Cy3 or Cy5 substrate alone.

Figure S2: Plots of emission at 560 nm over time following the addition of propylamidecapped nucleophiles **26**, **76**, **78**, **80**, or **82** (50 μ M) to Cy3-*o*BA **5** (5 μ M), normalised to the emission at t = 3 seconds (first measurement). In this experiment, the absence of a Cy5-acceptor should mean that no drop in Cy3 emission is observed upon *o*BID formation. Although an *increase* in emission is observed for the addition of hydrazine **76**, the kinetics of this process are negligible relative to the rate of hydrazone/DAB formation.

Figure S3: Plot of reaction conversion against time for the formation of *o*BID **15** and from Cy3-*o*BA **5** and Cy5-hydrazine **10**, at a reduced concentration of 750 nM under second-order conditions. Fits are based on second-order irreversible model, with errors based on the standard deviation of experiments run in triplicate.

Figure S4: Plot of cleavage against time for propyl amide-DAB **19** (370 μ M) following addition of methyl amide-hydrazine **21** (3700 μ M) in the stated buffer. Fits are based on the model described in SI Section 10. Nb. Data in the presence of 10 mM glucose and fructose are very similar, leading to overlap of the fits.

Figure S5: Conversion data grouped by nucleophile/structure formed, across range of pHs.

Figure S6: Plot of reaction conversion against time for the formation of *o*BIDs **14** and **15** from Cy3-*o*BA **5** and the relevant Cy5-nucleophile, in pH 7.4 PBS containing the stated additive. Reactions were run at a concentration of 2.5 μ M under second-order conditions. Fits are based on second-order irreversible, or reversible models, with errors based on the standard deviation of experiments run in triplicate.

Figure S7: Plot of relative stability of **14** and **15** (2.5μ M), pre-formed in PBS, over time following the addition of 10% bovine serum. The absence of suitable references means it is not possible to calculate absolute conversions, and data is therefore based on changes in FRET ratio over time relative to *o*BA **5**.

General considerations

Proton and carbon nuclear magnetic resonance (¹H and ¹³C NMR respectively) spectra were recorded on a Jeol ECX-400 (400 MHz) or Bruker AVIIIHD (500 MHz) spectrometer. NMR shifts were assigned using COSY, HSQC and HMBC spectra. All chemical shifts are quoted on the δ scale in ppm using residual solvent as the internal standard (¹H NMR: CDCl₃ = 7.26; MeOD = 3.31; D₂O = 4.69; DMSO- d_6 = 2.50 and ¹³C NMR: CDCl₃ = 77.16, MeOD = 49.00, DMSO- d_6 = 39.52). Coupling constants (J) are reported in Hz with the following splitting abbreviations: s = singlet, d = doublet, t = doublettriplet, q = quartet, m = multiplet, app = apparent, br = broad. Melting points (m.p.) were recorded on a Gallenkamp melting point apparatus. Infrared (IR) spectra were recorded on a Perkin Elmer UATR Two FT-IR spectrometer. Absorption maxima (Umax) are reported in wavenumbers (cm⁻¹). UV-Vis spectra were recorded on a Shimadzu UV-1800 UV spectrophotometer in a glass cuvette, using a 480/30 nm excitation filter and a 580/10 nm emission filter, a pathlength of 1 cm, and a sampling interval of 1 nm. 96-well plate fluorescence measurements were recorded on a PerkinElmer VICTOR Nivo Multimode Plate Reader. Fluorescence spectra were recorded on a Shimadzu RF-5301PC spectrofluorophotometer in a glass fluorescence cuvette with a pathlength of 1 cm, a sampling interval of 1 nm, and excitation and emission slit widths of 5 nm. High resolution electrospray ionisation (ESI) mass spectra (HRMS) were recorded on a Bruker Compact TOF-MS or a Jeol AccuTOF GCx-plus spectrometer. Nominal and exact m/z values are reported in Daltons.

Thin layer chromatography (TLC) was carried out using aluminium backed sheets coated with 60 F₂₅₄ silica gel (Merck). Visualization of the silica plates was achieved using a UV lamp ($\lambda_{max} = 254$, 302, or 366 nm), and/or ammonium molybdate (5% in 2M H₂SO₄), and/or potassium permanganate (5% KMnO₄ in 1M NaOH with 5% potassium carbonate), and/or ninhydrin (1.5% ninhydrin, 3% AcOH in *n*-butanol), and/or bromocresol green (0.4% bromocresol green in ethanol, basified till blue with 0.1 M NaOH). Flash column chromatography was carried out using Geduran Si 60 (40-63 µm) (Merck). Mobile phases are reported as ratios of more polar solvent to less polar solvent. Anhydrous solvents were dried over a PureSolv MD 7 Solvent Purification System. Deionized water was used for chemical reactions. All other solvents were used as supplied (Analytical or HPLC grade), without prior purification. Reagents were purchased from Sigma-Aldrich and used as supplied, unless otherwise

indicated. Brine refers to a saturated solution of sodium chloride. Petrol refers to the fraction of petroleum ether boiling in the range 40-60 °C. Anhydrous magnesium sulfate (MgSO₄) was used as the drying agent after reaction workup unless otherwise stated.

Liquid chromatography-mass spectrometry (LC-MS) was performed on a HCTultra ETD II ion trap spectrometer, coupled to an Ultimate300 HPLC using an Accucore C18 column ($150 \times 2.1 \text{ mm}$, $2.6 \mu \text{m}$ particle size). Water (solvent A) and acetonitrile (solvent B), both containing 0.1% formic acid, were used as the mobile phase at a flow rate of 0.3 mL min⁻¹. LC traces were measured via UV absorption at 220, 270, and 280. The gradient was programmed as shown below:

1. Core dye synthesis

Numbering system for Cy3/5 NMR assignments

A mixture of 2,3,3-trimethylindolenine (2.00 mL, 12.7 mmol) and 1,3-propanesultone (1.55 g, 12.7 mmol) in toluene (50 mL) was refluxed for 20 h, during which time a dark red precipitate formed. After cooling to r.t., the reaction mixture was concentrated under reduced pressure. The residue was redissolved in dichloromethane (5 mL) and the solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (50 mL), and dried in air to yield a red oil (3.10 g, 11.0 mmol, 87%). Data were consistent with those previously reported.¹

¹**H NMR** (400 MHz, CD₃OD) δ = 8.01-7.93 (m, 1H, <u>H</u>5), 7.78-7.70 (m, 1H, <u>H</u>7), 7.68-7.59 (m, 2H, <u>H</u>6, <u>H</u>8), 4.78-4.67 (m, 2H, PhC<u>H</u>₂), 3.03-2.93 (m, 2H, C<u>H</u>₂SO₃⁻), 2.43-2.26 (m, 2H, C<u>H</u>₂CH₂SO₃⁻), 1.58 (s, 6H, 2 × C<u>H</u>₃); **HRMS**: m/z (ESI⁺) calc. for C₁₄H₁₉NO₃S [M+H]⁺: 282.1158: Obs.: 282.1162; **v**_{max}: (FT-ATR)/cm⁻¹: 3426, 2989, 1641, 1460, 1212, 1160, 1035, 758, 522.

Potassium phthalimide (1.85 g, 10.0 mmol) was added in portions over 5 min to a stirred solution of 1,3-dibromopropane (1.00 mL, 10.0 mmol) in acetone (50 mL). The solution was then refluxed for 18 h. After cooling to r.t., the reaction mixture was filtered under vacuum, and the filtrate concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:petrol (3:8). Fractions containing the product were concentrated under reduced pressure to provide a white solid (1.17 g, 4.38 mmol, 44%). Data were consistent with those previously reported.²

*R*_f: 0.21 (2:8, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CD₃OD) δ = 7.91-7.79 (m, 2H, Phth<u>H</u>2), 7.78-7.66 (m, 2H, Phth<u>H</u>3), 3.83 (t, *J* = 6.8 Hz, 2H, C<u>H</u>₂N), 3.41 (t, *J* = 6.8 Hz, 2H, C<u>H</u>₂Br), 2.25 (tt, *J*₁ = *J*₂ = 6.8 Hz, 2H, C<u>H</u>₂CH₂Br); HRMS: m/z (ESI⁺) calc. for C₁₁H₁₀⁷⁹BrNO₂ [⁷⁹M+Na]⁺: 289.9787; Obs.: 289.9774; *v*_{max}: (FT-ATR)/cm⁻¹: 3454, 2985, 1765, 1705, 1442, 1406, 1375, 1230, 1055, 966, 870, 723; m.p.: 71-74 °C.

Potassium iodide (744 mg, 4.48 mmol) was added to a stirred solution of 2,3,3trimethylindolenine (710 μ L, 4.48 mmol), and **31** (1.00 g, 3.73 mmol) in anhydrous acetonitrile (20 mL) under an argon atmosphere. The resulting mixture was refluxed for 5 h. After cooling to r.t., the reaction was filtered under vacuum and the filtrate concentrated under reduced pressure. The residue was then redissolved in acetone (10 mL) and the solution added dropwise to diethyl ether (200 mL). The resultant brown precipitate was collected by filtration, washed with diethyl ether (30 mL) and dried in air. The solid was then redissolved in acetone (10 mL) and concentrated under reduced pressure to afford the product as a brown solid (878 mg, 2.53 mmol, 68%).

*R*_f: 0.29 (1:9, MeOH:CH₂Cl₂, UV active); ¹H NMR (400 MHz, CD₃OD) δ = 7.89-7.85 (m, 1H, <u>H</u>5), 7.84-7.80 (m, 2H, Phth<u>H</u>2), 7.79-7.73 (m, 3H, Phth<u>H</u>3, <u>H</u>7), 7.64-7.55 (m, 2H, <u>H</u>8, <u>H</u>6), 4.64 (t, *J* = 7.0 Hz, 2H, C<u>H</u>₂N⁺), 3.88 (t, *J* = 7.0 Hz, 2H, C<u>H</u>₂NPhth), 2.37 (tt, $J_1 = J_2 = 7.0$ Hz, 2H, C<u>H</u>₂CH₂N), 1.61 (s, 6H, 2 × C<u>H</u>₃); ¹³C NMR (400 MHz, CD₃OD) δ = 168.5 (Phth<u>C</u>ON), 142.0 (<u>C</u>9), 141.2 (<u>C</u>4), 134.2 (Phth<u>C</u>2), 132.0 (Phth<u>C</u>1), 129.9 (<u>C</u>7), 129.2 (<u>C</u>6), 123.4 (Phth<u>C</u>3), 123.0 (<u>C</u>5), 115.1 (<u>C</u>8), 46.1 (<u>C</u>H₂NPhth), 34.8 (<u>C</u>H₂CH₂CH₂NPhth), 26.5 (<u>C</u>H₂CH₂NPhth), 21.5 (Cy<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₂₂H₂₂N₂O₂ [M]⁺: 347.1754; Obs.: 347.1761; **v**_{max}: (FT-ATR)/cm⁻¹: 3441, 2976, 1769, 1707, 1608, 1463, 1398, 765, 721, 530; **m.p.:** 176-179 °C.

A mixture of **27** (3.10 g, 11.0 mmol) and *N*,*N*-diphenylformamidine (2.17 g, 11.0 mmol) in acetic anhydride (10 mL) was heated to 120 °C for 1 h. After the reaction mixture was cooled to r.t., a solution of **28** (3.44 g, 9.91 mmol) in pyridine (10 mL) was added and the mixture stirred at r.t. for a further 20 h. After this time, the mixture was added dropwise to diethyl ether (500 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then redissolved in methanol (20 mL) and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink powder (2.65 g, 4.16 mmol, 42%).

 R_{f} : 0.16 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, DMSO- d_{6}) $\delta =$ 8.32 (dd, J₁ = J₂ = 13.4 Hz, 1H, CHCHCN), 7.84-7.75 (m, 4H, PhthH2, PhthH3), 7.62-7.54 (m, 3H, H5, H5', H8/H8'), 7.45-7.35 (m, 3H, H7, H7', H8/H8'), 7.25 (ddd, $J_1 = J_2 =$ 7.5 Hz, J₃ = 2.8 Hz, 2H, <u>H</u>6, <u>H</u>6'), 6.50 (d, J = 13.4 Hz, 2H, C<u>H</u>CN), 4.26-4.18 (m, 4H, CH₂CH₂CH₂SO₃, CH₂CH₂CH₂CH₂NPhth), 3.69 (t, J = 7.1 Hz, 2H, CH₂NPhth), 2.52 (t, J = 7.4 Hz, 2H, <u>CH</u>₂SO₃), 2.08 (tt, $J_1 = J_2 = 7.1$ Hz, 2H, C<u>H</u>₂CH₂NPhth), 2.00 (tt, $J_1 = J_2 = 10^{-1}$ 7.4 Hz, 2H, C<u>H</u>₂CH₂SO₃), 1.67 (s, 12H, CyC<u>H</u>₃); ¹³C NMR (101 MHz, DMSO- d_6) δ = 174.9 (<u>C</u>HCHCN), 174.6 (<u>C</u>2, <u>C</u>2'), 168.4 (Phth<u>C</u>ON), 151.1 (<u>C</u>3, <u>C</u>3'), 141.9 (<u>C</u>9, <u>C</u>9'), 140.9 (C4, C4'), 134.1 (PhthC2), 132.1 (PhthC1), 128.7 (C7, C7'), 125.6 (C6, C6'), 123.9 (PhthC3), 122.2 (C5, C5'), 111.3 (C8/C8'), 111.0 (C8/C8'), 103.8 (CHCN), 103.7 (CHCN), 49.4 (CH_2SO_3) , 42.7 $(CH_2CH_2CH_2SO_3)$, 41.6 (CH_2NPhth) , 35.1 $(CH_2CH_2CH_2NPhth)$, 27.6 (CH_2CH_2NPhth) , 26.1 (CyCH₃), 22.8 (CH₂CH₂SO₃⁻); HRMS: m/z (ESI+) calc. for C₃₇H₃₉N₃O₅S [M+H]+: 638.2683; Obs.: 638.2695; *v*_{max}: (FT-ATR)/cm⁻¹: 3443, 2975, 2930, 1709, 1555, 1428, 1373, 1152, 1037, 929, 759, 723; m.p.: 272-276 °C.

A mixture of methylamine (40% in methanol, 30 mL) and **3** (500 mg, 0.78 mmol) in methanol (5 mL) was stirred at r.t. for 16 h. The reaction mixture was then concentrated under reduced pressure to ~5 mL, and the solution added dropwise to diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL) and dried in air. The solid was then redissolved in methanol (20 mL) and concentrated under reduced pressure to give a pink solid (498 mg, 0.78 mmol, quantitative yield).

*R*r 0.18 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.52 (dd, $J_1 = J_2 = 13.5$ Hz, 1H, CHCHCN), 7.53 (d, J = 7.5 Hz, 2H, H5, H5'), 7.45-7.30 (m, 4H, H7, H7', H8, H8'), 7.34-7.22 (m, 2H, H6, H6'), 6.82 (d, J = 13.5 Hz, 1H, CHCN), 6.60 (d, J = 13.5 Hz, 1H, CHCN), 4.41 (t, J = 7.7 Hz, 2H, CH₂CH₂CH₂SO₃⁻), 4.27 (t, J = 7.7 Hz, 2H, CH₂CH₂CH₂CH₂CH₂NH₂), 3.21 (t, J = 7.7 Hz, 2H, CH₂CH₂CH₂SO₃⁻), 4.27 (t, J = 7.7 Hz, 2H, CH₂CO₃⁻), 2.29-2.23 (m, 2H, CH₂CH₂NH₂), 2.20-2.16 (m, 2H, CH₂CH₂SO₃⁻), 1.73 (s, 12H, CyCH₃); ¹³C NMR (101 MHz, CD₃OD) δ = 174.8 (CHCHCN), 174.5 (C2, C2'), 151.0 (C3, C3'), 141.9 (C9, C9'), 140.9 (C4, C4'), 128.8 (C7, C7'), 125.5 (C6, C6'), 122.3 (C5, C5'), 111.3 (C8/C8'), 111.1, (C8/C8'), 103.1 (CHCN⁺), 102.8 (CHCN), 49.3 (CH₂CH₂SO₃⁻), 42.6 (CH₂CH₂CH₂SO₃⁻), 41.5 (CH₂NH₂), 37.9 (CH₂CH₂CH₂CH₂NH₂), 28.1 (CH₂CH₂NH₂), 27.0 (CyCH₃), 23.0 (CH₂CH₂SO₃⁻); HRMS: m/z (ESI⁺) calc. for C₂₉H₃₆N₃O₃S [M+H]⁺: 508.2636; Obs.: 508.2636; **v**_{max}: (FT-ATR)/cm⁻¹: 3437, 2975, 1711, 1556, 1429, 1207, 1147, 1037, 971, 930, 758; m.p.: >325 °C.

A mixture of **27** (2.00 g, 7.12 mmol) and malonaldehyde bis(phenylimine) monohydrochloride (1.75 g, 7.83 mmol) in acetic anhydride (10 mL) was heated to 120 °C for 1.5 h. After cooling to r.t, a solution of **28** (2.25 g, 6.48 mmol) in pyridine (10 mL) was added and stirring was continued at r.t. for a further 16 h. The reaction mixture was then concentrated under reduced pressure to ~5 mL, and the remaining solution

added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then redissolved in methanol (10 mL) and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue solid (1.35 g, 2.04 mmol, 29%).

R: 0.29 (5:95, MeOH:CH₂Cl₂, visible light active); ¹**H NMR (**400 MHz, DMSO- d_6) δ = 8.28 (dd, *J* = 13.2, 10.1 Hz, 2H, 2 × C<u>H</u>CHCN), 7.85-7.75 (m, 4H, Phth<u>H</u>2, Phth<u>H</u>3), 7.56 (d, J = 7.4 Hz, 1H, <u>H5/H5</u>'), 7.53 (d, J = 7.4 Hz, 1H, <u>H5/H5</u>'), 7.46 (d, J = 7.9 Hz, 1H, <u>H8/H8</u>'), 7.38-7.32 (m, 2H, <u>H7</u>, <u>H7</u>'), 7.29 (d, *J* = 7.9 Hz, 1H, <u>H8/H8</u>'), 7.20 (dd, *J* = 7.4 Hz, 1H, H6/H6'), 7.15 (dd, J = 7.4 Hz, 1H, H6/H6'), 6.45-6.33 (m, 2H, CHCHCHCN, CHCN), 6.20 (d, J = 13.2 Hz, 1H, CHCN), 4.34-4.22 (m, 2H, CH₂CH₂CH₂SO₃), 4.17 (t, *J* = 7.2 Hz, 2H, CH₂CH₂CH₂NPhth), 3.67 (t, *J* = 7.2 Hz, 2H, CH_2NPhth), 2.57 (t, J = 6.8 Hz, 2H, CH_2SO_3), 2.05-1.95 (m, 4H, CH_2CH_2NPhth), $CH_2CH_2SO_3$), 1.62 (s, 12H, CyCH₃); ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 173.8 (<u>C</u>2, <u>C2'</u>), 172.5 (<u>C3</u>, <u>C3'</u>), 168.5 (<u>C</u>ON), 155.1 (<u>C</u>HCHCN), 154.3 (<u>C</u>HCHCN), 142.6 (<u>C9/C9</u>'), 142.5 (<u>C9/C9</u>'), 141.7 (<u>C4/C4</u>'), 141.5 (<u>C4/C4</u>'), 134.9 (Phth<u>C2</u>), 132.3 (Phth<u>C</u>1), 129.0 (<u>C</u>7/<u>C</u>7'), 128.9 (<u>C</u>7/<u>C</u>7'), 126.1 (<u>C</u>HCHCHCN), 125.5 (<u>C</u>6/<u>C</u>6'), 125.0 (<u>C6/C6'</u>), 123.6 (Phth<u>C</u>3), 123.0 (<u>C5</u>, <u>C5'</u>), 111.9 (<u>C8/C8'</u>), 111.3 (<u>C8/C8'</u>), 104.3 48.4 (CHCN), 103.3 (CHCN), (<u>C</u>H₂SO₃⁻), 43.3 $(CH_2CH_2CH_2SO_3)$ 41.5 (<u>CH</u>₂CH₂CH₂NPhth), 35.6 (<u>C</u>H₂NCO), 27.6 (Cy<u>C</u>H₃), 26.5 (<u>C</u>H₂CH₂NPhth), 24.0 (<u>CH</u>₂CH₂SO₃⁻); **HRMS**: m/z (ESI⁺) calc. for C₃₉H₄₁N₃O₅S [M+H]⁺: 664.2840; Obs.: 664.2858; *v*_{max}: (FT-ATR)/cm⁻¹: 3442, 2973, 1770, 1709, 1492, 1455, 1381, 1337, 1132, 1108, 1034, 1017, 927, 795, 721, 530; m.p.: 264-269 °C.

Methylamine (40% in water, 30 mL) was added to a solution of **4** (200 mg, 0.30 mmol) in ethanol (5 mL) and the solution stirred at r.t. for 16 h. The reaction mixture was then concentrated under reduced pressure to ~5 mL, and the remaining solution added dropwise to diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL) and dried in air. The solid was then redissolved in methanol (20 mL) and concentrated under reduced pressure to give the product as a blue solid (159 mg, 0.298 mmol, 99%).

Nb. Attempts to cleave the phthalimide with traditional hydrazinolysis were unsuccessful, with a loss of colour over a period of 1 h indicating a loss of conjugation/dye structure.

R^r: 0.17 (1:9, MeOH:CH₂Cl₂, visible light active).¹**H NMR** (400 MHz, CD₃OD) δ = 8.21 (d, *J* = 13.2 Hz 2H, C<u>H</u>CHCN), 7.49-7.43 (m, 2H, <u>H5</u>, <u>H5</u>'), 7.41-7.34 (m, 3H, <u>H7</u>, <u>H7</u>', <u>H8/H8'</u>), 7.27-7.17 (m, 3H, <u>H6</u>, <u>H6'</u>, <u>H8/H8'</u>), 6.69-6.65 (m, 1H, C<u>H</u>CHCHCN), 6.62-6.58 (m, 1H, C<u>H</u>CN), 6.33-6.28 (m, 1H, C<u>H</u>CN), 4.35 (t, *J* = 8.0 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂SO₃-), 4.22-4.10 (m, 2H, C<u>H</u>₂CH₂CH₂CH₂NH₂), 3.02-2.94 (m, 4H, C<u>H</u>₂NH₂, C<u>H</u>₂SO₃-), 2.24-2.18 (m, 2H, C<u>H</u>₂CH₂CO₃-), 2.10-2.00 (m, 2H, C<u>H</u>₂CH₂NH₂), 1.66 (s, 12H, CyC<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 174.7 (<u>C</u>2, <u>C</u>2'), 170.9 (<u>C</u>3/<u>C</u>3'), 170.3 (<u>C</u>3/<u>C</u>3'), 155.1 (<u>C</u>HCHCN), 154.1 (<u>C</u>HCHCN), 142.8 (<u>C</u>9/<u>C</u>9'), 142.1 (<u>C</u>9/<u>C</u>9'), 141.4, (<u>C</u>4, <u>C</u>4'), 128.5 (<u>C</u>7, <u>C</u>7'), 125.9 (<u>C</u>HCHCHCN), 102.9 (<u>C</u>HCN), 49.1 (<u>C</u>H₂SO₃⁻), 42.7 (<u>C</u>H₂CH₂CH₂SO₃⁻), 41.7 (<u>C</u>H₂CH₂CH₂CH₂NH₂), 36.7 (<u>C</u>H₂NH₂), 28.8 (Cy<u>C</u>H₃), 26.6 (<u>C</u>H₂CH₂CH₂NH₂), 22.9 (<u>C</u>H₂CH₂CSO₃⁻); **HRMS**: m/z (ESI⁺) calc. for C₃₁H₃₉N₃O₃S [M+H]⁺: 534.2785; Obs.: 534.2803; **v**_{max}: (FT-ATR)/cm⁻¹: 3438, 2968, 2937, 1573, 1482, 1454, 1381, 1338, 1136, 1105, 1035, 1017, 927, 800, 752, 709, 525; **m.p.:** 252-256 °C.

2. Synthesis of reactive handles

A mixture of 2-bromo-4-hydroxybenzaldehyde (2.07 g, 10.4 mmol), *tert*-butyl bromoacetate (1.53 mL, 10.4 mmol) and potassium carbonate (2.43 g, 17.6 mmol) in

acetonitrile (30 mL) was stirred for 16 h at 70 °C. The mixture was then cooled to r.t. and diluted with water (150 mL). The aqueous mixture was extracted with ethyl acetate (3×70 mL), and the combined organics washed with brine (2×200 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a white solid (3.23 g, 10.3 mmol, 99%). Data were consistent with those previously reported.³

R_f: 0.35 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.19 (s, 1H, C<u>H</u>O), 7.87 (d, *J* = 8.6 Hz, 1H, Ph<u>H</u>5), 7.11 (d, *J* = 2.5 Hz, 1H, Ph<u>H</u>2), 6.91 (dd, *J* = 8.6, 2.5 Hz, 1H, Ph<u>H</u>4), 4.57 (s, 2H, C<u>H</u>₂O), 1.47 (s, 9H, ^{*i*}Bu); ¹³C NMR (101 MHz, CDCl₃) δ = 190.6 (<u>C</u>HO), 166.8 (<u>C</u>OO), 162.8 (Ph<u>C</u>4), 131.5 (Ph<u>C</u>5), 128.7 (Ph<u>C</u>1), 127.7 (Ph<u>C</u>3), 119.5 (Ph<u>C</u>2), 114.5 (Ph<u>C</u>6), 83.3 (<u>C</u>Me₃), 65.8 (<u>C</u>H₂O), 28.1 (^{*i*}Bu); HRMS: m/z (ESI⁺) calc. for C₁₃H₁₅⁷⁹BrO₄ [⁷⁹M+Na]⁺: 337.0053; Obs.: 337.0046; *v*_{max}: (FT-ATR)/cm⁻¹: 2979, 2863, 1746, 1685, 1590, 1486, 1368, 1310, 1218, 1152, 1071, 1028, 843, 613; **m.p.:** 87-89 °C.

32 (2.15 g, 6.85 mmol), bis(pinacolato)diboron (4.52 g, 17.8 mmol), 1,1'-[bis(diphenylphosphino)ferrocene]dichloropalladium(II) (500 mg, 0.685 mmol) and potassium acetate (3.62 g, 37.0 mmol) were placed under a nitrogen atmosphere, and anhydrous dioxane (25 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min, which was then stirred at 80 °C for 1 h. After cooling to r.t., the reaction was concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (15:85). Fractions containing the product were concentrated under reduced pressure to yield a white solid (1.87 g, 5.16 mmol, 75%). Data were consistent with those previously reported.³

R_f: 0.38 (15:85, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.39 (s, 1H, C<u>H</u>O), 7.93 (d, *J* = 8.8 Hz, 1H, Ph<u>H</u>5), 7.26 (d, *J* = 2.5 Hz, 1H, Ph<u>H</u>2), 7.03 (dd, *J* = 8.8, 2.5 Hz, 1H, Ph<u>H</u>6), 4.59 (s, 2H, C<u>H</u>₂O), 1.47 (s, 9H, *t*Bu), 1.36 (s, 12H, C(C<u>H</u>₃)₂);

¹³**C NMR** (101 MHz, CDCl₃) δ = 193.2 (<u>C</u>HO), 167.4 (<u>C</u>OO), 161.5 (Ph<u>C</u>1), 135.5 (Ph<u>C</u>3), 132.0 (Ph<u>C</u>4), 130.4 (Ph<u>C</u>5), 120.5 (Ph<u>C</u>2), 117.2 (Ph<u>C</u>6), 84.6 (O<u>C</u>(CH₃)₂), 82.9 (<u>C</u>Me₃), 65.6 (<u>C</u>H₂O), 28.1 (^{*t*}Bu), 25.1 (C(<u>C</u>H₃)₂); **HRMS**: m/z (ESI⁺) calc. for C₁₉H₂₇BO₆ [M+H]⁺: 363.1977; Obs.: 363.1977; *v*_{max}: (FT-ATR)/cm⁻¹: 2979, 2933, 1752, 1686, 1589, 1420, 1340, 1323, 1211, 1147, 1123, 1077, 1052, 964, 849, 734; **m.p.:** 80-83 °C.

Trifluoroacetic acid (3.0 mL) was added dropwise to a solution of **33** (1.00 g, 2.76 mmol) in dichloromethane (15 mL), and the mixture was stirred at r.t. for 16 h. The reaction mixture was then concentrated under reduced pressure and azeotroped with dichloromethane (4 × 20 mL) to obtain a white powder. (810 mg, 2.65 mmol, 96%). Data were consistent with those previously reported.³

R_f: 0.24 (4:6, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, DMSO-*d*₆) δ = 10.10 (s, 1H, C<u>H</u>O), 7.85 (d, *J* = 8.5 Hz, 1H, Ph<u>H</u>5), 7.12 (dd, *J* = 8.5, 2.8 Hz, 1H, Ph<u>H</u>6), 7.09 (d, *J* = 2.8 Hz, 1H, Ph<u>H</u>2), 4.80 (s, 2H, C<u>H</u>₂O), 1.30 (s, 12H, C(C<u>H</u>₃)₂); ¹³C NMR (101 MHz, DMSO-*d*₆) δ = 194.4 (<u>C</u>HO), 168.4 (<u>C</u>OOH), 161.4 (Ph<u>C</u>1), 135.2 (Ph<u>C</u>3), 131.3 (Ph<u>C</u>4), 130.8 (Ph<u>C</u>5), 121.0 (Ph<u>C</u>2), 116.7 (Ph<u>C</u>6), 85.0 (O<u>C</u>(CH₃)₂), 64.5 (<u>C</u>H₂O), 25.0 (C(<u>C</u>H₃)₂); HRMS: m/z (ESI⁺) calc. for C₁₅H₁₈BO₆ [M+H]⁺: 307.1350; Obs.: 307.1350; *v*_{max}: (FT-ATR)/cm⁻¹: 2979, 2937, 1763, 1561, 1418, 1371, 1343, 1283, 1203, 1174, 1125, 1072, 960, 850, 691; m.p.: 169-172 °C.

Oxalyl chloride (61 μ L, 0.71 mmol) was added to a solution of **34** (72 mg, 0.24 mmol), dichloromethane (3 mL) and dimethylformamide (1 drop), and stirred at r.t. for 1 h. Excess oxalyl chloride and dichloromethane were removed under reduced pressure to

give the crude product as a brown oil, which was carried forward without further purification.

A mixture of *N*-(tert-butoxycarbonyl)glycine (100 mg, 0.571 mmol), *N*-hydroxy succinimide (99 mg, 0.857 mmol), and *N*-(3-dimethylaminopropyl)-*N*- ethylcarbodiimide hydrochloride (164 mg, 0.86 mmol) in dichloromethane (5 mL) was stirred at r.t. for 1 h. Dichloromethane (30 mL) was then added and the organic layer was washed with water (2 × 20 mL) and brine (2 × 20 mL), dried with MgSO₄, filtered and concentrated under reduced pressure to give a white solid (165 mg, 0.61 mmol, 75%). Data were consistent with those previously reported.⁴

R_f: 0.27 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 4.97 (app br s, 1H, N<u>H</u>), 4.28 (d, *J* = 5.9 Hz, 2H, C<u>H</u>₂N), 2.84 (s, 4H, OSu), 1.44 (s, 9H, Boc); HRMS: m/z (ESI⁺) calc. for C₁₁H₁₆N₂O₆ [M+Na]⁺: 295.0901; Obs.: 295.0901; **m.p.:** 156-159 °C.

Di-*tert*-butyl dicarbonate (3.05 g, 14 mmol) was added to a solution of 2,3diaminopropionic acid (500 mg, 3.5 mmol) and sodium bicarbonate (2.94 g, 10 mmol) in a mixture of dioxane (15 mL) and water (15 mL), and the reaction was stirred at r.t. for 18 h. The mixture was then diluted with water (50 mL) and washed with dichloromethane (2×15 mL). The aqueous layer was acidified with hydrochloric acid (1 M) to pH ~2, and then extracted with dichloromethane (3×30 mL). The combined organic extracts of the acidified aqueous fraction were combined, dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil (210 g, 0.7 mmol, 20%). Data were consistent with those previously reported.⁵ ¹**H NMR** (400 MHz, CDCl₃) δ = 6.71 (br s, 1H, N<u>H</u>), 5.19 (br s, 1H, N<u>H</u>), 4.22-4.31 (m, 1H, <u>H</u>_{\alpha}), 3.46-3.75 (m, 2H, <u>H</u>_β), 1.43 (s, 18H, 2 × Boc).

A mixture of **37** (29 mg, 95 μ mol), *N*-hydroxysuccinimide (16 mg, 0.143 mmol), and *N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide hydrochloride (28 mg, 0.143 mmol) in dichloromethane (1.0 mL) was stirred at r.t. for 2 h. Dichloromethane (10 mL) was then added and the organics were washed with water (2 × 15 mL) and brine (15 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to give a pink foam (28 mg, 70 μ mol, 74%). The product was used immediately without any further purification or analysis.

*R*_f: 0.28 (1:9, EtOAc:Petrol); **HRMS**: m/z (ESI⁺) calc. for C₁₇H₂₇N₃O₈ [M+H]⁺: 402.1871; Obs.: 402.1874; ¹H NMR (400 MHz, CDCl₃) δ = 2.82 (m, 4H, NHS-C<u>H</u>₂), 1.42 (s, 18H, 2 × Boc).

A mixture of Boc-Cys-(Trt)-OH (1.00 g, 2.16 mmol), *N*-hydroxysuccinimide (372 mg, 3.23 mmol), and *N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide hydrochloride (620 mg, 3.23 mmol) in dichloromethane (20 mL) was stirred at r.t. for 2 h. Dichloromethane (30 mL) was then added and the organics were washed with water (2 × 50 mL) and brine (50 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to give a white foam. (1.16 g, 0.207 mmol, quantitative yield).

Rf: 0.24 (2:8, EtOAc:Petrol, UV active); ¹**H NMR** (400 MHz, CDCl₃) δ = 7.43 (dd, *J* = 7.5, 1.7 Hz, 6H, Ph<u>H</u>2), 7.29 (t, *J* = 7.5 Hz, 6H, Ph<u>H</u>3), 7.24-7.18 (t, *J* = 7.5, 1.7 Hz,

3H, Ph<u>H</u>4), 4.86 (d, *J* = 8.3 Hz, 1H, C<u>H</u>NHBoc), 2.79 (s, 4H, OSu), 2.81-2.76 (m, 1H, C<u>H</u>₂STrt), 2.71-2.66 (m, 1H, C<u>H</u>₂STrt), 1.42 (s, 9H, Boc); **HRMS**: m/z (ESI⁺) calc. for C₂₉H₃₀N₂O₆S [M+H]⁺: 536.1658; Obs.: 536.1658; *v*_{max}: (FT-ATR)/cm⁻¹: 3426, 2978, 1707, 1491, 1444, 1393, 1368, 1217, 1162, 1052, 852, 744, 700, 675, 620, 505; **m.p.:** 71-74 °C.

A solution of sodium hydrogen carbonate (2.44 g, 29.0 mmol) in water (30 mL) was added dropwise to a mixture of hydroxylamine hydrochloride (1.00 g, 14.5 mmol) and di-*tert*-butyl dicarbonate (3.16 g, 14.5 mmol) in tetrahydrofuran (20 mL), and the reaction stirred at r.t. for 20 h. Water (150 mL) was then added, and the aqueous was extracted with ethyl acetate (2 × 150 mL). The combined organics were washed with water (30 mL) and brine (2 × 30 mL), dried with MgSO₄, filtered, and concentrated to afford a colourless oil (1.71 g, 12.9 mmol, 89%). Data were consistent with those previously reported.^{6,7}

R_f: 0.30 (1:9, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 7.02 (s, 1H, N<u>H</u>), 1.46 (s, 9H, Boc); ¹³C NMR (101 MHz, CDCl₃) δ = 158.8 (<u>C</u>=O), 82.3 (<u>C</u>Me₃), 28.3 (Boc); HRMS: m/z (ESI⁺) calc. for C₅H₁₀NO₃ [M+Na]⁺: 156.0633; Obs.: 156.0633.

A mixture of ethyl bromoacetate (1.40 mL, 12.6 mmol), **UK/NR/037** (1.68 g, 12.6 mmol), and potassium hydroxide (0.71 g, 12.6 mmol) in methanol (15 mL) was stirred at 60 °C for 16 h. The reaction mixture was then concentrated under reduced pressure. Water (30 mL) was added to residue and the aqueous was extracted with dichloromethane (4 × 30 mL). The combined organics were washed with brine (50 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:petrol (2:8). Pure fractions were concentrated under reduced pressure to provide a yellow solid (1.36 g, 6.63 mmol, 53%). Data were consistent with those previously reported.⁸

R_f: 0.33 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 7.75 (s, 1H, N<u>H</u>), 4.43 (s, 2H, C<u>H</u>₂O), 3.77 (s, 3H, OC<u>H</u>₃), 1.48 (s, 9H, Boc); ¹³C NMR (101 MHz, CDCl₃) δ = 170.2 (<u>C</u>O), 156.3 (<u>C</u>OONH), 82.3 (<u>C</u>Me₃), 72.6 (<u>C</u>ONH), 52.2 (<u>C</u>H₃O), 28.2 (Boc); HRMS: m/z (ESI⁺) calc. for C₈H₁₄NO₅ [M+Na]⁺: 228.0842; Obs.: 228.0841; *v*_{max}: (FT-ATR)/cm⁻¹: 3305, 2979, 1737, 1439, 1368, 1216, 1165, 1117, 995, 848, 776, 713, 589; m.p.: 55-57 °C.

Lithium hydroxide (0.40 g, 16.6 mmol) was added to a solution of **41** (1.36 g, 6.63 mmol) in a mixture of tetrahydrofuran (5 mL) and water (5 mL), and the reaction was stirred at r.t. for 16 h. The tetrahydrofuran was then removed under reduced pressure and hydrochloric acid (1 M, 30 mL) was added. The aqueous was extracted with ethyl acetate (3 \times 50 mL) and the combined organics dried with MgSO₄, filtered, and concentrated under reduced pressure to afford a cream-white solid (972 mg, 5.09 mmol, 77%).

R_f: 0.22 (1:1, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 11.02 (s, 1H, O<u>H</u>), 8.21 (s, 1H, N<u>H</u>), 4.46 (s, 2H, C<u>H</u>₂O), 1.47 (s, 9H, Boc); HRMS: m/z (ESI⁺) calc. for C₇H₁₁NO₅ [M+H]⁺: 190.0721; Obs.: 190.0716; *v*_{max}: (FT-ATR)/cm⁻¹: 3266, 2981, 2936, 1721, 1479, 1395, 1370, 1251, 1163, 1122, 1054, 979, 847, 777, 675; m.p.: 102-105 °C.

A mixture of **41** (920 mg, 4.82 mmol), *N*-hydroxysuccinimide (831 mg, 7.23 mmol), and *N*-(3-dimethylaminopropyl)-*N*'-ethylcarbodiimide hydrochloride (1.39 g, 7.23 mmol) in dichloromethane (20 mL) was stirred at r.t. for 2 h. Dichloromethane (30 mL) was then added and the organics were washed with water (2×30 mL) and brine (30 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to give a colourless oil (1.12 g, 3.89 mmol, 81%).

*R*_f: 0.35 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 7.99 (s, 1H, N<u>H</u>), 4.71 (s, 2H, C<u>H</u>₂O), 2.81 (s, 4H, C<u>H</u>₂CO), 1.41 (s, 9H, Boc); HRMS: m/z (ESI⁺) calc. for C₁₁H₁₅N₂O₇ [M+Na]⁺: 311.0850; Obs.: 311.0840; *v*_{max}: (FT-ATR)/cm⁻¹: 3230, 2981, 1702, 1395, 1370, 1215, 1162, 1120, 1080, 997, 815, 86, 716, 655; **m.p.:** 110-114 °C.

A solution of di-*tert*-butyl dicarbonate (3.52 g, 16.2 mmol) in dioxane (30 mL) was added dropwise to a stirred solution of hydrazine monohydrate (3.20 mL, 66.4 mmol) and potassium carbonate (9.28 g, 66.4 mmol) in water (30 mL), and the mixture stirred at r.t for 16 h. The reaction mixture was then extracted with diethyl ether (3 × 50 mL), and the combined organics dried with MgSO₄, filtered, and concentrated under reduced pressure to give a white solid (2.08 g, 15.8 mmol, 97%).

*R*_f: 0.18 (8:2, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 3.79 (s, 1H, N<u>H</u>), 1.44 (s, 9H, Boc); ¹³C NMR (101 MHz, CDCl₃) δ = 135.9 (<u>C</u>ONH), 80.6 (<u>C</u>Me₃), 28.4 (Boc); HRMS: m/z (ESI⁺) calc. for C₅H₁₂N₂O₂ [M+Na]⁺: 155.0791; Obs.: 155.0792; *v*_{max}: (FT-ATR)/cm⁻¹: 3333, 2978, 2933, 1701, 1489, 1366, 1287, 1161, 1061, 870, 768; m.p.: 40-43 °C.

Ethyl bromoacetate (840 μ L, 7.58 mmol) was added to a stirred solution of **43** (1.50 g, 11.3 mmol) in water (15 mL) and stirred at r.t. for 1 h. The reaction mixture was then extracted with diethyl ether (3 × 40 mL), and the combined organics were washed with brine (2 × 50 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (4:6). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (1.12 g, 5.14 mmol, 68%).

*R*_f: 0.27 (4:6, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 6.47 (s, 1H, N<u>H</u>), 4.23-4.13 (m, 2H, C<u>H</u>₂CH₃), 3.66-3.59 (m, 2H, C<u>H</u>₂O), 1.42 (s, 9H, Boc), 1.25 (t, *J* = 7.1 Hz, 3H, CH₂C<u>H₃</u>); ¹³C NMR (101 MHz, CDCl₃) δ = 171.2 (<u>C</u>OCH₂), 135.9 (<u>C</u>ONH), 80.8 (<u>C</u>Me₃), 61.1 (<u>C</u>H₂CH₃), 52.9 (<u>C</u>H₂NH), 28.4 (Boc), 14.3 (CH₂<u>C</u>H₃); **HRMS**: m/z (ESI⁺) calc. for C₉H₁₈N₂O₄ [M+Na]⁺: 241.1159; Obs.: 241.1160; *v*_{max}: (FT-ATR)/cm⁻¹: 3290, 2971, 2926, 2854, 1675, 1557, 1456, 1429, 1151, 1114, 795.

A solution of lithium hydroxide (749 mg, 31.2 mmol) in water (5 mL) was added to asolution of **44** (680 mg, 3.12 mmol) in dioxane (10 mL), and the mixture stirred at 40 $^{\circ}$ C for 1 h. The reaction was then cooled to r.t. and acidified to pH ~4 by addition of potassium bisulphate (1 M). The aqueous mixture was then extracted with dichloromethane (3 × 20 mL), and the combined organics were washed with brine (40 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to give a white solid (256 mg, 1.35 mmol, 43%).

*R*_f: 0.11 (9:1, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 3.34-3.23 (m, 2H, C<u>H</u>₂O), 1.42 (s, 9H, Boc); ¹³C NMR (101 MHz, CD₃OD) δ = 172.9 (<u>C</u>OCH₂), 135.9 (<u>C</u>ONH), 83.3 (<u>C</u>Me₃), 51.9 (<u>C</u>H₂), 27.3 (Boc); HRMS: m/z (ESI⁺) calc. for C₇H₁₄N₂O₄ [M+Na]⁺: 213.0846; Obs.: 213.0846; *v*_{max}: (FT-ATR)/cm⁻¹: 3252, 2978, 2964, 1701, 1536, 1368, 1247, 1148, 1058, 803, 736. m.p: 143-145 °C.

4-Dimethylaminopyridine (75 mg, 0.62 mmol) was added to a mixture of **1** (104 mg, 0.21 mmol), **35** (77 mg, 0.24 mmol), and potassium carbonate (85 mg, 0.62 mmol) in anhydrous dichloromethane (5 mL) and stirred at r.t. for 2 h. The reaction mixture was then precipitated in diethyl ether (400 mL). The solid was then collected by filtration, washed with diethyl ether (30 mL), and dried in air to give a pink powder. The residue was purified via flash column chromatography on silica gel eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil, which was redissolved in dichloromethane (30 mL). The organics were washed with hydrochloric acid (0.1 M, 2 × 10 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure, to give a pink oil (30 mg, 38 µmol, 18%).

*R*_f: 0.16 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD, NMR data is provided for the acetal) δ = 8.48 (dd, $J_1 = J_2 = 13.4$ Hz, 1H, CHCHCN), 7.53-7.48 (m, 2H, H5, H5'), 7.43-7.36 (m, 3H, H7, H7', H8/H8'), 7.35-7.22 (m, 4H, PhH5, <u>H6</u>, <u>H6'</u>, <u>H8/H8'</u>,), 7.00 (dd, J = 8.1, 2.6 Hz, 1H, Ph<u>H6</u>), 6.85 (d, J = 2.6 Hz, 1H, Ph<u>H2</u>), 6.66 (dd, J = 13.4, 5.2 Hz, 1H, CHCN), 6.41 (dd, J = 13.4, 5.2 Hz, 1H, CHCN), 5.47 (s, 1H, C<u>H</u>(OR)₂), 4.52 (s, 2H, C<u>H</u>₂O), 4.26 (t, J = 7.6 Hz, 2H, C<u>H</u>₂CH₂CH₂SO₃), 4.12 (t, J = 7.6 Hz, 2H, CH₂CH₂CH₂CH₂NH), 3.45 (t, J = 7.6 Hz, 2H, CH₂NH), 2.97 (t, J = 7.6 Hz, 2H, CH₂SO₃), 2.25-2.20 (m, 2H, CH₂CH₂SO₃), 2.11-2.01 (m, 2H, CH₂CH₂NH), 1.72 (s, 12H, CyCH₃), 1.21 (s, 12H, C(CH₃)₂); ¹³C NMR (101 MHz, CD₃OD, NMR data is provided for the acetal) δ = 174.7 (<u>CHCHCN</u>), 174.6 (<u>C</u>2, <u>C</u>2'), 170.2 (<u>C</u>ONH), 157.4 (Ph<u>C</u>1), 150.9 (<u>C</u>3, <u>C</u>3'), 141.9 (<u>C</u>9, <u>C</u>9'), 140.8 (<u>C</u>4, <u>C</u>4'), 134.1 (Ph<u>C</u>4), 130.7 (Ph<u>C</u>5), 128.8 (<u>C7/C7'</u>), 128.7 (<u>C7/C7'</u>), 125.5 (<u>C6, C6'</u>), 125.4 (Ph<u>C</u>3), 122.2 (<u>C5, C5'</u>), 115.9 (PhC2), 114.4 (PhC6), 111.2 (C8/C8'), 111.0 (C8/C8'), 102.9 (CHCN), 102.8 (CHCN), 74.5 ((<u>C</u>H₃)₂O), 66.9 (<u>C</u>H₂CO), 49.3 (<u>C</u>H₂SO₃), 42.6 (<u>C</u>H₂CH₂CH₂SO₃), 41.6 (<u>CH</u>₂CH₂CH₂NH), 36.1 (<u>C</u>H₂NH), 27.0 (Cy<u>C</u>H₃), 23.9 (<u>C</u>H₂CH₂NH₂), 23.7 (C(<u>C</u>H₃)₂), 22.9 (CH₂CH₂SO₃); HRMS: m/z (ESI⁺) calc. for C₄₄H₅₄BN₃O₈S [M+Na]⁺: 818.3636; Obs.: 818.3636; *v*_{max}: (FT-ATR)/cm⁻¹: 3415, 3076, 2915, 1645, 1556, 1454, 1427, 1217, 1149, 1113, 1036, 926, 795, 756, 731, 680, 527.

Trifluoroacetic acid (0.5 mL) was added to a solution of **46** (30 mg, 38 µmol) and methylboronic acid (23 mg, 377 µmol) in dichloromethane (5 mL), and the mixture stirred at r.t for 3 h. The reaction was azeotroped with dichloromethane (3 × 20 mL), and hydrochloric acid (0.1 M, 2 × 10 mL) was added, and concentrated under reduced pressure. The residue was then suspended in water (10 mL) and lypophilised to yield a pink solid. (26 mg, 38 µmol, quantitative yield).

 R_{f} : 0.12 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD, NMR) data is provided for the acetal) δ = 8.53 (dd, $J_1 = J_2 = 13.4$ Hz, 1H, CHCHCN), 7.55 (dd, J = 7.4, 2.8 Hz, 2H, H5, H5'), 7.47-7.39 (m, 3H, H7, H7', H8/H8'), 7.37-7.27 (m, 4H, Ph<u>H5</u>, <u>H6</u>, <u>H6</u>', <u>H8/H8</u>'), 7.04 (dd, *J* = 8.1, 2.7 Hz, 1H, Ph<u>H6</u>), 6.90 (d, *J* = 2.7 Hz, 1H, Ph<u>H</u>2), 6.62 (d, J = 13.4 Hz, 1H, C<u>H</u>CN), 6.46 (d, J = 13.4 Hz, 1H, C<u>H</u>CN), 5.41 (s, 1H, C<u>H</u>(OR)₂), 4.57 (s, 2H, C<u>H</u>₂O), 4.39-4.27 (m, 2H, C<u>H</u>₂CH₂CH₂SO₃), 4.16 (t, J = 7.2 Hz, 2H, CH₂CH₂CH₂CH₂NH), 3.49 (t, J = 7.2 Hz, 2H, CH₂NH), 3.02 (t, J = 6.9 Hz, 2H, CH_2SO_3), 2.29-2.25 (m, 2H, $CH_2CH_2SO_3$), 2.10 (tt, $J_1 = J_2 = 7.2$ Hz, 2H, CH_2CH_2NH), 1.77 (s, 12H, CyCH₃); ¹³C NMR (101 MHz, CD₃OD, NMR data is provided for the acetal) δ = 174.7 (CHCHCN), 174.5 (C2, C2'), 170.2 (CONH), 157.4 (PhC1), 150.8 (<u>C</u>3, <u>C</u>3'), 141.8 (<u>C</u>9, <u>C</u>9'), 140.8 (<u>C</u>4, <u>C</u>4'), 134.1 (Ph<u>C</u>4), 130.7 (Ph<u>C</u>5), 128.7 (<u>C</u>7, <u>C7</u>'), 125.4 (<u>C6</u>, <u>C6</u>'), 125.3 (Ph<u>C3</u>), 122.1 (<u>C5</u>, <u>C5</u>'), 115.9 (Ph<u>C</u>2), 114.4 (Ph<u>C6</u>), 111.2 (C8/C8'), 111.0 (C8/C8'), 102.9 (CHCN⁺), 102.7 (CHCN), 66.9 ((CH₃)₂O), 49.2 (<u>CH</u>₂CO), 46.8 (CH₂SO₃), 42.6 (<u>C</u>H₂CH₂CH₂SO₃), 41.5 (<u>C</u>H₂CH₂CH₂CH₂NH), 36.1 (<u>C</u>H₂NH), 26.9 (Cy<u>C</u>H₃), 26.6 (<u>C</u>H₂CH₂NH₂), 22.8 (<u>C</u>H₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₈H₄₄BN₃O₈S [M+Na]⁺: 736.2834; Obs.: 736.2834; *v*_{max}: (FT-ATR)/cm⁻¹:

3289, 2926, 1676, 1558, 1456, 1429, 1373, 1232, 1151, 1115, 1037, 927, 756, 681; **m.p**: 315-320 °C;

Evidence for the formation of **5** was further provided by incubating 5 mg with 1.5 equiv. of *n*-butylamine in MeOD for 30 min. After this time, exclusive formation of boronoimine **47** was observed.

¹**H NMR** (400 MHz, CD₃OD, NMR data is provided for the acetal) δ = 8.62 (s, 1H, -C<u>H</u>NCH₂), 8.57 (dd, *J*₁ = *J*₂ = 13.4 Hz, 1H, C<u>H</u>CHCN), 7.63 (d, *J* = 8.3 Hz, 1H, Ph<u>H</u>5), 7.58-7.54 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.48-7.41 (m, 3H, <u>H</u>7, <u>H</u>7', <u>H</u>8/<u>H</u>8'), 7.35-7.30 (m, 3H, Ph<u>H</u>5, <u>H</u>6, <u>H</u>6', <u>H</u>8/<u>H</u>8'), 7.15 (d, *J* = 2.4 Hz, 1H, Ph<u>H</u>2), 6.99 (dd, *J* =

8.3, 2.4 Hz, 1H, Ph<u>H</u>6), 6.63 (d, *J* = 13.4 Hz, 1H, C<u>H</u>CN), 6.50 (d, *J* = 13.4 Hz, 1H, C<u>H</u>CN), 4.64 (s, 2H, C<u>H</u>₂O), 4.39-4.33 (m, 2H, C<u>H</u>₂CH₂CH₂SO₃), 4.22 (t, *J* = 7.5 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂NH), 3.57 (t, *J* = 7.7 Hz, 2H, C<u>H</u>₂NH), 3.48 (t, *J* = 7.0 Hz, 2H, -CHNC<u>H</u>₂), 3.00 (t, *J* = 6.7 Hz, 2H, C<u>H</u>₂SO₃), 2.29-2.23 (m, 2H, C<u>H</u>₂CH₂SO₃), 2.15-2.10 (m, 2H, C<u>H</u>₂CH₂NH), 1.79 (s, 12H, CyC<u>H</u>₃), 1.52-1.38 (m, 2H, -CHNCH₂C<u>H</u>₂C<u>H</u>₂C<u>H</u>₂), 1.01 (t, 3H, -C<u>H</u>₃).

A mixture of **2** (30 mg, 56 μ mol), **36** (31 mg, 0.112 mmol), and triethylamine (39 μ L, 0.280 mmol) in dichloromethane (3 mL) was stirred at r.t. for 3 h. The reaction was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil (30 mg, 44 μ mol, 77%).

 R_{f} : 0.38 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.20 (dd, $J_1 = J_2 = 13.5$ Hz, 2H, CHCHCN), 7.43 (dd, J = 7.9, 2.6 Hz, 2H, H5, H5'), 7.37-7.30 (m, 3H, H7, H7', H8/H8'), 7.30-7.27 (m, 1H, H8/H8'), 7.19 (dd, J = 7.9, 2.8 Hz, 2H, H6, H6'), 6.67 (dd, $J_1 = J_2 = 13.5$ Hz, 1H, CHCHCHCN), 6.38 (d, J = 13.5 Hz, 1H, CHCN), 6.27 (d, J = 13.5 Hz, 1H, CHCN), 4.34-4.26 (m, 2H, CH₂CH₂CH₂SO₃), 4.08 (t, J = 7.6 Hz, 2H, CH₂CH₂CH₂NH), 3.70 (s, 2H, CH₂NHBoc), 3.36 (t, J = 7.6 Hz, 2H, CH_2NH), 2.97 (t, J = 7.5 Hz, 2H, CH_2SO_3), 2.22 (tt, $J_1 = J_2 = 7.5 Hz$, 2H, $CH_2CH_2SO_3$), 1.95 (tt, $J_1 = J_2 = 7.6$ Hz, 2H, CH₂CH₂NH), 1.65 (s, 12H, CyCH₃), 1.42 (s, 9H, Boc); ¹³C NMR (101 MHz, CD₃OD) δ = 173.1 (<u>C</u>2, <u>C</u>2'), 171.8 (<u>C</u>3, <u>C</u>3'), 169.9 (<u>C</u>ON), 157.2 (CHCHCN), 154.4 (CHCHCN), 142.2 (C9/C9'), 142.0 (C9/C9'), 141.3 (C4/4'), 141.2 (<u>C4/C4'</u>), 130.1 (<u>C7, C7'</u>), 129.9 (<u>C7, C7'</u>), 126.0 (<u>C</u>HCHCHCN), 124.9 (<u>C6/C6'</u>), 124.8 (<u>C6/C6'</u>), 122.1 (<u>C5</u>, <u>C5'</u>), 110.8 (<u>C8/C8'</u>), 110.7 (<u>C8/C8'</u>), 103.3 (<u>CHCN</u>), 103.1 (CHCN), 79.4 (CH2NHBoc), 79.1, (CMe3), 49.2 (CH2SO3), 42.4 (CH2CH2CH2SO3), 41.5 (CH₂CH₂CH₂NH), 36.4 (CH₂NH), 27.4 (Boc), 26.9 (CH₂CH₂NH), 26.6 (CyCH₃), 22.8 (CH2CH2SO3); HRMS: m/z (ESI+) calc. for C38H50N4O6 [M+Na]+: 713.3343; Obs.: 713.3351; **v**_{max}: (FT-ATR)/cm⁻¹:3300, 2968, 2924, 2852, 1702, 1659, 1492, 1482, 1453, 1378, 1338, 1216, 1138, 1102, 1035, 925, 709, 522.

Trifluoroacetic acid (1.0 mL) was added to a solution of **48** (30 mg, 44 μ mol) in dichloromethane (5 mL) and stirred at r.t. for 2 h. The reaction mixture was then concentrated under reduced pressure to ~5 mL, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (30 mL) and concentrated under reduced pressure to give a blue oil (19 mg, 32 μ mol, 73%).

Rr: 0.21 (5:95, CH₂Cl₂:MeOH, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.10 (d, *J* = 13.6 Hz, 2H, C<u>H</u>CHCN), 7.40 (dd, *J*₁ = *J*₂ = 7.5 Hz, 2H, <u>H</u>5, <u>H</u>5'), 7.34 (t, *J* = 7.5 Hz, 2H, <u>H</u>7, <u>H</u>7'), 7.29 (dd, *J* = 7.9, 2.5 Hz, 2H, <u>H</u>8, <u>H</u>8'), 7.15 (dd, *J*₁ = *J*₂ = 7.5 Hz, 2H, <u>H</u>6, <u>H</u>6'), 6.61 (dd, *J*₁ = *J*₂ = 13.6 Hz, 1H, C<u>H</u>CHCHCN), 6.48 (d, *J* = 13.6 Hz, 1H, C<u>H</u>CN), 6.17 (d, *J* = 13.6 Hz, 1H, C<u>H</u>CN), 4.32 (t, *J* = 7.5 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂SO₃), 4.13 (t, *J* = 7.4 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂NH), 3.81 (s, 2H, C<u>H</u>₂NH₃⁺), 3.42 (t, *J* = 7.4 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂NH), 3.81 (s, 2H, C<u>H</u>₂NH₃⁺), 3.42 (t, *J* = 7.4 Hz, 2H, C<u>H</u>₂CH₂CH₂SO₃), 1.96 (tt, *J*₁ = *J*₂ = 7.4 Hz, 2H, C<u>H</u>₂CH₂CH₂NH), 1.59 (s, 12H, CyC<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 173.5 (C₂, C²'), 172.7 (C₃, C₃'), 166.4 (CO), 154.2 (CHCHCN), 153.7 (CHCHCN), 142.0 (C9, C9'), 141.3 (C4, C4'), 128.4 (C7, C7'), 126.1 (CH2NH₃), 47.5 (CH₂SO₃), 45.3, 41.4 (CH₂CH₂CH₂SO₃), 40.4 (CH₂CH₂CH₂CH₂NH), 36.5 (CH₂NH), 26.9 (CH₂CH₂NH), 26.6 (CyC_{H₃}), 22.8 (CH₂CH₂SO₃); HRMS: m/z (ESI⁺) calc. for C₃₃H₄₂N₄O₄S [M+H]⁺: 591.3014; Obs.: 591.3000; *v*_{max}: (FT-ATR)/cm⁻¹: 2918, 2856, 1683, 1495, 1461, 1388, 1145, 1106, 1034, 928, 799, 752, 710.

A mixture of **2** (19 mg, 36 μ mol), **38** (28 mg, 70 μ mol), and triethylamine (24 μ L, 0.18 mmol) in dichloromethane (1 mL) was stirred at r.t. for 2 h. The reaction mixture was then concentrated under reduced pressure, and the residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil. (11 mg, 13 μ mol, 38%).

*R*_f: 0.32 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.22 (dd, *J* = 13.0 Hz, 2H, 2 × C<u>H</u>CHCN), 7.44 (d, *J* = 7.3 Hz, 2H, <u>H</u>5, <u>H</u>5'), 7.40-7.36 (m, 2H, <u>H</u>7, <u>H</u>7'), 7.36-7.28 (m, 2H, <u>H</u>8, <u>H</u>8'), 7.20 (dd, *J*₁ = *J*₂ = 7.3 Hz, 2H, <u>H</u>6, <u>H</u>6'), 6.67 (dd, *J*₁ = *J*₂ = 13.0 Hz, 1H, C<u>H</u>CHCHCN), 6.38 (d, *J* = 13.0 Hz, 1H, C<u>H</u>CN), 6.29 (t, *J*

= 13.0 Hz, 1H, C<u>H</u>CN), 4.40-4.24 (m, 2H, C<u>H</u>₂CH₂CH₂SO₃), 4.13-4.07 (m, 3H, C<u>H</u>₂CH₂CH₂CH₂NH, C<u>H</u>CO), 3.40-3.33 (m, 2H, C<u>H</u>₂NH), 3.30-3.23 (m, 2H, C<u>H</u>₂NHBoc), 2.98 (t, J = 6.9 Hz, 2H, C<u>H</u>₂SO₃), 2.23 (tt, $J_1 = J_2 = 6.9$ Hz, 2H, C<u>H</u>₂CH₂SO₃), 1.97 (tt, $J_1 = J_2 = 7.0$ Hz, 2H, C<u>H</u>₂CH₂NH), 1.66 (s, 12H, CyC<u>H</u>₃), 1.40 (s, 18H, 2 × Boc); ¹³C NMR (101 MHz, CD₃OD) $\delta = 173.1$ (C2, C2'), 172.2 (C3, C3'), 167.8 (CON), 157.4 (CHCHCN), 156.5 (CHCHCN), 142.2 (C9/C9'), 142.1 (C9/C9'), 141.3 (C4/C4'), 141.2 (C4/C4'), 128.5 (C7, C7'), 126.1 (CHCHCHCN), 124.8 (C6, C6'), 122.1 (C5, C5'), 110.8 (C8, C8'), 103.1 (CHCN), 103.4 (CHCN), 80.9 (CMe₃), 80.6 (CMe₃), 56.0 (CH₂NHBoc), 49.3 (CHCO), 48.3 (CH₂SO₃), 42.7 (CH₂CH₂CH₂CH₂SO₃), 41.5 (CH₂CH₂CH₂CH₂NH), 36.6 (CH₂NH), 27.4 (CyCH₃), 26.6 (Boc), 26.6 (CH₂CH₂NH), 22.8 (CH₂CH₂CH₂SO₃); HRMS: m/z (ESI⁺) calc. for C4₄H₆₁N₅O₈S [M+H]⁺: 820.4314; Obs.: 820.4341; **v**_{max}: (FT-ATR)/cm⁻¹: 3655, 2981, 2927, 1707, 1481, 1453, 1381, 1138, 1101, 1035, 926, 803, 753, 709, 552; m.p.: 168-171 °C.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **49** (11 mg, 13 μ mol) in dichloromethane (9 mL) and the mixture was stirred at r.t. for 2 h. The reaction was then concentrated under reduced pressure to ~5 mL, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a blue oil. (10 mg, 13 μ mol, quantitative yield).

*R*_f: 0.15 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.13 (dd, $J_1 = J_2 = 13.6$ Hz, 2H, 2 × C<u>H</u>CHCN), 7.48-7.40 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.38-7.34 (m, 2H, <u>H</u>7, <u>H</u>7'), 7.32-7.25 (m, 2H, <u>H</u>8, <u>H</u>8'), 7.25-7.12 (m, 2H, <u>H</u>6, <u>H</u>6'), 6.66 (dd, $J_1 = J_2 = 13.6$ Hz, 1H, C<u>H</u>CHCHCN), 6.52 (d, J = 13.6 Hz, 1H, C<u>H</u>CN), 6.21 (d, J = 13.6 Hz, 1H, C<u>H</u>CN), 4.36-4.32 (m, 3H, C<u>H</u>2CH₂CH₂SO₃/C<u>H</u>CO), 4.19-4.15 (m, 2H,

C<u>H</u>₂CH₂CH₂NH), 3.60-3.54 (m, 2H, C<u>H</u>₂NH), 3.44-3.38 (m, 2H, C<u>H</u>₂SO₃), 3.08 (t, J = 7.0 Hz, 2H, C<u>H</u>₂NH₃⁺), 2.24 (tt, $J_1 = J_2 = 7.5 \text{ Hz}$, 2H, C<u>H</u>₂CH₂SO₃), 2.02 (tt, $J_1 = J_2 = 7.0 \text{ Hz}$, 2H, C<u>H</u>₂CH₂NH), 1.62 (s, 12H, CyC<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) $\delta = 174.9$ (C2, C2'), 174.2 (C3, C3'), 168.5 (CON), 155.5 (CHCHCN), 154.9 (CHCHCN), 143.4 (C9, C9'), 142.7 (C4, C4'), 129.3 (C7, C7'), 126.9 (CHCHCNN), 126.3 (C6, C6'), 123.6, (C5, C5'), 111.9 (C8, C8'), 105.5 (CHCN), 104.4 (CHCN), 57.4 (CH₂NH₃⁺), 50.6 (CHCO), 50.5 (CH₂SO₃), 44.3 (CH₂CH₂CH₂SO₃), 42.8 (CH₂CH₂CH₂CH₂NH), 38.4 (CH₂NH), 28.4 (CyCH₃), 24.5, (CH₂CH₂NH), 24.2 (CH₂CH₂SO₃); HRMS: m/z (ESI⁺) calc. for C₃₄H₄₅N₅O₄S [M+H]⁺: 620.3265; Obs.: 620.3265; *v*_{max}: (FT-ATR)/cm⁻¹: 2978, 2929, 1680, 1488, 1456, 1384, 1145, 1038 1018, 995, 926, 800; m.p.: 178-181 °C.

A mixture of **2** (30 mg, 56 μ mol), **39** (90 mg, 0.169 mmol), and triethylamine (29 μ L, 0.280 mmol) in dichloromethane (2 mL) was stirred at r.t. for 2 h. The reaction mixture was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue solid (45 mg, 46 μ mol, 84%). The product was carried into the next step without further characterisation.

R_f: 0.32 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.24 (dd, *J* = 13.5, 13.0 Hz, 2H, 2 × C<u>H</u>CHCN), 7.45 (dd, *J* = 7.3, 2.2 Hz, 2H, <u>H</u>5, <u>H</u>5'), 7.42-7.38 (m, 2H, <u>H</u>7, <u>H</u>7'), 7.34 (d, *J* = 7.7 Hz, 6H, TrtPh<u>H</u>2), 7.31-7.26 (m, 2H, <u>H</u>8, <u>H</u>8'), 7.26-7.20 (m, 8H, TrtPh<u>H</u>3 / <u>H</u>6, <u>H</u>6'), 7.17 (t, *J* = 7.7 Hz, 3H, TrtPh<u>H</u>4), 6.63 (dd, *J*₁ = J_2 = 13.0 Hz, 1H, C<u>H</u>CHCHCN), 6.34 (d, *J* = 13.5 Hz, 1H, C<u>H</u>CN), 6.25 (d, *J* = 13.5 Hz, 1H, C<u>H</u>CN), 4.30 (t, *J* = 8.3 Hz, 2H, C<u>H</u>₂CH₂CH₂SO₃), 4.04 (t, *J* = 6.9 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂NH), 3.96 (t, *J* = 6.9 Hz, 1H, C<u>H</u>CO), 3.33 (d, *J* = 6.9 Hz, 2H, C<u>H</u>₂NH), 2.95 (t, *J* = 7.0 Hz, 2H, C<u>H</u>₂STrt), 2.57-2.42 (m, 2H, C<u>H</u>₂SO₃), 2.24-2.17 (m, 2H, CH

C<u>H</u>₂CH₂SO₃), 1.99-1.92 (m, 2H, C<u>H</u>₂CH₂NH), 1.68 (s, 12H, CyC<u>H</u>₃), 1.40 (s, 9H, Boc); **HRMS**: m/z (ESI⁺) calc. for C₅₈H₆₆N₄O₆S₂ [M+H]⁺: 979.4497; Obs.: 979.4542; *v*_{max}: (FT-ATR)/cm⁻¹: 3419, 2925, 2859, 1711, 1489, 1455, 1382, 1338, 1216, 1140, 1104, 1036, 1018, 926, 750, 707; **m.p.:** 167-154 °C.

Trifluoroacetic acid (2 mL) was added dropwise to a stirred solution of **50** (40 mg, 41 μ mol) and triisopropylsilane (43 μ L, 0.210 mmol) in dichloromethane (10 mL), and the mixture stirred at r.t. for 1 h. The reaction was then concentrated under reduced pressure to ~5 mL, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a blue oil. (22 mg, 35 μ mol, 86%).

R: 0.29 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.13 (dd, J = 13.5, 13.0 Hz, 2H, 2 × CHCHCN), 7.41 (dd, J = 7.4, 1.1 Hz, 2H, H5, H5'), 7.38-7.33 (m, 2H, H7, H7'), 7.33-7.26 (m, 2H, H8, H8'), 7.17 (ddd, $J_1 = J_2 = 7.5$, $J_3 = 1.0$ Hz, 2H, H6, H6'), 6.64 (dd, $J_1 = J_2 = 13.0$ Hz, 1H, CHCHCN), 6.48 (d, J = 13.5 Hz, 1H, CHCN), 6.21 (d, J = 13.5 Hz, 1H, CHCN), 4.34 (t, J = 7.4 Hz, 2H, CH₂CH₂CH₂CH₂SO₃), 4.18-4.10 (m, 3H, CH₂CH₂CH₂CH₂NH, CHCO), 3.53-3.40 (m, 2H, CH₂NH), 3.17-3.11 (m, 1H, CH₂SH), 3.09-3.00 (m, 3H, CH₂SO₃, CH₂SH), 2.26-2.20 (m, 2H, CH₂CH₂CH₂SO₃), 2.05-1.93 (m, 2H, CH₂CH₂NH), 1.61 (s, 12H, CyCH₃); ¹³C NMR (101 MHz, CD₃OD) δ = 173.5 (C2, C2'), 172.7 (C3, C3'), 167.5 (CONH), 154.3 (CHCHCN), 153.7 (CHCHCN), 142.0 (C9/C9'), 141.3 (C9/C9'), 142.0 (C4/C4'), 141.3 (C4/C4'), 128.4 (C7, C7'), 126.2 (CHCHCHCN), 125.0 (C6/C6'), 124.8 (C6/C6'), 122.1 (C5, C5'), 110.7 (C8/C8'), 110.4 (C8/C8'), 103.9 (CHCN), 102.9 (CHCN), 54.9 (CH₂SH), 49.1 (CHCO), 48.3 (CH₂SO₃), 42.6 (CH₂CH₂CH₂SO₃), 41.5 (CH₂CH₂CH₂CH₂NH), 36.8 (CH₂NH), 26.9

(Cy<u>C</u>H₃), 26.6 (<u>C</u>H₂CH₂NH), 22.8 (<u>C</u>H₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₄H₄₄N₄O₄S₂ [M+H]⁺: 637.2877; Obs.: 637.2873; **v**_{max}: (FT-ATR)/cm⁻¹: 3412, 2966, 1677, 1490, 1455, 1381, 1338, 1202, 1139, 1101, 1035, 1016,925, 798, 751, 709; **m.p.:** 194-197 °C.

A mixture of **2** (30 mg, 56 μ mol), **42** (49 mg, 0.170 mmol), and triethylamine (29 μ L, 0.28 mmol) in dichloromethane (2 mL) was stirred for at r.t. for 2 h. The reaction mixture was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil (15 mg, 21 μ mol, 38%).

Rr: 0.24 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CDCl₃) δ = 9.00 (s, 1H, N<u>H</u>Boc), 7.86-7.78 (m, 2H, 2 × C<u>H</u>CHCN) 7.39-7.32 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.31 (d, J = 7.8 Hz, 2H, <u>H</u>7'), 7.24-7.18 (m, 1H, <u>H8/H8'</u>), 7.20-7.12 (m, 2H, <u>H8/H8'</u>, <u>H6/H6'</u>), 7.10 (d, J = 7.8 Hz, 1H, <u>H6/H6'</u>), 7.08-7.03 (m, 1H, C<u>H</u>CN), 6.92-6.66 (m, 1H, 2 × C<u>H</u>CN), 6.05 (dd, $J_1 = J_2 = 13.4$ Hz, 1H, C<u>H</u>CHCHCN), 4.48 (s, 2H, C<u>H</u>₂O), 4.46-4.40 (m, 2H, C<u>H</u>₂CH₂CH₂CG₃), 4.07 (t, J = 7.8 Hz, 2H, C<u>H</u>₂CH₂CH₂NH), 3.45 (t, J = 7.8 Hz, 2H, C<u>H</u>₂NH), 3.03 (t, J = 7.5 Hz, 2H, C<u>H</u>₂SO₃), 2.32-2.21 (m, 2H, C<u>H</u>₂CH₂SO₃), 2.09-1.98 (m, 2H, C<u>H</u>₂CH₂NH), 1.64 (s, 12H, CyC<u>H</u>₃), 1.37 (s, 9H, Boc); ¹³C NMR (101 MHz, CDCl₃) δ = 174.7 (<u>C</u>2/<u>C</u>2'), 174.3 (<u>C</u>2/<u>C</u>2'), 172.3 (<u>C</u>3/<u>C</u>3'), 172.1 (<u>C</u>3/<u>C</u>3'), 160.6 (<u>C</u>ON), 155.3 (<u>C</u>HCHCN), 155.0 (<u>C</u>HCHCN), 143.5 (<u>C</u>9, <u>C</u>9'), 142.2 (<u>C</u>4, <u>C</u>4'), 130.4 (<u>C</u>7/<u>C</u>7'), 130.3 (<u>C</u>7/<u>C</u>7'), 128.9 (<u>C</u>HCHCHCN), 126.8 (<u>C</u>6/<u>C</u>6'), 126.4 (<u>C</u>6/<u>C</u>6'), 123.7 (<u>C</u>5/<u>C</u>5'), 112.3 (<u>C</u>8/<u>C</u>8'), 111.9 (<u>C</u>8/<u>C</u>8'), 104.6 (<u>C</u>HCN), 104.5 (<u>C</u>HCN), 80.8 (<u>C</u>Me₃), 77.5 (<u>C</u>H₂O), 48.9 (<u>C</u>H₂SO₃⁻³), 47.6 (<u>C</u>H₂CH₂CH₂SO₃⁻³), 43.3 (<u>C</u>H₂CH₂CH₂NH), 37.2 (<u>C</u>H₂NH), 29.7 (Boc), 29.0 (C<u>H</u>₂CH₂NH), 26.8 (Cy<u>C</u>H₃), 24.9

(<u>C</u>H₂CH₂SO₃⁻); **HRMS**: m/z (ESI⁺) calc. for C₃₈H₅₀N₄O₇S [M+H]⁺: 707.3473; Obs.: 707.3492.

Trifluoroacetic acid (4 mL) was added dropwise to a stirred solution of **51** (30 mg, 42 μ mol) in dichloromethane (4 mL) and the mixture was stirred at r.t. for 2 h. The reaction was then concentrated under reduced pressure to ~5 mL, and the remaining solution added dropwise to diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a blue oil (20 mg, 31 μ mol, 74%).

Rr: 0.21 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.24 (dd, $J_1 = J_2 = 13.5$ Hz, 2H, 2 × C<u>H</u>CHCN), 7.98 (t, J = 6.1 Hz, 1H, N<u>H</u>CO), 7.45 (d, J = 7.5 Hz, 2H, <u>H</u>5, <u>H</u>5'), 7.41-7.33 (m, 3H, <u>H</u>7, <u>H</u>7', <u>H</u>8/<u>H</u>8'), 7.31-7.17 (m, 3H, <u>H</u>6, <u>H</u>6', <u>H</u>8/<u>H</u>8'), 6.64 (dd, $J_1 = J_2 = 13.0$ Hz, 1H, C<u>H</u>CHCHCN), 6.40 (d, J = 13.5 Hz, 1H, C<u>H</u>CN), 6.26 (d, J = 13.5 Hz, 1H, C<u>H</u>CN), 4.43 (s, 2H, C<u>H</u>₂O), 4.32 (t, J = 7.2 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂SO₃), 4.09 (t, J = 7.6 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂O), 4.32 (t, J = 7.2 Hz, 2H, (<u>H</u>₂CH₂CH₂CH₂SO₃), 2.01 (tt, $J_1 = J_2 = 7.6$ Hz, 2H, C<u>H</u>₂CH₂CH₂NH), 3.43-3.36 (m, 2H, C<u>H</u>₂NH), 2.97 (t, J = 7.2 Hz, 2H, C<u>H</u>₂CH₂CH₂NH), 1.94 (s, 3H, C<u>H</u>3), 1.83 (s, 3H, C<u>H</u>3), 1.68 (s, 12H, CyC<u>H</u>3). ¹³C NMR (101 MHz, CD₃OD) δ = 174.5 (<u>C</u>2/<u>C</u>2'), 173.7 (<u>C</u>2/<u>C</u>2'), 173.5 (<u>C</u>3/<u>C</u>3'), 173.1 (<u>C</u>3/<u>C</u>3'), 172.0 (<u>C</u>ON), 157.8 (<u>C</u>HCHCN), 154.6 (<u>C</u>HCHCN), 142.2 (<u>C</u>9/<u>C</u>9'), 142.1 (<u>C</u>9/<u>C</u>9'), 141.3 (<u>C</u>4/<u>C</u>4'), 124.8 (<u>C</u>6/<u>C</u>6'), 122.1 (<u>C</u>5/<u>C</u>5'), 122.1 (<u>C</u>5/<u>C</u>5'), 110.8 (<u>C</u>8/<u>C</u>8'), 110.5 (<u>C</u>8/<u>C</u>8'), 103.4 (<u>C</u>HCN), 102.9 (<u>C</u>HCN), 71.8 (<u>C</u>H₂O), 49.3 (<u>C</u>=N), 49.2 (<u>C</u>H₂SO₃), 42.7 (<u>C</u>H₂CH₂CH₂SO₃), 41.3 (<u>C</u>H₂CH₂CH₂CH₂NH), 36.2 (<u>C</u>H₂NH), 27.6 (Cy<u>C</u>H₃), 26.9 (C<u>H</u>₂CH₂NH), 26.6 (<u>C</u>H₃), 26.5 (<u>C</u>H₃), 22.8

(C<u>H</u>₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₆H₄₅N₄O₅S [M+H]⁺: 647.3261: Obs.: 647.3261;

52 (15 mg, 23 μ mol) was dissolved in hydrochloric acid (0.1 M 3 mL,) and stirred at 80 °C for 2 h. The reaction mixture was then lyophilised to give the product as a blue oil (14 mg, 23 μ mol, 99%). Due to the reactivity of the oxime, the product was used directly in the next experiments without further analysis.

*R*_f: 0.14 (1:9, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.30-8.24 (m, 2H, 2 × C<u>H</u>CHCN), 7.49-7.43 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.46-7.39 (m, 3H, <u>H</u>7, <u>H</u>7', <u>H</u>8/<u>H</u>8'), 7.33-7.24 (m, 3H, <u>H</u>6, <u>H</u>6', <u>H</u>8/<u>H</u>8'), 6.68 (dd, $J_1 = J_2 = 12.4$ Hz, 1H, C<u>H</u>CHCHCN), 6.59 (d, J = 13.7 Hz, 1H, C<u>H</u>CN), 6.24 (d, J = 13.7 Hz, 1H, C<u>H</u>CN), 4.64 (s, 2H, C<u>H</u>₂O), 4.41-4.35 (m, C<u>H</u>₂CH₂CH₂SO₃), 4.18-4.10 (m, 2H, C<u>H</u>₂CH₂CH₂CH₂NH), 3.46-3.42 (m, 2H, C<u>H</u>₂NH), 3.05-2.98 (m, 2H, C<u>H</u>₂SO₃), 2.24-2.30 (m, 2H, C<u>H</u>₂CH₂SO₃), 2.10-2.02 (m, 2H, C<u>H</u>₂CH₂NH), 1.76 (s, 12H, CyC<u>H</u>₃); **HRMS**: m/z (ESI⁺) calc. for C₃₃H₄₂N₄O₅S [M+H]⁺: 607.2949: Obs.: 607.2964.

Propylphosphonic anhydride solution (50% w/w in EtOAc, 44 μ L, 140 μ mol) was added to a stirred solution of **2** (30 mg, 56 μ mol), **45** (21 mg, 112 μ mol), and triethylamine (39 μ L, 281 μ mol) in dichloromethane (3 mL) dropwise at 0 °C. The solution was then stirred at r.t. for 16 h. The reaction was concentrated under reduced pressure and the

residue purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a blue oil (18 mg, 18 μ mol, 45%).

 R_{f} : 0.28 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.18 (dd, J = 13.3, 12.5 Hz, 2H, 2 × C<u>H</u>CHCN), 7.43 (dd, J = 7.6, 2.3 Hz 2H, <u>H</u>5, <u>H</u>5'), 7.39-7.31 (m, 3H, H7, H7', H8/H8'), 7.31-7.25 (m, 1H, H8/H8'), 7.25-7.16 (m, 2H, H6, H6'), 6.60 (dd, $J_1 = J_2 = 12.5$ Hz, 1H, CHCHCHCN), 6.52 (d, J = 13.3 Hz, 1H, CHCN), 6.16 (d, J = 13.3 Hz, 1H, CHCN), 5.47 (s, 1H, CH₂NH), 4.34 (t, J = 7.6 Hz, 2H, $CH_2CH_2CH_2SO_3$, 4.14 (t, J = 7.8 Hz, 2H, $CH_2CH_2CH_2NH$), 3.54 (s, 2H, CH₂NHNHBoc), 3.38 (t, J = 7.8 Hz 2H, CH₂NH), 2.98 (t, J = 7.6 Hz, 2H, CH₂SO₃), 2.22 (tt, $J_1 = J_2 = 7.6$ Hz, 2H, CH₂CH₂SO₃), 2.00 (tt, $J_1 = J_2 = 7.8$ Hz, 2H, CH₂CH₂NH), 1.64 (s, 12H, CyCH₃), 1.45 (s, 9H, Boc); ¹³C NMR (101 MHz, CD₃OD) δ = 172.9 (<u>C</u>2, <u>C</u>2'), 172.8 (C3, C3'), 163.5 (CON), 154.3 (CHCHCN), 153.7 (CHCHCN), 142.0 (C9, C9'), 141.3 (<u>C4/C4'</u>), 141.2 (<u>C4/C4'</u>), 128.5 (<u>C7/C7'</u>), 128.4 (<u>C7/C7'</u>), 125.0 (<u>C</u>HCHCHCN), 124.8 (<u>C6</u>, <u>C6</u>'), 122.1 (<u>C5</u>, <u>C5</u>'), 110.8 (<u>C8/C8</u>'), 110.5 (<u>C8/C8</u>'), 103.8 (<u>C</u>HCN), 102.9 (CHCN), 79.3, (CMe₃), 54.9 (CH₂NHNHBoc), 46.5 (CH₂SO₃), 42.6 (CH₂CH₂CH₂SO₃), 41.2 (<u>CH</u>₂CH₂CH₂NH), 36.2 (<u>C</u>H₂NH), 27.3 (Boc), 26.9 (Cy<u>C</u>H₃), 26.6 (<u>C</u>H₂CH₂NH), 22.7 (CH₂CH₂SO₃); HRMS: m/z (ESI⁺) calc. for C₃₈H₅₁N₅O₆S [M+Na]⁺: 728.3488,; Obs.: 728.3488; *v*_{max}: (FT-ATR)/cm⁻¹: 3267, 2974, 2929, 1705, 1658, 1492, 1456, 1338, 1141, 1104, 1018, 926, 802, 756.

Trifluoroacetic acid (1 mL) was added to a solution of **53** (13 mg, 18 µmol) in dichloromethane (5 mL) and stirred at r.t. for 2 h. The reaction mixture was then added dropwise into diethyl ether (400 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then

dissolved in methanol (30 mL) and concentrated under reduced pressure to give a blue oil (11 mg, 18 µmol, quantitative yield).

 R_{f} : 0.13 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.19 (dd, J = 13.3, 12.5 Hz, 2H, 2 × CHCHCN), 7.44 (dd, J = 7.3, 2.0 Hz, 2H, H5, H5'), 7.41-7.33 (m, 3H, <u>H</u>7, <u>H</u>7', <u>H</u>8/<u>H</u>8'), 7.28 (d, *J* = 7.9 Hz, 1H, <u>H</u>8/<u>H</u>8') 7.25-7.16 (m, 2H, <u>H</u>6, H6'), 6.63 (dd, $J_1 = J_2 = 12.5$ Hz, 1H, CHCHCHCN), 6.52 (d, J = 13.3 Hz, 1H, CHCN), 6.18 (d, J = 13.3 Hz, 1H, CHCN), 4.35 (t, 2H, J = 7.0 Hz, CH₂CH₂CH₂SO₃), 4.13 (t, J = 6.9 Hz, 2H, $CH_2CH_2CH_2NH$), 3.75 (s, 2H, CH_2NHNH_2), 3.39 (t, J = 6.9 Hz, 2H, CH_2NH), 3.01 (t, J = 7.0 Hz, 2H, CH_2SO_3), 2.23 (tt, $J_1 = J_2 = 7.0$ Hz, 2H, $CH_2CH_2SO_3$), 1.99 (tt, $J_1 = J_2 = 6.9$ Hz, 2H, CH₂CH₂NH), 1.66 (s, 12H, CyCH₃); ¹³C NMR (101 MHz, CD₃OD) δ = 173.6 (C2, C2'), 172.8 (C3, C3'), 163.2 (CON), 154.4 (CHCHCN), 153.8 (<u>C</u>HCHCN), 142.0 (<u>C</u>9, <u>C</u>9'), 141.2 (<u>C</u>4, <u>C</u>4'), 128.5 (<u>C</u>7, <u>C</u>7'), 125.0 (<u>C</u>HCHCHCN), 124.8 (C6, C6'), 122.1 (C5, C5'), 110.7 (C8/C8'), 110.4 (C8/C8'), 104.0 (CHCN), 102.6 $(\underline{C}HCN)$, 49.2 $(\underline{C}H_2NHNH_2)$, 47.2 $(\underline{C}H_2SO_3)$, 42.4 $(\underline{C}H_2CH_2CH_2SO_3)$, 41.2 $(\underline{C}H_2CH_2CH_2NH)$, 36.3 $(\underline{C}H_2NH)$, 26.9 $(Cy\underline{C}H_3)$, 26.6 $(\underline{C}H_2CH_2NH)$, 22.7 (<u>CH</u>₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₃H₄₃N₅O₄S [M+H]⁺: 606.3109; Obs.: 606.3122; *v*_{max}: (FT-ATR)/cm⁻¹: 3294, 2923, 2853, 1678, 1495, 1458, 1385, 1338, 1144, 1105, 1038, 926, 751.

4. Synthesis of control substrates for FRET studies

Acetyl chloride (7 μ L, 99 μ mol) was added to a solution of **2** (10 mg, 19 μ mol) in dichloromethane (3 mL) and stirred at r.t. for 1 h. The reaction mixture was then concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing

the product were concentrated under reduced pressure to provide a blue oil (7 mg, 12 μ mol, 64%).

R^{*r*} 0.29 (5:95, MeOH:CH₂Cl₂, visible light active); ¹**H NMR** (400 MHz, CD₃OD) δ = 8.30 (dd, $J_1 = J_2 = 13.1$ Hz, 2H, C<u>H</u>CHCN), 7.53-7.47 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.45-7.41 (m, 3H, <u>H</u>7, <u>H</u>7', <u>H</u>8/<u>H</u>8'), 7.31-7.25 (m, 3H, <u>H</u>6, <u>H</u>6', <u>H</u>8/<u>H</u>8'), 6.68 (dd, $J_1 = J_2 = 13.1$ Hz, 1H, C<u>H</u>CHCHCN), 6.47 (d, J = 13.1 Hz, 1H, C<u>H</u>CN), 6.30 (d, J = 13.1 Hz, 1H, C<u>H</u>CN), 4.37 (t, J = 7.5 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂SO₃), 4.15 (t, J = 7.5 Hz, 2H, C<u>H</u>₂CH₂CH₂NH₂), 3.34-3.30 (m, 2H, C<u>H</u>₂NH₂), 3.01 (t, J = 7.5 Hz, 2H, C<u>H</u>₂CO₃), 2.27 (tt, $J_1 = J_2 = 7.5$ Hz, 2H, C<u>H</u>₂CH₂SO₃), 2.03 (tt, $J_1 = J_2 = 7.5$ Hz, 2H, C<u>H</u>₂CH₂NH₂), 1.99 (s, 3H, COC<u>H</u>₃), 1.74 (s, 12H, CyC<u>H</u>₃); 1³C NMR (101 MHz, CD₃OD) δ = 173.5 (<u>C</u>2, <u>C</u>2'), 172.9 (<u>C</u>3/<u>C</u>3'), 172.2 (<u>C</u>3/<u>C</u>3'), 164.7 (<u>C</u>ON), 154.6 (<u>C</u>HCHCN), 154.1 (<u>C</u>HCHCN), 142.1 (<u>C</u>9, <u>C</u>9'), 141.3 (<u>C</u>4, <u>C</u>4'), 128.4 (<u>C</u>7, <u>C</u>7'), 125.8 (<u>C</u>HCHCHCN), 49.2 (<u>C</u>H₂SO₃), 46.5 (<u>C</u>H₂CH₂CH₂SO₃), 41.9 (<u>C</u>H₂CH₂CH₂NH₂), 36.5 (<u>C</u>H₂NH), 26.7 (CyC<u>H</u>₃), 26.4 (<u>C</u>H₃), 26.5 (<u>C</u>H₂CH₂NH₂), 22.7 (<u>C</u>H₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₃H₄₁N₃O₄S [M+H]⁺: 576.2891; Obs.: 576,2905; **v**_{max}: (FT-ATR)/cm⁻¹: 3288, 3054, 2921, 2850, 1657, 1492, 1452, 1377, 1337, 1217, 1137, 1099, 1016, 926, 796, 708, 593.

A mixture of *tert*-butyl 4-hydroxybenzoate (1.00 g, 5.15 mmol), bromoacetic acid (1.08 g, 7.73 mmol) and potassium carbonate (1.92 g, 13.9 mmol) in dimethylformamide (10 mL) was stirred for 16 h at 80 °C. The mixture was then cooled to r.t. and diluted with water (100 mL). The aqueous was extracted with ethyl acetate (3×70 mL) and the combined organic layers washed with brine (2×70 mL), dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a white foam (77 mg, 0.31 mmol, 6%).

*R*_f: 0.22 (15:85, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CD₃OD) δ = 7.82 (d, *J* = 8.4 Hz, 2H, Ph<u>H</u>3), 6.80 (d, *J* = 8.4 Hz, 2H, Ph<u>H</u>2), 4.45 (s, 2H, C<u>H</u>₂), 1.52 (s, 9H, ^{*t*}Bu);
¹³**C NMR** (101 MHz, CD₃OD) δ = 166.1 (<u>C</u>OOH) 165.5 (<u>C</u>OOC), 160.8 (Ph<u>C</u>4), 131.7 (Ph<u>C</u>3), 131.5 (Ph<u>C</u>3), 125.5 (Ph<u>C</u>1), 115.2 (Ph<u>C</u>2), 114.2 (Ph<u>C</u>2), 81.0 (<u>C</u>CH₃), 65.1 (CH₂), 28.3 (^{*t*}Bu); **HRMS**: m/z (ESI⁺) calc. for C₁₃H₁₆O₅ [M+H]⁺: 253.1080; Obs.: 253.1080; *v*_{max}: (FT-ATR)/cm⁻¹: 3296, 2979, 2932, 1674, 1605, 1589, 1514, 1442, 1317, 1280, 1226, 1154, 1102, 849, 774, 700, 618, 520, 499; **m.p.:** 185-204 °C.

A mixture of **54** (77 mg, 0.31 mmol), *N*-hydroxysuccinimide (53 mg, 0.46 mmol) and *N*-(3-dimethylaminopropyl)-*N*-ethylcarbodiimide hydrochloride (88 mg, 0.46 mmol) in dichloromethane (3 mL) was stirred at r.t. for 3 h. Dichloromethane (20 mL) was then added and the organics were washed with water (2 \times 30 mL) and brine (30 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to give a colourless oil (61 mg, 0.18 mmol, 56%).

R_f: 0.31 (1:9, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CD₃OD) δ = 7.95-7.91 (m, 2H, Ph<u>H</u>3), 6.94-6.90 (m, 2H, Ph<u>H</u>2), 4.99 (s, 2H, C<u>H</u>₂O), 2.82 (s, 4H, OSu), 1.54 (s, 9H, ^{*t*}Bu); ¹³C NMR (101 MHz, CD₃OD) δ = 169.3 (CON), 168.8 (CON), 165.3 (COO^{*t*}Bu), 164.3 (COON), 160.4, (Ph<u>C</u>4), 131.6 (Ph<u>C</u>3), 131.4 (Ph<u>C</u>3), 126.3 (Ph<u>C</u>1), 114.2, (Ph<u>C</u>2), 114.2 (Ph<u>C</u>2), 80.8 (CCH₃), 65.2 (CH₂O), 28.3 (^{*t*}Bu), 25.6 (OSu), 25.5 (OSu); HRMS: m/z (ESI⁺) calc. for C₁₇H₁₉NO₇ [M+Na]⁺: 372.1054; Obs.: 372.1054.

A mixture of **1** (67 mg, 0.13 mmol), **55** (60 mg, 0.17 mmol) and triethylamine (91 μ L, 0.66 mmol) in dichloromethane (3 mL) was stirred for 3 h. The reaction mixture was then concentrated under reduced pressure, and the residue purified via flash column chromatography on silica gel eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil (29 mg, 39 μ mol, 30%).

*R*_{*f*}: 0.36 (5:95, MeOH:CH₂Cl₂, visible light active); ¹**H NMR** (400 MHz, CD₃OD) δ = 8.51 (dd, *J*₁ = *J*₂ = 13.5 Hz, 1H, C<u>H</u>CHCN), 7.92-7.84 (m, 2H, Ph<u>H</u>3), 7.53-7.49 (m, 2H, <u>H</u>5, <u>H5'</u>), 7.46-7.34 (m, 3H, <u>H7</u>, <u>H7'</u>, <u>H8/H8'</u>), 7.34-7.19 (m, 3H, <u>H6</u>, <u>H6'</u>, <u>H8/H8'</u>), 7.09-7.00 (m, 2H, PhH2), 6.60 (dd, J = 13.5, 3.6 Hz, 1H, CHCN), 6.44 (dd, J = 13.5, 3.6 Hz, 1H, CHCN), 4.61 (s, 2H, CH₂O), 4.30 (t, J = 7.2 Hz, 2H, CH₂CH₂CH₂SO₃), 4.14 (t, J = 7.4 Hz, 2H, CH₂CH₂CH₂CH₂NH), 3.45 (t, J = 7.0 Hz, 2H, CH₂NH), 2.96 (t, J = 7.2 Hz, 2H, CH₂SO₃), 2.21 (tt, $J_1 = J_2 = 7.2$ Hz, 2H, CH₂CH₂SO₃), 2.06 (tt, $J_1 = J_2 = 7.4$ Hz, 2H, CH₂CH₂NH), 1.74 (s, 12H, CyCH₃), 1.52 (s, 9H, ^tBu); ¹³C NMR (101 MHz, CD₃OD) δ = 176.3 (<u>CONH</u>), 176.1 (<u>CHCHCN</u>), 171.0 (<u>C2</u>, <u>C</u>2'), 165.4 (<u>COO</u>²Bu), 162.2 (Ph<u>C</u>4), 152.4 (<u>C</u>3, <u>C</u>3'), 143.4 (<u>C</u>9, <u>C</u>9'), 142.6 (<u>C</u>4, <u>C</u>4'), 132.6 (Ph<u>C</u>3), 130.2 (<u>C</u>7/<u>C</u>7'), 130.1 $(\underline{C7}/\underline{C7}')$, 127.1 $(\underline{C6}/\underline{C6}')$, 126.9 $(\underline{C6}/\underline{C6}')$, 125.5 $(\underline{PhC}1)$, 123.8 $(\underline{C5}/\underline{C5}')$, 123.6 (<u>C5/C5</u>'), 115.4 (Ph<u>C</u>2), 112.6 (<u>C8/C8</u>'), 112.4 (<u>C8/C8</u>'), 104.5 (<u>C</u>HCN), 104.2 (<u>C</u>HCN), 81.0 (CCH₃), 68.4 (CH₂CO), 50.8 (CH₂SO₃), 44.1 (CH₂CH₂CH₂SO₃), 43.1 (CH₂CH₂CH₂NH), 37.7 (CH₂NH), 28.5 (CyCH3), 28.3 (^tBu), 28.3 (CH₂CH₂NH₂), 24.3 (CH₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₄₂H₅₀N₃O₇S [M+H]⁺: 742.3530; Obs.: 742.3530; *v*_{max}: (FT-ATR)/cm⁻¹: 3410, 2979, 2934, 1752, 1686, 1589, 1450, 1339, 1211, 1145, 1076, 964, 850, 734, 674.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **56** (15 mg, 20 μ mol) in dichloromethane (4 mL) and the mixture stirred at r.t. for 1 h. The reaction was then added dropwise to diethyl ether (200 mL). The precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was redissolved in methanol (10 mL) and concentrated under reduced pressure to afford a pink oil (10 mg, 15 μ mol, 73%).

*R*_{*f*}: 0.23 (1:9, MeOH:CH₂Cl₂, visible light active); ¹**H NMR** (400 MHz, CD₃OD) δ = 8.51 (dd, J = 13.5, 4,3 Hz, 1H, CHCHCN), 7.95 (d, J = 8.4 Hz, 2H, PhH3), 7.54-7.48 (m, 2H, <u>H5</u>, <u>H5</u>'), 7.45-7.34 (m, 3H, <u>H7</u>, <u>H7</u>', <u>H8/H8</u>'), 7.30-7.22 (m, 3H, <u>H6</u>, <u>H6'</u>, <u>H8/H8'</u>), 7.06 (d, *J* = 8.4 Hz, 2H, Ph<u>H</u>2), 6.58 (dd, *J* = 13.5, 4.3 Hz 1H, C<u>H</u>CN), 6.41 (dd, *J* = 13.5, 4.3 Hz, 1H, CHCN), 4.62 (s, 2H, CH2O), 4.37-4.26 (m, 2H, CH2CH2CH2SO3), 4.15-4.11 (m, 2H, CH₂CH₂CH₂NH), 3.52-3.39 (m, 2H, CH₂NH), 3.01-2.94 (m, 2H, CH₂SO₃), 2.25-2.31 (m, 2H, CH₂CH₂SO₃), 2.09-2.03 (m, 2H, CH₂CH₂NH), 1.73 (s, 12H, CyCH₃); ¹³C **NMR** (101 MHz, CD₃OD) δ = 176.4 (CONH), 176.1 (CHCHCN), 171.1 (C2, C2'), 169.5 (COOH), 163.1 (PhC4), 152.4 (C3, C3'), 143.4 (C9/C9'), 143.3 (C9/C9'), 142.4 (C4, <u>C</u>4'), 133.1 (Ph<u>C</u>3), 130.2 (<u>C</u>7/<u>C</u>7'), 130.1 (<u>C</u>7/<u>C</u>7'), 127.0 (<u>C</u>6/<u>C</u>6'), 126.9 (<u>C</u>6/<u>C</u>6'), 125.4 (PhC1), 123.7 (C5/C5'), 123.6 (C5/C5'), 115.8 (PhC2), 112.7 (C8/C8'), 112.4 (C8/C8'), 104.5 (CHCN), 104.2 (CHCN), 68.4 (CH₂CO), 50.8 (CH₂SO₃), 44.1 (<u>CH</u>₂CH₂CH₂SO₃), 43.1 (<u>CH</u>₂CH₂CH₂NH), 37.7 (CH₂NH), 28.5 (Cy<u>C</u>H3), 28.3 (<u>CH</u>₂CH₂NH₂), 24.3 (<u>C</u>H₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₈H₄₂N₃O₇S [M+H]⁺: 686.2917; Obs.: 686.2917; *v*_{max}; (FT-ATR)/cm⁻¹: 2979, 2929, 1709, 1558, 1457, 1430, 1275, 1153, 1114, 928, 750.

To a solution of **57** (10 mg, 15 μ mol), **2** (12 mg, 22 μ mol), and triethylamine (10 μ L, 73 μ mol) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, 13 μ L, 37 μ mol) at 0 °C and the mixture stirred at r.t. for 16 h. The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a purple oil (12 mg, 10 μ mol, 10, 66%).

*R*r. 0.32 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.50 (dd, $J_1 = J_2 = 13.5$ Hz, 1H, Cy3-CHCHCN), 8.22-8.16 (m, 2H, CHCHCN), 7.89-7.84 (m, 2H, PhH3), 7.52-7.48 (m, 2H, H7, H7'), 7.48-7.44 (m, 2H, H7, H7'), 7.42-7.35 (m, 6H, H5, H5', H5, H5', H8, H8'), 7.30-7.21 (m, 6H, H8, H8', 2 × H6, 2 × H6'), 7.19-7.15 (m, 2H, PhH2), 6.57 (d, J = 13.5 Hz, 1H, Cy3-CHCN), 6.46 (d, J = 13.5 Hz, 1H, Cy3-CHCN), 6.40 (t, J = 12.5 Hz, 1H, CHCHCHCN), 6.31 (d, J = 13.5 Hz, 1H, Cy5-CHCN), 6.18 (d, J = 13.5 Hz, 1H, Cy5-CHCN), 4.65 (s, 2H, CH₂O), 4.36-4.26 (m, 4H, CH₂CH₂CH₂CH₂SO₃), 4.21-4.11 (m, 4H, CH₂CH₂CH₂CH₂NH), 3.44-3.50 (m, 4H, CH₂NH), 3.01-2.95 (m, 4H, CH₂SO₃), 2.19-2.11 (m, 4H, CH₂CH₂SO₃), 2.16-2.04 (m, 4H, CH₂CH₂NH), 1.80-1.56 (m, 24H, CyCH₃); ¹³C NMR (101 MHz, CD₃OD) δ = 176.3 (Cy3-C₂/C₂'), 176.1 (Cy3-C₂/C₂'), 174.9 (Cy3-CHCHCN), 174.6 (Cy3-C₃/C₃'), 174.4 (Cy3-C₃/C₃'), 171.1 (Cy5-C₂, C₂'), 169.8 (Cy3-CON), 162.1, 155.8, 152.4, 143.6 (C9, C9'),

143.3 (<u>C9/C9'</u>), 142.8 (<u>C9/C9'</u>), 142.7 (<u>C4/C4'</u>), 142.4 (<u>C4/C4'</u>), 130.6 (Ph<u>C</u>2), 130.2 (Ph<u>C</u>1), 130.0 (Phth<u>C</u>3), 129.9 (<u>C7/C7'</u>), 128.8 (<u>C7/C7'</u>), 126.9 (<u>C7/C7'</u>), 126.9 (<u>C7/C7'</u>), 126.9 (<u>C7/C7'</u>), 126.4 (<u>C6, C6'</u>), 126.4 (<u>CHCHCHCN</u>)), 124.2 (<u>C6/C6'</u>), 123.7 (<u>C6/C6'</u>), 123.6 (Phth<u>C</u>3), 123.6 (<u>C5, C5'</u>), 116.1 (<u>C5, C5'</u>), 112.7 (<u>C8/C8'</u>), 112.5 (<u>C8/C8'</u>), 112.3 (<u>C8/C8'</u>), 112.1 (<u>C8/C8'</u>), 104.4 (<u>CHCN</u>), 104.2 (<u>CHCN</u>), 71.6 (<u>CH</u>₂O), 50.1 (<u>CH</u>₂SO₃⁻), 48.1 (<u>CH</u>₂SO₃⁻), 44.1 (<u>CH</u>₂CH₂CH₂SO₃⁻), 43.1 (<u>CH</u>₂CH₂CH₂CH₂SO₃⁻), 42.8 (<u>CH</u>₂CH₂CH₂NCO), 38.3 (<u>CH</u>₂CH₂CH₂NCO), 37.7 (<u>CH</u>₂NCO), 28.5 (Cy<u>C</u>H₃), 28.4 (Cy<u>C</u>H₃), 28.2 (<u>CH</u>₂CH₂NCO), 28.1 (<u>CH</u>₂CH₂NCO), 24.8 (<u>CH</u>₂CH₂SO₃⁻), 24.4 (<u>CH</u>₂CH₂SO₃⁻); **HRMS**: m/z (ESI⁺) calc. for C₆₉H₈₀N₆O₉S₂ [M+Na]⁺: 1223.5320; Obs.: 1223.5322; **v**_{max}: (FT-ATR)/cm⁻¹: 3358, 2922, 2852, 1659, 1633, 1556, 1487, 1429, 1454, 1377, 1140, 1035, 925, 797, 750, 708, 552.

5. Synthesis of Cy3 negative controls

A mixture of *tert*-butyl bromoacetate (1.20 mL, 8.20 mmol), 4-hydroxybenzaldehyde (1.00 g, 8.20 mmol), and potassium carbonate (1.92 g, 14.0 mmol) in acetone (15 mL) was stirred at 65 °C for 16 h. The mixture was then cooled to r.t. and diluted with water (100 mL). The aqueous layer was extracted with ethyl acetate (3×70 mL), and the combined organics washed with brine (2×70 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (1.43 g, 6.06 mmol, 74%). Data were consistent with those previously reported.⁹

R_f: 0.26 (15:85, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 9.91 (s, 1H, C<u>H</u>O), 7.86 (d, *J* = 8.0 Hz, 2H, Ph<u>H</u>3), 7.04 (d, *J* = 8.0 Hz, 2H, Ph<u>H</u>2), 4.77 (s, 2H, C<u>H</u>2), 0.06 (s, 9H, ^{*t*}Bu); HRMS: m/z (ESI⁺) calc. for C₁₃H₁₆O₄ [M+H]⁺: 237.1121; Obs.: 237.1119; *v*_{max}: (FT-ATR)/cm⁻¹: 2980, 1748, 1691, 1598, 1509, 1368, 1308, 1216, 1148, 1071, 944, 831, 746, 608, 513; **m.p.:** 191-194 °C.

Trifluoroacetic acid (10 mL) was added dropwise to a stirred solution of **58** (1.43 g, 6.06 mmol) in dichloromethane (10 mL) and the mixture was stirred at r.t. for 1 h. The reaction mixture was then concentrated under reduced pressure and the residue was azeotroped with dichloromethane (3 × 10 mL) to afford a yellow powder (1.08 g, 6.00 mmol, 99%). Data were consistent with those previously reported.¹⁰

*R*_f: 0.28 (2:8, EtOAc:petrol, UV active); ¹H NMR (400 MHz, DMSO-*d*₆) δ = 13.13 (s, 1H, O<u>H</u>), 9.83 (s, 1H, C<u>H</u>O), 7.82 (d, *J* = 7.9 Hz, 2H, Ph<u>H</u>3), 7.06 (d, *J* = 7.9 Hz, Ph<u>H</u>2), 4.79 (s, 2H, C<u>H</u>₂); HRMS: m/z (ESI⁺) calc. for C₉H₈O₄ [M-H]⁻: 179.0350; Obs.: 179.0351; *v*_{max}: (FT-ATR)/cm⁻¹: 3660, 2982, 1598, 1385, 1259, 1166, 1074, 954, 750; m.p.: 191-194 °C;

A reaction mixture of **59** (100 mg, 0.56 mmol), *N*-hydroxysuccinimide (96 mg, 0.83 mmol), and *N*-(3-dimethylaminopropyl)-*N*⁴-ethylcarbodiimide hydrochloride (150 mg, 0.83 mmol) in dichloromethane (2 mL) was stirred at r.t. for 2 h. Dichloromethane (20 mL) was then added and the organic layer was washed with water (2 × 30 mL) and brine (30 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to give a pink foam which was used in the subsequent step without further analysis or purification (72 mg, 0.26 mmol, 46%).

*R*_f: 0.29 (1:9, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CD₃OD for aldehyde) δ = 9.90 (s, 1H, C<u>H</u>O), 7.87 (d, *J* = 8.0 Hz, 2H, Ph<u>H</u>3), 7.05 (d, *J* = 8.0 Hz, 2H, Ph<u>H</u>2), 6.08 (s, C<u>H</u>₂O), 2.87 (s, 4H, OSu); HRMS: m/z (ESI⁺) calc. C₁₃H₁₁NO₆ [M+H]⁺: 278.0652; Obs.: 278.0652; *v*_{max}: (FT-ATR)/cm⁻¹: 2978, 1824, 1785, 1737, 1600, 1508, 1427, 1207, 1165, 1074, 834, 646; **m.p.:** 142-146 °C.

A reaction mixture of **1** (40 mg, 79 μ mol), **60** (22 mg, 79 μ mol), and triethylamine (42 μ L, 0.395 μ mol) in dichloromethane (2 mL) was stirred at r.t. for 3 h. The reaction mixture was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil (18 mg, 27 μ mol, 45%).

*R*_f: 0.17 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD; in this solvent, a mix of aldehyde and methanol hemi-acetal were formed. Data is provided for the aldehyde form) δ = 9.82 (s, 1H, CHO), 8.53 (dd, $J_1 = J_2 = 13.4$ Hz, 1H, CHCHCN), 7.86 (d, J = 8.5 Hz, 2H, PhH3), 7.54-7.50 (m, 2H, H5, H5'), 7.45-7.33 (m, 3H, H7, H7', H8/H8'), 7.31-7.25 (m, 3H, H8/H8', H6, H6'), 7.17 (d, J = 8.5 Hz 2H, Ph<u>H</u>2), 6.60 (d, *J* = 13.4 Hz, 1H, C<u>H</u>CN), 6.44 (d, *J* = 13.4 Hz, 1H, C<u>H</u>CN), 4.55 (s, 2H, $CH_{2}O$), 4.32 (t, J = 7.1 Hz, 2H, $CH_{2}CH_{2}CH_{2}SO_{3}$), 4.16 (t, J = 7.3 Hz, 2H, $CH_2CH_2CH_2NH$), 3.45 (t, J = 7.3 Hz, 2H, CH_2NH), 2.96 (t, J = 7.1 Hz, 2H, CH_2SO_3), 2.27-2.21 (m, 2H, CH₂CH₂SO₃), 2.11-2.07 (m, 2H, CH₂CH₂NH), 1.76 (s, 12H, CyCH₃); ¹³C NMR (101 MHz, CD₃OD) δ = 192.8 (<u>C</u>HO), 176.3 (<u>C</u>ONH), 176.0 (Ph<u>C</u>1), 175.9 (CHCHCN), 171.4 (C2, C2'), 159.3 (PhC4), 152.3 (C3, C3'), 143.2(C9, C9'), 142.2 (C4, <u>C</u>4'), 133.1 (Ph<u>C</u>3), 130.1 (Ph<u>C</u>3), 129.3 (<u>C</u>7, <u>C</u>7'), 126.8 (<u>C</u>6, <u>C</u>6'), 123.5 (<u>C</u>5, <u>C</u>5'), 116.4 (PhC2), 115.5 (PhC2), 112.6 (C8/C8'), 112.3 (C8/C8'), 104.3 (CHCN), 104.1 68.3 48.0 $(CH_2SO_3),$ 44.0 (CHCN), $(CH_2CO),$ $(CH_2CH_2CH_2SO_3),$ 42.9 $(\underline{C}H_2CH_2CH_2NH)$, 37.5 (CH_2NH) , 28.1 $(\underline{C}H_2CH_2NH_2)$, 26.3 (Cy<u>C</u>H3), 24.2 (CH₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₃₈H₄₃N₃O₆S [M+H]⁺ requires 670.2945,

found 670.2928; **v**_{max}: (FT-ATR)/cm⁻¹: 3378, 2925, 2854, 1713, 1600, 1557, 1457, 1430, 1373, 1218, 1153, 1115, 1037, 928, 795.

A mixture of 3-bromophenol (2.00 g, 11.6 mmol), *tert*-butyl bromoacetate (1.71 mL, 11.6 mmol), and potassium carbonate (2.71 g, 19.7 mmol) in acetone (20 mL) was stirred at 65 °C for 16 h. After cooling to r.t., water (100 mL) was added, and the aqueous was extracted with ethyl acetate (3×70 mL). The combined organics were washed with brine (2×70 mL), dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:petrol (1:9). Fractions containing the product were concentrated under reduced pressure to provide a red oil. (3.32 g, 11.5 mmol, 99%).

Rr: 0.23 (1:9, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 7.14-7.10 (m, 1H, Ph<u>H</u>5), 7.11-7.08 (m, 1H, Ph<u>H</u>4), 7.03 (d, *J* = 2.1 Hz, 1H, Ph<u>H</u>2), 6.81 (dd, *J* = 7.8, 2.1, 1H, Ph<u>H</u>6), 4.48 (s, 2H, C<u>H</u>₂O), 1.47 (s, 9H, ^{*t*}Bu); ¹³C NMR (101 MHz, CDCl₃) δ = 167.6 (<u>C</u>=O), 158.7 (Ph<u>C</u>1), 130.7 (Ph<u>C</u>5), 124.8 (Ph<u>C</u>4), 122.9 (Ph<u>C</u>3), 118.1 (Ph<u>C</u>2), 113.7 (Ph<u>C</u>6), 82.8 (<u>C</u>Me₃), 65.8 (<u>C</u>H₂O), 28.1 ^{*t*}Bu); HRMS: m/z (ESI⁺) calc. for C₁₂H₁₅⁷⁹BrO₃ [M+Na]⁺: 309.0097; Obs.: 309.0096; **v**_{max}: (FT-ATR)/cm⁻¹: 2979, 2933, 1750, 1575, 1474, 1368, 1304, 1215, 1150, 1078, 834, 767.

The combined organics were washed with brine ($2 \times 50 \text{ mL}$), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:petrol (15:85). Fractions containing the product were concentrated under reduced pressure to provide a white solid (1.76 g, 5.27 mmol, 88%).

Rr: 0.22 (15:85, EtOAc:petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 7.41 (dd, *J*₁ = *J*₂ = 8.2 Hz, 1H, Ph<u>H</u>5), 7.29 (d, *J* = 8.2 Hz, 1H, Ph<u>H</u>4), 7.27 (d, *J* = 2.8 Hz, 1H, Ph<u>H</u>2), 7.03 (dd, *J* = 8.2, 2.8 Hz, 1H, Ph<u>H</u>6), 4.53 (s, 2H, C<u>H</u>₂O), 1.47 (s, 9H, ^{*t*}Bu), 1.31 (s, 12H, C(C<u>H</u>₃)₂); ¹³C NMR (101 MHz, CDCl₃) δ = 168.2 (<u>C</u>=O), 157.4 (Ph<u>C</u>1), 129.1 (Ph<u>C</u>4), 128.1 (Ph<u>C</u>5), 120.0 (Ph<u>C</u>3), 119.4 (Ph<u>C</u>2), 118.9 (Ph<u>C</u>6), 83.9 (<u>C</u>(CH₃)₂), 82.3 (<u>C</u>Me₃), 65.8 (<u>C</u>H₂O), 28.1 (^{*t*}Bu), 24.9 (C(C<u>H</u>₃)₂); HRMS: m/z (ESI⁺) calc. for C₁₈H₂₇BO₅ [M+Na]⁺: 357.1855; Obs.: 357.1844; *v*max: (FT-ATR)/cm⁻¹: 2979, 2993, 1754, 1576, 1428, 1355, 1317, 1213, 1147, 1085, 065, 852, 775, 705, 673, 599; m.p.: 65-69 °C.

Trifluoroacetic acid (5 mL) was added dropwise to a solution of **63** (500 mg, 1.50 mmol) in dichloromethane (15 mL) and the mixture was stirred at r.t. for 3 h. The reaction mixture was then concentrated under reduced pressure and azeotroped with dichloromethane (3×20 mL) to afford a white powder. (344 mg, 1.24 mmol, 83%).

*R*_f: 0.22 (1:9, EtOAc:petrol, UV active); ¹H NMR (600 MHz, DMSO-*d*₆) δ = 7.32 (dd, *J* = 8.1, 7.2 Hz, 1H, Ph<u>H</u>5), 7.27 (ddd, *J* = 7.2, 2.8, 1.2 Hz, 1H, Ph<u>H</u>4), 7.11 (dd, *J* = 2.8, 1.2 Hz, 1H, Ph<u>H</u>2), 7.05 (ddd, *J* = 8.1, 2.8, 1.2 Hz, 1H, Ph<u>H</u>6), 4.69 (s, 2H, C<u>H</u>₂O), 1.30 (s, 12H, C(C<u>H</u>₃)₂); **13C NMR** (101 MHz, DMSO-*d*₆) δ = 170.7 (<u>C</u>=O), 157.8 (Ph<u>C</u>1), 129.7 (Ph<u>C</u>5), 127.7 (Ph<u>C</u>4), 120.0 (Ph<u>C</u>3), 119.6 (Ph<u>C</u>2), 118.6 (Ph<u>C</u>6), 84.2 (<u>C</u>(CH₃)₂), 64.8 (<u>C</u>H₂O), 25.1 (C(<u>C</u>H₃)₂); **HRMS**: m/z (ESI⁻) calc. for C₁₄H₁₈BO₅ [M-H]⁻: 277.1263; Obs.:277.1263; **v**_{max}: (FT-ATR)/cm⁻¹: 3059, 2979, 2932, 1737, 1575, 1428, 1356, 1143, 1064, 964, 705; **m.p.:** 155-158 °C.

Oxalyl chloride (46 μ L, 0.540 mmol) was added to a solution of **64** (50 mg, 0.180 mmol), and dimethylformamide (1 drop) in dichloromethane (3 mL), and the mixture was stirred at r.t. for 30 min. Excess oxalyl chloride and dichloromethane were removed under reduced pressure to give the crude product as an orange oil, which was carried forward without further purification.

4-Dimethylaminopyridine (75 mg, 0.62 mmol) was added to a mixture of **1** (77 mg, 0.15 mmol), **65** (77 mg, 0.24 mmol), and potassium carbonate (62 mg, 0.44 mmol) in anhydrous dichloromethane (5 mL) and the reaction stirred at r.t. for 3 h. The reaction mixture was then added dropwise to diethyl ether (400 mL), and the resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air to give a pink powder. The precipitate was then purified via flash column chromatography on silica gel eluting with MeOH:CH₂Cl₂ (5:95). Fractions containing the product were concentrated under reduced pressure to provide a pink oil. The residue was then redissolved in dichloromethane (30 mL), and the organics were washed with hydrochloric acid (0.1 M, 2 × 10 mL) to remove co-ordinating 4-dimethylaminopyridine, dried with MgSO₄, filtered, and concentrated under reduced pressure, to give a pink oil (5 mg, 6 μ mol, 4%).

*R*_f: 0.34 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (400 MHz, CD₃OD) δ = 8.54 (d, *J*₁ = *J*₂ = 13.5 Hz, 1H, C<u>H</u>CHCN), 7.57-7.53 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.49-7.37 (m, 4H, <u>H</u>7,

<u>H</u>7', <u>H</u>8, <u>H</u>8'), 7.34-7.31 (m, 2H, <u>H</u>6, <u>H</u>6'), 7.31-7.25 (m, 2H, Ph<u>H</u>5, Ph<u>H</u>4), 7.25-7.21 (m, 1H, Ph<u>H</u>6), 7.11-7.07 (m, 1H, Ph<u>H</u>2), 6.57 (d, J = 13.5 Hz, 1H, C<u>H</u>CN), 6.46 (d, J = 13.5 Hz, 1H, C<u>H</u>CN), 4.56 (s, 2H, C<u>H</u>₂O), 4.33-4.26 (m, 2H, C<u>H</u>₂CH₂CH₂CH₂SO₃), 4.18 (t, J = 7.5 Hz, 2H, C<u>H</u>2CH₂CH₂CH₂CH₂NH), 3.47 (t, J = 7.5 Hz, 2H, C<u>H</u>₂NH), 3.00 (t, J = 7.8 Hz, 2H, C<u>H</u>₂SO₃), 2.25 (tt, $J_1 = J_2 = 7.8$ Hz, 2H, C<u>H</u>₂CH₂SO₃), 2.11 (tt, $J_1 = J_2 = 7.5$ Hz, 2H, C<u>H</u>₂CH₂NH), 1.79 (s, 12H, CyC<u>H</u>₃); ¹³C NMR (151 MHz, CD₃OD) $\delta = 176.3$ (<u>CONH</u>), 174.7 (<u>C</u>HCHCN), 170.2 (<u>C</u>2, <u>C</u>2'), 157.2 (Ph<u>C</u>1), 150.8 (<u>C</u>3, <u>C</u>3'), 141.8 (<u>C</u>9, <u>C</u>9'),140.8 (<u>C</u>4, <u>C</u>4'), 129.8 (Ph<u>C</u>5), 128.7 (<u>C</u>7, <u>C</u>7'), 127.1 (Ph<u>C</u>4), 126.5 (Ph<u>C</u>3), 125.4 (<u>C</u>6, <u>C</u>6'), 122.1 (<u>C</u>5, <u>C</u>5'), 119.1 (Ph<u>C</u>2), 116.0 (Ph<u>C</u>6), 111.2 (<u>C</u>8/<u>C</u>8'), 110.9 (<u>C</u>8/<u>C</u>8'), 102.7 (<u>C</u>HCN), 102.6 (<u>C</u>HCN), 66.9 (<u>C</u>H₂CO), 46.8 (<u>C</u>H₂SO₃), 42.5 (<u>C</u>H₂CH₂CH₂SO₃), 41.4 (<u>C</u>H₂CH₂CH₂CH₂NH), 26.9 (Cy<u>C</u>H₃), 26.6 (<u>C</u>H₂CH₂CH₂NH₂), 22.8 (<u>C</u>H₂CH₂SO₃); **HRMS**: m/z (ESI⁺) calc. for C₄₃H₅₄BN₃O₇S [M+Na]⁺: 790.3668; Obs.: 790.3712; **v**_{max}: (FT-ATR)/cm⁻¹: 3378, 2921, 2850, 1558, 1457, 1430, 1372, 1152, 1114, 749.

A solution of **66** (5 mg, 6.5 µmol) and methylboronic acid (4 mg, 65.3 µmol) in a mixture of dichloromethane (5 mL) and trifluoroacetic acid (0.5 mL) was stirred at r.t. for 4 h. The reaction mixture was then concentrated under reduced pressure. The residue was azeotroped with hydrochloric acid (0.1 M, 2 × 10 mL) to give a pink oil (4 mg, 6.5 µmol, quantitative yield).

*R*_f: 0.29 (5:95, MeOH:CH₂Cl₂, visible light active); ¹H NMR (600 MHz, CD₃OD) δ = 8.54 (dd, *J*₁ = *J*₂ = 13.4 Hz, 1H, C<u>H</u>CHCN), 7.57-7.53 (m, 2H, <u>H</u>5, <u>H</u>5'), 7.49-7.40 (m, 3H, <u>H</u>7, <u>H</u>7', <u>H</u>8/<u>H</u>8'), 7.34 – 7.27 (m, 3H <u>H</u>6, <u>H</u>6', <u>H</u>8/<u>H</u>8'), 6.62-6.52 (m, 1H, C<u>H</u>CN), 6.48-6.42 (m, 1H, C<u>H</u>CN), 4.56 (s, 2H, C<u>H</u>₂O), 4.29 (d, *J* = 7.2 Hz, 2H, C<u>H</u>₂CH₂CH₂SO₃),

4.18 (t, J = 7.5 Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂NH), 3.48 (t, J = 7.5 Hz, 2H, C<u>H</u>₂NH), 2.99 (t, J = 7.2 Hz, 2H, C<u>H</u>₂SO₃), 2.25 (tt, $J_1 = J_2 = 7.2$ Hz, 2H, C<u>H</u>₂CH₂SO₃), 2.11 (tt, $J_1 = J_2 = 7.5$ Hz, 2H, C<u>H</u>₂CH₂CH₂CH₂CH₂NH), 1.78 (s, 12H, CyC<u>H</u>₃); ¹³C NMR (151 MHz, CD₃OD) $\delta = 174.6$ (CONH), 174.5 (CHCHCN), 157.3 (C2, C2'), 150.8 (C3, C3'), 141.8 (C9, C9'), 140.8 (C4, C4'), 128.7 (PhC5), 128.6 (C7, C7'), 125.4 (PhC4), 125.3 (PhC3), 122.1 (C6, C6'), 122.1 (C5, C5'), 119.1 (PhC2), 116.7 (PhC6), 111.2 (C8/C8'), 110.9 (C8/C8'), 102.9 (CHCN), 102.7 (CHCN), 66.9 (CH₂CO), 49.2 (CH₂SO₃), 42.5 (CH₂CH₂CH₂SO₃), 41.4 (CH₂CH₂CH₂NH), 36.0 (CH₂NH), 27.0 (CyCH₃), 26.9 (CH₂CH₂NH₂), 22.7 (CH₂CH₂SO₃); HRMS: m/z (ESI⁺) calc. for C₃₇H₄₄BN₃O₇S [M+Na]⁺: 708.2882; Obs.: 708.2885; **v**_{max}: (FT-ATR)/cm⁻¹: 3321, 2923, 1663, 1559, 1429, 1373, 1229, 1151, 1113, 1039, 756;

5. Synthesis of OBA substrates for NMR and LC-MS studies

Propylamine (3.78 mL, 45.4 mmol) was added to a solution of bromoacetyl bromide (2.00 mL, 22.6 mmol) in dichloromethane (40 mL) and stirred at r.t. for 30 min. The mixture was then diluted with water (150 mL) and the aqueous extracted with dichloromethane (3×70 mL). The combined organics were washed with brine (2×200 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to provide a colourless oil (3.40 g, 19.0 mmol, 84%).

R_f: 0.32 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 6.67 (s, 1H, N<u>H</u>), 3.88 (s, 2H, C<u>H</u>₂Br), 3.28-3.15 (m, 2H, C<u>H</u>₂N), 2.00-1.91 (m, 2H, C<u>H</u>₂CH₃), 0.92 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 165.8 (<u>C</u>ON), 42.0 (<u>C</u>H₂NH), 29.4 (<u>C</u>H₂Br), 22.6 (<u>C</u>H₂CH₃), 11.3 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₅H₁₀⁷⁹BrNO [M+H]⁺: 181.0019; Obs.: 181.0020; *v*_{max}: (FT-ATR)/cm⁻¹: 3265, 3073, 2965, 2934, 2876, 1738, 1650, 1550, 1460, 1437, 1313, 1211, 1150, 953, 651, 550.

A mixture of 2-bromo-4-hydroxybenzaldehyde (1.56 g, 8.57 mmol), **68** (1.72 g, 8.57 mmol) and potassium carbonate (2.01 g, 14.6 mmol) in acetonitrile (30 mL) was stirred at 75 °C for 16 h. The mixture was then cooled to r.t. and diluted with water (150 mL). The aqueous was extracted with ethyl acetate (3×70 mL), and the combined organics washed with brine (2×200 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure to provide an orange oil (2.50 g, 8.32 mmol, 97%). Data were consistent with those previously reported.³

*R*_f: 0.30 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃); $\delta = 10.20$ (s, 1H, PhCO<u>H</u>), 7.89 (d, J = 8.7 Hz, 1H, Ph<u>H</u>5), 7.17 (d, J = 2.5 Hz, 1H, Ph<u>H</u>2), 6.96 (dt, J = 8.7, 2.5 Hz, 1H, Ph<u>H</u>4), 6.49 (s, 1H, N<u>H</u>), 4.54 (s, 2H, C<u>H</u>2O), 3.30 (t, J = 7.4 Hz, 2H, C<u>H</u>2N), 1.60-1.52 (m, 2H, C<u>H</u>2CH₃), 0.91 (t, J = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃)) $\delta = 190.5$ (Ph<u>C</u>OH), 166.6 (<u>C</u>ON), 161.8 (Ph<u>C</u>3), 131.8 (Ph<u>C</u>5), 128.8 (Ph<u>C</u>6), 128.3 (Ph<u>C</u>1), 119.6 (Ph<u>C</u>2), 114.5 (Ph<u>C</u>4), 67.6 (<u>C</u>H₂O), 41.0 (<u>C</u>H₂N), 22.9 (<u>C</u>H₂CH₃), 11.4 (<u>C</u>H₃); **HRMS**: m/z (ESI⁺) calc. for C₁₂H₁₄NO₃ [M+Na]⁺: 324.0028; Obs.: 324.0028; **v**_{max}: (FT-ATR)/cm⁻¹: 3319, 2974, 2934, 2876, 1679, 1590, 1540, 1412, 1336, 1215, 1142, 965, 852, 831, 675, 578.

69 (300 mg, 1.00 mmol), bis(pinacolato)diboron (660 mg, 2.60 mmol), 1,1'-[bis(diphenylphosphino)ferrocene]dichloropalladium(II) (146 mg, 0.20 mmol), and potassium acetate (530 mg, 5.40 mmol) were placed under a nitrogen atmosphere, and anhydrous dioxane (20 mL) was added. The reaction was degassed under a constant flow of nitrogen for 10 min, and then stirred at 80 °C for 16 h. After cooling to r.t., the reaction was concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil (34 mg, 95 µmol, 9%).

*R*_f: 0.25 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.29 (s, 1H, PhCO<u>H</u>), 7.86 (d, *J* = 8.6 Hz, 1H, Ph<u>H</u>3), 7.00 (dd, *J* = 8.6, 2.8 Hz, 1H, Ph<u>H</u>2), 6.80 (t, *J* = 2.8 Hz, 1H, Ph<u>H</u>6), 6.51 (s, 1H, N<u>H</u>), 4.51 (s, 2H, C<u>H</u>₂O), 3.22 (dt, *J*₁ = *J*₂ = 6.6 Hz, 2H, C<u>H</u>₂N), 1.51-1.45 (m, 2H, C<u>H</u>₂CH₃), 1.30 (s, 12H, Pin), 0.84-0.79 (m, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 193.0 (<u>C</u>OH), 167.8 (<u>C</u>ON), 160.7 (Ph<u>C</u>1), 135.6 (Ph<u>C</u>4), 130.7 (Ph<u>C</u>5), 122.3 (Ph<u>C</u>2) 121.0 (Ph<u>C</u>3), 116.6 (Ph<u>H</u>6), 84.6 (<u>C</u>(CH₃)₂), 82.8 (<u>C</u>(CH₃)₂), 67.1 (<u>C</u>H₂O), 40.9 (<u>C</u>H₂N), 24.8 (Pin), 22.7 (<u>C</u>H₂CH₃), 11.3 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₁₈H₂₆BNO₅ [M+Na]⁺: 370.1796; Obs.: 370.1802; *v*_{max}: (FT-ATR)/cm⁻¹: 3315, 2966, 2933, 2875, 1657, 1542, 1422, 1336, 1213, 1141, 1060, 964, 812, 675, 578.

Trifluoroacetic acid (2 mL) was added to a solution of **70** (34 mg, 95 μ mol) and methylboronic acid (57 mg, 0.95 mmol) in dichloromethane (10 mL), and the mixture stirred at r.t for 16 h. The reaction was concentrated under reduced pressure and the residue azeotroped with dichloromethane (3 × 20 mL), then hydrochloric acid (0.1 M, 2 × 10 mL), to give a brown oil (25 mg, 95 μ mol, quantitative yield).

R_f: 0.18 (3:7, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, 100 mM deuterated PBS + 10% DMSO-*d*₆) δ = 9.84 (s, 1H, -C<u>H</u>O), 7.97-8.01 (m, 1H, Ph<u>H</u>3), 7.21-7.14 (m, 2H, Ph<u>H</u>6 and Ph<u>H</u>2), 4.75 (s, 2H, C<u>H</u>₂O), 3.25 (t, *J* = 6.9 Hz, 2H, C<u>H</u>₂N), 1.54 (tt, *J*₁ = *J*₂ = 6.9 Hz, 2H, C<u>H</u>₂CH₃), 0.88 (t, *J* = 6.9 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, 100 mM deuterated PBS + 10% DMSO-*d*₆) δ = 195.2 (-CHO), 170.3 (CON), 161.9 (PhC<u>1</u>), 136.1 (PhC<u>4</u>), 132.4 (PhC<u>5</u>), 118.2 (PhC<u>2</u>), 115.3 (PhC<u>3</u>), 114.56 (Ph<u>H</u>6), 66.6 (CH₂O), 40.9 (CH₂N), 21.9 (CH₂CH₃), 10.6 (CH₃); HRMS: m/z (ESI⁺) calc. for C₁₂H₁₆BNO₅ [M-H]⁺: 288.1014; Obs.: 288.1018; *v*max: (FT-ATR)/cm⁻¹: 3329, 3010, 2996, 2980, 1690, 1592, 1555, 1456, 1320, 1286, 1130, 911, 750, 512.

A mixture of 2-bromo-4-hydroxybenzaldehyde (800 mg, 4.00 mmol), bromoacetate **68** (864 mg, 4.80 mmol) and potassium carbonate (1.10 g, 8.00 mmol) in dimethylformamide (30 mL) was stirred at 75 °C for 16 h. The mixture was then cooled to r.t. and diluted with water (150 mL). The aqueous mixture was extracted with ethyl acetate (3×70 mL), and the combined organics washed with brine (2×200 mL), dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a white solid (700 mg, 2.34 mmol, 59%).

*R*_f: 0.32 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.29 (s, 1H, C<u>H</u>O), 7.59 (d, *J* = 8.6 Hz, 1H, Ph<u>H</u>6), 7.45 (d, *J* = 1.6 Hz, 1H, Ph<u>H</u>3), 7.07 (dd, *J* = 8.6, 1,6 Hz, 1H, Ph<u>H</u>5), 6.50 (s, 1H, N<u>H</u>), 4.50 (s, 2H, C<u>H</u>₂O), 3.36-3.27 (m, 2H, C<u>H</u>₂N), 1.59-1.53 (m, 2H, C<u>H</u>₂CH₃), 0.94 (t, *J* = 7.6 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 191.4 (<u>C</u>HO), 167.1 (<u>C</u>ON), 156.9 (Ph<u>C</u>4), 135.1 (Ph<u>C</u>6), 134.4 (Ph<u>C</u>1), 122.4 (Ph<u>C</u>5), 119.2 (Ph<u>C</u>2), 114.9 (Ph<u>C</u>3), 67.7 (<u>C</u>H₂O), 40.9 (<u>C</u>H₂N), 22.9 (<u>C</u>H₂CH₃), 11.4 (<u>C</u>H₃); **HRMS**: m/z (ESI⁺) calc. for C₁₂H₁₄⁷⁹BrNO₃ [M+H]⁺: 300.0231; Obs.: 300.0231; *V*max: (FT-ATR)/cm⁻¹: 3350, 3075, 2963, 2870, 1667, 1540, 1285, 1227, 1068, 959, 824, 695, 597.

71 (200 mg, 0.66 mmol), bis(pinacolato)diboron (205 mg, 0.80 mmol), 1,1'-[bis(diphenylphosphino)ferrocene]dichloropalladium(II) (24 mg, 0.03 mmol) and potassium acetate (194 mg, 2.00 mmol) were placed under a nitrogen atmosphere, and anhydrous dioxane (5 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min, which was then stirred at 80 °C for 2 h. After cooling to r.t., the reaction was concentrated under reduced pressure. The residue was then dissolved in ethyl acetate (100 mL), and washed with water (2×70 mL) and brine (2×70 mL), and dried with MgSO₄, filtered and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil (190 mg, 0.548 mmol, 83%).

*R*_f: 0.34 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.64 (s, 1H, C<u>H</u>O), 7.90 (d, *J* = 8.4 Hz, 1H, Ph<u>H</u>5), 7.51 (d, *J* = 2.2 Hz, 1H, Ph<u>H</u>2), 7.13 (dd, *J* = 8.4, 2.2 Hz, 1H, Ph<u>H</u>6), 6.55 (s, 1H, N<u>H</u>), 4.54 (s, 2H, C<u>H</u>₂O), 3.30 (t, *J* = 7.4 Hz, 2H, C<u>H</u>₂N), 1.62-1.51 (m, 2H, C<u>H</u>₂CH₃), 1.36 (s, 12H, Pin), 0.92 (t, *J* = 7.6 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 194.4 (CHO), 167.4 (CON), 159.5 (PhC1), 143.8 (PhC4), 138.5 (PhC5), 119.3 (PhC6), 119.2 (PhC3), 112.4 (PhC2), 84.5 (C(CH₃)₂), 67.3 (CH₂O), 40.9 (CH₂N), 25.0 (Pin), 22.9 (CH₂CH₃), 11.4 (CH₃); HRMS: m/z (ESI⁺) calc. for C₁₈H₂₆BNO₅ [M+H]⁺: 348.1977; Obs.: 348.1981; *v*_{max}: (FT-ATR)/cm⁻¹: 3323, 2975, 1685, 1663, 1596, 1538, 1378, 1344, 1269, 1243, 1112, 1042, 962, 857, 652, 579.

Trifluoroacetic acid (2.0 mL) was added to a solution of **72** (132 mg, 0.42 mmol) and methylboronic acid (216 mg, 3.60 mmol) in dichloromethane (10 mL), and the mixture stirred at r.t for 16 h. The reaction was azeotroped with dichloromethane (3×20 mL), and hydrochloric acid (0.1 M, 2×10 mL) was added, and concentrated under reduced pressure to give a colourless oil (98 mg, 0.42 mmol, quantitative yield).

R_f: 0.21 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, 100 mM deuterated PBS + 10% DMSO-*d*₆) δ = 9.97 (s, 1H, -C<u>H</u>O), 7.69-7.59 (m, 1H, Ph<u>H</u>6), 7.54 (d, *J* = 2.4 Hz, 1H, Ph<u>H</u>2), 7.32 (d, *J* = 8.3 Hz, 1H, Ph<u>H</u>5), 4.70 (s, 2H, C<u>H</u>₂O), 3.24 (t, *J* = 6.9 Hz, 2H, C<u>H</u>₂N), 1.57-1.47 (m, 2H, C<u>H</u>₂CH₃), 0.85 (t, *J* = 7.1 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD, for acetal) δ = 169.6 (<u>C</u>ON), 158.1 (Ph<u>C</u>1), 143.5 (Ph<u>C</u>4), 131.8 (Ph<u>C</u>5), 114.2 (Ph<u>C</u>6), 111.9 (Ph<u>C</u>3), 102.3 (Ph<u>C</u>2), 66.9 (<u>C</u>H₂O), 40.6 (<u>C</u>H₂N), 22.4 (<u>C</u>H₂CH₃), 10.4 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₁₂H₁₆BNO₅ [M+Na]⁺: 288.1014; Obs.:

288.1016; **v**_{max}: (FT-ATR)/cm⁻¹: 3395, 2968, 2938, 2875, 1661, 1548, 1426, 1348, 1274, 1230, 1148, 807.

To a solution of 3-bromo-4-formylbenzoic acid (1.00 g, 4.37 mmol), propylamine (430 μ L, 5.24 mmol) and triethylamine (2.79 mL, 21.8 mmol) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, 3.47 mL, 10.9 mmol) at 0 °C and the mixture was warmed to r.t. and stirred for 16 h. The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (1:9). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (547 mg, 2.03 mmol, 46%).

R_f: 0.28 (1:9, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.36 (s, 1H, C<u>H</u>O), 8.04 (d, *J* = 1.6 Hz, 1H, Ph<u>H</u>2), 7.93 (d, *J* = 8.0 Hz, 1H, Ph<u>H</u>5), 7.74 (dd, *J* = 8.0, 1.6 Hz, 1H, Ph<u>H</u>4), 6.25 (s, 1H, N<u>H</u>), 3.44-3.38 (m, 2H, C<u>H</u>₂N), 1.67-1.61 (m, 2H, C<u>H</u>₂CH₃), 0.98 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 191.3 (<u>C</u>HO), 165.2 (<u>C</u>ON), 141.0 (Ph<u>C</u>4), 135.2 (Ph<u>C</u>3), 132.8 (Ph<u>C</u>2), 130.1 (Ph<u>C</u>1), 127.2 (Ph<u>C</u>4), 126.1 (Ph<u>C</u>5), 42.2 (<u>C</u>H₂N), 22.9 (<u>C</u>H₂CH₃), 11.5 (<u>C</u>H₃); **HRMS**: m/z (ESI⁺) calc. for C₁₁H₁₂⁷⁹BrNO₂ [M+H]⁺: 270.1260; Obs.: 270.0124; **v**_{max}: (FT-ATR)/cm⁻¹: 3313, 3075, 2965, 2934, 2875, 1698, 1642, 1545, 1467, 1441, 1313, 1288, 1202, 1039, 891, 846, 758, 653.

73 (265 mg, 0.981 mmol), bis(pinacolato)diboron (648 mg, 2.55 mmol), 1,1'-[bis(diphenylphosphino)ferrocene]dichloropalladium(II) (144 mg, 0.196 mmol) and potassium acetate (520 mg, 5.30 mmol) were placed under a nitrogen atmosphere, and anhydrous dioxane (15 mL) was added. Nitrogen was bubbled through the reaction mixture for 10 min, which was then stirred at 80 °C for 16 h. After cooling to r.t., the reaction was concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to yield a colourless oil (206 mg, 0.619 mmol, 24%).

*R*_f: 0.37 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 10.52 (s, 1H, C<u>H</u>O), 8.15 (d, *J* = 1.4 Hz, 1H, Ph<u>H</u>6), 7.94-7.88 (m, 2H, Ph<u>H</u>2, Ph<u>H</u>3), 6.70 (t, *J* = 5.9 Hz, 1H, N<u>H</u>), 3.38-3.31 (m, 2H, C<u>H</u>2N), 1.58 (dt, *J*₁ = *J*₂ = 7.5 Hz, 2H, C<u>H</u>₂CH₃), 1.32 (s, 12H, Pin), 0.91 (t, *J* = 7.5 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 194.2 (CHO), 166.8 (CON), 143.1 (PhC4), 138.6 (PhC1), 134.0 (PhC6), 133.9 (PhC5), 129.7 (PhC2), 128.0 (PhC3), 83.2 (C(CH₃)₂), 83.0 (C(CH₃)₂), 42.0 (CH₂N), 24.6 (Pin), 22.9 (CH₂CH₃), 11.5 (CH₃); HRMS: m/z (ESI⁻) calc. for C₁₁H₁₃BNO₄ [M-Pin]⁻: 234.0943; Obs.: 234.0948; *v*max: (FT-ATR)/cm⁻¹: 3358, 2977, 1643, 1535, 1452, 1371, 1341, 1141, 982, 851, 673, 578,.

Trifluoroacetic acid (1.0 mL) was added to a solution of **74** (70 mg, 0.22 mmol) and methylboronic acid (132 mg, 2.21 mmol) in dichloromethane (5 mL), and the mixture stirred at r.t for 16 h. The reaction was azeotroped with dichloromethane (3×20 mL), and hydrochloric acid (0.1 M, 2×10 mL) was added, and concentrated under reduced pressure to give a yellow oil (52 mg, 0.22 mmol, quantitative yield).

*R*_f: 0.29 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CD₃OD, for acetal) δ = 7.76-7.66 (m, 2H, Ph<u>H</u>6, Ph<u>H</u>2), 7.37 (d, J = 8.0 Hz, 1H, Ph<u>H</u>3), 5.45 (s, 1H, C<u>H</u>(OMe)₂), 3.27-3.19 (m, 2H, C<u>H</u>₂N), 1.53 (dt, J = 7.4 Hz, 2H, C<u>H</u>₂CH₃), 0.86 (t, J = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD, for acetal) δ = 168.8 (<u>C</u>ON), 144.3 (Ph<u>C</u>4), 133.7 (Ph<u>C</u>1), 133.0 (Ph<u>C</u>6), 128.6 (Ph<u>C</u>5), 126.9 (Ph<u>C</u>2), 125.6 (Ph<u>C</u>3), 102.3 (<u>C</u>H(OMe)₂), 84.1 (<u>C</u>(CH₃)₂), 41.5 (<u>C</u>H₂N), 23.7 (Pin), 22.4 (<u>C</u>H₂CH₃), 10.5 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₁₁H₁₃BNO₄ [M-H]⁺: 234.0943; Obs.: 234.0945; *v*_{max}: (FT-ATR)/cm⁻¹: 3314, 2967, 2932, 1693, 1639, 1540, 1343, 1316, 1206, 1141, 1066, 964, 851, 813, 760.

6. Synthesis of nucleophiles for NMR and LC-MS studies, and FRET controls

A mixture of **38** (154 mg, 0.38 mmol), propylamine (96 μ L, 1.15 μ mol), and triethylamine (266 μ L, 1.92 mmol) in dichloromethane (5 mL) was stirred at r.t. for 3 h. The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (35 mg, 0.10 mmol, 27%).

*R*_f: 0.38 (3:7, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 6.72 (s, 1H, N<u>H</u>Pr), 5.84 (s, 1H, BocN<u>H</u>CH), 5.26 (s, 1H, BocN<u>H</u>CH₂), 4.16 (dt, $J_1 = J_2 = 6.1$ Hz, 1H, C<u>H</u>NHBoc), 3.49-3.40 (m, 2H, C<u>H</u>₂NHBoc), 3.22-3.15 (m, 2H, C<u>H</u>₂CH₂CH₃), 1.49 (q, J = 7.5 Hz, 2H, C<u>H</u>₂CH₃), 1.43-1.39 (m, 18H, 2 × Boc), 0.88 (s, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 170.6 (<u>C</u>ONH), 157.2 (<u>C</u>OBoc), 156.3 (<u>C</u>OBoc), 80.3 (<u>C</u>(CH₃)₃), 80.0 (<u>C</u>(CH₃)₃), 55.7 (<u>C</u>HNHBoc), 42.5 (<u>C</u>H₂NHBoc), 41.2 (<u>C</u>H₂CH₂CH₃), 28.4 (Boc), 28.4 (Boc), 22.8 (<u>C</u>H₂CH₃), 11.4 (<u>C</u>H₃); **HRMS**: m/z (ESI⁺) calc. for C₁₆H₃₂N₃O₅ [M+H]⁺: 346.2336; Obs.: 346.2335; **v**_{max}: (FT-ATR)/cm⁻¹: 3330, 2975, 2933, 2876, 1690, 1654, 1518, 1365, 1249, 1163, 1078, 868, 780, 644.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **74** (30 mg, 87 μ mol) in dichloromethane (5 mL) and the solution was stirred at r.t. for 3 h. The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane (4 × 30 mL) to obtain a colourless oil. (13 mg, 87 μ mol, quantitative yield).

*R*_f: 0.24 (3:7, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 4.21 (t, *J* = 7.2 Hz, 1H, C<u>H</u>CO), 3.47–3.26 (m, 3H, CH₂NH, CONHC<u>H</u>₂), 3.12 (dt, *J* = 13.7, 7.2 Hz, 1H, ONHC<u>H</u>₂), 1.55 (tq, *J*₁ = *J*₂ = 7.4 Hz, 2H, C<u>H</u>₂CH₃), 0.93 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 165.3 (<u>C</u>ON), 50.8 (<u>C</u>HNH₃⁺), 41.5 (CONH<u>C</u>H₂), 39.7 (<u>C</u>H₂NH₃⁺), 21.9 (<u>C</u>H₂CH₃), 10.3 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₆H₁₅N₃O [M+H]⁺: 146.1288; Obs.: 146.1288; **v**_{max}: (FT-ATR)/cm⁻¹: 3287, 2968, 2938, 2879, 1649, 1553, 1462, 1200, 1136, 837, 800, 722.

A mixture of **42** (371 mg, 2.81 mmol), **68** (603 mg, 3.37 mmol), and potassium carbonate (776 mg, 5.62 mmol) in dimethylformamide (5 mL) was stirred at 80 °C for 30 min. The mixture was then cooled to r.t. and diluted with water (50 mL). The aqueous was extracted with ethyl acetate (3×50 mL), and the combined organics washed with brine (2×30 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (532 mg, 2.30 mmol, 82%).

*R*_f: 0.36 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 7.56 (s, 1H, NHPr), 6.40 (s, 1H, N<u>H</u>Boc), 4.19 (s, 1H, N<u>H</u>NHBoc), 3.46 (s, 2H, C<u>H</u>₂CO), 3.20 (t, *J* = 7.4 Hz, 2H, C<u>H</u>₂NH), 1.55-1.49 (m, 2H, C<u>H</u>₂CH₃), 1.41 (s, 9H, Boc), 0.90 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 170.1 (CON), 156.8 (COBoc), 81.0 (C(CH₃)₃), 55.5 (CH₂O), 41.0 (CH₂NH), 28.3 (Boc), 22.8 (CH₂CH₃), 11.5 (CH₃); HRMS: m/z (ESI⁺) calc. for C₁₀H₂₁N₃O₃ [M+Na]⁺: 254.1475; Obs.: 254.1469; *v*_{max}: (FT-ATR)/cm⁻¹: 3298, 2969, 2934, 2877, 1714, 1650, 1545, 1460, 1367, 1282, 1250, 1159, 1046. 1022, 849, 754, 593.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **76** (70 mg, 0.142 mmol) in dichloromethane (5 mL), and the solution was stirred at r.t. for 16 h. The reaction mixture was then concentrated under reduced pressure and azeotroped with dichloromethane (4 \times 30 mL) to obtain a colourless oil. (40 mg, 0.142 mmol, quantitative yield).

R_f: 0.24 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 3.62 (s, 2H, C<u>H</u>₂NHNH₃⁺), 3.16 (t, *J* = 7.3 Hz, 2H, C<u>H</u>₂NHCO), 1.58-1.48 (m, 2H, C<u>H</u>₂CH₃), 0.91 (t, *J* = 7.3 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 168.8 (<u>C</u>ON), 50.4 (<u>C</u>H₂ONHNH₃⁺), 40.8 (<u>C</u>H₂NH), 22.2 (<u>C</u>H₂CH₃), 10.3 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₅H₁₃N₃O [M+Na]⁺: 132.1131; Obs.: 132.1130; *v*_{max}: (FT-ATR)/cm⁻¹: 3300, 2965, 2934, 2876, 1651, 1543, 1460, 1201, 1146, 721.

To a solution of Boc-Gly-OH (150 mg, 0.857 mmol), propylamine (178 μ L, 2.14 mmol) and triethylamine (593 μ L, 4.29 mmol) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, 681 μ L, 2.14 mmol) at 0 °C and the mixture stirred at r.t. for 16 h. The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (132 mg, 0.71 mmol, 49%).

Rr: 0.32 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 6.22 (s, 1H, N<u>H</u>CO), 5.21 (s, 1H, N<u>H</u>Boc), 3.75 (s, 2H, C<u>H</u>₂CO), 3.21 (t, *J* = 7.2 Hz, 2H, C<u>H</u>₂NH), 1.54-1.46 (m, 2H, C<u>H</u>₂CH₃), 1.43 (s, 9H, Boc), 0.90 (t, *J* = 7.2, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 169.5 (<u>C</u>ON), 156.0 (<u>C</u>OBoc), 80.4 (<u>C</u>H₂O), 44.6 (<u>C</u>(CH₃)₃), 41.2 (<u>C</u>H₂N), 28.4 (Boc), 22.8 (<u>C</u>H₂CH₃), 11.4 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₁₀H₂₀N₂O₃ [M+Na]⁺: 239.1366; Obs.: 239.1367; *v*_{max}: (FT-ATR)/cm⁻¹: 3312, 2968, 2933, 2876, 1656, 1512, 1365, 1248, 1164, 1049, 940, 864, 735, 551, 462.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **78** (90 mg, 0.42 mmol) in dichloromethane (5 mL) and the solution was stirred at r.t. for 3 h. The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane (4×30 mL) to obtain a colourless oil. (48 mg, 0.42 mmol, quantitative yield).

*R*_f: 0.32 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 8.29 (m, 1H, N<u>H</u>), 3.68 (s, 2H, C<u>H</u>₂CO), 3.16 (t, *J* = 7.3 Hz, 2H, C<u>H</u>₂NH), 1.51 (dt, *J*₁ = *J*₂ = 7.3 Hz, 2H, C<u>H</u>₂CH₃), 0.89 (t, *J* = 7.3 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 165.8 (<u>C</u>ON), 41.0 (<u>C</u>H₂O), 40.2 (<u>C</u>H₂N), 22.8 (<u>C</u>H₂CH₃), 10.29 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₅H₁₂N₂O [M+H]⁺: 117.1022; Obs.: 117.1022; *v*_{max}: (FT-ATR)/cm⁻¹: 3305, 2926, 1663, 1576, 1436, 1275, 1130, 840, 916, 798, 723, 518.

To a solution of Boc-Cys(Trt)-OH (200 mg, 0.431 mmol), propylamine (54 μ L, 0.647 mmol), and triethylamine (300 μ L, 2.16 mmol) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, 343 μ L, 1.08 mmol) at 0 °C and the mixture stirred at r.t. for 16 h. The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (205 mg, 0.43 mmol, 99%).

*R*_f: 0.29 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CDCl₃) δ = 7.44-7.38 (m, 6H, Ph<u>H</u>2), 7.31-7.25 (m, 6H, Ph<u>H</u>3), 7.23-7.18 (m, 3H, Ph<u>H</u>4), 5.94 (s, 1H, N<u>H</u>Boc), 4.80-4.64 (m, 1H, N<u>H</u>Pr), 3.80 (d, *J* = 6.4 Hz, 1H, C<u>H</u>NHBoc), 3.16-3.09 (m, 2H, C<u>H</u>2NH), 2.74-2.66 (m, 1H, C<u>H</u>2STrt), 2.53-2.45 (m, 1H, C<u>H</u>2STrt), 1.50-1.42 (m, 2H, C<u>H</u>2CH₃), 1.40 (s, 9H, Boc), 0.86 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 170.4 (CON), 144.5 (COBoc), 129.7 (PhC2), 128.2 (PhC3), 127.0 (PhC4), 82.3 (C<u>H</u>NHBoc), 67.3 (C<u>H</u>2STrt), 41.3 (CH2NH), 28.4 (Boc), 22.8 (CH2CH₃), 11.4 (CH₃);

HRMS: m/z (ESI⁺) calc. for C₃₀H₃₆N₂O₃S [M+Na]⁺: 527.2335; Obs.: 527.2335; **v**_{max}: (FT-ATR)/cm⁻¹: 3300, 3058, 2967, 2931, 2875, 1655, 1526, 1489, 1366, 1248, 1165, 1047, 865, 739, 698, 621, 505.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **80** (195 mg, 0.41 mmol) and triisopropylsilane (439 μ L, 2.04 mmol) in dichloromethane (5 mL), and the mixture stirred at r.t. for 16 h. The reaction was then concentrated under reduced pressure to ~5 mL, and the remaining solution added dropwise to diethyl ether (200 mL). The resultant precipitate was collected by filtration, washed with diethyl ether (30 mL), and dried in air. The solid was then dissolved in methanol (10 mL) and concentrated under reduced pressure to afford a colourless oil. (67 mg, 0.41 mmol, quantitative yield).

R_f: 0.18 (2:8, EtOAc:Petrol, UV active); ¹H NMR (400 MHz, CD₃OD) δ = 3.98-3.90 (m, 1H, C<u>H</u>NH₃⁺), 3.29-3.15 (m, 2H, C<u>H</u>₂NH), 3.04-2.87 (m, 2H, C<u>H</u>₂STrt), 1.59-1.48 (m, 2H, C<u>H</u>₂CH₃), 0.92 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 166.9 (<u>C</u>ON), 54.8 (<u>C</u>HNH₃⁺), 41.2 (<u>C</u>H₂NH), 25.0 (<u>C</u>H₂SH), 22.1 (<u>C</u>H₂CH₃), 10.4 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₆H₁₄N₂OS [M+Na]⁺: 185.0719; Obs.: 185.0720; *v*_{max}: (FT-ATR)/cm⁻¹: 3286, 3090, 2966, 1655, 1571, 1265, 1181, 1133, 838, 798, 722, 517.

To a solution of **42** (115 mg, 0.602 mmol), propylamine (125 μ L, 1.51 mmol) and triethylamine (416 μ L, 3.01 mmol) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, 479 μ L, 1.51 mmol) at 0 °C and the mixture was warmed to r.t. and stirred for 16 h. The reaction was then concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the

product were concentrated under reduced pressure to provide a colourless oil (65 mg, 0.28 mmol, 46%).

*R*_f: 0.36 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 8.15 (s, 1H, N<u>H</u>), 4.24 (s, 2H, C<u>H</u>₂O), 3.20 (t, *J* = 7.3 Hz, 2H, C<u>H</u>₂NH), 1.51 (dt, *J* = 7.3 Hz, 2H, C<u>H</u>₂CH₃), 1.42 (s, 9H, Boc), 0.88 (t, *J* = 7.3 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 169.1 (<u>C</u>ONH), 158.0 (<u>C</u>OBoc), 82.8 (C(CH₃)₃), 76.1 (<u>C</u>H₂CO), 40.9 (<u>C</u>H₂NH), 28.2 (Boc), 22.6 (<u>C</u>H₂CH₃), 11.5 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₁₀H₂₀N₂O₄ [M+Na]⁺: 255.1315; Obs.: 255.1311; **v**_{max}: (FT-ATR)/cm⁻¹: 3285, 2969, 2934, 2877, 1724, 1650, 1552, 1459, 1368, 1252, 1162, 1110, 776, 586.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **82** (60 mg, 0.26 mmol) in dichloromethane (5 mL) and the solution was stirred at r.t. for 3 h. The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane (4×30 mL) to obtain a colourless oil. (34 mg, 0.26 mmol, quantitative yield).

Rf: 0.27 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 4.20 (s, 2H, C<u>H</u>₂CO), 2.92 (t, *J* = 7.4 Hz, 2H, C<u>H</u>₂NH), 1.26 (dt, *J*₁ = *J*₂ = 7.4 Hz, 2H, C<u>H</u>₂CH₃), 0.64 (t, *J* = 7.4 Hz, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 168.5 (<u>C</u>ONH), 71.4 (<u>C</u>H₂CO), 40.6 (<u>C</u>H₂NH), 22.2 (<u>C</u>H₂CH₃), 10.3 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₅H₁₂N₂O₂ [M+H]⁺: 133.0972; Obs.: 133.0967; *v*_{max}: (FT-ATR)/cm⁻¹: 3288, 3089, 2966, 2877, 1654, 1544, 1460, 1201, 1084, 833, 580.

Methylamine (1.00 mL, 22.6 mmol) was added to a solution of bromoacetyl bromide (1.00 mL, 11.3 mmol) in dichloromethane (30 mL) and stirred at r.t. for 30 min. The mixture was then diluted with water (70 mL) and the aqueous was extracted with ethyl acetate (3×70 mL). The combined organics were washed with brine (2×100 mL),

dried with MgSO₄, filtered, and concentrated under reduced pressure to provide a colourless oil (1.56 g, 1.03 mmol, 91%).

*R*_f: 0.29 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 3.80 (s, 2H, C<u>H</u>₂), 3.73 (s, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CDCl₃) δ = 167.8 (<u>C</u>ON), 53.2 (<u>C</u>H₂), 25.7 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₃H₆NO [M+Na]⁺: 193.9525; Obs.: 193.9525; *v*_{max}: (FT-ATR)/cm⁻ ¹: 2956, 1736, 1437, 1280, 1165, 1113, 1006, 884, 708, 670, 549.

A mixture of **42** (500 mg, 3.79 mmol), **84** (732 mg, 4.55 mmol), and potassium carbonate (1.05 g, 7.58 mmol) in dimethylformamide (10 mL) was stirred at 80 °C for 3 h. The mixture was then cooled to r.t. and diluted with water (70 mL). The aqueous was extracted with ethyl acetate (3×50 mL), and the combined organics washed with brine (2×50 mL), dried with MgSO₄, filtered, and concentrated under reduced pressure. The residue was purified via flash column chromatography on silica gel, eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a colourless oil (50 mg, 0.25 mmol, 6%).

R_f: 0.26 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃, data provided for major rotamer) δ = 6.53 (s, 1H, NHMe), 3.78-3.68 (m, 3H, C<u>H</u>₃), 3.60 (s, 2H, C<u>H</u>₂), 1.40 (s, 9H, Boc); ¹³C NMR (101 MHz, CDCl₃, data provided for major rotamer) δ = 171.9 (<u>C</u>ON), 162.9 (<u>C</u>OBoc), 81.0 (<u>C</u>(CH₃)₃), 53.0 (C<u>H</u>₂), 52.2 (C<u>H</u>₃), 28.6 (C(<u>C</u>H₃)₃); HRMS: Product was not observed via HRMS; *v*_{max}: (FT-ATR)/cm⁻¹: 3320, 2978, 1714, 1438, 1367, 1209, 1149, 1049, 1017, 779.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **84** (43 mg, 0.21 mmol) in dichloromethane (5 mL) and the solution was stirred at r.t. for 16 h. The reaction mixture was then concentrated under reduced pressure and azeotroped with

dichloromethane ($4 \times 30 \text{ mL}$) to obtain a colourless oil (22 mg, 0.21 mmol, quantitative yield).

R_f: 0.18 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 3.82-3.76 (m, 2H, C<u>H</u>₂), 3.78-3.70 (m, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 171.8 (<u>C</u>ON), 52.9 (<u>C</u>H₂), 50.6 (<u>C</u>H₃); HRMS: Product was not observed via HRMS; *v*_{max}: (FT-ATR)/cm⁻¹: 2959, 1730, 1438, 1205, 1154, 1047, 1005, 907, 761.

To a solution of **42** (300 mg, 1.57 mmol), methylamine (140 µL, 3.14 mmol), and triethylamine (1.09 mL, 7.85 mmol) in dichloromethane (5 mL), was added propylphosphonic anhydride solution (50% w/w in EtOAc, 1.25 mL, 3.93 mmol) at 0 °C, and the mixture was then stirred at r.t. for 16 h. The reaction was concentrated under reduced pressure and the residue was purified via flash column chromatography on silica gel eluting with EtOAc:Petrol (2:8). Fractions containing the product were concentrated under reduced pressure to provide a white solid (145 mg, 0.71 mmol, 45%).

*R*_f: 0.31 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CDCl₃) δ = 8.03 (s, 1H, N<u>H</u>Boc), 7.60 (s, 1H, N<u>H</u>Me), 4.33 (s, 2H, C<u>H</u>₂), 2.86 (s, 3H, C<u>H</u>₃), 1.48 (s, 9H, Boc); ¹³C NMR (101 MHz, CDCl₃) δ = 169.4 (<u>C</u>ONH), 157.9 (<u>C</u>OBoc), 83.4 (<u>C</u>(CH₃)₃), 76.6 (<u>C</u>H₂CO), 28.2 (<u>C</u>(CH₃)₃), 25.8 (<u>C</u>H₃); HRMS: m/z (ESI⁺) calc. for C₈H₁₆N₂O₄ [M+Na]⁺: 227.1002; Obs.: 227.1008; v_{max} : (FT-ATR)/cm⁻¹: 3287, 2979, 2939, 1723, 1658, 1559, 1480, 1369, 1280, 1253, 1163, 1112, 977, 583.

Trifluoroacetic acid (1 mL) was added dropwise to a stirred solution of **86** (60 mg, 0.26 mmol) in dichloromethane (5 mL) and stirred at r.t. for 3 h. The reaction mixture was concentrated under reduced pressure and azeotroped with dichloromethane (4 \times 30 mL) to obtain a colourless oil. (34 mg, 0.26 mmol, quantitative yield).

*R*_f: 0.22 (2:8, EtOAc:Petrol); ¹H NMR (400 MHz, CD₃OD) δ = 4.50 (s, 2H, C<u>H</u>₂), 2.80 (s, 3H, C<u>H</u>₃); ¹³C NMR (101 MHz, CD₃OD) δ = 170.1 (<u>C</u>ON), 72.7 (C<u>H</u>₂), 25.9 (C<u>H</u>₃); HRMS: m/z (ESI⁺) calc. for C₃H₈N₂O₂ [M+H]⁺: 105.0659; Obs.: 105.0652; *v*_{max}: (FT-ATR)/cm⁻¹:3313, 2924, 1654, 1553, 1414, 1199, 1135, 1085, 834, 800, 722, 577.

7. Determination of substrate concentration via UV-Vis analysis

Due to the low amounts of Cy3 and Cy5 substrates synthesised, and the potential for errors in mass calculations that could result, the concentrations of stock solutions of each substrate were calculated from a calibration curve of **1** or **2** of known concentrations. Briefly, stock dilutions of **1** or **2** were made in water to concentrations in the range of 0.1-400 μ M (at least 6 data points). Absorbance spectra were then recorded in the range 400-600 nm, and the absorbance at the λ_{max} plotted as a function of concentration (Cy3: 543 nm; Cy5: 641 nm).

Aliquots of each substrate were then serially diluted in water to generate samples for measurement. Concentrations were then determined for appropriately dilute samples for which absorbance at λ_{max} fell within the linear range of the calibration curves.

8. Initial screening of Cy3 quenching

General procedure: A solution of Cy5-nucleophile (50 µL, 100 µM) in PBS buffer was added to a solution Cy3-*o*BA **5** (50 µL, 10 µM) in PBS buffer in a 96-well plate, to give final Cy3 and Cy5 concentrations of 5 µM and 50 µM respectively (pseudo-first order). Single-point fluorescence emission intensities ($\lambda_{excitation}$ = 480 nm; $\lambda_{emission}$ = 580 nm) in the Cy3 channel were then recorded every 1 min for a period of 100 min.

Negative control: Run as for the general procedure, using Cy5-NHAc 16 (50 $\mu L,$ 100 $\mu M)$

Positive control: The emission of a solution of Cy3-Cy5 covalent control **17** (100 μ L, 5 μ M) was recorded over time as described above.

Data processing: Emission at 580 nm was plotted as a function of time, relative to the negative (100%) and positive (0%) controls.

Cy3 controls: Run as for the general procedure, using either Cy3-benzaldehyde **61** or Cy3-phenylboronic acid **67** (50 μ L, 10 μ M).

Controls to validate quenching via FRET: Run as for the general procedure, using PrNH-capped nucleophiles **26**, **77**, **79**, **81**, or **83** (50 μ L, 100 μ M) in place of the Cy5-nucleophile.

9. FRET studies

General procedure: FRET studies were performed in a 700 µL fluorescence cuvette under second-order conditions. A solution of Cy5-nucleophile (300 µL, 5 µM) in the stated buffer was added to a solution of Cy3-*o*BA **5** (300 µL, 5 µM) in the same buffer and rapidly mixed by pipetting up and down. Fluorescence emission spectra between 520-700 nm were recorded immediately after mixing, and then subsequently ever 15 seconds for a total of 100 measurements. The delay between mixing and the measurement of the first spectra was ~3 seconds. All measurements were performed in triplicate.

Negative control: Run as for the general procedure, using Cy5-NHAc **16** (300 μ L, 5 μ M).

Positive control: The emission of a solution of Cy3-Cy5 covalent control **17** (600 μ L, 2.5 μ M) was recorded over time as described above.

Data processing: The ratio of the emission at the λ_{max} of Cy3 (Emiss₅₆₀) and Cy5 (Emiss₆₅₇) was used to determine the FRET ratio (Emiss₅₆₀/Emiss₆₅₇). As the initial spectra were recorded at t = 3 sec, a plot of 1/[Emiss_{560/657}] against time and linear regression analysis was used to determine Emiss_{560/657} at t = 0 (intercept of linear regression). A minimum of 4 data points that lay within the initial linear region of this plot were included in this analysis. Emiss₇₀₀ was used as a background measurement and subtracted from Emiss_{560/657} prior to analysis.

Conversion of FRET ratios to conversion: Data from the positive and negative controls was used to account for drift in the system and to calculate the expected FRET ratio for 0% and 100% conjugation at t = x, averaged across three triplicates:

i) *0% conjugation*: Changes in Emiss_{560/657} from the negative control over the period of the measurement were fitted to a linear regression analysis, generating the gradients of drift $a_{560/657}$. The 0% conjugation FRET reference, *A*, then equals:

$$A = \frac{{}^{0}Emiss_{560} + (a_{560} \times x)}{{}^{0}Emiss_{657} + (a_{657} \times x)}$$

ii) 100% conjugation: Changes in Emiss_{560/657} from the positive control over the period of the measurement were fitted to a linear regression analysis, generating the gradients of drift $b_{560/657}$ and the emissions at t = 0, ${}^{0}c_{560/657}$. The 100% conjugation FRET reference, *B*, then equals:

$$B = \frac{{}^{0}c_{560} + (b_{560} \times x)}{{}^{0}c_{657} + (b_{657} \times x)}$$

Conversion can then be calculated from:

$$Conversion = \frac{A - FRET}{A - B} \times 100$$

Conversions over time were then averaged over the three triplicates and standard deviations at each time point calculated

Data fitting: Data were fit to a second order reversible kinetic model in Copasi 4.34.251. k_1 and k_{-1} were estimated using the evolutionary programming method built into the software, with 200 generations and a population size of 20. Parameters were restricted within the confines of: $k_1 \, 10^{-6} - 10^7 \, \text{M}^{-1} \, \text{s}^{-1}$; $k_{-1} \, 10^{-8} - 10^3 \, \text{s}^{-1}$.

10. LC-MS reversibility studies

General procedure: Stock solutions of **25** (3 μ L, 38 mM, 114 nmol) and propyl amide nucleophile **83** or **77** (6 μ L, 38 mM, 228 nmol) in methanol were added sequentially to the relevant buffer (300 μ L, final *o*BA concentration 370 μ M) and shaken for 30 min. At this point, a stock solution of the analogous methyl amide nucleophile **20** or **21** (30 μ L, 38 mM, 1140 nmol) was added and the mixture incubated at room temperature. Aliquots were analysed via LC-MS analysis every 24 h for 1 week.

Negative control: Run as described above, but methanol (30 μ L) was added in place of the methyl amide nucleophile.

Positive control: Run as described above, but methanol (6 μ L) was added in place of the propyl amide nucleophile.

Data analysis: The absorbance at 280 nm at time t = x (A_x) was integrated for peaks relating to propyl-oBID (elution time: 2.90 min) products. A plot of ln(Integration) was used to determine the integration at t = 0 (intercept of linear regression). Data from the positive controls was used to calculate the expected integration at 100% exchange (B). Conversions were then calculated from:

$$Conversion = \frac{A_0 - A_x}{A_0 - B} \times 100$$

Data fitting: Data were fit to a two-reaction reversible kinetic model using Copasi 4.34.251, based on the following reactions:

 k_1 calculated from the FRET studies were used to estimate k_{-1} , using the evolutionary programming method built into the software, with 200 generations and a population size of 20, and with the assumption that rates of reactions were the same for propyland methyl-amide nucleophiles. Parameters were restricted within the confines of: k_{-1} 10⁻¹⁰-10⁻¹ s⁻¹.

11. NMR studies of pH dependent DAB-hydrazone exchange

Solutions of *o*BA **25** (5 mg, 19 µmol) in DMSO-*d*₆ (25 µL) and propyl-amide hydrazine **77** (4.6 mg, 19 µmol) in DMSO-*d*₆ were added sequentially to deuterated buffers (450 µL, 100 mM; pH 4 – acetate buffer, pH 5, 6, 7.4, 8 – phosphate buffer; prepared by evaporating standard buffer and then redissolving the residue in D₂O three times) and

incubated for 30 min. The sample was then analysed by NMR and the ratio of DAB to hydrazone determined. In all cases, only signals from the cyclic DAB were observed, indicated by a singlet at $\delta \sim 8.6$, as previously reported by Gu *et al.*¹¹

12. NMR studies of sugar binding

Solutions of *o*BA **25** (2.5 mg, 9 µmol) in DMSO-*d*₆ (25 µL) and either propyl-amide hydrazine **77** or hydroxylamine **83** (9 µmol) in DMSO-*d*₆ were added sequentially to deuterated PBS (450 µL, 100 mM; prepared by evaporating standard buffer and then redissolving the residue in D₂O three times) and incubated for 30 min. Glucose or fructose (9 µmol) was then added and the samples incubated for a further 30 min. After this time the samples were analysed by NMR and shifts in the oxime/DAB peaks used to determine the extent of sugar binding. In all cases, no shift in signal was observed indicating no sugar binding was taking place under these conditions.

13. NMR studies of analogue reaction equilibria

General procedure: *o*BA **25** (2 mg, 7.5 μ mol) and another *o*BA analogue, **22-24** (7.5 μ mol), were dissolved in a mixture of deuterated PBS (0.5 mL, 100 mM; prepared by evaporating standard PBS and then redissolving the residue in D₂O three times) and DMSO-*d*₆ (50 μ L). A solution of 1,2-diamine **26** (1.1 mg, 7.5 μ mol) in deuterated PBS (0.5 mL) was then added and the mixture incubated for 2 hrs, prior to NMR analysis.

Data analysis: Peaks relating to *o*BID formation for both **25** and the *o*BA analogue competitor were identified via prior control reactions in which each *o*BA was incubated with **26** alone. Integration of peaks that fell within unique regions of the spectra relating

to *o*BID formation were used to determine the ratio of products formed. This ratio was then used to calculate K_d for each analogue, as follows:

$$K_{d}(25) = \frac{[A][B]}{[C]}$$
 $K_{d}(X) = \frac{[D][B]}{[E]}$

Assuming $K_d(25) = K_d(5)$, which is known from our FRET studies, these equations can be rearranged to:

$$[B] = \frac{[\mathbf{C}]K_{d}(\mathbf{5})}{[\mathbf{A}]} \qquad K_{d}(\mathbf{X}) = \frac{[\mathbf{D}][\mathbf{C}]}{[\mathbf{E}][\mathbf{A}]}K_{d}(\mathbf{5})$$

14. DFT

Calculations were performed to identify the relative energies of the imidazolidinoboronates **91-95** formed between model substrates **87-90** and ethylenediamine. The relative energies of intermediates and transition states were determined using the TURBOMOLE V6.4 package using the resolution of identity (RI) approximation.^{12–19} Initial optimisations were performed at the (RI-)BP86/SV(P) level, followed by frequency calculations at the same level. All minima were confirmed as such by the absence of imaginary frequencies. Single-point energies were then performed on the (RI-)BP86/SV(P) optimised geometries using the hybrid PBE0 functional and the flexible def2-TZVPP basis set. Energies, xyz coordinates and the first 50 lines of the vibrational spectra are presented. Solvation effects were modelled using COMSO²⁰ using the dielectronic constant of 78.2 for water and energies were corrected for dispersion using Grimme's D3-method with Becke-Johnson dampening.²¹

Differences in energy between aldehydes **88-90** and imidazolidino-boronates **92-94**, relative to the energy difference between aldehyde **87** and imidazolidino-boronate **91**.

Н

1.5757650

-1.2413014

SCF	Energy (au)BF	286/SV(P)		-674.9440225343
SCF	Energy (au)PE	BE0/def2-TZVPF	-674.9308469654	
SCF	Energy (au)PE	BE0/def2-TZVPF	-674.9532019095	(H ₂ O Correction)
Zer	o Point Energy	(au)		0.1888044
Che	mical Potentia	al (kJ mol ⁻¹)	386.35	
Dis	persion Correc	tion (au) PBE	0/def2-TZVPP	-0.02324058
XV7	coordinates			
~y2				
Ene	ergy = -674.944	0225343		
0	0.1229231	0.2566308	2.2691099	
С	-0.3831042	0.2529079	1.0117610	
С	-1.7247219	0.6933151	0.8880434	
Н	-2.2607038	1.0042750	1.7982604	
С	-2.3279417	0.7147554	-0.3673593	
Н	-3.3758318	1.0485868	-0.4677091	
С	-1.6123663	0.3084333	-1.5190090	
С	-2.2472719	0.3208490	-2.8451379	
С	-0.2648622	-0.1323970	-1.4130654	
С	0.3340958	-0.1565716	-0.1407737	
Н	1.3725067	-0.5090888	-0.0449698	
С	1.4652611	-0.1905523	2.4973762	
С	1.7428751	-0.0918841	3.9895334	
Н	2.1752183	0.4442802	1.9157179	

2.1387234

В	0.5657355	-0.5979504	-2.6935615
0	1.3233065	0.2628537	-3.4641737
0	0.7193913	-1.9454335	-2.8970460
Н	1.2582170	-2.0933026	-3.7054397
Н	1.0912610	1.2007071	-3.3093381
Н	1.6343672	0.9559426	4.3428952
Н	2.7789774	-0.4302677	4.2062575
Н	1.0376194	-0.7290728	4.5649349
Н	-3.3268260	0.6586063	-2.8730183
0	-1.6738907	-0.0043208	-3.8820117

\$vibrational spectrum

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	32.60	0.29671	YES	YES
	8	а	59.47	0.14740	YES	YES
	9	а	85.73	1.16228	YES	YES
	10	а	103.79	0.56832	YES	YES
	11	а	116.68	5.39791	YES	YES
	12	а	122.86	3.87764	YES	YES
	13	а	137.78	10.50889	YES	YES
	14	а	213.73	2.31304	YES	YES
	15	а	217.02	3.50938	YES	YES
	16	а	261.80	0.16675	YES	YES
	17	а	280.86	4.72200	YES	YES
	18	а	290.73	2.40361	YES	YES
	19	а	319.04	2.92983	YES	YES
	20	а	359.36	7.26941	YES	YES
	21	а	401.72	1.43017	YES	YES
	22	а	455.23	68.91350	YES	YES
	23	а	466.39	35.73710	YES	YES
	24	а	493.82	13.51565	YES	YES
	25	а	544.15	21.64311	YES	YES
	26	а	554.12	21.30955	YES	YES
	27	а	617.06	8.35809	YES	YES
	28	а	624.34	30.34825	YES	YES
	29	а	632.83	67.02284	YES	YES
	30	а	686.74	5.27673	YES	YES
	31	а	735.21	1.98373	YES	YES
	32	а	811.49	36.01370	YES	YES
	33	а	813.08	0.11214	YES	YES
	34	а	817.54	23.26148	YES	YES
	35	а	867.51	13.75104	YES	YES
	36	а	876.10	4.05614	YES	YES
	37	а	937.92	21.01572	YES	YES
	38	а	943.69	0.37931	YES	YES
	39	а	968.15	134.73842	YES	YES
	40	а	985.95	0.63291	YES	YES
	41	а	1003.86	138.29590	YES	YES
	42	а	1041.32	18.16669	YES	YES
	43	а	1057.69	143.17251	YES	YES
	44	а	1106.83	18.69413	YES	YES
	45	а	1113.53	11.41937	YES	YES

46	а	1142.58	3.88275	YES	YES
47	а	1211.72	84.69479	YES	YES
48	а	1244.38	63.71511	YES	YES
49	а	1266.50	2.30874	YES	YES
50	а	1276.66	353.78756	YES	YES

B(OH)₂ .Ο 91 ΗŃ

 SCF Energy (au)BP86/SV(P)
 -788.9406342711

 SCF Energy (au)PBE0/def2-TZVPP -788.9253276879
 -788.9406342711

 SCF Energy (au)PBE0/def2-TZVPP -788.9473947863
 (H20 Correction)

 Zero Point Energy (au)
 0.2758400

 Chemical Potential (kJ mol⁻¹)
 603.64

 Dispersion Correction (au) PBE0/def2-TZVPP
 -0.03331502

xyz coordinates 34

0	0.9899580	-0.0449146	3.3529898
С	0.4667609	-0.1027417	2.0925335
С	-0.8984918	0.2339073	1.9683906
Н	-1.4525093	0.5217452	2.8763760
С	-1.5185551	0.1976461	0.7144989
Н	-2.5810070	0.4666748	0.5975692
С	-0.8066750	-0.1839085	-0.4392565
С	-1.4717173	-0.1617649	-1.8098950
С	0.5640050	-0.5310371	-0.3327214
С	1.1896539	-0.4712039	0.9370550
Н	2.2543873	-0.7437827	1.0181176
Ν	-2.9288865	0.1600810	-1.7913571
Ν	-0.8367965	0.8554651	-2.6638820
С	-1.8581630	1.1625053	-3.6741741
Н	-1.8344296	0.3713715	-4.4588992
Н	-1.6531834	2.1381534	-4.1639778
С	2.3556563	-0.4001573	3.5558619
С	2.6573487	-0.2780990	5.0427110
Н	3.0187859	0.2752676	2.9611927
Н	2.5357294	-1.4436400	3.1994127
В	1.4453406	-0.9639174	-1.5728429
0	2.6967897	-0.4186876	-1.7997094
0	1.0418140	-1.9838088	-2.3996487
Н	1.7071870	-2.1138094	-3.1109314
Н	2.8643027	0.3329171	-1.1944079
С	-3.1939919	1.1114965	-2.8896169
Н	-3.4855202	-0.6961625	-1.8976481
Н	-3.4462559	2.1228081	-2.4871024
Н	-4.0556896	0.7873835	-3.5156344
Н	-0.6665468	1.6941016	-2.0851981
Н	-1.3061406	-1.1517411	-2.2998667
Н	2.4860790	0.7619611	5.3946299
Н	3.7168728	-0.5480603	5.2426811
Н	2.0038884	-0.9560485	5.6327499

\$vibrational spectrum

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.0000	-	-
	5		0.00	0.0000	-	-
	6		0.00	0.00000	-	-
	7	а	32.46	1.32549	YES	YES
	8	а	40.97	2.68258	YES	YES
	9	а	51.66	0.11918	YES	YES
	10	а	75.95	0.36585	YES	YES
	11	а	95.13	0.28409	YES	YES
	12	а	98.26	0.14764	YES	YES
	13	а	102.32	0.24753	YES	YES
	14	а	128.55	2.21866	YES	YES
	15	а	131.79	2.47801	YES	YES
	16	а	202.27	0.33551	YES	YES
	17	а	213.48	0.64153	YES	YES
	18	а	252.74	1.99361	YES	YES
	19	а	262.36	0.46050	YES	YES
	20	а	281.69	4.01542	YES	YES
	21	а	312.62	4.84903	YES	YES
	22	а	323.17	3.21589	YES	YES
	23	а	390.64	4.09645	YES	YES
	24	а	411.73	3.00280	YES	YES
	25	а	436.81	0.50164	YES	YES
	26	а	493.47	25.43168	YES	YES
	27	а	508.77	113.08135	YES	YES
	28	а	534.05	10.23991	YES	YES
	29	а	545.71	37.10191	YES	YES
	30	а	582.58	46.20626	YES	YES
	31	а	603.54	29.32661	YES	YES
	32	а	613.23	2.51359	YES	YES
	33	а	623.82	15.41473	YES	YES
	34	а	667.15	58.97105	YES	YES
	35	а	690.21	6.87422	YES	YES
	36	а	740.82	4.20967	YES	YES
	37	а	788.89	12.36679	YES	YES
	38	а	806.29	36.88200	YES	YES
	39	а	815.21	3.71629	YES	YES
	40	а	841.54	12.53565	YES	YES
	41	а	854.07	33.43152	YES	YES
	42	а	859.27	10.26141	YES	YES
	43	а	871.22	11.46102	YES	YES
	44	а	892.07	37.04017	YES	YES
	45	а	905.67	8.55998	YES	YES
	46	а	937.16	21.95969	YES	YES
	47	а	945.86	36.11721	YES	YES
	48	а	971.76	11.93884	YES	YES
	49	а	972.52	78.17454	YES	YES
	50	а	984.94	6.11996	YES	YES

0 O 88 `B(OH)₂

SCF Energy (au)BP86/SV(P)

-674.9406753105
SCF Energy (au)PBE0/def2-TZVPP -674.9275964242 SCF Energy (au)PBE0/def2-TZVPP -674.9498077236 (H₂O Correction) Zero Point Energy (au) 0.1887753 Chemical Potential (kJ mol⁻¹) 385.49 Dispersion Correction (au) PBE0/def2-TZVPP -0.02309721 xyz coordinates 25 С 0.8692490 -0.2257113 0.7959236 С -0.4933351 0.1470849 0.7817398 0 -1.2467293 0.3952855 1.8872224 С -1.1462022 0.2753851 -0.4623468 Н -2.2125705 0.5562666 -0.4742417 С -0.4484443 0.0409857 -1.6599565 С -1.1696590 0.1687176 -2.9471273 С 0.9268066 -0.3308772 -1.6705095 С -0.4161465 1.5508787 -0.4593147 Н 2.6117724 -0.7592731 -0.3633153 В 1.7364544 -0.6019414 -3.0137117 0 2.3881120 0.3873014 -3.7246896 0 1.9662966 -1.9047792 -3.3751826 Н 2.4899450 -1.9267254 -4.2065726 Н 2.1209506 1.2835536 -3.4374479 -2.8688666 -2.2637207 0.4468256 Н 0 -0.0052088 -4.0423814 -0.6509369 Н 1.4116867 -0.3426130 1.7458226 С -0.6582688 0.2460222 3.1812092 Н -0.2756138 -0.7962551 3.3033303 С -1.7256349 0.5569297 4.2200851 Н 0.2109718 0.9401257 3.2840675 Н -2.1002831 1.5962815 4.1009766 Н -1.3046897 0.4495908 5.2429648 Н -2.5870355 -0.1376568 4.1191539

Ħ	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	31.64	0.24155	YES	YES
	8	а	43.04	0.40078	YES	YES
	9	а	82.54	0.56006	YES	YES
	10	а	106.67	0.52903	YES	YES
	11	а	112.90	1.19890	YES	YES
	12	а	126.18	4.91741	YES	YES
	13	а	141.32	8.38718	YES	YES
	14	а	205.15	3.52309	YES	YES
	15	а	226.48	4.78505	YES	YES
	16	а	257.07	3.30743	YES	YES
	17	а	258.98	3.85558	YES	YES
	18	а	279.68	2.29754	YES	YES
	19	а	339.90	5.23091	YES	YES
	20	а	379.61	0.90233	YES	YES
	21	а	402.91	2.40395	YES	YES

22	а	449.69	11.90479	YES	YES
23	а	467.58	50.36263	YES	YES
24	а	471.87	80.36941	YES	YES
25	а	555.14	28.28682	YES	YES
26	а	561.10	15.75117	YES	YES
27	а	589.64	3.77702	YES	YES
28	а	632.43	33.65381	YES	YES
29	а	669.46	24.59020	YES	YES
30	а	697.17	27.98071	YES	YES
31	а	734.85	1.72734	YES	YES
32	а	772.46	34.88571	YES	YES
33	а	806.35	15.56160	YES	YES
34	а	827.09	5.52891	YES	YES
35	а	874.01	13.17085	YES	YES
36	а	881.59	26.93655	YES	YES
37	а	942.82	1.69313	YES	YES
38	а	962.79	20.66050	YES	YES
39	а	964.17	112.17912	YES	YES
40	а	990.31	0.11234	YES	YES
41	а	1005.40	161.89850	YES	YES
42	а	1045.66	75.63712	YES	YES
43	а	1077.47	29.76333	YES	YES
44	а	1109.99	26.70062	YES	YES
45	а	1129.81	33.18926	YES	YES
46	а	1144.78	4.42337	YES	YES
47	а	1155.94	25.49348	YES	YES
48	а	1240.86	34.94524	YES	YES
49	а	1261.88	0.47023	YES	YES
50	а	1284.18	494.84043	YES	YES

 SCF Energy (au)BP86/SV(P)
 -788.9425095482

 SCF Energy (au)PBE0/def2-TZVPP -788.9272939722
 -788.9425095482

 SCF Energy (au)PBE0/def2-TZVPP -788.9492048317
 (H20 Correction)

 Zero Point Energy (au)
 0.2759082

 Chemical Potential (kJ mol⁻¹)
 604.22

 Dispersion Correction (au) PBE0/def2-TZVPP
 -0.03346174

xyz coordinates 34

С	1.6317658	-0.3479865	2.2473479
С	0.2665208	-0.0278803	2.0810459
0	-0.4062145	0.3462255	3.2065425
С	-0.3122739	-0.1072353	0.7965076
Н	-1.3660726	0.1413393	0.5999420
С	0.4587230	-0.5164703	-0.3050478
С	-0.1706303	-0.5285419	-1.6957723
С	1.8297725	-0.8568570	-0.1601645
С	2.3873852	-0.7453958	1.1388462
Н	3.4505926	-1.0037102	1.2967715
Ν	-1.6314178	-0.2156127	-1.7264191
Ν	0.4908565	0.4719760	-2.5510039
С	-0.5133563	0.8045091	-3.5692147

Н	-0.5042715	0.0154072	-4.3567411
Н	-0.2806843	1.7766286	-4.0538044
В	2.7425595	-1.3411831	-1.3517439
0	4.0306815	-0.8647663	-1.5279718
0	2.3240682	-2.3397690	-2.2000745
Н	3.0147252	-2.5039665	-2.8792582
Н	4.2162361	-0.1236691	-0.9151972
С	-1.8531340	0.7815326	-2.7927318
Н	-2.1704221	-1.0710785	-1.9058403
Н	-2.0624831	1.7884914	-2.3565248
Н	-2.7279886	0.5111897	-3.4248166
Н	0.6855723	1.3077032	-1.9766280
Н	0.0083855	-1.5313798	-2.1510942
Н	2.0721549	-0.2848673	3.2552423
С	-1.7910747	0.6792012	3.1077210
Н	-2.3614873	-0.1871967	2.6942842
Н	-1.9265405	1.5345195	2.4025335
С	-2.2865812	1.0401763	4.5010088
Н	-3.3643880	1.3095001	4.4657631
Н	-1.7208149	1.9054300	4.9087122
Н	-2.1601641	0.1837363	5.1977803

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	37.95	0.69293	YES	YES
	8	а	38.84	0.46599	YES	YES
	9	а	48.39	2.60176	YES	YES
	10	а	79.45	0.58012	YES	YES
	11	а	93.99	0.23451	YES	YES
	12	а	103.32	0.63507	YES	YES
	13	а	105.62	0.22877	YES	YES
	14	а	116.11	1.73820	YES	YES
	15	а	147.07	1.51618	YES	YES
	16	а	208.88	0.51054	YES	YES
	17	а	236.65	1.98296	YES	YES
	18	а	257.76	1.30882	YES	YES
	19	а	260.10	2.31876	YES	YES
	20	а	263.29	0.51744	YES	YES
	21	а	293.91	1.24063	YES	YES
	22	а	338.92	6.93296	YES	YES
	23	а	381.96	5.02205	YES	YES
	24	а	420.43	6.02983	YES	YES
	25	а	439.96	7.25825	YES	YES
	26	а	500.81	8.47909	YES	YES
	27	а	507.87	121.18499	YES	YES
	28	а	525.93	36.83331	YES	YES
	29	а	553.06	29.36751	YES	YES
	30	а	579.75	14.87910	YES	YES
	31	а	608.79	2.80337	YES	YES
	32	а	625.73	14.53982	YES	YES
	33	а	643.18	16.37811	YES	YES
	34	а	658.54	61.05687	YES	YES

35	а	681.57	17.97435	YES	YES
36	а	741.62	6.06715	YES	YES
37	а	771.86	16.26398	YES	YES
38	а	805.38	19.76878	YES	YES
39	а	814.11	3.29819	YES	YES
40	а	822.52	19.82781	YES	YES
41	а	829.72	65.21726	YES	YES
42	а	879.30	2.31600	YES	YES
43	а	895.71	24.60431	YES	YES
44	а	901.86	4.59493	YES	YES
45	а	907.46	27.34382	YES	YES
46	а	929.34	11.72127	YES	YES
47	а	944.29	2.70749	YES	YES
48	а	964.76	105.19476	YES	YES
49	а	980.14	10.17753	YES	YES
50	а	984.42	18.46665	YES	YES

SCF Energy (au)BP86/SV(P)	-768.3662804744
SCF Energy (au)PBE0/def2-TZVPP -768.3458665976	
SCF Energy (au)PBE0/def2-TZVPP -768.3756837592	(H ₂ O Correction)
Zero Point Energy (au)	0.2106700
Chemical Potential (kJ mol ⁻¹) 433.00	
Dispersion Correction (au) PBE0/def2-TZVPP	-0.02729908

xyz coordinates 28

С	0.0815768	0.0436788	0.1620131
С	-1.2543376	0.4694664	-0.0023776
С	-1.8297388	0.4787211	-1.2795124
Н	-2.8712530	0.8192015	-1.4165020
С	-1.0790225	0.0648810	-2.3992879
С	-1.6915726	0.0838783	-3.7472164
С	0.2720443	-0.3604746	-2.2631661
С	0.8292976	-0.3476902	-0.9722863
Н	1.8760597	-0.6505322	-0.8046681
В	1.1343219	-0.8500432	-3.5134552
0	1.9893301	-0.0232462	-4.2127994
0	1.1755455	-2.1944022	-3.7709400
Н	1.7584923	-2.3662090	-4.5430413
Н	1.8803724	0.9198741	-3.9763774
Н	-2.7778383	0.3976095	-3.7896502
0	-1.0891597	-0.2076672	-4.7721562
С	0.7912857	0.0306121	1.4995650
Ν	-0.0181142	-0.1486585	2.5991530
0	2.0140463	0.1634793	1.5761011
С	0.4980592	-0.1741438	3.9621896
Н	-1.0054440	-0.3691893	2.4505331
С	-0.0734348	0.9441371	4.8426513
Н	1.5995304	-0.0800184	3.8651824
Н	0.2876611	-1.1697421	4.4188334
Н	0.1796869	1.9445177	4.4294523
Н	0.3446522	0.8777397	5.8713307

Н	-1.1817634	0.8752183	4.9263331
Н	-1.8402839	0.8290020	0.8600983

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	24.87	0.73453	YES	YES
	8	а	36.10	2.24005	YES	YES
	9	а	47.86	3.70088	YES	YES
	10	а	67.34	1.22314	YES	YES
	11	а	82.65	0.89780	YES	YES
	12	а	101.28	2.24117	YES	YES
	13	а	113.66	3.75005	YES	YES
	14	а	130.81	4.40072	YES	YES
	15	а	163.93	8.95849	YES	YES
	16	а	201.74	0.66020	YES	YES
	17	а	240.55	4.70702	YES	YES
	18	а	258.98	7.88328	YES	YES
	19	а	282.03	5.04865	YES	YES
	20	а	299.91	5.90835	YES	YES
	21	а	313.93	11.23654	YES	YES
	22	а	339.20	9.53129	YES	YES
	23	а	384.21	3.56646	YES	YES
	24	а	446.48	1.20622	YES	YES
	25	а	459.07	83.62511	YES	YES
	26	а	471.70	45.41283	YES	YES
	27	а	496.92	49.46255	YES	YES
	28	а	511.15	62.50418	YES	YES
	29	а	548.62	15.98943	YES	YES
	30	а	560.11	9.20575	YES	YES
	31	а	587.34	6.07136	YES	YES
	32	а	631.28	37.54256	YES	YES
	33	а	673.14	17.65288	YES	YES
	34	а	712.23	8.34670	YES	YES
	35	а	727.61	5.37663	YES	YES
	36	а	757.91	9.14752	YES	YES
	37	а	766.19	26.77140	YES	YES
	38	а	826.67	9.04013	YES	YES
	39	а	831.07	56.65390	YES	YES
	40	а	885.58	9.11821	YES	YES
	41	а	903.16	1.39390	YES	YES
	42	а	936.17	8.12480	YES	YES
	43	а	946.62	0.72619	YES	YES
	44	а	963.95	140.66609	YES	YES
	45	а	990.29	0.08891	YES	YES
	46	а	1002.37	135.59014	YES	YES
	47	а	1044.67	2.05876	YES	YES
	48	а	1062.00	20.47711	YES	YES
	49	а	1082.01	9.56451	YES	YES
	50	а	1123.54	4.40527	YES	YES

B(OH)₂ 93

 SCF Energy (au)BP86/SV(P)
 -882.3692975849

 SCF Energy (au)PBE0/def2-TZVPP -882.3468880601
 -882.3692975849

 SCF Energy (au)PBE0/def2-TZVPP -882.3757328395
 (H₂O Correction)

 Zero Point Energy (au)
 0.2981772

 Chemical Potential (kJ mol⁻¹)
 653.54

 Dispersion Correction (au) PBE0/def2-TZVPP
 -0.03751637

xyz coordinates 37

С	0.1198952	0.8785706	1.2542675	
С	-1.0885955	0.2080747	0.9759599	
Н	-1.9750041	0.3558618	1.6171557	
С	-1.1980916	-0.6178452	-0.1544076	
Н	-2.1397636	-1.1343117	-0.4013854	
С	-0.1059423	-0.7994209	-1.0192777	
С	-0.2521202	-1.6390043	-2.2828730	
С	1.1277891	-0.1379215	-0.7604647	
С	1.2021339	0.7077888	0.3652670	
Н	2.1291059	1.2597408	0.5984070	
Ν	-1.5701461	-2.3215501	-2.4341617	
Ν	-0.0826139	-0.7797205	-3.4684177	
С	-0.8108216	-1.4823147	-4.5336593	
Н	-0.1647862	-2.2964048	-4.9359968	
Н	-1.0550161	-0.7909063	-5.3676636	
В	2.4113694	-0.2958537	-1.6747118	
0	3.1737027	0.7901072	-2.0561657	
0	2.8670510	-1.5444099	-2.0222533	
Н	3.6749555	-1.4581833	-2.5751683	
Н	2.7619573	1.6360566	-1.7825120	
С	-2.0457096	-2.0747283	-3.8104243	
Н	-1.4695759	-3.3276750	-2.2552984	
Н	-2.8847130	-1.3370189	-3.8138548	
Н	-2.4298981	-3.0076395	-4.2789514	
Н	-0.5454925	0.1241911	-3.2800709	
Н	0.5693856	-2.3949179	-2.2951885	
С	0.3235276	1.8122350	2.4232215	
Ν	-0.5257680	1.6256879	3.4937738	
0	1.1950966	2.6859690	2.4105236	
С	-0.4218421	2.4128428	4.7149741	
Н	-1.1024710	0.7814055	3.5133983	
Н	-1.4417422	2.7421954	5.0207096	
Н	0.1594940	3.3175387	4.4414215	
С	0.2651732	1.6673816	5.8676258	
Н	0.3068949	2.3090475	6.7756886	
Н	1.3052133	1.3889726	5.5919263	
Н	-0.2826317	0.7361590	6.1385868	

#	mode	symmetry	wave number	IR intensity	selecti	ion rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-

15 0.79332 118.25 YES а YES 16 а 127.65 1.60168 17 167.56 2.21721 YES а YES 18 а 210.76 1.05532 19 YES а 240.80 3.10806 243.91 20 а 2.67756 YES 21 а 272.02 2.30307 YES 22 а 290.54 7.23765 YES 23 315.85 0.90137 YES а YES 24 325.10 17.16460 а 25 377.42 5.93944 YES а 26 404.47 2.20545 YES а 27 432.62 3.28190 YES а 28 а 472.68 19.64407 YES 29 а 484.85 4.97184 YES 30 а 512.19 49.18796 YES YES 31 515.62 183.46617 а 32 534.83 13.62593 YES а YES 33 а 563.17 13.53597 34 а 586.91 17.31830 YES 35 600.59 34.08771 YES а 36 609.84 1.53027 YES а 656.05 37 56.84228 YES а 19.13621 38 657.05 YES а 39 717.18 а 1.23204 YES 40 739.49 0.90394 YES а 41 749.62 17.34563 YES а 42 778.78 12.71984 YES а 43 802.54 YES а 21.86722 YES 44 а 810.80 25.39209 45 848.15 10.94579 YES а 46 855.33 56.44561 YES а 47 882.84 0.49062 YES а 48 а 891.59 19.53127 YES 49 898.51 6.57716 YES а 50 905.10 а 10.25409 YES B(OH)₂ 90 -0

0.00

0.00

0.00

0.00

0.00

33.23

39.26

44.62

47.53

62.55

79.56

86.40

100.11

0.00000

0.00000

0.00000

0.00000

0.00000

1.92012

0.21237

1.48425

1.03714

5.34562

0.96542

0.16151

1.23173

_

-

-

_

YES

YES

YES

YES

YES

YES

YES

YES

-

-

-

_

YES

2

3

4

5

6

7

8

9

10

11

12

13

14

а

а

а

а

а

а

а

а

SCF Energy (au)BP86/SV(P) -560.4967517160 SCF Energy (au)PBE0/def2-TZVPP -560.4829583873 SCF Energy (au)PBE0/def2-TZVPP -560.5031469908 (H₂O Correction)

S79

Zero Point Energy (au)0.1562139Chemical Potential (kJ mol⁻¹)307.75Dispersion Correction (au)PBE0/def2-TZVPP-0.02008636

xyz coordinates 21

С	0.7124482	0.1671435	3.1277351
С	0.0769321	0.1724504	1.7565363
С	-1.2561549	0.6003831	1.5729546
Н	-1.8525741	0.9166407	2.4456734
С	-1.8248592	0.6174581	0.2933383
Н	-2.8708807	0.9439486	0.1552711
С	-1.0701973	0.2108811	-0.8266783
С	-1.6747167	0.2225142	-2.1737977
С	0.2753983	-0.2272526	-0.6784133
С	0.8156764	-0.2383285	0.6198758
Н	1.8525537	-0.5891937	0.7694565
В	1.1527588	-0.7100252	-1.9190795
0	1.9354869	0.1371922	-2.6781784
0	1.2998109	-2.0599849	-2.1060684
Н	1.8737796	-2.2220887	-2.8871601
Н	1.7164661	1.0792363	-2.5304242
Н	-2.7546499	0.5570557	-2.2246473
0	-1.0767488	-0.0967469	-3.1951920
Н	1.3435907	1.0741882	3.2773115
Н	1.3761470	-0.7140295	3.2658553
Н	-0.0502671	0.1585581	3,9356313

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	33.78	0.26919	YES	YES
	8	а	55.15	0.38611	YES	YES
	9	а	86.50	2.44503	YES	YES
	10	а	108.26	1.38162	YES	YES
	11	а	127.47	8.19956	YES	YES
	12	а	182.64	5.40546	YES	YES
	13	а	197.50	8.01195	YES	YES
	14	а	271.87	0.90310	YES	YES
	15	а	288.02	7.23366	YES	YES
	16	а	346.83	0.50713	YES	YES
	17	а	353.06	4.14536	YES	YES
	18	а	412.58	4.98028	YES	YES
	19	а	449.17	16.06998	YES	YES
	20	а	463.19	104.39600	YES	YES
	21	а	534.46	32.98871	YES	YES
	22	а	552.02	15.21097	YES	YES
	23	а	581.27	6.67493	YES	YES
	24	а	612.42	8.25378	YES	YES
	25	а	634.42	59.27584	YES	YES
	26	а	689.77	5.43340	YES	YES
	27	а	743.64	1.12778	YES	YES

28	а	790.94	45.77967	YES	YES
29	а	807.00	19.23278	YES	YES
30	а	891.04	11.51409	YES	YES
31	а	901.19	1.97278	YES	YES
32	а	946.60	0.77056	YES	YES
33	а	964.52	129.20301	YES	YES
34	а	986.18	13.29851	YES	YES
35	а	990.04	0.40928	YES	YES
36	а	1004.46	130.90090	YES	YES
37	а	1025.59	12.33435	YES	YES
38	а	1065.49	35.77171	YES	YES
39	а	1126.65	8.08611	YES	YES
40	а	1207.27	44.74838	YES	YES
41	а	1210.43	34.83124	YES	YES
42	а	1254.05	27.96557	YES	YES
43	а	1330.27	171.49387	YES	YES
44	а	1351.68	88.75970	YES	YES
45	а	1362.08	15.12464	YES	YES
46	а	1375.55	2.46360	YES	YES
47	а	1394.99	30.06201	YES	YES
48	а	1401.08	285.33565	YES	YES
49	а	1426.04	7.40076	YES	YES
50	а	1435.19	4.52209	YES	YES

 SCF Energy (au)BP86/SV(P)
 -674.4962885969

 SCF Energy (au)PBE0/def2-TZVPP -674.4801110801
 -674.4962885969

 SCF Energy (au)PBE0/def2-TZVPP -674.4998723066
 (H₂O Correction)

 Zero Point Energy (au)
 0.2433506

 Chemical Potential (kJ mol⁻¹)
 525.27

 Dispersion Correction (au) PBE0/def2-TZVPP
 -0.03018458

xyz coordinates 30

С	0.9615971	-0.1561163	2.7473288
С	-0.4085181	0.1444622	2.6102510
Н	-0.9937709	0.4318756	3.5015820
С	-1.0390199	0.0894534	1.3564603
Н	-2.1070343	0.3353991	1.2390795
С	-0.3207677	-0.2774020	0.2062477
С	-0.9878706	-0.2716974	-1.1645320
С	1.0613721	-0.5931271	0.3076675
С	1.6721986	-0.5090029	1.5797057
Н	2.7482331	-0.7482663	1.6753500
Ν	-2.4488151	0.0332180	-1.1507084
Ν	-0.3557693	0.7462093	-2.0223312
С	-1.3872611	1.0751530	-3.0153648
Н	-1.3856417	0.2926450	-3.8092351
Н	-1.1770939	2.0539622	-3.4967019
В	1.9467905	-1.0179769	-0.9322428
0	3.1889318	-0.4565013	-1.1674352
0	1.5542112	-2.0482050	-1.7520142

Н	2.2204495	-2.1754228	-2.4629407
Н	3.3558295	0.2930965	-0.5596097
С	-2.7086486	1.0299855	-2.2084708
Н	-2.9910716	-0.8239167	-1.3102878
Н	-2.9236182	2.0327217	-1.7649889
Н	-3.5928104	0.7497969	-2.8233841
Н	-0.1660244	1.5790662	-1.4417190
Н	-0.8138082	-1.2653397	-1.6433218
С	1.6391251	-0.1348581	4.1005527
Н	1.1996457	0.6386337	4.7677941
Н	2.7287778	0.0666656	4.0110273
Н	1.5303821	-1.1145110	4.6222420

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.00000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	37.19	1.07755	YES	YES
	8	а	42.72	1.92848	YES	YES
	9	а	45.10	1.04826	YES	YES
	10	а	78.11	0.37988	YES	YES
	11	а	85.88	0.18659	YES	YES
	12	а	114.96	0.90027	YES	YES
	13	а	118.33	1.35459	YES	YES
	14	а	165.56	0.49163	YES	YES
	15	a	210.24	1.45287	YES	YES
	16	а	264.41	1.63196	YES	YES
	17	а	298.33	9.64356	YES	YES
	18	а	312.15	2.07755	YES	YES
	19	а	321.25	3.53982	YES	YES
	20	а	349.83	1.60179	YES	YES
	21	а	410.33	2.89567	YES	YES
	22	а	481.43	12.55252	YES	YES
	23	а	499.07	83.02366	YES	YES
	24	а	520.16	67.73934	YES	YES
	25	а	539.77	21.57590	YES	YES
	26	a	581.96	21,28512	YES	YES
	27	а	588.36	20.64614	YES	YES
	28	а	592.14	25.51628	YES	YES
	29	а	609.98	1.93984	YES	YES
	30	а	659.85	72.13826	YES	YES
	31	а	690.41	2.07992	YES	YES
	32	а	744.81	5.57087	YES	YES
	33	а	788.48	20.19874	YES	YES
	34	а	800.94	29.39020	YES	YES
	35	а	837.46	9.88888	YES	YES
	36	а	852.03	45.88054	YES	YES
	37	а	875.17	8.16490	YES	YES
	38	а	891.16	25.43808	YES	YES
	39	a	897.36	3.00083	YES	YES
	40	a	904.60	7,74601	YES	YES
	41	a	944.41	19.71977	YES	YES
	42	а	967.99	86.85103	YES	YES
	43	а	972.36	0.71430	YES	YES

а	984.13	23.87868	YES	YES
а	985.59	9.21871	YES	YES
а	1010.34	119.89112	YES	YES
а	1028.34	10.58650	YES	YES
а	1042.10	64.72899	YES	YES
а	1071.27	19.34589	YES	YES
а	1083.57	11.05166	YES	YES
	a a a a a a	a 984.13 a 985.59 a 1010.34 a 1028.34 a 1042.10 a 1071.27 a 1083.57	a984.1323.87868a985.599.21871a1010.34119.89112a1028.3410.58650a1042.1064.72899a1071.2719.34589a1083.5711.05166	a984.1323.87868YESa985.599.21871YESa1010.34119.89112YESa1028.3410.58650YESa1042.1064.72899YESa1071.2719.34589YESa1083.5711.05166YES

H₂N NH₂

SCF Energy (au)BP86/SV(P)	-190.3560477141				
SCF Energy (au)PBE0/def2-TZVPP -190.3692189326					
SCF Energy (au)PBE0/def2-TZVPP -190.3826064451	(H ₂ O Correction)				
Zero Point Energy (au)	0.1067987				
Chemical Potential (kJ mol ⁻¹) 207.67					
Dispersion Correction (au) PBE0/def2-TZVPP -0.00604782					

xyz coordinates 12

Ν	-1.1330603	1.2252625	0.8145257
С	0.1691229	-0.8078177	0.2452857
Н	-0.7747596	-1.3939372	0.1383079
Ν	1.1992336	-1.4579361	-0.5637413
С	-0.1182786	0.6709942	-0.0824277
Н	-2.0474290	0.7819880	0.6331013
Н	0.8223445	1.2525489	0.0623127
Н	-0.3629794	0.7448803	-1.1809071
Н	-1.2610430	2.2327847	0.6398534
Н	0.4530204	-0.8811665	1.3189967
Н	2.0984138	-0.9624036	-0.4600138
Н	0.9554147	-1.4051973	-1.5652936

#	mode	symmetry	wave number	IR intensity	selecti	on rules
#			cm**(-1)	km/mol	IR	RAMAN
	1		0.00	0.0000	-	-
	2		0.00	0.00000	-	-
	3		0.00	0.00000	-	-
	4		0.00	0.00000	-	-
	5		0.00	0.00000	-	-
	6		0.00	0.00000	-	-
	7	а	143.62	1.42402	YES	YES
	8	а	238.53	21.17081	YES	YES
	9	а	284.76	9.86618	YES	YES
	10	а	321.97	65.34488	YES	YES
	11	а	459.49	17.85979	YES	YES
	12	а	770.49	11.50482	YES	YES
	13	а	803.12	200.13669	YES	YES
	14	а	822.11	128.91349	YES	YES
	15	а	945.89	19.96233	YES	YES
	16	а	990.00	18.01493	YES	YES
	17	а	1074.81	15.70973	YES	YES
	18	а	1092.00	4.86136	YES	YES
	19	а	1122.72	2.30425	YES	YES
	20	а	1233.03	8.03994	YES	YES
	21	а	1280.34	10.26362	YES	YES

22	а	1322.06	7.30029	YES	YES
23	а	1348.02	2.15091	YES	YES
24	а	1383.18	3.55631	YES	YES
25	а	1428.85	2.41996	YES	YES
26	а	1453.69	1.96652	YES	YES
27	а	1607.04	22.89082	YES	YES
28	а	1614.36	20.10656	YES	YES
29	а	2796.50	130.04398	YES	YES
30	а	2930.46	29.66559	YES	YES
31	а	2954.77	47.09360	YES	YES
32	а	2999.09	38.15234	YES	YES
33	а	3319.14	2.94822	YES	YES
34	а	3325.98	2.44491	YES	YES
35	а	3402.76	0.32029	YES	YES
36	а	3410.43	0.17064	YES	YES

H^{∠O}∖H

6

a1

a1 b1

7 8 9

SCF	Energy (a	u)BP86/S	V(P)	76 2700	0000	-76.34	519822147	,
SCF SCF Zero Cher Disp	Energy (a Energy (a D Point En nical Pote Dersion Co	u)PBE0/d ergy (au ntial (k rrection	ef2-TZVPP ef2-TZVPP) J mol ⁻¹) (au) PBE(-76.3919 -76.3919 5.89 0/def2-T	7820 90884 ZVPP	08 (H ₂ 0 Cori 0.01995 -0.000	rection) 820 27693	
xyz 3	coordinat	es						
0	0.0000	00 0.	0000000	0.4047	790			
Н	-0.77074	36 0.	0000000	-0.2023	895			
Η	0.77074	36 0.	0000000	-0.2023	895			
\$vil	orational	spectrum						
# r	node s	ymmetry	wave i	number	IR :	intensity	selecti	on rules
#			cm**	(-1)	I	km/mol	IR	RAMAN
	1		(0.00		0.00000	-	-
	2		(0.00		0.00000	-	-
	3		(0.00		0.00000	-	-
	4		(0.00		0.00000	-	-
	5		(0.00		0.00000	-	-

0.00

1604.11

3526.34 3640.63

0.00000

62.01507

0.10597 16.46475

-

YES

YES

YES

-

YES

YES YES

References

- Z. Shi, P. Peng, D. Strohecker and Y. Liao, *J. Am. Chem. Soc.*, 2011, **133**, 14699– 14703.
- 2 X. Duan, Q. Ruan, Q. Gan, X. Song, S. Fang, X. Zhang and J. Zhang, *J. Organomet. Chem.*, 2018, **868**, 154–163.
- 3 K. Li, C. Weidman and J. Gao, *Org. Lett.*, 2018, **20**, 20–23.
- 4 K. K. H. Vong, S. Maeda and K. Tanaka, *Chem. A Eur. J.*, 2016, **22**, 18865–18872.
- M. K. Islam, S. Kim, H. K. Kim, S. Park, G. H. Lee, H. J. Kang, J. C. Jung, J. S. Park,
 T. J. Kim and Y. Chang, *J. Med. Chem.*, 2017, **60**, 2993–3001.
- 6 R. K. Varshnaya and P. Banerjee, *European J. Org. Chem.*, 2016, **2016**, 4059–4066.
- L. Bollans, J. Bacsa, J. A. Iggo, G. A. Morris and A. V. Stachulski, *Org. Biomol. Chem.*, 2009, 7, 4531–4538.
- 8 A. Weickgenannt, J. Mohr and M. Oestreich, *Tetrahedron*, 2012, **68**, 3468–3479.
- J. Gao, B. Zhao, M. Wang, M. A. C. Serrano, J. Zhuang, M. Ray, V. M. Rotello, R. W.
 Vachet and S. Thayumanavan, *J. Am. Chem. Soc.*, 2018, 140, 2421–2425.
- S. Nazreen, M. S. Alam, H. Hamid, M. S. Yar, A. Dhulap, P. Alam, M. A. Q. Pasha, S. Bano, M. M. Alam, S. Haider, C. Kharbanda, Y. Ali and K. Pillai, *Arch. Pharm.* (*Weinheim*)., 2015, **348**, 421–432.
- H. Gu, T. I. Chio, Z. Lei, R. J. Staples, J. S. Hirschi and S. Bane, Org. Biomol. Chem., 2017, 15, 7543–7548.
- 12 P. Császár and P. Pulay, J. Mol. Struct., 1984, 114, 31–34.
- R. Ahlrichs, M. Bär, M. Häser, H. Horn and C. Kölmel, *Chem. Phys. Lett.*, 1989, 162, 165–169.
- 14 P. Deglmann, F. Furche and R. Ahlrichs, *Chem. Phys. Lett.*, 2002, **362**, 511–518.
- P. Deglmann, K. May, F. Furche and R. Ahlrichs, *Chem. Phys. Lett.*, 2004, **384**, 103– 107.
- 16 K. Eichkorn, O. Treutler, H. Öhm, M. Häser and R. Ahlrichs, *Chem. Phys. Lett.*, 1995, 242, 652–660.
- 17 K. Eichkorn, F. Weigend, O. Treutler and R. Ahlrichs, *Theor. Chem. Acc.*, 1997, 97,

119–124.

- 18 O. Treutler and R. Ahlrichs, *J. Chem. Phys.*, 1995, **102**, 346–354.
- 19 M. Von Arnim and R. Ahlrichs, *J. Chem. Phys.*, 1999, **111**, 9183–9190.
- A. Klamt and G. Schüürmann, J. Chem. Soc. Perkin Trans. 2, 1993, 799–805.
- 21 S. Niu, D. L. Strout, S. Zarić, C. A. Bayse and M. B. Hall, *Organometallics*, 1998, **17**, 5139–5147.

¹³C NMR (100 MHz, MeOD)

¹H NMR (400 MHz, 100 mM deuterated PBS + 10% DMSO- d_6)

¹³C NMR (100 MHz, MeOD) 0 H N B(OH)₂ Ö 49.00 CD30D 24 -170.05 L134.98 134.26 129.87 128.19 128.19 127.01 126.83 -42.76 ~25.19 -11.76 . De la la contraction de la contraction hally ben all you and a second of you and a second second second second second a second of a second secon

110 100 90 Chemical shift (ppm)

)0

190

180

170

160

150

140

130

120

70

60

50

80

40 30

20 10

¹H NMR (400 MHz, 100 mM deuterated PBS + 10% DMSO- d_6)

¹³C NMR (100 MHz, 100 mM deuterated PBS + 10% DMSO- d_6)

110 100 90 Chemical shift (ppm) C

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹³C NMR (100 MHz, MeOD)

Chemical shift (ppm)

¹H NMR (400 MHz, MeOD)

¹³C NMR (100 MHz, MeOD)

¹H NMR (600 MHz, MeOD)

¹³C NMR(600 MHz, MeOD)

¹H NMR (600 MHz, MeOD)

¹³C NMR(600 MHz, MeOD)

¹H NMR (500 MHz, MeOD)

¹³C NMR(500 MHz, MeOD)

¹H NMR (400 MHz, CDCl₃) Br II O 62 7.26 CDCl3 453 4450 449 7.16 7.16 7.12 7.12 7.12 7.11 2.09 1.51 1.51 1.48 1.48 2 ð, ě.), , 2.06 0.99 1.00 ¥ 2.00 –≞ 9.23 -≢ 9.5 9.0 8.5 8.0 7.5 7.0 6.5 6.0 5.5 5.0 4.5 Chemical shift (ppm) 4.5 4.0 3.5 3.0 2.5 2.0 1.5 1.0 0.5

0.

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, MeOD)

¹³C NMR (100 MHz, MeOD)

¹H NMR (500 MHz, MeOD)

¹³C NMR(500 MHz, MeOD)

¹H NMR (500 MHz, MeOD)

¹³C NMR(500 MHz, MeOD)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

00

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

110 100 -10 -20 Chemical shift (ppm)

¹³C NMR (100 MHz, MeOD) Н Ν Br || 0 --201.73 /117.91 /115.65 /115.18 134.82 132.61 132.61 131.79 -170.32 -41.92 25.22 24.98 23.56 -11.62 Chemical shift (ppm)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, MeOD)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, MeOD)

¹H NMR (400 MHz, CDCl₃)

¹³C NMR (100 MHz, CDCl₃)

